
Introduction

I The root locus technique shows graphically how the
closed-loop poles change as a system parameter is varied.

I Used to analyze and design systems for stability and transient
response.

I Shows graphically the e↵ect of varying the gain on things like
percent overshoot, and settling time.

I Also shows graphically how stable a system is; shows ranges of
stability, instability, and when system will start oscillating.

c�2006-2012,2017 R.J. Leduc & M. Lawford 2



The Control System Problem

I The poles of the open-loop transfer function are typically easy
to find and do not depend on the gain, K.

I It is thus easy to determine stability and transient response for
an open-loop system.

I Let G(s) =
NG(s)

DG(s)
and H(s) =

NH(s)

DH(s)
.

Figure 8.1.
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The Control System Problem - II

I Our closed transfer function is thus

T (s) =
K

NG(s)

DG(s)

1 +K
NG(s)

DG(s)

NH(s)

DH(s)

(1)

=
KNG(s)DH(s)

DG(s)DH(s) +KNG(s)NH(s)
(2)

I We thus see that we have to factor the denominator of T (s)
to find the closed-loop poles, and they will be a function of K.

Figure 8.1(b).
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The Control System Problem - III

I For example, if G(s) =
s+ 1

s(s+ 2)
and H(s) =

s+ 3

s+ 4
, our

closed-loop transfer function is:

T (s) =
K(s+ 1)(s+ 4)

s(s+ 2)(s+ 4) +K(s+ 1)(s+ 3)
(3)

=
K(s+ 1)(s+ 4)

s3 + (6 +K)s2 + (8 + 4K)s+ 3K
(4)

I To find the poles, we would have to factor the polynomial for
a specific value of K.

I The root-locus will give us a picture of how the poles will vary
with K.
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Vector Representation of Complex Numbers

I Any complex number, � + j!, can be represented as a vector.
I It can be represented in polar form with magnitude M , and an

angle ✓, as M\✓.
I If F (s) is a complex function, setting s = � + j! produces a

complex number. For F (s) = (s+ a), we would get
(� + a) + j! .

Figure 8.2.
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Vector Representation of Complex Numbers - II

I If we note that function F (s) = (s+ a) has a zero at s = �a,
we can alternately represent F (� + j!) as originating at
s = �a, and terminating at � + j!.

I To multiply and divide the polar form complex numbers,
z1 = M1\✓1 and z2 = M2\✓2, we get

z1z2 = M1M2\(✓1 + ✓2)
z1

z2
=

M1

M2
\(✓1 � ✓2) (5)

Figure 8.2.
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Polar Form and Transfer Functions

I For a transfer function, we have:

G(s) =
(s+ z1) · · · (s+ zm)

(s+ p1) · · · (s+ pn)
=

Q
m

i=1(s+ zi)Q
n

i=1(s+ pi)
= MG\✓G

(6)

where

MG =

Q
m

i=1 |(s+ zi)|Q
n

i=1 |(s+ pi)|
=

Q
m

i=1MziQ
n

i=1Mpi

(7)

and

✓G = ⌃zero angles� ⌃pole angles (8)

= ⌃m

i=1\(s+ zi)� ⌃n

j=1\(s+ pj) (9)
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Polar Form and Transfer Functions eg.

I Use Equation 6 to evaluate F (s) =
(s+ 1)

s(s+ 2)
at s = �3 + j4.

Figure 8.3.
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Polar Form and Transfer Functions eg.

Figure 8.3.

Check answer using matlab:

1 s=t f ( ’ s ’ )
2 F= ( s+1)/( s ⇤( s+2) )
3 s1=e v a l f r (F,�3+ j ⇤4)
4 M=abs ( s1 )
5 t h e t a=ang l e ( s1 )
6 t h e t a ⇤180/ p i
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Root Locus Introduction

I System below can automatically track subject wearing infrared
sensors.

I Solving for the poles using the
quadratic equation, we can create
the table below for di↵erent values
of K.

Table 8.1.

Figure: 8.4
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Root Locus Introduction - II

I We can plot the poles from Table 8.1. labelled by their
corresponding gain.

Table 8.1.

Figure: 8.5
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Root Locus Introduction - III

I We can go a step further, and replace the individual poles
with their paths.

I We refer to this graphical representation of the path of the
poles as we vary the gain, as the root locus.

I We will focus our discussion on K � 0.
I For pole �D + j!D, Ts =

4
�D

, Tp =
⇡

!D
, and ⇣ = |�D|

!n
.

Figure 8.5.
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Root Locus Properties

I For second-order systems, we can easily factor a system and
draw the root locus.

I We do not want to have to factor for higher-order systems
(5th, 10th etc.) for multiple values of K!

I We will develop properties of the root locus that will allow us
to rapidly sketch the root locus of higher-order systems.

I Consider the closed-loop transfer function below:

T (s) =
KG(s)

1 +KG(s)H(s)

I A pole of T (s) exists when

KG(s)H(s) = �1 = 1\(2k + 1)180o k = 0,±1,±2, . . .
(10)
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Root Locus Properties - II

I Equation 10 is equivalent to

|KG(s)H(s)| = 1 (11)

and

\KG(s)H(s) = (2k + 1)180o (12)

I Equation 12 says that any s
0 that makes the angle of

KG(s)H(s) be an odd multiple of 180o is a pole for some
value of K.

I Given s
0 above, the value of K that s0 is a pole of T (s) for is

found from Equation 11 as follows:

K =
1

|G(s)||H(s)| (13)

c�2006-2012,2017 R.J. Leduc & M. Lawford 15



Root Locus Properties eg.

I For system below, consider s = �2 + j3 and
s = �2 + j(

p
2/2).

Figures 8.6 and 8.7.
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Sketching Root Locus

I Now give a set of rules so that we can quickly sketch a root
locus, and then we can calculate exactly just those points of
particular interest.
1. Number of branches: a branch is the path a single pole

traverses. The number of branches thus equals the number of
poles.

2. Symmetry: As complex poles occur in conjugate pairs, a root
locus must be symmetric about the real axis.
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Sketching Root Locus - II

3. Real-axis segments: For K > 0, the root locus only exists
on the real axis to the left of an odd number of finite
open-loop poles and/or zeros, that are also on the real axis.

Why? By Equation 12, the angles must add up to an odd
multiple of 180.

I A complex conjugate pair of open-loop zeros or poles will
contribute zero to this angle.

I An open-loop pole or zero on the real axis, but to the left of
the respective point, contributes zero to the angle.

I The number must be odd, so they add to an odd multiple of
180, not an even one.

Figure 8.8.
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Sketching Root Locus - III

4. Starting and ending points: The root locus begins at the
finite and infinite poles of G(s)H(s) and ends at the finite
and infinite zeros of G(s)H(s).

Why? Consider the transfer function below

T (s) =
KNG(s)DH(s)

DG(s)DH(s) +KNG(s)NH(s)

I The root locus begins at zero gain, thus for small K, our
denominator is

DG(s)DH(s) + ✏ (14)

I The root locus ends as K approaches infinity, thus our
denominator becomes

✏+KNG(s)NH(s)
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Infinite Poles and Zeros

I Consider the open-loop transfer function below

KG(s)H(s) =
K

s(s+ 1)(s+ 2)
(15)

I From point 4, we would expect our three poles to terminate
at three zeros, but there are no finite zeros.

I A function can have an infinite zero if the function approaches
zero as s approaches infinity. ie. G(s) = 1

s
.

I A function can have an infinite pole if the function approaches
infinity as s approaches infinity. ie. G(s) = s.

I When we include infinite poles and zeros, every function has
an equal number of poles and zeros

lim
s!1

KG(s)H(s) = lim
s!1

K

s(s+ 1)(s+ 2)
⇡ K

s · s · s (16)

How do we locate where these zeros at infinity are so we can
terminate our root locus?
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Sketching Root Locus - IV

5. Behavior at Infinity: As the locus approaches infinity, it
approaches straight lines as asymptotes.

The asymptotes intersect the real-axis at �a, and depart at
angles ✓a, as follows:

�a =
⌃finite poles� ⌃finite zeros

#finite poles�#finite zeros
(17)

✓a =
(2k + 1)⇡

#finite poles�#finite zeros
(18)

where k = 0,±1,±2,±3, and the angle is in radians relative
to the positive real axis.
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Sketching Root Locus eg. 1

I Sketch the root locus for system below.

Figure 8.11.
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Real-axis Breakaway and Break-in Points

I Consider root locus below.

I We want to be able to calculate at what points on the real
axis does the locus leave the real-axis (breakaway point), and
at what point we return to the real-axis (break-in point).

I At breakaway/break-in points, the branches form an angle of
180o/n with the real axis where n is number of poles
converging on the point.

Figure 8.13.
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Real-axis Breakaway and Break-in Points - II

I Breakaway points occur at maximums in the gain for that part
of the real-axis.

I Break-in points occur at minimums in the gain for that part of
the real-axis.

I We can thus determine the breakaway and break-in points by
setting s = �, and setting the derivative of equation below
equal to zero:

K =
�1

G(�)H(�)
(19)

Figure 8.13.
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Real-axis Breakaway and Break-in Points - III

An alternative method for computing the real-axis breakaway and
break-in points without di↵erentiation is to solve the equation:

mX

i=1

1

� + zi
=

nX

i=1

1

� + pi
(8.37)

where zi and pi are the negative of the zeros and poles,
respectively, of G(s)H(s).
i.e.

G(s)H(s) =
KGH(s+ z1)(s+ z2) . . . (s+ zm)

(s+ p1)(s+ p2) . . . (s+ pn)
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The j!-Axis Crossings

I For systems like the one below, finding the j!-axis crossing is
important as it is the value of the gain where the system goes
from stable to unstable.

I Can use the Routh-Hurwitz criteria to find crossing:
1. Force a row of zeros to get gain
2. Determine polynomial for row above to get !, the frequency of

oscillation.

Figure 8.12.
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The j!-Axis Crossing eg.

I For system below, find the frequency and gain for which the
system crosses the j!-axis.

Figures 8.11 and 8.12.
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Angles of Departure and Arrival

I We can refine our sketch by determining at which angles we
depart from complex poles, and arrive at complex zeros.

I Net angle from all open-loop poles and zeros to a point on
root access must satisfy:

⌃zero angles� ⌃pole angles = (2k + 1)180o (20)

I To find angle ✓1, we choose a point ✏ on root locus near
complex pole, and assume all angles except ✓1 are to the
complex pole instead of ✏. Can then use Equation 20 to solve
for ✓1.

Figure 8.15.
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Angles of Departure and Arrival - II

I For example in Figure 8.15a, we can solve for ✓1 in equation
below:

✓2 + ✓3 + ✓6 � (✓1 + ✓4 + ✓5) = (2k + 1)180o (21)

I Similar approach can be used to find angle of arrival of
complex zero in figure below.

I Simply solve for ✓2 in Equation 21.

Figure 8.15.
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Angles of Departure and Arrival eg.

I Find angle of departure for complex poles, and sketch root
locus.

Figures 8.16 and 8.17.
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Plotting and Calibrating Root Locus

I Once sketched, we may wish to accurately locate certain
points and their associated gain.

I For example, we may wish to determine the exact point the
locus crosses the 0.45 damping ratio line in figure below.

I From Figure 4.17, we see that cos(✓) =
adj

hyp
=

⇣!n

!n

= ⇣.

I We then use computer program to try sample radiuses,
calculate the value of s at that point, and then test if point
satisfies angle requirement.

Figures 4.17 and 8.18.
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Plotting and Calibrating Root Locus - II

I Once we have found our point we can use the equation below
to solve for the required gain, K.

K =
1

|G(s)||H(s)| =
Q

m

i=1MpiQ
n

i=1Mzi

(22)

I Uses labels in Figure 8.18, we would have for our example:

K =
ACDE

B
(23)

Figures 4.17 and 8.18.
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Transient Response Design via Gain Adjustment

I We want to be able to apply our transient response
parameters and equations for second-order underdamped
systems to our root locuses.

I These are only accurate for second-order systems with no
finite zeros, or systems that can be approximated by them.

I What are the conditions that must be true for a 2nd order
approxiation to be “close” to the higher order system?

Recall if G(s) =
NG(s)

DG(s)
and H(s) =

NH(s)

DH(s)
, closed loop TF is:

T (s) =
KNG(s)DH(s)

DG(s)DH(s) +KNG(s)NH(s)
(24)

c�2006-2012,2017 R.J. Leduc & M. Lawford 33



Transient Response Design via Gain Adjustment II

Conditions for justifying 2nd order approx of a higher order systems
1. Higher order poles are much farther left (e.g. > 5⇥) of the

s-plane dominant closed loop poles. (Holds for (b), not (a))
2. The closed-loop zeros near the two dominant closed-loop

poles must be nearly canceled by higher-order poles near
them. (Holds for (d), not (c))

3. Closed-loop zeros not cancelled, must be far away from the
two dominant closed-loop poles.

Figure 8.20.
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Defining Parameters on Root Locus

I We have already seen that as ⇣ = cos ✓, vectors from the
origin are lines of constant damping ratio.

I As percent overshoot is solely a function of ⇣, these lines are
also lines of constant %OS.

I From diagram we can see that the real part of a pole is
�d = ⇣!n, and the imaginary part is !d = !n

p
1� ⇣2.

I As Ts =
4

⇣!n

=
4

�d
, vertical lines have constant values of Ts.

Figure 4.17.
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Defining Parameters on Root Locus - II

I As Tp =
⇡

!n

p
1� ⇣2

=
⇡

!d

, horizontal lines thus have

constant peak time.

I We thus choose a line with the desired property, and test to
find where it intersects our root locus.

Figure 4.17.
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Design Procedure For Higher-order Systems

1. Sketch root locus for system.

2. Assume system has no zeros and is second-order. Find gain
that gives desired transient response.

3. Check that systems satisfies criteria to justify our
approximation.

4. Simulate system to make sure transient response is acceptable.
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Third-order System Gain Design eg.

I For system below, design the value of gain, K, that will give
1.52% overshoot. Also estimate the settling time, peak time,
and steady-state error.

I First step is to sketch the root locus below.

I We next assume system can be approximated by second-order

system, and solve for ⇣ using ⇣ = � ln(%OS/100)q
⇡2+ln2(%OS/100)

.

Figures 8.21 and 8.22.
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Third-order System Gain Design eg. - II

I This gives ⇣ = 0.8. Our angle is thus ✓ = cos�1(0.8)
= 36.87o.

I We then use root locus to search values along this line to see
if they satisfy the angle requirement.

I The program finds three conjugate pairs on the locus and our
⇣ = 0.8 line. They are �0.87± j0.66, �1.19± j0.90,
�4.6± j3.45 with respective gains of K = 7.36, 12.79, and
39.64.

I We will use Tp =
⇡

!d

, and Ts =
4

�d
.

Figures 8.21 and 8.22.
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Third-order System Gain Design eg. - III

I For steady-state error, we have:

Kv = lim
s!0

sG(s) = lim
s!0

s
K(s+ 1.5)

s(s+ 1)(s+ 10)
=

K(1.5)

(1)(10)
(25)

I To test to see if our approximation of a second-order system is
valid, we calculate the location of the third pole for each value
of K we found.

I The table below shows the results of our calculations.

Table 8.4.
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Third-order System Gain Design eg. - IV

I We now simulate to see how good our result is:

Figure 8.23.

c�2006-2012,2017 R.J. Leduc & M. Lawford 41


