
Block Diagram Representation of a System
I Di↵erential equations can be used to represent relationship

between input and output of a system.

I Problem: system parameters, and input (r(t)) and output
(c(t)) appear throughout equation.

I Prefer to represent system as in Fig. 2.1(a) below where input
and output are separate.

Figure 2.1

Want to be able to represent
system as series of cascading
subsystems, which can easily
be combined together.

This can not be achieved with
di↵erential equations.
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Laplace Transform Review

I Helps us understand the dynamic behaviour of processes.

I Essential for: stability analysis, block diagrams, and controller
design.

I Converts di↵erential equations (time domain) into algebraic
equations (s-domain).

differential
equations

algebraic
equations

time�domain
solution

time�domain time�domainLaplace�domain

Laplace
inverse
Laplace

transform transform
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Laplace Transform Definition

L{f(t)} =

Z 1

0
f(t)e�stdt = F (s)

I L is the Laplace transform operator.

I s = � + j! is the Laplace transform variable and is a complex
number.

I A su�cient condition for existence of Laplace transform is
function is piecewise continuous in time over interval of
integration.

I F (s) contains no information about f(t) for time t < 0.

I When doing the inverse Laplace transform, we can represent
this by multiplying f(t) by u(t), the unit step function.
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Common Laplace Transforms

Table 2.1

I Table shows the Laplace
transform for several
common signals.

I Rather than evaluating
Laplace transform using
its definition, common to
use table and apply
various theorems.
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Important Properties of Laplace Transform

Linearity: L{k1f1(t)± k2f2(t)} = k1F1(s)± k2F2(s)

Di↵erentiation:

L{df(t)
dt

} = sF (s)� f(0�)

L{d
2f(t)

dt2
} = s2F (s)� sf(0�)� f 0(0�)

Frequency Shifting: L{e�atf(t)} = F (s+ a)
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Laplace Transform Theorems

Table 2.2

Commonly
used theorems.

2006-2021 R.J. Leduc, M. Lawford 11



The Transfer Function
I We are now ready to represent system in the form of the

diagram below.

I We will separate the system into the following distinct parts:
system input, output, and transfer function.

I In general, an nth order linear, time-invariant (LTI) di↵erential
equation is of the form:

an
dnc(t)

dtn
+ an�1

dn�1c(t)

dtn�1
+ · · ·+ a0c(t)

= bm
dmr(t)

dtm
+ bm�1

dm�1r(t)

dtm�1
+ · · ·+ b0r(t)

I c(t) is output, r(t) is input, and di↵erential
equation represents system’s behavior.
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The Transfer Function - II
I Taking Laplace transform of both sides, gives algebraic

equation.

ans
nC(s) + an�1s

n�1C(s) + · · ·+ a0C(s) + init terms for c(t)

= bmsmR(s) + bm�1s
m�1R(s) + · · ·+ b0R(s) + init terms for r(t)

I If we assume initial conditions are zero, we can reduce this to:

(ans
n + an�1s

n�1 + · · ·+ a0)C(s)

= (bmsm + bm�1s
m�1 + · · ·+ b0)R(s)

I
C(s)

R(s)
= G(s) =

bmsm + bm�1sm�1 + · · ·+ b0
ansn + an�1sn�1 + · · ·+ a0

I G(s) is called the transfer function.

I Can find ouput by
C(s) = R(s)G(s).
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Transfer Function Example
I A given system can be represented by the following di↵erential

equation.

⌧p
dc(t)

dt
+ c(t) = kpr(t)

I We will now derive a transfer function for the system.
I Taking the Laplace transform of both sides gives:

L{⌧p
dc(t)

dt
+ c(t)} = L{kpr(t)}

I Using linearity, we get:

⌧pL{
dc(t)

dt
}+ L{c(t)} = kpL{r(t)} (1)

I Using di↵erentiation theorem, we get:

L{dc(t)
dt

} = sC(s)� c(0�)
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Transfer Function Example - II

I When applying Laplace transform to dynamic systems, we
typically assume that all inputs are zero at t < 0, thus output
responses will also be zero until t = 0.

I We can thus rewrite (1) as follows:

⌧pL{
dc(t)

dt
}+ L{c(t)} = kpL{r(t)}

⌧psC(s)� c(0�) + C(s) = kpR(s)

⌧psC(s) + C(s) = kpR(s)

) (⌧ps+ 1)C(s) = kpR(s)

I Thus:

G(s) =
C(s)

R(s)
=

kp
⌧ps+ 1

=

kp
⌧p

s+ 1
⌧p
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Inverse Laplace Transform

I Once we have solved for the output as a function of the input
in the s-domain, we typically want to convert this back into
the time domain.

I We use the inverse Laplace transform:

L�1{F (s)} =
1

2⇡j
lim
!!1

Z �+j!

��j!
F (s)estds

I Normally, people look up F (s) in tables, and make use of the
theorems.
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Partial Fraction Expansion
I The Laplace transform model of a system will typically be of

form:

F (s) =
N(s)

D(s)

I where N(s) is an mth order polynomial in s and D(s) is an
nth order polynomial in s.

I For example, for F (s) below m = 2 and n = 5:

F (s) =
s2 + 2s� 3

s5 + s4 � s� 1

I We know from algebra that all polynomials that have real
coe�cients can be factored into linear and irreducible
quadratic factors.

I For example: s5 + s4 � s� 1 = (s� 1)(s+ 1)2(s2 + 1)
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Partial Fraction Expansion - II

I Using partial fraction decomposition and this factorization, we
can write the transfer function as follows:

F (s) =
s2 + 2s� 3

(s� 1)(s+ 1)2(s2 + 1)

=
A

s� 1
+

B

s+ 1
+

C

(s+ 1)2
+

Ds+ E

s2 + 1

I To complete the decomposition for this example, we would
then determine values for A, B, C, D, and E that satisfy the
equation.

I We can then apply the linearity and the frequency shifting
properties to easily find the inverse Laplace transform.
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Steps for Decomposing N(s)
D(s) into Partial Fractions

1. Divide if Improper: If N(s)
D(s) improper fraction (ie. degree of

N(s) is � degree of D(s)) then divide N(s) by D(s) to get

N(s)

D(s)
= (a polynomial)+

N1(s)

D(s)

where N1(s)
D(s) is not an improper fraction. We would then apply

the following steps to N1(s)
D(s) .

2. Factor Denominator: Factor denominator into factors of
form:

(ps+ q)m and (as2 + bs+ c)n

where as2 + bs+ c can not be further reduced.
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Steps for Decomposing N(s)
D(s) - II

3. Linear Factors: For factor (ps+ q)m, include the sum below:

A1

(ps+ q)
+

A2

(ps+ q)2
+ · · ·+ Am

(ps+ q)m

4. Quadratic Factors: For factor (as2 + bs+ c)n, include the
sum below:

B1s+ C1

(as2 + bs+ c)
+

B2s+ C2

(as2 + bs+ c)2
+ · · ·+ Bns+ Cn

(as2 + bs+ c)n

5. Determine Unkowns: Equate original fraction to the sums
found in steps 3 and 4, and solve for unknowns.
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Quadratic Factors e.g.

Find: L�1{ 3
s(s2+2s+5)}

For a quadratic of the form as2 + bs+ c, we can use the quadratic
equation to determine its factors.

s =
�b±

p
b2 � 4ac

2a

For us, this gives complex factors, thus the term is irreducible.

s =
�2±

p
22 � 4(1)(5)

2(1)
= �1± 2j

3

s(s2 + 2s+ 5)
=

A

s
+

Bs+ C

s2 + 2s+ 5
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Quadratic Factors e.g. - II
Basic Equation:

3 = A(s2 + 2s+ 5) + s(Bs+ C) = (A+B)s2 + (2A+ C)s+ 5A

For s = 0, we get: 3 = 5A thus A = 3
5

Substituting A in gives: 3 = (35 +B)s2 + (65 + C)s+ 3

Equating coe�cients of powers of s gives:
✓
3

5
+B

◆
= 0 and

✓
6

5
+ C

◆
= 0

We thus have B = �3
5 and C = �6

5 .

We thus have:

3

s(s2 + 2s+ 5)
=

3
5

s
+

�3
5s+�6

5

s2 + 2s+ 5
=

3
5

s
+

✓
�3

5

◆
s+ 2

s2 + 2s+ 5
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Quadratic Factors e.g. - III

The quadratic term is the sum of the Laplace transforms of
frequency shifted sine and cosine.

This gives:
L{K1e�atcos!t} = K1(s+a)

(s+a)2+!2 L{K2e�atsin!t} = K2!
(s+a)2+!2 .

Adding the transforms together, we get:

L{K1e
�atcos!t+K2e

�atsin!t} =
K1(s+ a) +K2!

(s+ a)2 + !2

We next note that (s+ a)2 + !2 = s2 + 2as+ (a2 + !2)

Equating to our denominator (s2 + 2s+ 5), gives: 2a = 2 and
(a2 + !2) = 5

We thus have a = 1 and ! = 2.

2006-2021 R.J. Leduc, M. Lawford 23



Quadratic Factors e.g. - IV
We now equate our numerators and get:

s+ 2 = K1(s+ 1) + 2K2 = K1s+ (K1 + 2K2)

This gives us K1 = 1 and K2 =
1
2

We thus have:

s+ 2

s2 + 2s+ 5
=

(s+ 1) + (12)2

(s+ 1)2 + 22

Putting it all together:

L�1{
3
5

s
+ (�3

5
)

s+ 2

s2 + 2s+ 5
} = [

3

5
� 3

5
e�t(cos2t+

1

2
sin2t)]u(t)

We note that the factors of s2 + 2s+ 5 were s = �1± 2j
= �a± !j.
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Stability Analysis Using Roots of D(s)

I The roots of D(s) correspond to the exponential terms in the
time domain response for G(s), the transfer function.

G(s) =
N(s)

D(s)
=

N(s)

(s+ p1)(s+ p2) · · · (s+ pn)

=
A1

(s+ p1)
+

A2

(s+ p2)
+ · · ·+ An

(s+ pn)

We refer to the roots of D(s) as poles.

Solving for g(t) gives:

g(t) = L�1

⇢
A1

(s+ p1)

�
+ L�1

⇢
A2

(s+ p2)

�
+ · · ·+ L�1

⇢
An

(s+ pn)

�

= A1e
�p1t +A2e

�p2t + · · ·+Ane
�pnt
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Stability Analysis: Real Roots

Considering: g(t) = A1e�p1t +A2e�p2t + · · ·+Ane�pnt

If we have pole(s) at s = �pi = ��i ± j!i:

I If !i = 0, then pole is strictly real and corresponds to Aie��it

If �i > 0, then pole in left side of imaginary plane, and
response decreases to zero over time and system is stable.

i.e. �i = 2, then we get
s = �2, pi = 2 and
response
Aie��it = Aie�2t.
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Stability Analysis: Real and Imaginary Roots

I If !i = 0 and �i < 0, then pole in right side of imaginary
plane, and response increases over time and system is
unstable. i.e. �i = �1, then we get s = 1, pi = �1 and
response Aie��it = Aiet.

I If �i = 0 and !i 6= 0, then we have two pure imaginary roots.
This corresponds to a sinusoidal response with no damping,
technically considered stable.

i.e. !i = 2, then we get
s = ±2j, pi = ±2j and
response
Aisin!it = Aisin2t.
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Stability Analysis: Complex Roots
If we have �i 6= 0 and !i 6= 0, we have complex roots.
I For poles at s = ��i ± j!i we get the partial fraction

expansion below:

↵+ j�

s+ �i + j!i
+

↵� j�

s+ �i � j!i

I This results in the time domain response of the form:

e��it[2↵ cos!it+ 2� sin!it]

If �i > 0, then response is stable.

i.e. �i = �2 and !i = 3,
then we get s = 2± 3j,
pi = �2± 3j and response
e��it[2↵ cos!it+ 2� sin!it]
= e2t[2↵ cos3t+ 2� sin3t].
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Time Functions Associated with s-plane

Figure 2.5 from Dorf and Bishop, Modern Control Systems (10th Edition), Prentice-Hall, 2004.
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Electric Network Transfer Function
I We will generalize notion of resistance to impedance.

I This will allow us to treat capacitors and inductors in similar
manner as resistors in analyzing circuits.

I Recall that Ohms law says: v(t) = Ri(t)

I Taking Laplace Transform of both sides gives: V (s) = RI(s)

I We define the impedance to be Z(s) = V (s)
I(s) = R

I We also define the admittance to be: Y (s) = I(s)
V (s) =

1
R = G
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Impedance of Inductor

I The voltage-current relation for an inductor is: v(t) = Ldi(t)
dt .

I To find transfer function, take Laplace transform of each side
and assume zero initial conditions:

V (s) = LsI(s)

I The impedance is thus Z(s) = V (s)
I(s) = Ls
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Impedance of Capacitor
I The voltage-current relation for a capacitor is:

v(t) =
1

C

Z t

0
i(⌧)d⌧

I Taking derivative of both sides gives:

dv(t)

dt
=

1

C
i(t)

I Taking Laplace transform (assuming zero initial conditions)
gives:

sV (s) =
1

C
I(s)

I The impedance is thus Z(s) = V (s)
I(s) = 1

Cs
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Summary of Circuit Elements.
I Table 2.3 below shows for each element type the

voltage-current, current-voltage, and voltage-charge
relationship, as well as the elements impedance and
admittance.

I All elements here are passive as they do not contain an
internal energy source.
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Equivalent Resistance and Impedance.
I It can be shown that resistance in serial can be replaced by an

equivalent resistor with resistance Rs calculated as follows:

Rs = R1 +R2 + · · ·+RN

I This can be generalized to impedance as follows:

Zs = Z1 + Z2 + · · ·+ ZN

I The equivalent resistance (Rp) and impedance (Zp) when
elements are connected in parallel is:
1
Rp

= 1
R1

+ 1
R2

+ · · ·+ 1
RN

1
Zp

= 1
Z1

+ 1
Z2

+ · · ·+ 1
ZN

Figures 2.16 and 2.18 from Electric Circuit Analysis, D.E. Jounson et al., 1989.
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Equivalent Resistance Example

Figure (a) to (b): Rs1 = 1 + 5 = 6⌦

Figure (b) to (c): 1
Rp

= 1
12 + 1

6 ) Rp = 4⌦

Figure (c) to (d): Rs2 = 7 + 4 = 11⌦

Figure 2.19 from Electric Circuit Analysis, D.E. Jounson et al., 1989.
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Kirchho↵’s Current Law
I A point of connection between two or more circuit elements is

referred to as a node.

I Circuit show in Fig. (a) contains three nodes and is electrically
equivalent to that of Figure (b).

I Kircho↵’s current law (KCL) says that the algebraic sum of
the currents entering any node is zero.

I Currents flowing into the node are considered positive, and
those leaving negative.

I For node on right, this would give: 5 + i� (�3)� 2 = 0

Figures 2.8 and 2.9 from Electric Circuit Analysis, D.E. Jounson et al., 1989.
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Kirchho↵’s Voltage Law
I Kircho↵’s voltage law (KVL) says that the algebraic sum of

voltages around any closed path is zero.

I In the direction we traverse the path, voltages that go from �
to + (lower to higher potential) are considered to be positive,
and those going from + to � to be negative.

I Traversing the circuit below in clockwise direction gives:

5� v � 10 + 2 = 0

I Solving for v gives v = �3V .

Figure 2.11 from Electric Circuit Analysis, D.E. Jounson et al., 1989.
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Kirchho↵’s Voltage Law eg.

I Find transfer function relation VC(s)
V (s) .

Figures 2.4 and 2.5.
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Mesh Analysis
I Replace passive elements with their impedances, and all

sources and time variables with their Laplace transform.

I Assume a transform current and direction in each mesh.

I Assume for each element a voltage polarity

I Assume a current I3(s) and
direction through the shared
segment (ie. inductor)

I Apply Kircho↵’s voltage law to
each mesh going in direction of
the mesh current.

I Use Kircho↵’s current law to
relate the currents. Figure 2.6.
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Mesh Analysis eg.
I Find transfer function relation I2(s)

V (s) .

Figures 2.6.
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Cramer’s Rule

Cramer’s Rule: If Ax = B is a system of n linear equations in n
unknowns such that det(A) 6= 0, then the system has a unique
solution. The solution is:

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, · · · , xn =

det(An)

det(A)

where Aj is the matrix obtained by replacing the entries of the jth

column of A by the entries in the matrix B.

Definition taken from Elementary Linear Algebra with Applications by H. Anton et al. , 1987.
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Matrix Determinant
The formula of a determinant for a 2⇥ 2 and a 3⇥ 3 matrix:

Definition taken from Elementary Linear Algebra with Applications by H. Anton et al. , 1987.

Mnemonic device for remembering determinant formula.

Figure 2.2 from Elementary Linear Algebra with Applications by H. Anton et al. , 1987.
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Nodal Analysis
I Transform circuit into Laplace Domain.

I Assume for each element a voltage polarity.

I Determine nodes for circuit. Choose one (treat like ground) -
others relative to it.

I Assume transform currents and directions entering and leaving
each node.

I Use Kircho↵’s current law to
create equations for each node
with an unknown voltage.

I Use relation I(s) = V (s)
Z(s) to get

equation for currents in terms of
voltages.
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Nodal Analysis eg.

I Find transfer function relation VC(s)
V (s) .

Figures 2.6 and 2.7.
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Operational Amplifiers
I So far we have only used passive elements for transfer

functions.

I We can use operational amplifiers (op amps) to construct
active circuits that can be used as transfer functions.

I Op amps have the following characteristics:

1. Output: vo(t) = A(v2(t)� v1(t))

2. High input impedance: Zi = 1 (ideal)

3. Low output impedance: Zo = 0 (ideal)

4. High constant gain: A = 1 (ideal)

In linear operating region “ideal Op Amp”
assumptions:

(i) Input voltages are equal: v1(t) = v2(t)

(ii) No current flows into inputs: i+ = i� = 0
Figure 2.10.
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Inverting Op Amps
I If we tie v2(t) to ground, we get an inverting op amp, with

output vo(t) = �Av1(t).

I Usually use with feedback in form of figure on the right.

I As input impedance very large, Ia(s) ⇡ 0.

I Using nodal analysis at v1, we find I1(s) = �I2(s).

I If gain A very large, feedback forces v1(t) ⇡ 0.

Figure2.10.
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Inverting Op Amps - II
I With v1(t) ⇡ 0, we thus have I1(s) =

Vi(s)
Z1(s)

and I2(s) =
Vo(s)
Z2(s)

.

I Substituting into eqn I1(s) = �I2(s) gives:

Vi(s)

Z1(s)
= �Vo(s)

Z2(s)

I This gives the transfer function:

Vo(s)

Vi(s)
= �Z2(s)

Z1(s)

Figure2.10.
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Inverting Op Amp eg.
I Find transfer function Vo(s)

Vi(s)
.

Figure 2.11.

Formula for inverting op amp is:

Vo(s)

Vi(s)
= �Z2(s)

Z1(s)
(2)

We first need to determine Z1(s) and Z2(s) to use formula.

Using parallel inductance rule, we get:

1

Z1(s)
=

1

1/C1s
+

1

R1
= C1s+

1

R1
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Inverting Op Amp eg. - II
Which gives eqn below:

Z1(s) =
1

C1s+
1
R1

=
1

5.6⇥ 10�6s+ 1
360⇥103

=
360⇥ 103

2.016s+ 1

Using serial inductance rule, we get:

Z2(s) = R2 +
1

C2s
= 220⇥ 103 +

107

s

Substituting into equation 2, we get:

Vo(s)

Vi(s)
= �

220⇥ 103 + 107

s
360⇥103
2.016s+1

Multiplying top and bottom by (2.016s+ 1) and simplifying gives:

�
443, 520s+ 20, 380, 000 + 107

s

360⇥ 103
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Inverting Op Amp eg. - III

�
443, 520s+ 20, 380, 000 + 107

s

360⇥ 103

Multiply top and bottom by s and factoring out 443,520
360⇥103 = 1.232

gives:

�1.232[
s2 + 45.95s+ 22.55

s
]

We note that our equation is in the form of a PID controller, as
shown below.

Transfer function of a PID controller:

Gc(s) =
K3(s2 +

K1
K3

s+ K2
K3

)

s
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Noninverting Op Amp
I We know that Vo(s) = A(Vi(s)� V1(s))

I Using voltage division, we can derive:

V1(s) =
Z1(s)

Z1(s) + Z2(s)
Vo(s)

I Substituting into top equation for V1(s), gives:

Vo(s)

Vi(s)
=

A

1 + AZ1(s)
Z1(s)+Z2(s)

I As A is large, we can disregard the 1 term
in denominator, which gives:

Vo(s)

Vi(s)
=

Z1(s) + Z2(s)

Z1(s)

Figure 2.12.
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Mechanical Systems

I We now examine how to relate the Laplace transform of the
input to that of the output using a transfer function.

I We will consider two types of mechanical systems:
1. translational mechanical systems.
2. rotational mechanical systems.

I As then end result is a transfer function that is mathematically
indistinguishable from that of an electrical network, we can
thus connect the two by cascading their transfer functions.
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Mass Component
I Newton’s Second Law of Motion: ⌃f = Ma

I We are interested in the following properties of the object:
1. ⌃f = f(t): the summation of the forces acting on the object.
2. M : the object’s mass.
3. x(t): the position of the object.
4. v(t): the velocity of the object which is dx

dt .

5. a(t): the acceleration of the object which is d2x
dt2 .

I We wish to find the transfer function Zm(s) = F (s)
X(s) .

I We have: f(t) = Ma(t) = M d2x
dt2 .

I Taking the Laplace transform of both
sides gives: F (s) = Ms2X(s).

I Thus Zm(s) = F (s)
X(s) = Ms2.

I Similarly, Z 0
m(s) = F (s)

V (s) = Ms
Table 2.4
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Viscous Damper
I Middle part is typically moving through some sort of fluid.

I Frictional force generated is proportional to object’s velocity:

f(t) = fv v(t)

where fv is called coe�cient of viscous friction.
I Substituting v(t) = dx

dt gives

f(t) = fv
dx

dt
I Taking the Laplace transform of both sides gives:

F (s) = fv sX(s).

I Thus Zm(s) = F (s)
X(s) = fvs.

I Similarly, Z 0
m(s) = F (s)

V (s) = fv

Table 2.4.
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Spring Component
I The spring constant is denoted K.

I Spring’s force is proportional to distance x which gives us:

f(t) = Kx(t)

I Taking the Laplace transform of both sides gives:

F (s) = KX(s)

I We thus have: Zm(s) = F (s)
X(s) = K.

I With zero initial conditions, we have:
x(t) =

R t
0 v(⌧)d⌧

I Thus F (s) = K
s V (s)

I This gives: Z 0
m(s) = F (s)

V (s) =
K
s

Table 2.4.
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Summary of Translational Elements
I Table gives Force-velocity, force-displacement, and impedance

translational relationships for springs, viscous dampers, and
mass.

Table 2.4.
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Translational eg. - one equation of motion
I Find transfer function X(s)

F (s)

I f(t) is the force we are applying in the direction of x(t).
I To solve for transfer function, do the following:

1. Draw free body drawing showing all forces acting on object,
and their directions.

2. Replace mechanical components with mechanical impedances.
3. Newton’s law says that Ma(t) equals the sum of the forces

acting on the object. Use this to create your force equation.

Figure 2.15.
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Translational eg. - one equation of motion - II
I We assume the mass is travelling to the right.

I This means only the applied force (f(t)) points to the right.

I The spring and viscous damping forces impede the motion,
thus act to oppose it.

I Newton’s second law: M d2x
dt2 = f(t)� fv

dx
dt �Kx(t)

I Rearranging this gives: f(t) = M d2x
dt2 + fv

dx
dt +Kx(t)

I (a) Proper application
of Newton’s law.

I (b) Text book’s
“method.”

Free body diagram..
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Translational eg. - one equation of motion - III

I Can think of the Ma(t) term as force beyond spring and
viscous damping forces, needed to attain acceleration a(t).

I Using textbook’s method, forces acting in assumed direction
of motion are positive, those acting in opposite are negative,
and they should sum to zero.

I (a) Free-body diagram
of mass, spring, and
damper system.

I (b) Transformed
free-body diagram.

Figure 2.16.
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Translational eg. - two degrees of freedom
I Number of equations of motion needed = number of linearly

independent motions.

I A linearly independence means that one object can still move
when all other objects are held still.

I We also refer to number of linearly independent motions as
the number of degrees of freedom of the system.

Figure 2.17 (a).
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Translational eg. - two degrees of freedom - II
I Find transfer function X2(s)

F (s)

I To solve a problem like this, we will use the principal of
superposition. To find the forces acting on a given object (say
M1), we do the following:
1. Draw the free body diagram for object (ie. M1) by holding all

other objects (ie. M2) still, and finding the forces acting on
the object (ie. M1) due only to its motion.

2. We then hold the object (ie. M1) still, and activate each other
object (ie. M2) one at a time, and determine the forces acting
on original object (ie. M1) due to the other object’s motion.

3. The total force acting on the original object is the
superposition of the forces found in steps 1 and 2.

Figure 2.17 (a).
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Translational eg. - two degrees of freedom - III

I Use Newton’s law to find equation of motion for M1.

I (a) Forces on M1 due
to only motion of M1.

I (b) Forces on M1 due
to only motion of M2.

I (c) All forces on M1.

Figure 2.18.
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Translational eg. - two degrees of freedom - IV

I Use Newton’s law to find equation of motion for M2.

I (a) Forces on M2 due
to only motion of M2.

I (b) Forces on M2 due
to only motion of M1.

I (c) All forces on M2.

Figure 2.19.
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Rotational Mechanical Systems

I With rotational mechanical systems, we are dealing with
objects that rotate about a fixed axis.

I The main di↵erences from a translational system are as
follows:
I x(t) displacement becomes ✓(t) angular displacement.
I v(t) = dx(t)

dt velocity becomes !(t) = d✓(t)
dt angular velocity.

I f(t) force becomes T (t) torque.
I M mass becomes J moment of inertia.
I fv coe�cient of viscous damping becomes D coe�cient of

viscous angular damping.
I K spring constant becomes K angular spring constant.
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Summary of Rotational Components
I Same symbols for components, but undergoing rotation.

I We are interested in the relation: T (s) = Zm(s)✓(s)

Table 2.5.

Would have for Z 0
m(s) = T (s)

!(s) the values K
s , D, and Js.
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Degrees of Freedom

I Similar idea as for translation systems.

I The degrees of freedom is the number of objects (points of
motions) that can still rotate when all other objects are held
still.

I The degrees of freedom equals the number of equations of
motion we need to describe a system.

Figure 2.22 (b).
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Writing Equations of Motion - Rotational
I Create free body diagram, but show torques and angular

displacement instead.

I We will use superposition. To find the torques action on J1:
1. Draw the free body diagram for J1 by holding J2 still, and find

the torques acting on J1 due only to its own motion.
2. We then hold J1 still, and rotate J2, and determine the

torques acting on J1 due to the motion of J2.
3. The total torque acting on J1 is the superposition of the

torques found in steps 1 and 2.
I Repeat above, but for J2.

I The sum of torques acting in direction of assumed rotation
equals the sum of the torques opposing.

Figure 2.22 (b).
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Rotational eg.

I Find the transfer function ✓2(S)
T (S) .

I We have a flexible rod being supported at both ends by
bearings, and is undergoing torsion.

I We assume system can be approximated by a spring at one
point in the rod, with an inertia of J1 on the left, and J2 on
the right.

I (a) Physical
system.

I (b) Schematic.

Figure 2.22.
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Free body Diagrams for J1

I (a) Torques on J1
due only to motion
of J1.

I (b) Torques on J1
due only to motion
of J2.

I (c) All Torques on
J1. Figure 2.23.

We now sum torques opposing rotation and equate that to the
torques in direction of rotation giving:

J1s
2✓1(s) +D1s✓1(s) +K✓1(s) = T (s) +K✓2(s) (3)
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Free body Diagrams for J2

I (a) Torques on J2
due only to motion
of J2.

I (b) Torques on J2
due only to motion
of J1.

I (c) All torques on
J2.

Figure 2.24.

We now sum torques opposing rotation and equate that to the
torques in direction of rotation giving:

J2s
2✓2(s) +D2s✓2(s) +K✓2(s) = K✓1(s) (4)
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Rotational eg. - II

For equations 3 and 4, we move unknowns to the left side, and
collect terms for ✓1 and ✓2 giving:

(J1s
2 +D1s+K)✓1(s)�K✓2(s) = T (s) (5)

�K✓1(s) + (J2s
2 +D2s+K)✓2(s) = 0 (6)

Putting this in the form of Ax = B gives:

x =


✓1(s)
✓2(s)

�
; A =


J1s2 +D1s+K �K

�K J2s2 +D2s+K

�

B =


T (s)
0

�
;
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Rotational eg. - III

Cramer’s rule given below where A2 is A with second column
replace with B:

✓2(s) =
|A2|
|A| =

����


J1s2 +D1s+K T (s)

�K 0

�����

|A| =
KT (s)

|A|

We thus have:
✓2(s)

T (s)
=

K

|A|
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Rotational Mechanical System with Gears
I Usually when rotational systems are driven by motors, we find

associated gear trains driving the load.

I In diagram below, we see that if we apply torque T1(t) to our
input gear which has N1 teeth and radius r1, we will get a
corresponding torque T2(t) out of gear 2, which has N2 teeth,
and radius r2.

I We want to determine the ratios ✓2
✓1

and T2
T1
.

Figure 2.27.
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Transfer Functions for Gears
I When gears turn, distance travelled around each gear’s

circumference is equal.

I We thus have: r1✓1 = r2✓2 ) ✓2
✓1

= r1
r2

I It can be shown that r1
r2

= N1
N2

I We thus have: ✓2
✓1

= N1
N2

Figure 2.27 and Figure 2.28.
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Transfer Functions for Gears - lossless
I If we assume the gears have negligible inertia and damping,

then the energy put into gear 1 equals energy out of gear 2.

I We thus have: T1✓1 = T2✓2 ) T2
T1

= ✓1
✓2

I Substituting in transfer function: ✓2
✓1

= N1
N2

I We get: T2
T1

= N2
N1

Figure 2.27 and Figure 2.28.
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Using Transfer Function for Lossless Gears
I Our first step is to reflect T1 to the other side of output gear

giving: T1(s)
N2
N1

.

I This gives equation of motion:

(Js2 +Ds+K)✓2(s) = T1(s)
N2

N1

I This would allows us to find: ✓2(s)
T1(s)

Figure 2.29.
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Lossless Gears: reflecting impedance
I Substituting in for ✓2(s) gives

(Js2 +Ds+K)
N1

N2
✓1(s) = T1(s)

N2

N1

I Simplifying: [J(N1
N2

)2s2 +D(N1
N2

)2s+K(N1
N2

)2]✓1(s) = T1(s)

Figure 2.29.
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Generalizing Reflecting Impedance

I Rule: “Rotational mechanical impedances can be reflected
through gear trains by multiplying the mechanical impedance
by the ratio:“

✓
Number of teeth of gear on destination shaft

Number of teeth of gear on source shaft

◆2

I The impedance to be reflected is attached to the source shaft
and is being reflected to the destination shaft.

I In previous example gear 2 was the source shaft, and gear 1
was the destination shaft.

2006-2021 R.J. Leduc, M. Lawford 78



Lossless Gears eg.

I Find transfer function: ✓2(s)
T1(s)

Figure 2.30.
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Gear Trains
I What if you wanted a high ratio, say 100

1 ?

I To avoid a gear with 100⇥ as big radius, a gear train is used.

I The total equivalent gear ratio for the gear train, is the
product of the gear ratios for each step.

Figure 2.31.

For torques, we would have: T4
T1

= N2N4N6
N1N3N5
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Gears With Loss eg.
I Find transfer function ✓1(s)

T1(s)
.

I Each gear below has its own inertia, and some shafts have
nonnegligible damping.

I Need to reflect all moments of inertial and viscous dampers to
the left of gear 1.

Figure 2.32.
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Gears With Loss eg. - II
I Equation of motion:

(Jes
2 +Des)✓1(s) = T1(s)

I The transfer function is thus:

G(s) =
✓1(s)

T1(s)
=

1

Jes2 +Des

Figure 2.32.
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Electromechanical System Transfer System

I Electromechanical systems are systems with a mixture of
electrical and mechanical variables.

Figure 2.34: NASA flight simulator robot arm with
electromechanical control system components.
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DC Motors

I A motor takes a voltage as input and produces a physical
displacement as output.

I We will derive the transfer function for the
armature-controlled dc servomotor.

Figure 2.35.
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DC Motor Principles

From: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motdc.html
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DC Motors: basics
I DC motor contains stationary magnetic field provided by

permanent or electromagnet with field strength B.

I Motor contains a rotating circuit called the armature (the
“coils”) through which a current ia(t) flows.

I Current flows perpendicular through the magnetic field and
feels a force F = Blia(t) acting on it.

I Parameter l is the length of the conductor the current is
flowing through within the field.

I Associated with the armature is a
resistance Ra, and an inductance La.

Figure 2.35.
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Back EMF
I When a conductor moves at right angles to a magnetic field,

it generates a voltage at terminals of the conductor (think
generator).

I Since armature is rotating in a magnetic field, it produces a
voltage proportional to its velocity.

vb(t) = Kb
d✓m(t)

dt
I We refer to vb(t) as the back electromotive force (back emf),

and Kb as the back emf constant.

I Taking Laplace transform we get:

Vb(s) = Kbs✓m(s)

Figure 2.35.
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Analyzing Armature Circuit
I We wish to find the transfer function: ✓m(s)

Ea(s)

I Applying Kircho↵’s voltage law to armature circuit gives:

RaIa(s) + LasIa(s) + Vb(s) = Ea(s)

I The torque developed by motor is:

Tm(s) = KtIa(s) ) Ia(s) =
1

Kt
Tm(s)

I Substituting in for Ia(s) and Vb(s) gives:

(Ra + Las)Tm(s)

Kt
+Kbs✓m(s) = Ea(s)

Figure 2.35.
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Analyzing Armature Circuit - II
I Figure shows a typical mechanical loading of a motor.

I Variable Jm is the moment of inertia of armature plus that of
the load reflected to the armature.

I Variable Dm is the viscous damping of the armature plus that
of the load reflected to the armature.

I This gives the equation of motion:

Tm(s) = (Jms2 +Dms)✓m(s)

Figure 2.36.
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DC Motor Transfer function

I We can now substitute into our previously derived equation
for Ea(s):

(Ra + Las)(Jms2 +Dms)✓m(s)

Kt
+Kbs✓m(s) = Ea(s)

I and noting that typically (Ra + Las) ⇡ Ra gives:

[
Ra

Kt
(Jms+Dm) +Kb]s✓m(s) = Ea(s)

I This gives the transfer function:

✓m(s)

Ea(s)
=

Kt
RaJm

s
h
s+ 1

Jm

⇣
Dm + KtKb

Ra

⌘i =
K

s(s+ ↵)
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Deriving Jm and Dm

Figure 2.37.

I Figure shows typical usage of motor.

I Variable Ja is the moment of inertia of armature, and Da is
the viscous damping of the armature.

I Variable JL is the load moment of inertia, and DL is the
viscous damping on the load.

I Reflecting onto the armature gives:

Jm = Ja +

✓
N1

N2

◆2

JL and Dm = Da +

✓
N1

N2

◆2

DL
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Deriving Electrical Constants

I A dynamometer measues the torque and speed of a motor
under a constant applied voltage.

I Previously, we derived:

Ra

Kt
Tm(s) +Kbs✓m(s) = Ea(s)

I Inverse Laplace transform gives:

Ra

Kt
Tm(t) +Kb!m(t) = ea(t)

I As voltage is constant, so is torque and velocity. Solving for
Tm gives

Tm = �KbKt

Ra
!m +

Kt

Ra
ea
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Deriving Electrical Constants - II

Tm = �KbKt

Ra
!m +

Kt

Ra
ea

I When !m = 0 we get the stall torque given by:

Tstall =
Kt

Ra
ea

I When Tm = 0 we get the angular velocity called no-load
speed given by: !no�load = ea

Kb

I We thus have:

Kt

Ra
=

Tstall

ea
and Kb =

ea
!no�load

Figure 2.38.

2006-2021 R.J. Leduc, M. Lawford 93



Linear Systems

I So far, we have developed models for systems that can be
approximately represented by linear, time-invariant di↵erential
equations.

I In developing these models, we assumed they were linear.

I A linear system must have two properties:

Superposition: means that the output response to a sum of
inputs is equal to the sum of the output
response of each individual input that makes up
the “sum of inputs.”

ie. if input r1(t) generates output response c1(t), and input
r2(t) generates output response c2(t), the the output response
to input r1(t) + r2(t) will be c1(t) + c2(t).
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Linear Systems -II

Homogeneity: means that when the input is multipled by a scalar,
the result is a response multiplied by same scalar

ie. if input r1(t) generates output response c1(t), then input
Ar1(t) will result in output Ac1(t). Below (a) is linear, (b) is not.

Figure 2.45.
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Nonlinear Systems
I Nonlinear systems are systems that are not linear.

I Some examples are:
I Op amps are linear over a given range, but exhibits saturation

at high input voltages.
I A motor exhibits a deadzone where it does not respond to low

input voltages because of friction.
I Backlash occurs when a pair of gears do not fit tightly. This is

when the input gear moves through a small angle before the
output gear starts to move.

Figure 2.46.
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Nonlinear Systems - II

I Sometimes we can make a linear approximation to a nonlinear
system.

I For example, if system is linear for a portion, the range of
input values about the point is small, and we can shift this
portion to the origin, we can establish a linear relationship.

I Op amps are an example of this. We make sure our input
values stay within the linear range.
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Linearization
I If a system contains any nonlinear components, we must

linearize the system before we can apply our linear systems
modelling methods.

I We need to find linear approximations in order to be able to
find transfer functions.

I To linearize a system, we do the following:
1. Identify the nonlinear components and write nonlinear

di↵erential equations for them.
2. We then choose a small range of input values over which the

system behaves approximately linear. Refer to this range as a
small-signal input.

This range is centered around a steady state solution, called
equilibrium, where the small-signal input is equal to zero.

3. We then write a linear di↵erential expression for this range,
and then apply Laplace transforms and form our transfer
function as normal.
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Linearizing a Function
I Assume we have a nonlinear system that is operating about

point A: [xo, f(xo)].

I For small changes around A, we can calculate the approximate
value of f(x) using the slope of the curve at xo.

I If slope at point A is ma we can determine the change in
f(x), called �f(x), for very small changes in x, called �x.

�f(x) = [f(x)� f(xo)] ⇡ ma(x� xo) = ma�x

I This gives us:

f(x) ⇡ f(xo) +ma(x� xo)

⇡ f(xo) +ma�x

Figure 2.47.
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Linearizing a Function - eg.
I Linearize f(x) = 5 cosx about ⇡/2.

Figure 2.48.

To get slope of eqn at xo = ⇡/2 we take the derivative of f(x) :

f 0(x) =
df

dx
(x) =

d

dx
(5 cosx) = �5 sinx
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Linearizing a Function - eg. - II

Figure 2.48.

Thus: f 0(⇡/2) = �5 sin(⇡/2) = �5 = ma

Also: f(xo) = f(⇡/2) = 5 cos(⇡/2) = 0

We thus have:

f(x) = f(xo) +ma�x = 0� 5�x = �5�x = �5(x� xo)
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Formalizing the Linearization Method.

I Using the Taylor series expansion, we can express the value of
a function about point xo using the equation:

f(x) = f(xo)+
df

dx

����
x=xo

(x� xo)

1!
+

d2f

dx2

����
x=xo

(x� xo)2

2!
+ . . .

I For small range around xo, we can neglect higher order terms
and we get:

f(x)� f(xo) ⇡
df

dx

����
x=xo

(x� xo) = m|x=xo
(x� xo)
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Linearizing a Di↵erential Eqn eg.

I Linearize the di↵erential equation below about xo = ⇡/4:

d2x

dt2
+ 2

dx

dt
+ cosx = 0

First, rewrite equation in terms of �x. As �x = x� xo, we get
x = �x+ xo = �x+ ⇡/4 giving:

d2(�x+ ⇡/4)

dt2
+ 2

d(�x+ ⇡/4)

dt
+ cos(�x+ ⇡/4) = 0

As the derivative of a constant is zero, the equation simplifies to:

d2�x

dt2
+ 2

d�x

dt
+ cos(�x+ ⇡/4) = 0 (7)

We now need to evaluate: f(x)� f(xo) ⇡ df
dx

���
x=xo

�x
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Linearizing a Di↵erential Eqn eg. - II

We now need to evaluate:

f(x)� f(xo) ⇡
df

dx

����
x=xo

�x (8)

Our function is: f(x) = cos(x) = cos(�x+ ⇡/4)

We have f(xo) = f(⇡/4) = cos(⇡/4) and

d(cosx)

dx

����
x=⇡/4

= � sin(⇡/4)

Subbing into 8 gives:

cos(�x+ ⇡/4)� cos(⇡/4) = � sin(⇡/4)�x
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Linearizing a Di↵erential Eqn eg. - III

Solving for f(x) gives:

cos(�x+ ⇡/4) = cos(⇡/4)� sin(⇡/4)�x = 0.7071� 0.7071�x

Subbing into 7 gives:

d2�x

dt2
+ 2

d�x

dt
� 0.7071�x = �0.7071

We now have a linear di↵erential equation.

If we wished to solve for x, we could take the Laplace transform of
both sides (taking �x as a function of x) assuming zero initial
conditions, solve for �x(s), do inverse Lapalace transform, and
then sub in for �x = x� xo.
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Transfer Function - Nonlinear Electrical System eg.

I Find transfer function VL(s)
V (s) , where voltage current

relationship for resistor is ir = 2e0.1vr , and v(t) is a
small-signal voltage source.

Figure 2.49.
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