Introduction

v

The root locus technique shows graphically how the
closed-loop poles change as a system parameter is varied.

> Used to analyze and design systems for stability and transient
response.

» Shows graphically the effect of varying the gain on things like
percent overshoot, and settling time.

» Also shows graphically how stable a system is; shows ranges of
stability, instability, and when system will start oscillating.
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The Control System Problem

» The poles of the open-loop transfer function are typically easy
to find and do not depend on the gain, K.

> |t is thus easy to determine stability and transient response for
an open-loop system.
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Figure 8.1.
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The Control System Problem - 1l
» Our closed transfer function is thus
Ng(s)

_ KNg(S)DH(S)
Dg(S)DH(S) + KNg(S)NH(S)

(2)

» We thus see that we have to factor the denominator of T'(s)
to find the closed-loop poles, and they will be a function of K.

R(s) KG(s) Cls)
1+ KG(s)H(s)

Figure 8.1(b).
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The Control System Problem - 111

1 3
il and H(s) = il our
s(s+2)

» For example, if G(s) = ,
P () s+4
closed-loop transfer function is:

K(s+1)(s+4)

T(s) = s(s+2)(s+4)+K(s+1)(s+3) 3

K(s+1)(s+4) ()
§3+(6+ K)s?+ (8 +4K)s + 3K

» To find the poles, we would have to factor the polynomial for
a specific value of K.

» The root-locus will give us a picture of how the poles will vary
with K.
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Vector Representation of Complex Numbers

» Any complex number, o + jw, can be represented as a vector.

» It can be represented in polar form with magnitude M, and an
angle 0, as M /6.

» If F(s) is a complex function, setting s = o + jw produces a
complex number. For F(s) = (s + a), we would get

(0 +a)+ jw .
jo Jjo
s-plane s-plane
jo jo -
M
0 o L [
(<2 octa
(@ (b)
jo Jjo
s-plane s-plane
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/ 2p
I o 40/ I o
—a ° -7 s
© @)
Figure 8.2.
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Vector Representation of Complex Numbers - |l

» If we note that function F'(s) = (s + a) has a zero at s = —a,

we can alternately represent F'(0 + jw) as originating at

s = —a, and terminating at ¢ + jw.
» To multiply and divide the polar form complex numbers,
z1 = M1Z61 and zo = M5 /65, we get

z M
2129 = My My /(01 + 62) ;; — ﬁlé(gl —0y)

s-plane
jol

()

Figure 8.2.
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Polar Form and Transfer Functions

» For a transfer function, we have:

(s+21) - (stzm)  [[Li(s+2)
G(s) = === = M¢gZ0
S PR EE FE S Bl I EE B
(6)
where
1= s+ zi Z Mzz
MG_Hnll( )’_Hnl (7)
[T (s +p)|  TLizg My,
and
Oc = Y.zero angles — Ypole angles (8)
= X% 4(s + 2i) — X 4(s + py) (9)
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Polar Form and Transfer Functions eg.

. (s+1) .
» Use Equation 6 t luate F'(s) = — at s = =3 + j4.
se Equation 6 to evaluate F(s) (s +2) at s +J
jo
174
3 s-plane

) 12
(s+1)
(s+2) 11

Figure 8.3.
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Polar Form and Transfer Functions eg.

Jjo

/3  s-plane

) 142
s+1)
(s+2) 41

1 X -
-3 -2 - 0

Figure 8.3.

Check answer using matlab:
1 os=tf('s")
> F= (s+1)/(sx*(s+2))
s sl=evalfr (F,—3+4jx4)
s+ M=abs(s1)
s theta=angle(sl)
¢ thetax180/pi
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Root Locus Introduction

» System below can automatically track subject wearing infrared
Sensors.

» Solving for the poles using the
quadratic equation, we can create
the table below for different values
of K.

Table 8.1.
K Pole 1 Pole 2 Subject’s Motor Camera
position  Sensors  Amplifier and camera position
0 ~10 0 R(s)  + ':‘ X Ky C(s)
5 —-9.47 —-0.53 6+ 10
10 -8.87 -1.13
15 -8.16 —1.84 »
20 ~7.24 -2.76
25 -5 -5 -
30 —54 224 —5- 224 i) a0
35 —-5+,3.16 -5-73.16 sTH10s+K
40 -5+ ,3.87 -5-3.87 where K = KK,
45 —5+j4.47 —5—j4.47 ©
50 —5+5 -5-75
(©2006-2012,2017 R.J. Leduc & M. Lawford Figure: 8.4 11



Root Locus Introduction - |l

» We can plot the poles from Table 8.1. labelled by their

corresponding gain.

Table 8.1.
K Pole 1 Pole 2
0 -10 0
5 -9.47 -0.53
10 —8.87 -1.13
15 —-8.16 —1.84
20 —7.24 —2.76
25 =5 =5
30 —5+,2.24 —5—,2.24
35 -5+,3.16 -5-3.16
40 -5+,3.87 -5—;3.87
45 5+ 447 —5—j4.47
50 —545 —5-5
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Root Locus Introduction - I

» We can go a step further, and replace the individual poles
with their paths.

> We refer to this graphical representation of the path of the
poles as we vary the gain, as the root locus.

» We will focus our discussion on K > 0.
For pole op + jwp, Ts = szﬁ, and ( = lopl

op' Wn
jo jo
K=50X% 175 K=50 145
45% 1ia 45

s-plane 40X 7 s-plane 40 174

35X 4/3 35 143

30X 12 30 12

Ji1 41

K=0 51015 20 25 2015 105 [0-K - 5 5 -
WP L 25, WP WK kg swousn [, o0 05 fo-K

1079 8 %7 -6 -5 -4 -3 2 1|0 -9 8 7 6 5 4 3 2 -1 [0
151 451
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40X 40
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45X / s 4

K=50X s K=50 455

(@) ®)
Figure 8.5.
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Root Locus Properties

» For second-order systems, we can easily factor a system and
draw the root locus.

v

We do not want to have to factor for higher-order systems
(5th, 10th etc.) for multiple values of K

v

We will develop properties of the root locus that will allow us
to rapidly sketch the root locus of higher-order systems.

v

Consider the closed-loop transfer function below:

B KG(s)
1+ KG(s)H(s)

T(s)

v

A pole of T'(s) exists when

KG(s)H(s) = -1 =142k + 1)180°  k=0,+1,42, ...
(10)
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Root Locus Properties - 1l
» Equation 10 is equivalent to
|[KG(s)H(s)| =1 (11)
and
LKG(s)H(s) = (2k + 1)180° (12)

» Equation 12 says that any s’ that makes the angle of
KG(s)H(s) be an odd multiple of 180° is a pole for some
value of K.

» Given s’ above, the value of K that s’ is a pole of T'(s) for is
found from Equation 11 as follows:

1
K= e (13)
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Root Locus Properties eg.

» For system below, consider s = —2 + 53 and

s =—2+35(v2/2).

s-plane

C(s)

R(s)+ K(s +3)(s +4)
8 (s+1)(s+2)
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Figures 8.6 and 8.7.
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Sketching Root Locus

» Now give a set of rules so that we can quickly sketch a root
locus, and then we can calculate exactly just those points of
particular interest.

1. Number of branches: a branch is the path a single pole
traverses. The number of branches thus equals the number of
poles.

2. Symmetry: As complex poles occur in conjugate pairs, a root
locus must be symmetric about the real axis.

s-plane 40

14
K=0 510 15 20 25 2015 105 |0
Ry Rt S P s i

-10 -9 -8 -7 -6 -5 -4 -3 -2 -l 0

ax

30 172

35 173
40
45
K=50 Hs

®)
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Sketching Root Locus - Il

3. Real-axis segments: For K > 0, the root locus only exists
on the real axis to the left of an odd number of finite
open-loop poles and/or zeros, that are also on the real axis.

Why? By Equation 12, the angles must add up to an odd
multiple of 180.
» A complex conjugate pair of open-loop zeros or poles will
contribute zero to this angle.
» An open-loop pole or zero on the real axis, but to the left of
the respective point, contributes zero to the angle.
» The number must be odd, so they add to an odd multiple of
180, not an even one.

Figure 8.8.
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Sketching Root Locus - Il

4. Starting and ending points: The root locus begins at the
finite and infinite poles of G(s)H (s) and ends at the finite
and infinite zeros of G(s)H (s).

Why? Consider the transfer function below

_ KNg(s)Dg(s)
D¢ (s)Dg(s) + KNg(s)Ng(s)

T(s)

» The root locus begins at zero gain, thus for small K, our
denominator is

De(s)Dp(s) +e€ (14)

» The root locus ends as K approaches infinity, thus our
denominator becomes

e+ KNg(s)Ng(s)
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Infinite Poles and Zeros

» Consider the open-loop transfer function below

K
KG(s)H(s) = ———————
(s)H(s) s(s+1)(s+2)
» From point 4, we would expect our three poles to terminate
at three zeros, but there are no finite zeros.
» A function can have an infinite zero if the function approaches

zero as s approaches infinity. ie. G(s) = 1.

S
» A function can have an infinite pole if the function approaches
infinity as s approaches infinity. ie. G(s) = s.
» When we include infinite poles and zeros, every function has
an equal number of poles and zeros

. . K K
slggo KG(s)H(s) = slggo s(s+1)(s+2) s-s5-s (16)

(15)

How do we locate where these zeros at infinity are so we can

terminate our root locus?
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Sketching Root Locus - IV

5. Behavior at Infinity: As the locus approaches infinity, it
approaches straight lines as asymptotes.

The asymptotes intersect the real-axis at o,, and depart at
angles 0, as follows:

_ Xfinite poles — Xfinite zeros
“ " 4Hinite poles — #finite zeros
B 2k + 1)m
“ " Hfinite poles — #finite zeros

g,

(17)

(18)

where k = 0,+1, 42, 43, and the angle is in radians relative
to the positive real axis.
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Sketching Root Locus eg. 1

» Sketch the root locus for system below.

R + Ks+3) Cw),
A s(s+1)(s+2)(s+4)

Figure 8.11.
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Real-axis Breakaway and Break-in Points

» Consider root locus below.

» We want to be able to calculate at what points on the real
axis does the locus leave the real-axis (breakaway point), and
at what point we return to the real-axis (break-in point).

» At breakaway/break-in points, the branches form an angle of
180°/n with the real axis where n is number of poles
converging on the point.

Figure 8.13.
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Real-axis Breakaway and Break-in Points - |l

» Breakaway points occur at maximums in the gain for that part
of the real-axis.

» Break-in points occur at minimums in the gain for that part of
the real-axis.

» We can thus determine the breakaway and break-in points by
setting s = o, and setting the derivative of equation below
equal to zero:

g — (19)

» Figure 8.13.
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Real-axis Breakaway and Break-in Points - 11l

An alternative method for computing the real-axis breakaway and
break-in points without differentiation is to solve the equation:

m

1 1
e —; (8.37)

i—1 o+ pi

where z; and p; are the negative of the zeros and poles,
respectively, of G(s)H (s).

i.e.

 Kgou(s+2z1)(s+22)...(5+ zm)

G(s)H(s) = (s+p1)(s+p2)...(s+pn)
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The jw-Axis Crossings

> For systems like the one below, finding the jw-axis crossing is

important as it is the value of the gain where the system goes
from stable to unstable.

» Can use the Routh-Hurwitz criteria to find crossing:
1. Force a row of zeros to get gain

2. Determine polynomial for row above to get w, the frequency of
oscillation.

jo
43

s-plane

Asymptote /| 15

Asymptote

L
4 3 2 1 0 1

Asymptote \ |

Figure 8.12.
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The jw-Axis Crossing eg.

» For system below, find the frequency and gain for which the
system crosses the jw-axis.

jo
473
s-plane
Asymptote /| 2
Y
41
’(Jr g —] Kis+3) CG) Asymptote
A s(s+1)(s+2)(s+4) v « . .
X% X %
T -4 -3 -2 <1 0 1 2
11
"
Asymptote \ | 2
13

Figures 8.11 and 8.12.
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Angles of Departure and Arrival

» We can refine our sketch by determining at which angles we
depart from complex poles, and arrive at complex zeros.

» Net angle from all open-loop poles and zeros to a point on
root access must satisfy:

Y.zero angles — Y pole angles = (2k + 1)180° (20)

» To find angle 81, we choose a point € on root locus near
complex pole, and assume all angles except 61 are to the
complex pole instead of €. Can then use Equation 20 to solve
for 91.

o

~ 0+ 03+ 05— 0,— 05+ 0= (2K + 1)180°

Figure 8.15.
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Angles of Departure and Arrival - |l

» For example in Figure 8.15a, we can solve for #; in equation
below:

O + 03 + 0 — (61 + 04 + 05) = (2k + 1)180° (21)

» Similar approach can be used to find angle of arrival of
complex zero in figure below.

» Simply solve for 6 in Equation 21.

o

\ ~0y+0,+0; —0,~ 05+ 0,= 2k + 1)180°

Figure 8.15.
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Angles of Departure and Arrival eg.

» Find angle of departure for complex poles, and sketch root
locus.

Jjo

Angleof | 5 s-plane
departure
61

K(s+2)
(s+3)(s2+25+2)

C(s)

Figures 8.16 and 8.17.
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Plotting and Calibrating Root Locus

> Once sketched, we may wish to accurately locate certain
points and their associated gain.

> For example, we may wish to determine the exact point the
locus crosses the 0.45 damping ratio line in figure below.

. adj w
» From Figure 4.17, we see that cos(f) = K C.
hyp  wn
> We then use computer program to try sample radiuses,
calculate the value of s at that point, and then test if point

satisfies angle requirement.

jo

Angle jo
ya £=045
o s-plane (degrees) . 2

+joV1- 2 =jo, Radius

—joV1- = —jay
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Plotting and Calibrating Root Locus - Il

» Once we have found our point we can use the equation below
to solve for the required gain, K.

1 m.o M,

— — H'Zn,ZI Pi (22)
IG)IH(s)| Tz M,

> Uses labels in Figure 8.18, we would have for our example:
ACDFE

= — 23

= (23)

---------- FHoVl- % =jo, Radius "

pa

" | (degrees)

)y s-plane Jj2
0.5
e o o 0747
4] 10
15
20

s-planc

jl

—jo,V1- 2 ==jo,

Figures 4.17 and 8.18.
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Transient Response Design via Gain Adjustment

» We want to be able to apply our transient response
parameters and equations for second-order underdamped
systems to our root locuses.

» These are only accurate for second-order systems with no
finite zeros, or systems that can be approximated by them.

» What are the conditions that must be true for a 2nd order
approxiation to be ‘“close” to the higher order system?

Recall if G(s) = gggz; and H(s) = gggz; closed loop TF is:
T(S) KNG(S)DH(S) (24)

" Da(s)Du(s) + KNg(s)Np (s)
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Transient Response Design via Gain Adjustment |l
Conditions for justifying 2"? order approx of a higher order systems

1. Higher order poles are much farther left (e.g. > 5x) of the
s-plane dominant closed loop poles. (Holds for (b), not (a))

2. The closed-loop zeros near the two dominant closed-loop
poles must be nearly canceled by higher-order poles near
them. (Holds for (d), not (c))

3. Closed-loop zeros not cancelled, must be far away from the
two dominant closed-loop poles.

s-plane

P P
x> & —» G
P3 P3
PN P2 N,
X Open-loop pole

X Closed-loop pole

QO Closed-loop zero
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Defining Parameters on Root Locus

>

We have already seen that as ( = cos 8, vectors from the
origin are lines of constant damping ratio.

As percent overshoot is solely a function of (, these lines are
also lines of constant %0S.

From diagram we can see that the real part of a pole is
04 = Cwyp, and the imaginary part is wy = wp/1 — (2.

4 4 N
As Ty, = —— = — vertical lines have constant values of T.
Cwn 0d
Jjo
HoV1- ¢ =jo,
On s-plane
0 o
~{w,= -0y
—————————— EjoV1- 2 =—jo,

Figure 4.17.
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Defining Parameters on Root Locus - |l

T ™ horizontal lines thus h
—F— = = —, horizontal lines us nave
wp/1—¢% wa

constant peak time.

» As T}, =

» We thus choose a line with the desired property, and test to
find where it intersects our root locus.

jo

+joV1- §? =joy

On s-plane

jo V1= =—jo,

Figure 4.17.
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Design Procedure For Higher-order Systems

1. Sketch root locus for system.

2. Assume system has no zeros and is second-order. Find gain
that gives desired transient response.

3. Check that systems satisfies criteria to justify our
approximation.

4. Simulate system to make sure transient response is acceptable.
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Third-order System Gain Design eg.

» For system below, design the value of gain, K, that will give
1.52% overshoot. Also estimate the settling time, peak time,
and steady-state error.

» First step is to sketch the root locus below.

> We next assume system can be approximated by second-order

—1n(%0S/100)
/7241n2(%0S/100)

Jjo

system, and solve for ¢ using ( =

=08
/4

4.6+ j3.45, K= 39.64 13
’ s-plane
12
119 + 0.90, K =12.79
~0.87 +/0.66, K =736

10 9 8 7 6 5 4 3 1.5 -1 0

11
X = Closed-loop pole

X = Open-loop pole 1

©2006-2012,2017 R.J. Leduc & M. Lawford " 18ures 8.21 and 8.22.

38



Third-order System Gain Design eg. - Il

» This gives ¢ = 0.8. Our angle is thus § = cos~1(0.8)
= 36.87°.

» We then use root locus to search values along this line to see
if they satisfy the angle requirement.

» The program finds three conjugate pairs on the locus and our
¢ = 0.8 line. They are —0.87 + j0.66, —1.19 + 50.90,
—4.6 + j3.45 with respective gains of K = 7.36,12.79, and
39.64.

. ™
» We will use T), = —, and T =
Wd

4

o4

£=08

464345, K=39.64

REs) + 119 +/0.90, K= 12.79
— 0.87 + /0.6, K =736
0 9 8 7 6 5[4 3

O Es) K(s +1.5) (s
T e

15 -, 0

X = Closed-loop pole
X = Open-loop pole
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Figures 8.21 and 8.22.
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Third-order System Gain Design eg. - 1|
> For steady-state error, we have:

L L K(s+15)  K(L5)
Koy = limy sG(s) = I s+ s+ 10)  (1)(10) (25)

» To test to see if our approximation of a second-order system is
valid, we calculate the location of the third pole for each value
of K we found.

» The table below shows the results of our calculations.

Third Settling Peak
Case Closed-loop poles Closed-loop zero  Gain  closed-loop pole time time K,
1 —0.87 = j0.66 1.5+ ;0 7.36 -9.25 4.60 476 1.1
2 —1.19 = j0.90 —1.5+,0 12.79 —8.61 3.36 349 19
3 —4.60 = j3.45 =15 +,0 39.64 —1.80 0.87 091 59
Table 8.4.
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Third-order System Gain Design eg. - IV

» We now simulate to see how good our result is:

Response

¢
EN

S
=

S
o

2
=)

Casc 2 response

L 12
L 10
L 0.8
o
2
L 2 0.6
— Third-order, K = 12.79 &"3
L 0.4
— Second-order, K = 12.79
L 02
T R SR R N R S 0.0
0 05 1 15 2 25 3 35 4 45 5
Time (seconds)
(@)
Figure 8.23.
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— Third-order, K = 39.64

— Second-order, K = 39.64

T R Y R SO TR R |
05 1 15 2 25 3 35 4 45 5
Time (seconds)

(b)

41



