Introduction

P Frequency response design methods allow us to place the
dominant second-order pair of poles.

> We then hope that the higher-order poles won't invalidate the
approximation.

> We want to be able to specify the location of all n poles.
> We need n adjustable parameters to place n unknown values.

P A single gain and a compensator pole and zero are typically
not enough.

(©2006-2012 R.J. Leduc



Introduction - Il

> State space methods solve this by:
1. introducing into the system other adjustable parameters
2. providing techniques to determine values for these parameters
that will correctly place the poles.
> A disadvantage of state space methods is that it doesn’t allow

the placement of closed loop zeros which can affect transient
response.

P Also, a state space design may be quite sensitive to changes in
parameters.
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Control Design

» An n'" order feedback control system has a n!’* order
closed-loop characteristic equation given by

det(sI — A’) = s" + 18"+ ra1s+a,=0

where A’ is the closed loop system matrix.

» The characteristic equation contains n coefficients that
determine the system’s n poles (eigenvalues).

» Our goal is to introduce n new adjustable parameters and
relate them to these coefficients.
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Topology for Pole Placement
» Consider a plant represented as
x=Ax+Bu (1)
y=Cx (2)
> Typically, the output y is fed back.
P Instead, we feed back each state variable with its own gain, k;.

- + . .
45

s
A

Figure 12.2.
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Topology for Pole Placement - Il
> We represent the gains by feedback vector —K.
» This gives a closed-loop system as represented as follows:
x=Ax+Bu=Ax+B(-Kx+r)=(A-BK)x+Br
(3)
y=Cx (4)

)

Figure 12.2.
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Signal Flow Graph

» Signal flow graphs are an alternative to block diagrams.

» They consist of nodes which represent signals, and branches
that represent systems (the blocks of block diagrams).

v

Value of a node is the sum of the signals entering it.
P> To subtract an incoming signal, label the branch as negative.

» For example:

V(S) = R1(s)G1(s) — Ra(s)Ga(s) + R3(s)G3(s)

R(s) Ci(s)
Gi(s) Gy(s)
—Gy(s) Gs(s)
Ros) O——» > O Cxs)
G3(s) V(s) NgGe(s)
G(s)
— o) R5(s) C3(s)

(s)
(a) (b) (c)
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Signal Flow Graph e.g.

» Convert the block diagram below to a signal flow graph.

» The steps are:

1. First, draw all the signal nodes of the system.

2. Add the branches to connect the nodes.

3. Simplify the diagram by eliminating nodes with a single entry
and exit point.

R(s) + <cxVi(s)

Va(s) +

V3(s)

Ve(s)

Gi(s)

G3(s)

C(s)

Va(s)

H;(s)
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Signal Flow Graph e.g. - Il

Rs) O O O O O O O )
Vi(s) Vo(s) Vi(s) Vas) Vs(s)
o ¢] (@]
Ve(s) Va(s) Vy(s)
(a)
1
1 Gi(s) 1 Gafs) 1 Gy(s)
R(s) C(s)
Vi(s) Va(s) V3(s) Vi(s) Vs(s)
e 1 Hys)
Ve(s) Vs(s)
Hyls)
(b)
1
1 Gi(s)
RO C(s)
Vi(s) Vs(s)!
—Hs(s)

~Hy(s)

()
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Phase Variable (Controller Cannonical) Form
» System with transfer function

Y(s) bo

U(s) s"+ap 15" 1 +---a1s+ag

G(s) =

> gives differential equation

n n—1
%+an71%+--~+a1%+aoyzb0u
» Our state variables and first-order differential equations are as
follows:
dy dZy dnfly
rr =Y, 1:2255 1'3:@7"' al‘n:W
Tl = X2, XTg = T3, L3 = T4, " ,Tp-1 = Tn
Tp = —ApT1 — A1T2 "+ — Ap_1Tn + bou

(©2006-2012 R.J. Leduc

10



Phase Variable (Controller Cannonical) Form - Il
P> Putting the state equations in matrix form gives:

il @i o 058 5 00 O 0@ et 0 || | [0
S D . 0u 1 008 00 x 0
R e T i N e R A
P O Bons O Oy Bl ssms: 1 _|leral o
Xn —ap —ap —ay —az —a4 —as " Tap-1|| Xp bo

» Using that our ouput y(t) equals z1, gives:

X1

X2
y=0 00 - of
Xn—1
Xn
dn dn—ly Yy
W—Fan L oo +---+a1a+a0y:bou

(©2006-2012 R.J. Leduc 11



Phase Variable Form - Zeros

» As we saw before, if numerator is not a constant, the
numerator defines the output equation.
» The output below is thus:

Y(s) = (s> 4+ 7s +2) X1 (s) = s°X1(s) + TsX1(s) + 2X1(s)
= X3(s) + 7Xa(s) + 2X1(s)
» In the time domain we thus have:
y =21 + Txo + 3
» We thus have ouput matrix C'=[2 7 1].

R(s) 247542 C(s)
s34+ 952+ 265+ 24

(a)

R(s) | | |)m.\) | 2irein C(s)
| srotraestaa | | o

Internal variables:
Xo(s), X3(s)

)

Figure 3.12.
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State Feedback Example

» Below is an example of plant in phase-variable form with state
feedback added.

—k,
()

©2006-2012 R.J. Leduc Figure 12.3.
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Pole Placement with Phase-Variable Form

» To apply the pole placment approach with plants in
phase-variable form, we follow the following steps.

1. Represent the plant in phase-variable form.
2. Feed back each state variable via gain k;.
3. Find characteristic eqn for above system.

4. Select desired closed-loop poles and corresponding
characteristic equation.

5. Equate coefficients of characteristic equations from last two
steps, and solve for the k;.

(©2006-2012 R.J. Leduc
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Pole Placement with Phase-Variable Form - ||
P> Phase-variable representation of plant is given by

0 1 0 0 0
0 0 1 0 0
A= . B=
=gy =@ = 997 ) 1
C=[ca o cn]

» Can show above system has characteristic equation:
"+ 18"+ ars + ag
» We then feed back each state variable to input u giving:
u=—-Kx, where K =[k; ko ---ky]

» For our closed-loop system, this gives system matrix:

0 | 0 7 0
0 0 .
A Bk- : ; ‘ : 0
—(ao+k) —(a1+k) —(aa+ks) - —(Gn1 +kn)

(©2006-2012 R.J. Leduc 15



Pole Placement with Phase-Variable Form - Il

» Closed-loop system thus has characteristic equation:

det(sI — (A — BK)) = s" + (an_1 + kn)s" '+ (5)
(an—2 + kn_1)s" "2+ + (a1 + ko) s+
(ao + kl) =0

» Assume that the desired closed-loop poles correspond to the
characteristic equation:

$"+dp18" !+ dp_os" 24 +dis+dg=0 (6)
» equating coefficients we get:
di=a; +kiyp for i=0,1,2,...n—1
» We thus have:

kiy1 =d; — a;

(©2006-2012 R.J. Leduc 16



Pole Placement with Phase-Variable Form - e.g.

» Given plant below, design the phase-variable feedback gains to
yield 9.5% overshoot and a settling time of 0.74 seconds.

20(s+5)  20s+100
s(s+1)(s+4) s3+5s2+4s

20

G(s) =

1 5 5 5 100

1 1 B B s 100
x

oy
®)

(©2006-2012 R.J. Leduc Figure 12.4.
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Pole Placement with Phase-Variable Form - e.g. - |l

» Start by determining location of dominant second-order poles
to achieve desired transient response.

» Using methods from previous chapters, we find that needed
poles are 519 = —5.4 & j7.2.

» As system is third order, we need to choose a location for
third pole. We could:

1. choose pole to be more than 5 times to the left of dominant
second-order poles.

2. choose pole to cancel zero

3. optimize pole location to satisfy additional criteria.

» We should place pole at s = —5 to cancel the zero, but we
will instead place pole at s = —5.1 to demonstrate why zero
needs to be cancelled and the need for a final simulation.

» Desired characteristic equation is thus

(s +5.4+47.2)(s + 54— j7.2)(s +5.1) = s> + 15.95* (7)
4 136.08s + 413.1

(©2006-2012 R.J. Leduc 18



Pole Placement with Phase-Variable - e.g. - Ill

» From diagram and phase-varaiable form of system, we can
derive the closed loop system as:

0 1 0 0
= | 0 0 il :Ix—l- ]:O}r
—kq —(4 +k2) *(5 +k3) 1

y=1[100 20 O0]x
» Our closed-loop system matrix is thus:
0 1 0
A-BK=| 0 0 1
k1 —(4+k) —(5+k3)
» Closed loop system's chracteristic equation is thus:

det(sI — (A —BK)) =5+ (5+ k3)s’ + (44 ko)s + k1 =0
(8)

(©2006-2012 R.J. Leduc
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Pole Placement with Phase-Variable - e.g. - IV
» Comparing coefficients of Equations 7 and 8 gives:
5+ ks =15.9; 44 ko =136.08 k; =413.1
» We thus have:
k1 = 413.1; ko = 132.08; ks =10.9

P> As the zeros of open-loop system are the same as the
closed-loop system, our final system is thus:

0 1 0 0
= 0 0 1 x+ |0|r
—413.1 -136.08 -15.9 1

y=[100 20 O]x
» This gives a closed loop transfer function of:

20(s +5)
s3 +15.952 + 136.08s + 413.1

(©2006-2012 R.J. Leduc
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Pole Placement with Phase-Variable - e.g. - V

» Simulation system gives 11.5% overshoot and 0.8 second
settling time.

» Redesigning system with third pole at s = —5 gives correct
result.

0.30

0.25

0.20

(0

0.15

0.10

0.05

| | I
0 0.5 1.0 15 2.0

Time (seconds)

Figure 12.5.
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Controllability

P It is not always possible to be able to place every pole in a
system. ,

» In Figure (b) below, we )
can not use input u to
control state x1 as input u
has no effect on this state.

> We say a system is
(completely) controllable 1
if we can find an input to
a system that will take
each state variable from a
chosen initial state to a
chosen final state.
Otherwise system is
uncontrollable. Figure: 12.6

(b

(©2006-2012 R.J. Leduc
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Controllability - 11

» For many systems, it is not obvious from inspection whether a
system is controllable or not.
» For a system with state equation
X =Ax+Bu,
consider the so called controllability matrix, Cyg, below:
Cu=[B AB A’B --- A" !B

» It can be shown that if Cpg is of rank n, then the system is
controllable (see Ogata, K. Modern Control Engineering, 2d
ed. Prentice Hall, Englewood Cliffs, NJ, 1990).

» The rank of a matrix is the maximum number of independent
rows or columns.

» If determinant of a n X n matrix does not equal zero, then the
matrix has rank n.

(©2006-2012 R.J. Leduc
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Controllability Example

(©2006-2012 R.J. Leduc

Figure 12.7.
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Controllability Example

P> Given state equation for system below

| 2
-1 1 0
X = 0 -1 0Ol x+ 1| 1| u
0 0 -2 1

(©2006-2012 R.J. Leduc
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Controllability e.g.

» The controllability matrix is

0 1 -2
CuM=[B AB A’B]=|1 -1 1
1 -2 4
» As det(Cpp) = —1 (i-e. non zero), matrix Cpp has rank 3 so

system is controllable.

(©2006-2012 R.J. Leduc
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Alternate Approaches to Controller Design

» Pole placement is very straightforward when system in
phase-variable form.

» For other forms, we can still evaluate the closed-loop and
desire characteristic equation and compare coefficients, but
the results typically lead to difficult calculations.

» An easier method is to transform the system into

phase-variable form, place the poles, and then transform the
result back into the original form.

(©2006-2012 R.J. Leduc
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Controller Design by Transform
» Assume plant below is NOT in phase-variable form

z=Az+Bu
y=Cz
» Corresponding controllability matrix is thus
Cm, =B AB A’B ... A" !B]

> We then assume that can convert the system into
phase-variable form using the transformation

z=Px

» Substituting this into Equation 9, we get

x=P 'APx+P 'Bu
y=CPx

(©2006-2012 R.J. Leduc
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Controller Design by Transform - |l

» Corresponding controllability matrix is thus

Cwv, =[P7'B (P!AP)(P!B) (P'AP?(P'B) --.

(PT'AP)" ! (P7'B)]

=[P 'B (P 'AP)(P!B) (P 'AP)(P'AP) (P !B)
(P'AP)(P!AP)...(P'AP)(P'B)]

=P '[B AB A’B .- A"!B|=P 7 !Cy,

>'d

> Solving for P gives

P = Cp, Cn, ! (13)

(©2006-2012 R.J. Leduc 29



Controller Design by Transform - 11|

» Once we have phase-variable form of system, we can design
controller by setting u = —Kx x + r giving

x=P 'APx-P 'BKyx+P 'Br (14)
= (P AP - P 'BK,)x+ P 'Br
y=CPx

» We thus use system matrix (P"!AP — P~!BKy) to
construct our closed-loop characteristic equation, and solve
for the elements of K.

» We now use x = P~ !z to transform the above system back
into the original system form giving us:

z=Az—-BK,P 'z+Br (15)
= (A-BK,P Hz+Br

» As standard form closed-loop system matrix is (A — BK), we
see that K, = K, P~ 1.

(©2006-2012 R.J. Leduc
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Controller Design by Transform - e.g.

» Design state-variable feedback controller that has 20.8%
overshoot and settling time of 4 seconds for plant

(s+4) B (s+4)

Gls) = (s+1)(s+2)(s+5) s3+8s2+17s+ 10

that is represented in cascade form (see Section 5.7 of text for
more information about cascade form) below:

Figure 12.9.

(©2006-2012 R.J. Leduc 31



Controller Design by Transform - e.g. |l

» From the diagram, we can derive the system below

-5 1 0 0
z=A,z+B,u= 0 -2 1 |z+ |0 |u (16)
0 0 -1 1

y=Crz=[-11 0]z

» The corresponding controllability matrix is

0 0 1
CMz = [BZ AZ Bz Az2 Bz] = 0 1 -3 (17)
1 - 1
» as det(Cpg,) = —1, the system is controllable.

(©2006-2012 R.J. Leduc



Controller Design by Transform - e.g. Il

» Using characteristic equation (det(sI — A,)) or denominator
of G(s), we can write out phase-variable form for system

equations
0 1 0 0
X =Axx+Bxu= 0 0 1 |x+|0|u (18)
-10 —-17 -8 1
» The corresponding controllability matrix is
0 0 1
Cwm, = [Bx AxBx A°’By =0 1 -8 (19)
1 -8 47
> We thus have
1 00
P=Cym,Cm, '=]| 5 10 (20)
10 7 1

(©2006-2012 R.J. Leduc
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Controller Design by Transform - e.g. IV

» \We can now design our state-feedback gains (K ) for
phase-variable systems like before.

» To achieve system with desired specifications, we need our
second-order system to be 52 + 25 + 5.

> We place our third pole at s = —4 to cancel the zero.
» This gives desired characteristic equation
D(s) = (s+4)(s>+254+5) =5 +65>+135s+20=0 (21)

» The closed-loop system matrix is thus

0 1 0
Ax — ByKy = 0 0 1
—(10+ k1) —(17+ ko) —(8+ks,)

(22)

(©2006-2012 R.J. Leduc
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Controller Design by Transform - e.g. V

» Corresponding characteristic equation is thus

det(sI — (Ax — By Ky)) = 5% + (84 k3, )s> + (17 + ko, )s (23)

+ (10 + k1)
» Comparing coefficients, we see that
Ky = [k1, ko, k3,|]=[10 —4 —2] (24)
» Transforming the controller back to original system gives
K, =KP ' =[-20 10 —2 (25)
» Combining with original system gives final closed-loop system
-5 10 0
z= (A, —B,K;)z+ B,r = 0 -2 1|z+]|0]|r
20 —10 1 1

y=Crz=[-11 0]z

(©2006-2012 R.J. Leduc
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Observers

» The state feedback controllers we have been using only work
if we have access to all of the system states.

» However, due to cost, accuracy, or availability, we may not
always have the means to measure all state variables.

» When this is the case, we can estimate the states and feed the
estimated states to the controller instead.

» We will use an observer (also called an estimator) to calculate
the inaccessible plant state variables.

(©2006-2012 R.J. Leduc
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Observers - 1l
> We will base our observer on our plant model with output
feedback to converge on the current state of system given
that actual initial conditions of plant are unkown.

Plant Plant
o mpm output,
y
"
Estimated
mupul
Estimated
states,
X
®)
Estimated Plant
. output, output,
u X - v

Estimated
error
output

]
L
To controller

[C]

Figure 12.11.
(©2006-2012 R.J. Leduc
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Observer Design
> Assume a plant

x=Ax+Bu (26)
y=Cx

» and observer
X=A%+Bu (27)
g=Cx

» If we subtract equation 27 from equation 26, we get
X—%=A(x—%) (28)
y—§=C(x—%)

> We have a system that will drive the difference to zero, but at

the same rate as the original systems’ transient response.

» This means the convergence rate of observer will be too slow
to be used as input to the controller.

(©2006-2012 R.J. Leduc
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Observer Design - |l
» To increase speed of convergence, we can feed back y — 7 to
X, as shown in Figure (c) below.

» This feedback will allow us to design a transient response for
the observer that is much faster than that of the original
system.

umu\ output,

Estimate d Plant
output,

Estimated
error
output

To controller
©

Figure 12.11.
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Observer Canonical Form

» For designing state feedback controllers, systems in
phase-variable form made things easier.

P For designing observers, we want systems in observer
canonical form.

» Consider system below:

C(s) 2+ Ts+2
p— pr— 2
@)= Ris) T 51952+ 265 1 24 (29)

4 e 4 2
5 52 53 (30)

26 24
+X+ 24

(©2006-2012 R.J. Leduc 40



Observer Canonical Form Il
» Cross multiplying gives:

1 7 2 9 26 24

S

» Collecting terms gives:

C(s) = ~[R(5) ~ 9C(5)] + [TR(s) ~ 26C(5)

4 Sig[zR(s) V)

» We can rewrite this as:

C(s) = ~[R(s) ~ 90(s)] + ~([TR(s) — 260(s)]
+ 2 [2R(s) — 240(5)))]

(©2006-2012 R.J. Leduc
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Observer Canonical Form |11

C(s)

[[R(s) = 9C(s)] + %([73(8) —26C(s)]

+ —[2R(s) — 24C(s)])]

Figure 5.28.
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Observer Canonical Form IV

» From signal-flow graph, we can derive state-space equations:

-9 1 0 1

x=1|-26 0 1|x+|7|r (34)
-24 0 O 2

y=1[10 0)x

» Similar form as phase-variable.
1. Output matrix, C, always as shown.

2. Negate the coefficients of denominator make up left column of

A matrix.
3. Coefficients of numerator make up matrix B.

(s) 24+ T7s+2
S =
53 4952 4+ 265 + 24

(©2006-2012 R.J. Leduc 43



Observer Feedback e.g.

» Diagram shows plant in observer canonical form with output
error feedback.

Figure 12.12.

(©2006-2012 R.J. Leduc
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Observer Design - Canonical Form

» From figure 12.11(c), we can derive state-space equations:

X=A%X+Bu+L(y—9) (35)
g=Cx
» Subtracting these from the equations for the plant gives:
(X —%) = A (x—%) - L(y - 9) (36)
(y—9)=Cx—-%) (37)
» Substituting Equation 37 into 36 gives:
(x—%) = (A —LC)(x —X) (38)
(y—9)=C(x—%) (39)

> If we take e, = (x — X) as our state variable, we see the error
will go to zero as long as the eigenvalues are all in left half
plane.

(©2006-2012 R.J. Leduc
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Observer Design - Canonical Form Il

» Goal is to place the roots of characteristic equation below to
get desired response.

det\I— (A —LC) =0 (40)

> First, we note that for a plant in observer canonical form,
A — LC, is of the form:

[ —a,-1 1 0 0 -+ 0] [ ]
—Ap—2 o010 --- 0 lQ
A-LC=| ¢ = o ooonon— 100
—a; 00 0 --- 1 ln—1
| —ay 0 0 0 0 | L

(©2006-2012 R.J. Leduc 46



Observer Design - Canonical Form Il
» Simplifying gives

[ —(an,1+l1) 1 0 0 --- O
—(an_g—i-lg) o100 --- 0

A-LC= : R : : (42)
—(a1+1lp1) 0 0 0 - 1
—(ap+1l,) 0 0 0 0 |

» Our characteristic equation for A — LC is thus
s" 4 (ap—1 + l1)8n_1 + (ap—2 + ZQ)S"_Q 4t (43)
(a1 +1n_1)s + (ag +1,) =0

We then select our poles to give desired respond giving
desired characteristic equation

st dp18" T b dy 98" b dis+dog =0 (44)
» equating coefficients and solving for I;, we get:

li=dp_i—apn_; for 1=1,2,...n
©2006-2012 R.J. Leduc ¢ n—t n-t v
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Observer Design - Canonical Form e.g.
» Design an observer for plant below. The observer should
respond 10 times faster than closed-loop system with
dominant poles at s = —1 + 52 (designed in earlier example).

(s+4) (s +4)

) = D+ 255) P +82 + 175+ 10

> Writing estimated plant in observer canonical form gives

. 8 10 0
x=A%x+Bu| -17 0 1 |[x+ | 1 |u (45)
—-10 0 O 4

g=Cx=][10 0]%x
» Characteristic equation for A — LC is thus

$3+ (84 11)s* + (17 +I2)s + (10 + I3) (46)

(©2006-2012 R.J. Leduc
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Observer Design - Canonical Form e.g. - |l

> As we want observer 10 times faster than system with
dominant closed-loop poles at s = —1 4 52, we need
dominant poles at s = —10 + ;520.

» Choose third pole to be 10 times to the left of dominant pole
to limit it's affect, gives pole at s = —100.

» Desired characteristic equation is thus:
D(s) = s® 4 120s% + 25005 + 50,000 (47)

» Comparing coefficients for Equation above and Equation 46,
gives I1 = 112, I, = 2483, I3 = 49,990.

(©2006-2012 R.J. Leduc
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Observer Response

» Response of observer with input 7(¢) = 100¢, initial conditions
of plant zero, and initial condition of x; = 0.5.

» Top figure is with output error feedback. bottom without.

L
0 0.1 02 03
Time (seconds)

(@)

»y

05 L L L
0 0.1 0.2 0.3
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®)

(©2006-2012 R.J. Leduc Figure 12.14.



Observervability

> To design an observer, we need to be able to deduce the
current state of each state variable from the sytem output.

> If a state variable has no effect on the output, we can not
determine the value of that variable from observing the
output.

Definition

If initial state x(¢,) of system can be determined from y(¢) and
u(t) observed over a finite time interval starting at ¢,, we say the
system is (completely) observable. Otherwise, we say the system is
unobservable.

(©2006-2012 R.J. Leduc 51



Observervability |1

» Consider system with state-space equations given below.

XxX=Ax+Bu
y=Cx
» The observability matrix, Oy, for the system is
C
CA
Oy =
CAn—l

» System is obervable if Oy, is of rank n.

(©2006-2012 R.J. Leduc
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Alternate Approaches to Observer Design

» Observer design is very straightforward when system in
observer canonical form.

» For other forms, we can still evaluate the observer and desire
characteristic equation and compare coefficients, but the
results typically lead to difficult calculations.

» An easier method is to transform the system into observer

canonical form, place the poles, and then transform the result
back into the original form.

(©2006-2012 R.J. Leduc
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Observer Design by Transformation
» Assume plant below is not in Observer canonical form

z=Az+Bu (49)
y=Cz
» System's observability matrix is
C
CA
On. = : (50)
CAn—l

» Assuming we can use the transform z = P x to transform
system into observer canonical form, we get equations

*x=P'APx+P 'Bu (51)
y=CPx

(©2006-2012 R.J. Leduc
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Observer Design by Transformation - |1

» This gives observability matrix:

C
CA
Oy, = _ P=0,.P (52)
CAn—l
» Solving for P gives
P =0;; Oy, (53)

> After using the observer canonical form to solve for feedback
matrix L., we can derive the feedback matrix for original
system using the relation below:

L.=PL, (54)

(©2006-2012 R.J. Leduc 55



Observer Design by Transformation e.g.

» Design an observer for plant

1 1
Gls) = (s+1)(s+2)(s+5) s3+8s2+17s+ 10

represented in cascade form below. The desired closed-loop
performance for the observer is represented by the desired
characteristic equation of: D(s) = s + 12052 + 25005

+50, 000.
-5 1 0 0
z=Az+Bu= 0 -2 1 |{z+ |0 fu (55
0O 0 -1 1

y=Cz=[1 0 0]z

(©2006-2012 R.J. Leduc
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Observer Design by Transformation e.g. - Il
» The System'’s observability matrix is

C 1 00
Ou.=| CA |=| -5 10 (56)
CA?2 25 —7 1

» As det(Ojr,) = 1 # 0, the matrix has rank 3, thus the system
is observable.

» Using the denominator of G(s), we can construct the observer
canonical form for the system.
x=A;x+B;u (57)
y=0C;x
with
-8 1 0

A,=|-17 0 1 | andC, =11 0 0]
~10 0 0
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Observer Design by Transformation e.g. - Il
» The observability matrix is

C. 1 00
Oy,=| C,A, |=]| -8 10 (58)
C, A2 47 -8 1

» Next step is to design an observer for the observer canonical
form.

» Characteristic equation for A, — L,C,. is thus
s 4 (8 4 11)8% 4+ (17 + I9)s + (10 + 13) (59)
» Equating coefficients with the desired charactersitic equation,
D(s) = s + 120s? + 2500s 450,000, we get

112
L,= | 2483 (60)
49,990
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Observer Design by Transformation e.g. - IV

» We now need to find P to transform L, into L..

1 00
P=0,;/0y=|-3 10 (61)
1 -1 1
and thus
112
L,=PL, = 2147 (62)
47,619
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Observer Design by Transformation e.g. - IV

» Diagram below shows original plant in cascade form,
connected to the observer with output error feedback.

Plant

47,619
Observer

Figure 12.18.
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Steady-State Error Design via Integral Control

> We now discuss how to design state space systems for
steady-state error.

» To do this, we will take the controller we designed earlier, add

a feedback path for the output to create error signal, and then
add an integrator.

» We have added a new state variable, X, to the output of the
new integrator. thus giving &nv = r — Cx.

©2006-2012 R.J. Leduc Figure 12.21.
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Steady-State Error Design via Integral Control - |l

> We can now write our state-space equations using augmented
vectors and matrices.

R P R R

y=1[C 0][ X}

TN
» From diagram, we have u = —K x + K.z . Substituting this
into Equation 70 and simplifying gives

P R [P R Y

y=1[C 0][ X]

TN
» We would now use the characteristic equation of the system

matrix for the above system to design K and K, to achieve

the desired transient response.
(©2006-2012 R.J. Leduc

62



Steady-State Error Design via Integral Control - 11l

» We now have another closed-loop pole we have to place that
can have an effect on transient response..

» We also have to take into consideration the effect of
closed-loop zeros.

> We can assume that closed-loop zeros will be in same place as
the open-loop ones, but we must later verify this.

» Using this assumption, we will try to place higher order poles
to cancel the zeros.
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Design via Integral Control e.g.

» Consider plant below:

k:[_g _é}x—k[?}u (65)

y=1[1 0]x

1. Without integral control, design acontroller that gives 10%
overshoot, and 0.5 second settling time. What is the
steady-state error for a unit step?

2. Repeat using integral control.

» Using the required settling time and % overshoot, we
calculate we need dominant closed-loop poles at
s = —8 = 107 and characteristic equation

s> 4 165 + 183.1 (66)
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Design via Integral Control e.g. - |l

» As plant is in phase-variable form, the characteristic equation
for A — BK is thus:

s2+ (54 ka)s + (3 + k1) (67)
» Equating coefficients and solving for gains gives k; = 180.1
and k‘Q =11.
» Our closed-loop plant is thus:
. - 0 1 0
x=(A-BK)x+Br= [ _1831 —16 ]x—i— [ 1 } T
(68)

y=Cx=][1 0]x
» Using equation below, we find ez = 0.995.
€ss = lim 5 R(s)[1 — C(sI — A)"'B] (69)
s
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Design via Integral Control e.g. - Il

» Part 2: Using equation from Slide 62, our integral-controlled
plant is thus:

2] ][] 2]

][ e 2

TN

X 1
y:[CO][x ]:[100] 22
(©2006-2012 R.J. Leduc N
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Design via Integral Control e.g. - IV

> We still want our dominant poles at s = —8 + 105 to satisfy
our performance requirements.

P> As the open loop system has no zeros, we will assume the
closed loop has none also (check later).

» We choose our third pole at s = —100 to minimize its effect.

» Combining the three poles gives desired characteristic
equation below:

D(s) = s® 4+ 1165 + 1783.15 + 18,310 (71)

» Calculating the characteristic equation for the system matrix
directly gives

s+ (5 + ka)s® + 3+ k1)s + K. (72)

» Comparing coefficients gives k1 = 1780.1, ko = 111,
K. =18, 310.
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Design via Integral Control e.g. - V

» This gives us a closed-loop state space representation of:

i‘l 0 1 0 T 0
T | = | —1783.1 -116 18,310 z2 |+ 0|7
TN -1 0 0 TN 1
z1
Yy = [1 0 0] xIo
TN

P> To check is our assumption about the system’s zeros was
correct, we calculate the systems transfer function and find
that it does not contain a zero.

T(s)=C(sI-A)"'B (73)
18,310
53 + 11652 + 1783.1s + 18,310

» Using equation below, we find ez = 0.

€ss = ilg(l) sR(s)[1 — C(sI — A)"'B] (74)
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