Introduction

> We now focus on the third design specification, steady-state
error.

> We define steady-state error to be the difference between
input and ouput as t — .

» We will see that control system design typically means we will

have to make trade-offs between the desired transient,
steady-state, and stability specifications.
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Test Inputs

» Table below shows the standard test inputs typically used for
evaluating steady-state error.

Physical Time Laplace
Waveform Name interpretation function  transform
i)
_ . N 1
Step Constant position 1 5
J
0)
. 1
Ramp Constant velocity ' =
e
.
"o
" 1, 1
Parabola  Constant acceleration E/‘ =
3
. ‘

Table 7.1.
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Choosing a Test Inputs

» The test inputs we will choose for our steady-state analysis
and design depends on our target application.

Satellite in geostationary orbit w
Satellite orbiting at
constant velocity @

Accelerating

missile AN

Tracking system @

Figure 7.1.
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Steady-State Error and Stable Systems

» The calculations we will be deriving for steady-state apply
only to stable systems.

» Unstable systems represent loss of control in steady-state as
the transient response swamps the forced response.

P> As we analyze and design a system for steady-state error, we
must constantly check the system for stability.
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Steady-State Error and Step Inputs

> With step inputs, we can get two types of steady-state errors:

1. Zero error.
2. A constant error value.

Input X

“— Qutput 1 e3(e0)

c(t)

Output 2

Time
(@ Figure 7.2.
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Steady-State Error and Ramp input

» With ramp inputs, we can get three types of steady-state
errors:

1. Zero error.

2. A constant error value.
3. Infinite error.

€3()

Output 2

c(t)

Input

Output 1
Output 3

Time
® Figure 7.2.

(©2006-2012 R.J. Leduc



Steady-State Error and Block Diagrams

» If we have a closed-loop transfer function T'(s), we can
represent our error signal, E(s), as in figure (a).

> We are interested in the time domain signal,
e(t) = L7YHE(s)}, as t — co.

» If we have a unity feedback system, we already have E(s) as
part of our diagram, as shown in figure (b).

T(s) G(s)

(@) ()

+
R(s) C(s) — E(s) R(s) +® E(s) C(s)

Figure 7.3.
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Sources of Steady-State Error

» Steady-state errors can arise from nonlinear sources, such as
backlash in gears or motors requiring a minimum input
voltage before it starts to move.

> Steady-state errors can also arise from configuration of system
and the input we apply.

» Consider a step input applied to the system below which has
constant gain.

> If a unity feedback system has a feedforward transfer function
G(s), then we can derive the transfer function % as follows:

C(s) = E(s)G(s) (1)
E(s) = R(s) — C(s) (2)
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Sources of Steady-State Error - I
» Substituting equation 1 into equation 2 gives:
E(s) = R(s) — E(s)G(s)
E(s)[1 + G(s)] = R(s)

E(s) 1
3
R(s) 14+G(s) (3)
» For G(s) = K, we get
E(s) _ 1 ()
R(s) 14+ K
» For R(s) = % (unit step), we get E(s) = s(liiK)
» We thus have ess = limy_,o €(t) = limg_,0 sE(s) = ﬁ
M% E(s) X C(s)
(a) Figure 7.4.
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Sources of Steady-State Error - IlI

E(s) 1
R(s) 1+4+G(s)
> If we add an integrator to the forward-path gain, we get
G(s) = % giving

E(s) _ 1 s (5)
R(s) 1+% s+K
> For R(s) = 1 (unit step), we get E(s) = ﬁ
> We thus have
. . 0
ess = lim elt) = limsB(s) =57 =0 (6)
R(s) +% By | C(s)
©®) Figure 7.4.
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Steady-State Error and 7'(s)
» In Diagram below, we have E(s) = R(s) — C(s).
» We also have:

C(s) = R(s)T'(s)
» Combining the two we get
E(s) = R(s) — R(s)T(s) = R(s)[1 = T(s)]
> We thus have
€gs = ;1_13(1) sE(s)

= lim s R(s)[1 — T/(s)]

r6)| OEPANED)

@ Figure 7.3.
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Steady-State Error and G(s)

» From equation 3, we have

__R(s)
Els) = 14+ G(s) (10)
» We thus have
€ss = 21_1)1(1) s E(s)
ok R(s)
= s G (11)

R(s) +® E(s) 6 [€0)

®) Figure 7.3.
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Steady-State Error, G(s), and Step Input
> For input R(s) = 1, we get
1/s 1
12
1+ G(s ) 1+ limg—,0 G(s) (12)
» We refer to the term lims_,o G(s) as dc gain of the forward
transfer function.

€ss hm s

» For G(s) of form below, we thus need n > 1
(S+Z1)(S+Zz)"'

G(s) = TP (14)
> If n =0, we get
: (04 21)(0+22) -+ z129--
GO = om0+ p) - ppe Y
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Steady-State Error, G(s), and Ramp Input
» For input R(s) = S% we get

. s(1/s%) , 1 1
ss — 1 T AN N = T. 16
€ 550 1 + G(s) 520 +sG(s)  limg0sG(s) (16)
» To have zero steady-state error for ramp input, we need
lgr(l)sG(s) = 00 (17)
» For G(s) of form below, we thus need n > 2
G(S)E (8+21)(8+22)~-- (18)
s"(s+p1)(s+p2)- -
> If n=1, we get
. le2 DY
lim s G(s) = 19
g s Gs) pip2- - (19)
> If n =0, we get
lim s G(s) s(s+z1)(s+ 22) - - _ (20)
50 (s+p1)(s+p2)---
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Steady-State Error, GG(s), and Parabolic Input

» For input R(s) = S% we get
i 5(1/s3) , 1 1
(& = 1m ———— = l1im =
55014+ G(s)  so082+52G(s)  limgo s2G(s)
» To have zero steady-state error for a parabolic input, we need

. 2 o
21_% s°G(s) = o0 (22)

(21)

» For G(s) of form below, we thus need n > 3
(8+21)(8+22)~--

Gle) = s"(s +p1)(s+p2)--- (23)
> If n =2, we get
lim 52 G(s) = -2 (24)
5—0 pip2 -
> If n =1, we get
lim % G(s) = slsta)(s +22)- =0 (25)

s=0 (s +p1)(s+p2)--
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Steady-State Error eg.

» Find the steady state errors for inputs 5u(t), 5tu(t), and

5t2ul(t).

100(s +2)(s + 6)

C(s)

s(s+3)(s+4)

R(s) + T E(s)
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Static Error Constants

> We now define steady state-error performance specifications
called static error constants.

1. Position Constant: K, = lim,_,o G(s), thus

1

() =17,
p

2. Velocity Constant: K, = lim,_,o sG(s), thus

1

€ramp (00) = —

K,
3. Aceleration Constant: K, = lim,_,q s2G(s), thus

1

€parabola (OO) = f
a

(©2006-2012 R.J. Leduc 18



System Type

» The static error constants are determined by the structure of
G(s).

» They are mostly determined by the number of integrators in

G(s).

> The system type is the number of integrators in the forward
path, thus the value of n in figure below.

R(s) + E(s) K@+ z)(s+ 2p) - C(s)
% s"(s +p)(stpa)
Figure 7.8.
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Steady-State Error Summary

P Table shows relationship between input type, system type,
static error constants, and steady-state errors.

Type O Type 1 Type 2
Static Static Static
Steady-state error error error
Input error formula constant Error constant Error constant Error
Step, 1 Ky, = 1
[ K, = K, =
u(f) 1+K, Constant 1+K, »= 0 »= 0
Ramp, 1 _ K, = 1 _
tu(t) K_\ Ky =0 0 Constant Z Ky = 0
Parabola.
’ 1 K, = 1
1 — = = a —
Etzu(t) X, Ka=0 * Ka=0 “ Constant X,
7.2
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Table

20



Tight Steady-State Error Specifications

» Example of a system requiring tight steady-state error
specifications to be useful.

Figure 7.9.
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Steady-State Error Specifications eg.

» For system below, find value of K such there is 10% error in

steady state.

C(s)

R(s) + E(s) K(s +5)
—
? s(s+6)(s+7)(s+8)
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Figure 7.10.
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Steady-State Error and Disturbances

» Can use feedback systems to handle unwanted disturbances to
the systems.

» By using feedback, we can design systems that follow the
input signal with small or zero error, despite these
disturbances.

» Consider feedback system below with disturbance, D(S),
added between plant and controller.

> The system output is
C(s) = E(s)G1(s)G2(s) + D(s)G2(s) (26)

D(s)

Controller Plant
+ (¢
R(s) + T E(s) 6 + 600 C(s)
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Steady-State Error and Disturbances - I
> However
E(s) = R(s) — C(s) = C(s) = R(s) — E(s)
» Using Equations 27 and 26 and solving for E(s) gives
(s) = R(s) _ D(s)Ga(s)
14+ G1(5)Ga(s) 14 G1(s)Ga(s)
» Using final-value theorem, the steady-state error is

€ss = l% sE(s)

 im sR(s) lim sD(s)Ga(s)

s—0 1+ G1(s)Ga(s) =01+ G1(s)Ga(s)
= er(00) +ep(0)

D(s)

Controller Plant
RGs) +%E@) o) _:* ) )
Figure 7.11.
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(30)
(31)
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Steady-State Error and Disturbances - 111

» The er(0c0) term is the steady-state error due to input R(s)
that we have already seen.

» The ep(oo) term is the steady-state error due to D(s).

» If D(s) =1/s (step input), we have

1
ep(o0) = — 1 (32)
limg 0 =—— + lims_,0 G
1Ms—0 GQ(S) + lms g 1(5)
> If we set R(s) =0, we get from Eqn28 the transfer function:
E(s) Ga(s)
= - 33
D)~ TH Ga(s)Gals) 3
Plant
201y o 6y £6)
L Gi(s) ]
Controller Figure 7.12.
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Steady-State Error and State Space

> We now consider how to evaluate steady-state error for a
system represented in state-space.

> As we saw in Section 3.6 of the text, we can convert a
single-input single-ouput state-space representation to an
equivalent closed-loop transfer function using

s
T(s) = =C(s[-A)'B 34
(5) = oy =CleL- 4B (34)

» In Diagram below, we have E(s) = R(s) — C(s).

> We also have:

C(s) = R(s)T(s) (35)
R(s) . C(s) - P E(s)
@ Figure 7.3.
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Steady-State Error and State Space - |l

» Combining the two we get

» We thus have
ess = lim s E(s)
s—0

= lim s R(s)[1 — T'(s)] (37)

s—0

» Substituting in for T'(s) gives

€ss = ;I_I}(l) s R(s)[1 —C(sl - A)_lﬁ] (38)
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