
Introduction

I We now focus on the third design specification, steady-state
error.

I We define steady-state error to be the di↵erence between

input and ouput as t ! 1.

I We will see that control system design typically means we will

have to make trade-o↵s between the desired transient,

steady-state, and stability specifications.
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Test Inputs

I Table below shows the standard test inputs typically used for

evaluating steady-state error.

Table 7.1.
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Choosing a Test Inputs
I The test inputs we will choose for our steady-state analysis

and design depends on our target application.

Figure 7.1.
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Steady-State Error and Stable Systems

I The calculations we will be deriving for steady-state apply

only to stable systems.

I Unstable systems represent loss of control in steady-state as

the transient response swamps the forced response.

I As we analyze and design a system for steady-state error, we

must constantly check the system for stability.
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Steady-State Error and Step Inputs

I With step inputs, we can get two types of steady-state errors:

1. Zero error.

2. A constant error value.

Figure 7.2.
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Steady-State Error and Ramp input
I With ramp inputs, we can get three types of steady-state

errors:

1. Zero error.

2. A constant error value.

3. Infinite error.

Figure 7.2.
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Steady-State Error and Block Diagrams

I If we have a closed-loop transfer function T (s), we can

represent our error signal, E(s), as in figure (a).

I We are interested in the time domain signal,

e(t) = L�1{E(s)}, as t ! 1.

I If we have a unity feedback system, we already have E(s) as
part of our diagram, as shown in figure (b).

Figure 7.3.
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Sources of Steady-State Error
I Steady-state errors can arise from nonlinear sources, such as

backlash in gears or motors requiring a minimum input

voltage before it starts to move.

I Steady-state errors can also arise from configuration of system

and the input we apply.

I Consider a step input applied to the system below which has

constant gain.

I If a unity feedback system has a feedforward transfer function

G(s), then we can derive the transfer function
E(s)
R(s) as follows:

C(s) = E(s)G(s) (1)

E(s) = R(s)� C(s) (2)
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Sources of Steady-State Error - II
I Substituting equation 1 into equation 2 gives:

E(s) = R(s)� E(s)G(s)

E(s)[1 +G(s)] = R(s)

E(s)

R(s)
=

1

1 +G(s)
(3)

I For G(s) = K, we get

E(s)

R(s)
=

1

1 +K
(4)

I For R(s) = 1
s (unit step), we get E(s) = 1

s(1+K) .

I We thus have ess = limt!1 e(t) = lims!0 sE(s) = 1
1+K

Figure 7.4.
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Sources of Steady-State Error - III

E(s)

R(s)
=

1

1 +G(s)

I If we add an integrator to the forward-path gain, we get

G(s) = K
s giving

E(s)

R(s)
=

1

1 + K
s

=
s

s+K
(5)

I For R(s) = 1
s (unit step), we get E(s) = 1

(s+K) .

I We thus have

ess = lim
t!1

e(t) = lim
s!0

sE(s) =
0

0 +K
= 0 (6)

Figure 7.4.
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Steady-State Error and T (s)
I In Diagram below, we have E(s) = R(s)� C(s).
I We also have:

C(s) = R(s)T (s) (7)

I Combining the two we get

E(s) = R(s)�R(s)T (s) = R(s)[1� T (s)] (8)

I We thus have

ess = lim
s!0

sE(s)

= lim
s!0

sR(s)[1� T (s)] (9)

Figure 7.3.
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Steady-State Error and G(s)

I From equation 3, we have

E(s) =
R(s)

1 +G(s)
(10)

I We thus have

ess = lim
s!0

sE(s)

= lim
s!0

s
R(s)

1 +G(s)
(11)

Figure 7.3.
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Steady-State Error, G(s), and Step Input
I For input R(s) = 1

s , we get

ess = lim
s!0

s
1/s

1 +G(s)
=

1

1 + lims!0G(s)
(12)

I We refer to the term lims!0G(s) as dc gain of the forward

transfer function.

I To have zero steady-state error we need

lim
s!0

G(s) = 1 (13)

I For G(s) of form below, we thus need n � 1

G(s) ⌘ (s+ z1)(s+ z2) · · ·
sn(s+ p1)(s+ p2) · · ·

(14)

I If n = 0, we get

lim
s!0

G(s) =
(0 + z1)(0 + z2) · · ·
(0 + p1)(0 + p2) · · ·

=
z1z2 · · ·
p1p2 · · ·

(15)
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Steady-State Error, G(s), and Ramp Input
I For input R(s) = 1

s2 , we get

ess = lim
s!0

s(1/s2)

1 +G(s)
= lim

s!0

1

s+ sG(s)
=

1

lims!0 sG(s)
(16)

I To have zero steady-state error for ramp input, we need

lim
s!0

sG(s) = 1 (17)

I For G(s) of form below, we thus need n � 2

G(s) ⌘ (s+ z1)(s+ z2) · · ·
sn(s+ p1)(s+ p2) · · ·

(18)

I If n = 1, we get

lim
s!0

sG(s) =
z1z2 · · ·
p1p2 · · ·

(19)

I If n = 0, we get

lim
s!0

sG(s) =
s(s+ z1)(s+ z2) · · ·
(s+ p1)(s+ p2) · · ·

= 0 (20)
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Steady-State Error, G(s), and Parabolic Input
I For input R(s) = 1

s3 , we get

ess = lim
s!0

s(1/s3)

1 +G(s)
= lim

s!0

1

s2 + s2G(s)
=

1

lims!0 s2G(s)
(21)

I To have zero steady-state error for a parabolic input, we need

lim
s!0

s2G(s) = 1 (22)

I For G(s) of form below, we thus need n � 3

G(s) ⌘ (s+ z1)(s+ z2) · · ·
sn(s+ p1)(s+ p2) · · ·

(23)

I If n = 2, we get

lim
s!0

s2G(s) =
z1z2 · · ·
p1p2 · · ·

(24)

I If n = 1, we get

lim
s!0

s2G(s) =
s(s+ z1)(s+ z2) · · ·
(s+ p1)(s+ p2) · · ·

= 0 (25)
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Steady-State Error eg.

I Find the steady state errors for inputs 5u(t), 5tu(t), and
5t2u(t).

Figure 7.6.
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Static Error Constants

I We now define steady state-error performance specifications

called static error constants.

1. Position Constant: Kp = lims!0 G(s), thus

estep(1) =
1

1 +Kp

2. Velocity Constant: Kv = lims!0 sG(s), thus

eramp(1) =
1

Kv

3. Aceleration Constant: Ka = lims!0 s2G(s), thus

eparabola(1) =
1

Ka
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System Type

I The static error constants are determined by the structure of

G(s).

I They are mostly determined by the number of integrators in

G(s).

I The system type is the number of integrators in the forward

path, thus the value of n in figure below.

Figure 7.8.
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Steady-State Error Summary

I Table shows relationship between input type, system type,

static error constants, and steady-state errors.

Table

7.2.
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Tight Steady-State Error Specifications

I Example of a system requiring tight steady-state error

specifications to be useful.

Figure 7.9.
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Steady-State Error Specifications eg.

I For system below, find value of K such there is 10% error in

steady state.

Figure 7.10.
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Steady-State Error and Disturbances
I Can use feedback systems to handle unwanted disturbances to

the systems.

I By using feedback, we can design systems that follow the

input signal with small or zero error, despite these

disturbances.

I Consider feedback system below with disturbance, D(S),
added between plant and controller.

I The system output is

C(s) = E(s)G1(s)G2(s) +D(s)G2(s) (26)

Figure 7.11.
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Steady-State Error and Disturbances - II
I However

E(s) = R(s)� C(s) ) C(s) = R(s)� E(s) (27)

I Using Equations 27 and 26 and solving for E(s) gives

E(s) =
R(s)

1 +G1(s)G2(s)
� D(s)G2(s)

1 +G1(s)G2(s)
(28)

I Using final-value theorem, the steady-state error is

ess = lim
s!0

sE(s) (29)

= lim
s!0

sR(s)

1 +G1(s)G2(s)
� lim

s!0

sD(s)G2(s)

1 +G1(s)G2(s)
(30)

= eR(1) + eD(1) (31)

Figure 7.11.
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Steady-State Error and Disturbances - III
I The eR(1) term is the steady-state error due to input R(s)

that we have already seen.

I The eD(1) term is the steady-state error due to D(s).

I If D(s) = 1/s (step input), we have

eD(1) = � 1

lims!0
1

G2(s)
+ lims!0G1(s)

(32)

I If we set R(s) = 0, we get from Eqn28 the transfer function:

E(s)

D(s)
= � G2(s)

1 +G1(s)G2(s)
(33)

Figure 7.12.
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Steady-State Error and State Space
I We now consider how to evaluate steady-state error for a

system represented in state-space.

I As we saw in Section 3.6 of the text, we can convert a

single-input single-ouput state-space representation to an

equivalent closed-loop transfer function using

T (s) =
Y (s)

U(s)
= C(sI �A)�1B (34)

I In Diagram below, we have E(s) = R(s)� C(s).
I We also have:

C(s) = R(s)T (s) (35)

Figure 7.3.

©2006-2012 R.J. Leduc 26



Steady-State Error and State Space - II

I Combining the two we get

E(s) = R(s)�R(s)T (s) = R(s)[1� T (s)] (36)

I We thus have

ess = lim
s!0

sE(s)

= lim
s!0

sR(s)[1� T (s)] (37)

I Substituting in for T (s) gives

ess = lim
s!0

sR(s)[1� C(sI �A)�1B] (38)
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