
Introduction

I Frequency response techniques provide another perspective for
design of feedback control systems via gain adjustment and
compensation.

I Has advantages in following situations:
1. Modelling Transfer functions from physical data.

2. Designing lead compensators to meet steady-state error and
transient response requirement.

3. Finding stability of nonlinear systems.

4. Settling ambiguities when sketching root locus.
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Modelling Example

I The HP 35670A Dynamic Signal Analyzer can be used to
obtain frequency response data from a physical system.

I This information can be used to analyze, design, or create a
mathematical model for the system.

Figure 10.1.
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Concept of Frequency Response

I In steady state, sinusouidal inputs to a system generate a
sinsusoidal response at the same frequency.

I The response di↵ers in amplitude and phase angle from input.

I Di↵erences are a function of frequency (!).

I Consider:

L{K1e
�at

cos!t+K2e
�at

sin!t} =
K1(s+ a) +K2!

(s+ a)2 + !2

I Can show that

e
�at[2↵ cos!t+ 2� sin!t]

= K3e
�at cos(!t+ �)

where � = � tan�1(�↵) and K3 =
p

(2↵)2 + (2�)2
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Phasors

I Phasors are a convenient way to represent sinusoids.

I Phasors are complex numbers whose magnitude is the
amplitude of the sinusoid, and angle is the phase angle of the
sinusoid.

I For example, sinusoid M1 cos(!t+ �1) would be the phasor
M1\�1, where frequency, !, is implicit.
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Concept of Frequency Response: e.g.

I As a system causes both the magnitude and phase angle of a
sinusoidal input to change, it can be thought of as a phasor.

I Magnitude and phase
angle of system chosen so
that product of input
phasor and system
produce output phasor.

I Part (a) is the physical
system, (b) the transfer
function, and (c) the input
and output waveforms.

Figure: 8.4
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Concept of Frequency Response: e.g. II

I We represent the input as phasor Mi(!)\�i(!), and output
as phasor Mo(!)\�o(!).

I We assume that the
system is represented by
phasor M(!)\�(!).

Figure: 8.4
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Concept of Frequency Response: e.g. III

I The steady-state output phasor is thus:

Mo(!)\�o(!) = Mi(!)M(!)\[�i(!) + �(!)] (1)

I We can thus represent system function as:

M(!) =
Mo(!)

Mi(!)
(2)

�(!) = �o(!)� �i(!) (3)

I We call M(!) the magnitude frequency response and �(!)
the phase frequency response.

I We call the combination of the two the frequency response.

I The frequency response of a system whose transfer function is
G(s) is G(jw) = G(s)|s!jw
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Plotting Frequency Response

I We plot G(jw) = M(!)\�(!) as a function of frequency,
with a separate plot for magnitude and phase.

I Magnitude is plotted in decibels (dB) versus log!, where db
= 20 logM .

I Phase curve is plotted as phase angle versus log!.
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What the hell is a decibel?

In systems we are often interested in how a system a↵ects a signal
from its input to its output. One important measure is the power
gain from the input to the output Pout

Pin
. A bel is the log10 of this

ratio. A decibel (dB) is one tenth of a bel. Thus the power gain in
decibels is

10 log10
Pout

Pin
= 10 log10

PY

PU

for our system G(s) = Y (s)
U(s) .

For a voltage or a current, power varies as the square of the
amplitude of the signal. E.g.,

Pout

Pin
=

v
2
out/R

v
2
in/R

=

✓
vout

vin

◆2

or
Pout

Pin
=

i
2
outR

i
2
inR

=

✓
iout

iin

◆2

Thus the power gain PY
PU

in decibels of G(s) for sinusoidal input at
frequency !1 is:

10 log10

✓
Y (j!1)

U(j!1)

◆2

= 20 log10 |G(j!1)| dB
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System Bandwidth !BW

The bandwidth of the system (!BW ) is defined to be the
maximum frequency at which the system will satisfactorily track a
sinusoidal input.
By “satisfactory” tracking we roughly mean that the power from
the input to the output is reduced by no more than 1

2 .
Since power varies as the square of the amplitude of the signal we
have at the bandwidth frequency !BW :

1

2
=

PY

PU
=

|Y (jwBW )|2

|U(jwBW )|2 = |G(jwBW )|2

So we must have |G(jwBW | = 1p
2
⇠= 0.707. Measuring the power

gain in decibels (dB) we have

20 log10 |G(jwBW )| = 20 log10(
1p
2
)

= �3 dB
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Plotting Frequency Response: e.g.

I Find analytical expression for magnitude and phase angle
frequency response for system G(s) = 1

(s+2) and plot both
diagrams.

I We start by setting s = j! and simplifying.

G(j!) =
1

(j! + 2)
⇥ (2� j!)

(2� j!)

=
(2� j!)

(2j! � (j!)2 + 4� 2j!)
=

(2� j!)

(!2 + 4)

I We thus have:

M(!) =

s
4

(!2 + 4)2
+

!2

(!2 + 4)2
=

1p
(!2 + 4)

�(!) = tan�1(
�!

2
)
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Plotting Frequency Response: e.g. III

I Plot of magnitude and phase angle frequency response for
system G(s) = 1

(s+2) .

Figure 10.4.
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Asymptotic Approximations: Bode Plots

I Log-magnitude and phase frequency response curves plotted
as function of log! are called Bode plots or Bode diagrams.

I Can be sketched easily by approximating as a sequence of
straight lines.

I Consider transfer function:

G(s) =
K(s+ z1)(s+ z2) · · · (s+ zk)

sm(s+ p1)(s+ p2) · · · (s+ pn)

I Magnitude frequency response is thus:

|G(j!)| = K|(s+ z1)| |(s+ z2)| · · · |(s+ zk)|
|sm| |(s+ p1)| |(s+ p2)| · · · |(s+ pn)|

����
s!j!
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Asymptotic Approximations: Bode Plots II

I As log(ab) = log(a) + log(b) and log(a/b) = log(a)� log(b),
converting to dB gives

20 log |G(j!)| = 20 logK + 20 log |(s+ z1)|+ 20 log |(s+ z2)|
+ · · ·+ 20 log |(s+ zk)|� 20 log |sm|
� 20 log |(s+ p1)|� · · ·� 20 log |(s+ pn)|s!j!

I The phase frequency response would be the summation of the
phase frequency response curves of the zero terms minus the
summation of the phase frequency response curves of the pole
terms.
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Bode Plots for G(s) = (s+ a)
I Letting s = j! gives

G(j!) = (j! + a)

I At low frequencies when ! approaches zero, we get
G(j!) ⇡ a with magnitude response M = |G(j!)| is:

20 logM = 20 log a

I At high frequencies with ! � a, we get
G(j!) ⇡ j! = !\90o where

20 logM = 20 log!

I If we plot 20 logM = 20 log! against log!, we get a straight
line y = 20x where y = 20 logM and x = log!.

I i.e. the line increases at rate of 20dB/decade.
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Bode Plots for G(s) = (s+ a): II

I We know what happens when ! >> a or a >> !.

I What happens when ! = a?

we get

20 logM = 20 log(|a+ ja|)
= 20 log

p
a2 + a2

= 20log(a
p
2)

= 20 log(a) + 20 log(
p
2)

= 20 log(a) + 3.01

2006-2014 R.J. Leduc & M. Lawford 17



Bode Plots for G(s) = (s+ a): II

I To draw magnitude approximation, start with a horizontal line
at 20 log a, and at frequency a, switch to a line with slope
20db/decade.

I We call the straight line approximations asymptotes.
I We call a the break frequency because it is where we switch

from the low-frequency asymptote to the high-frequency
asymptote.

Figure 10.6.
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Bode Plots for G(s) = (s+ a): Phase

I At beakpoint G(j!) = (j! + a) = a+ ja which gives us a
phase of 45o.

I At low frequencies, we have G(j!) ⇡ a, thus a phase of 0o.

I At high frequencies we have G(j!) ⇡ jw, thus a phase of 90o.

I To draw phase curve:
1. Start graph at 0.01a at phase of zero.

2. At 0.1a, switch to line with slope of +45o per decade.

3. At 10a, switch to horizontal line at 90o.
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Bode Plots: Normalizing

I To make it easier to compare plots with di↵erent break points,
it’s common to normalize the magnitude and scale the
frequency.

I This will give all G(s) = (s+ a) magnitude plots a low
frequency value of 0db at a unity break frequency.

I To normalize, we take G(s) = a( sa + 1), take our new
frequency variable to be s1 =

s
a , and divide the magnitude by

a.

I This gives a normalized and scaled function of
G(s1) = (s1 + 1).
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Bode Plots: Normalizing - Magnitude

I Actual curve is never more than 3.01 dB from asymptotes.

I This occurs at break frequency.

Figure 10.7.
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Bode Plots: Normalizing - Phase

I Phase curve is never more than 5.71o di↵erent from the
asymptotes.

I This occurs at the decades above and below the break
frequency.

Figure 10.8.
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Bode Plots for G(s) = 1/(s+ a)

I At low frequencies when ! approaches zero, we get
G(j!) ⇡ 1

a with magnitude response

20 logM = 20 log
1

a
= 20 log a�1 = �20 log a

I Plot is constant until break frequency a rad/s is reached, then
we use high-frequency asymptote.

I Let ! approach 1, gives G(j!) ⇡ 1
j! = 1

!\� 90o where

20 logM = 20 log
1

!
= 20 log 1� 20 log! = �20 log!

I After break frequency, plot decreases at rate of 20dB/decade.

I Phase is negative of previous function. Starts at 0o line, then
switch to �45o/decade slope at 0.1a. At 10a, switch to �90o

line.
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Bode Plots for G(s)

Figure 10.9.

(a) G(s) = s

(b) G(s) = 1
s

(c) G(s) =
s+ a

(d) G(s) = 1
s+a
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Bode Plots for G(s) = s and G(s) = 1/s

I For G(s) = s, we only have high-frequency asymptote with
magnitude 20 log!.

I This is a straightline with +20db/dec slope, and equal to 0db
at ! = 1.

I Phase is constant at +90o.

I For G(s) = 1/s, we get a straight line with slope �20db/dec
slope, and equal to 0db at ! = 1.

I Phase is constant at �90o.
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Drawing Bode Plots: Magnitude

1. Determine initial slope:
I If contains pole or zero at origin, then determine net slope due

to items at origin.
I Otherwise, we start with a horizontal line.

2. Determine leftmost starting value.
I If contains pole or zero at origin, then determine magnitude at

0.1a, where a is smallest break frequency.
I Otherwise, determine magnitude at s = 0.

3. At each break frequency, increase slope by +20dB/dec for a
zero and �20dB/dec if break frequency corresponds to a pole.

4. E↵ect of gain K is to move the magnitude curve up (K > 1)
or down (K < 1) by amount 20 logK.

5. To draw graph, take K = 1 unless gain is specified.
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Drawing Bode Plots: Phase

1. Determine leftmost starting value.
I If contains poles or zeros at origin, then determine net phase

by adding that of the poles or zeros at origin.
I Otherwise, phase starts at 0 degrees.

2. Start graph at 0.1a, where a is the smallest break frequency.

3. For each zero at break frequency a:
I At 0.1a, increase slope by 45o/decade.
I At 10a, decrease slope by 45o/decade.

4. For each pole at break frequency a:
I At 0.1a, decrease slope by 45o/decade.
I At 10a, increase slope by 45o/decade.

5. Gain K has no e↵ect on phase curve.
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Bode Plots for Ratio of First-Order Factors

I Draw bode plots for system where

G(s) =
K(s+ 3)

s(s+ 1)(s+ 2)

Figure 10.10.
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Bode Plots for Ratio of First-Order Factors -

Magnitude

I See notes on board in class & Matlab file for details.
Bode plot is of open loop transfer function!

Figure 10.11.
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Bode Plots for Ratio of First-Order Factors - Phase

I See notes on board in class for details

Figure 10.12.
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Bode Plots for G(s) = s2 + 2⇣!ns+ !2
n

I When ! approaches zero, we get G(j!) ⇡ !
2
n = !

2
n\0o with

magnitude response

20 logM = 20 log!2
n

I At high frequencies, we get G(j!) ⇡ (j!)2 = �!
2

= !
2\180o where

20 logM = 20 log!2 = 40 log!

I This is a straight line with a +40dB/dec slope.

I We note that when ! = !n the high and low frequency
approximations are equal, thus !n is the break frequency.
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Bode Plots for G(s) = s2 + 2⇣!ns+ !2
n
: II

I To draw magnitude approximation, start with a horizontal line
at 20 log!2

n, and at frequency !n, switch to a line with slope
+40db/decade.

Figure 10.13.
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Bode Plots for G(s) = s2 + 2⇣!ns+ !2
n
: Phase

I From previous slide, we know that we start with phase of 0o at
low frequencies, and end at phase of 180o at high frequencies.

I Need to find phase at !n. Use:

G(j!) = s
2 + 2⇣!ns+ !

2
n|s!j! (4)

= (!2
n � !

2) + j2⇣!n! (5)

I At ! = !n, we get G(j!) = j2⇣!2
n, thus phase of 90o.

I To draw phase curve:
1. Start graph at 0.01!n at phase of zero.

2. At 0.1!n, switch to line with slope of +90o per decade.

3. At 10!n, switch to horizontal line at 180o.
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Corrections for Second-Order Bode Plots

I Unlike first-order Bode plots, those of second-order systems
can di↵er greatly from the approximations for certain values of
⇣.

I From Eqn (5) on previous slide, we can derive magnitude and
phase equations for G(j!):

M(!) =
p
(!2

n � !2)2 + (2⇣!n!)2

�(!) = tan
�1 2⇣!n!

!2
n � !2

I For magnitude, can make a +20 log 2⇣ correction at the break
frequency, !n.
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Corrections for Second-Order Bode Plots -

Magnitude

Figure 10.14.
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Corrections for Second-Order Bode Plots - Phase

Figure 10.15.
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Bode Plots for G(s) = 1/(s2 + 2⇣!ns+ !2
n
)

I When ! approaches zero, we get G(j!) ⇡ 1
!2
n
= 1

!2
n
\0o with

magnitude response

20 logM = 20 log
1

!2
n

I At high frequencies, we get G(j!) ⇡ 1
(j!)2 = �1

!2

= 1
!2\� 180o where

20 logM = 20 log
1

!2
= �40 log!

I This is a straight line with a -40dB/dec slope and break
frequency !n rad/s.
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Bode Plots for G(s) = 1/(s2 + 2⇣!ns+ !2
n
) - II

I To draw magnitude approximation, start with a horizontal line
at 20 log 1

!2
n
, and at frequency !n, switch to a line with slope

-40db/decade.
I Can make a �20 log 2⇣ correction at the break frequency, !n.

Figure 10.16.

2006-2014 R.J. Leduc & M. Lawford 38



Bode Plots for G(s) = 1/(s2 + 2⇣!ns+ !2
n
) - Phase

I To draw phase curve, start graph at 0.01!n at 0o, then at
0.1!n, switch to line with slope of �90o per decade.

I Then at 10!n, switch to horizontal line at �180o.

Figure 10.17.
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Bode Plots for Ratio of 1st- and 2nd Order Factors

I Draw bode plots for system where

G(s) =
(s+ 3)

(s+ 2)(s2 + 2s+ 25)

Figure 10.10.
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Bode Plots for Ratio of 1st-2nd Order Factors -

M(!)

Figure 10.18.
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Bode Plots for Ratio of 1st-2nd Order Factors -

�(!)

Figure 10.19.
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Gain and Phase Stability Margins

I For a specific value of K and s, we know a closed loop pole
exists when

1 +KG(s)H(s) = 0

I This is equivalent to when KG(s)H(s) = �1 =
1\(2k + 1)180o k = 0,±1,±2, . . .

I If we set s = j!, we have imaginary roots when

|KG(j!)H(j!)| = 1 \KG(j!)H(j!) = (2k + 1)180o

Figure 8.1.
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Gain and Phase Stability Margins II

I From root locus, typically as we increase the gain K, the
system changes from stable to unstable or vice versa when we
cross the imaginary axis.

Case 1: If system becomes unstable as K increases, the
stability condition is

|KG(j!)H(j!)| < 1 \KG(j!)H(j!) = (2k+1)180o

Case 2: If system becomes stable as K increases, the stability
condition is

|KG(j!)H(j!)| > 1 \KG(j!)H(j!) = (2k+1)180o
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Gain Margin

I To provide a measure of how stable the system, we use the
concept of gain margin.

I Gain margin is how much we would have to change the
frequency response magnitude curve to reach 0dB when the
phase is (2k + 1)180o (typically ±180o).

I First, determine frequency
!GM which is when the
phase is (2k + 1)180o.

I Then determine the value
M of the magnitude at
frequency !GM .

I The gain margin is thus
GM = 0�M dB.

Figure: 10.37
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Phase Margin

I We also use phase margin to provide a measure of how stable
the system.

I Phase margin is how to change frequency response phase
curve at the frequency that magnitude diagram is at 0dB, to
achieve a phase of (2k + 1)180o (typically ±180o).

I First, determine frequency
!�M which is when the
gain is 0dB.

I Then determine the value
� of the phase at
frequency !�M .

I The phase margin is thus
�M = |�+ 180o| (� < 0)
or �M = |180o � �|
(� >= 0). Figure: 10.37
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Gain and Phase Stability Margins e.g.

I With G(s)H(s) = K(s+1)
s(s�1) , we see from root locus we have

Case 2.
I From plot, we see that for K = 3.35 we get !GM = 1 rad/s

and M = 10.5dB. Thus GM = 0� 10.5 = �10.5dB.
I Also, !�M = 3.35 rad/s and � = 236.8. Thus,

�M = |180o � 236.8| = 56.8o.
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System Bandwidth

I The bandwidth of a system (!BW ) is the maximum frequency
that a system will be able to track a sinusoidal satisfactorily.

I By “satisfactorily” tracking, we mean that the power from
input to output is reduced by no more than 50% relative to
the DC value.

I As power varies by the square of amplitude of signal, this
translates to ����

G(j!BW )

G(j0)

����
2

=
1

2

I We thus have
���G(j!BW )

G(0)

��� = 1p
2
or 20 log 1p

2
= �3dB.

I Thus, !BW is the frequency at which the magnitude of the
frequency response is �3dB below the DC value.
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System Bandwidth e.g.

I Determine system bandwidth of system below.

Figure 10.36.
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