Sorting
SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software
McMaster University

McMaster

+ B

University B8

Winter 2024

A final sort algorithm: HEAPSORT

MERGESORT Worst-case © (N log,(N)) runtime complexity.
But also: © (N) memory usage, high constants.

QuickSorT Expected © (N log,(N)) runtime complexity.

But also: © (log,(N)) memory usage, finicky pivot choices,
worst-case © (Nz).

A final sort algorithm: HEAPSORT

MERGESORT Worst-case © (N log,(N)) runtime complexity.
But also: © (N) memory usage, high constants.

QuickSorT Expected © (N log,(N)) runtime complexity.

But also: © (log,(N)) memory usage, finicky pivot choices,
worst-case © (Nz).

Next: HEAPSORT
Worst-case © (N log,(N)) runtime complexity and © (1) memory usage!

HeApPSorT: High-level overview

Algorithm SELECTIONLIKESORT(L):
Input: List L[0...N) of N values.

2: for pos := N to 2 do

3. Find the position p of the
maximum value in L[0. .. pos).

4. Exchange L[pos — 1] and L[p].

N
Comparisons: Z pos =0 (Nz).

pos=2

HeApPSorT: High-level overview

Algorithm HeAPSORT(L):
Input: List L[0... N) of N values.
1: Restructure L so that it is easy to find the maximum.
2: for pos := N to 2 do
3= Use structure to find the maximum and
efficiently remove the maximum.
4. Place the maximum at L[pos — 1].

HeApPSorT: High-level overview

Algorithm HeAPSORT(L):
Input: List L[0... N) of N values.
1: Restructure L so that it is easy to find the maximum <« a binary max-heap.
2: for pos := N to 2 do
3= Use structure to find the maximum and
efficiently remove the maximum.
4. Place the maximum at L[pos — 1].

Max-heaps

A max-heap H is a collection of values
AbpD(H, v) add value v to a max-heap H;
DELMAX(H) removes the maximum value w € H and return w.

Size(H) returns the number of values in H.

HeApPSorT: High-level overview

Algorithm HeAPSORT(L):
Input: List L[0... N) of N values.
1: Restructure L so that it is easy to find the maximum <« a binary max-heap.
2: for pos := N to 2 do
3= Use structure to find the maximum and
efficiently remove the maximum.
4. Place the maximum at L[pos — 1].

Max-heaps
A max-heap H is a collection of values

ADD(H, v) add value v to a max-heap H; «— in © (log,(|H])).
DeLMAXx(H) removes the maximum value w € H and return w. < in © (log,(|H|)).

Size(H) returns the number of values in H.

HeApPSorT: High-level overview

Algorithm HeAPSORT(L):
Input: List L[0... N) of N values.
1: Restructure L so that it is easy to find the maximum <« a binary max-heap.
2: for pos := N to 2 do
3= Use structure to find the maximum and
efficiently remove the maximum.
4. Place the maximum at L[pos — 1].

Max-heaps
A max-heap H is a collection of values
ADD(H, v) add value v to a max-heap H; «— in © (log,(|H])).

DeLMAXx(H) removes the maximum value w € H and return w. < in © (log,(|H|)).
Size(H) returns the number of values in H.

We can store a max-heap of |H| values in an array of |H| values.

HeApPSorT: High-level overview

Algorithm HeAPSORT(L):
Input: List L[0... N) of N values.
1: Restructure L so that it is easy to find the maximum. ~ N Apps — O (N log,(N)).
2: for pos := N to 2 do
3: Use structure to find the maximum and
efficiently remove the maximum. ~ N DELMAxs — © (N log,(N)).

4. Place the maximum at L[pos — 1].

Max-heaps
A max-heap H is a collection of values
ADD(H, v) add value v to a max-heap H; — in © (log,(|HI)).

DeLMAXx(H) removes the maximum value w € H and return w. < in © (log,(|H|)).
Size(H) returns the number of values in H.

We can store a max-heap of |H| values in an array of |H| values.

The binary max-heap data structure

A binary max-heap is a binary tree in which each node n has a key k(n) such that:

The binary max-heap data structure

A binary max-heap is a binary tree in which each node n has a key k(n) such that:
> the tree is nearly complete.
Or: the tree is filled from top-to-bottom, left-to-right.

The binary max-heap data structure

A binary max-heap is a binary tree in which each node n has a key k(n) such that:
> the tree is nearly complete.
Or: the tree is filled from top-to-bottom, left-to-right.
> the tree satisfies the heap property: if node n has child ¢, then k(n) > k(c).
Or: the key in each node is larger-or-equal to the keys in the children of n.

12

The binary max-heap data structure

12

The maximum is straightforward to find: root of the tree.

The binary max-heap data structure

Algorithm DeLMAx(H) (high-level overview):

The binary max-heap data structure

Algorithm DeLMAx(H) (high-level overview):
1: Let v be the value at the root 1 of H.

5: return

The binary max-heap data structure

Algorithm DeLMAx(H) (high-level overview):
1: Let v be the value at the root 1 of H.
2: Let w be the last value in H.

5: return

The binary max-heap data structure

Algorithm DeLMAx(H) (high-level overview):
1: Let v be the value at the root 1 of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k(1) := w.

5: return

The binary max-heap data structure

Algorithm DeLMAx(H) (high-level overview):
1: Let v be the value at the root 1 of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k(1) := w.
4: to a valid position (reestablish the heap property).
5: return

The binary max-heap data structure

Algorithm DeLMAx(H) (high-level overview):
1: Let v be the value at the root 1 of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k(1) := w.
4: to a valid position (reestablish the heap property).
5: return

The binary max-heap data structure

11

Algorithm DeLMAx(H) (high-level overview):
1: Let v be the value at the root 1 of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k(1) := w.
4: to a valid position (reestablish the heap property).
5: return

The binary max-heap data structure

11

Algorithm DeLMAx(H) (high-level overview):
1: Let v be the value at the root 1 of H.
2: Let w be the last value in H.
3: Remove the last node in H and set k(1) := w.
4: to a valid position (reestablish the heap property).
5: return

The binary max-heap data structure

Algorithm App(H, v) (high-level overview):

The binary max-heap data structure

12

Algorithm App(H, v) (high-level overview):
1: Add a node 1 to the end of H with k(1) := v.

The binary max-heap data structure

12

Algorithm App(H, v) (high-level overview):
1: Add a node 1 to the end of H with k(1) := v.
2: upward to a valid position (reestablish the heap property).

The binary max-heap data structure

12

Algorithm App(H, v) (high-level overview):
1: Add a node 1 to the end of H with k(1) := v.
2: upward to a valid position (reestablish the heap property).

The binary max-heap data structure

12

Storing a max-heap in an array

The binary max-heap data structure

12

Storing a max-heap in an array
Number the nodes from top-to-bottom, left-to-right.

Warning: The book numbers values in max-heaps starting at 1 instead of 0!

The binary max-heap data structure

12

12111 8|9 (10| 5|6 |2 |4|7]|1 3

Storing a max-heap in an array
Number the nodes from top-to-bottom, left-to-right — positions in the array.

The binary max-heap data structure

12

121 11| 8 | 9 5|6 |2 |47

If a node is at position p,

The binary max-heap data structure

12

12| 11| 8 | 9 5|6 |2 |47

If a node is at position p,
> then the parent is at position parent(p) = (p — 1) div 2.

The binary max-heap data structure

12

12| 11| 8 | 9 5|6 |2 |47

If a node is at position p,
> then the parent is at position parent(p) = (p — 1) div 2.
» then the left child is at position Ichild(p) =2 - p+ 1.

The binary max-heap data structure

12

12| 11| 8 | 9 5|6 |2 |47

If a node is at position p,
> then the parent is at position parent(p) = (p — 1) div 2.
> then the left child is at position Ichild(p) =2-p + 1.
» then the right child is at position rchild(p) =2 p + 2.

The binary max-heap data structure

If a node is at position p,
> then the parent is at position parent(p) = (p — 1) div 2.
> then the left child is at position Ichild(p) =2 - p + 1.
» then the right child is at position rchild(p) =2 - p + 2.

Algorithm SINk(L[O. .. N), p): Algorithm Swim(L[0...N), p):

L[p] to a valid position. L[p] upward to a valid position.

The binary max-heap data structure

If a node is at position p,
> then the parent is at position parent(p) = (p — 1) div 2.
> then the left child is at position Ichild(p) =2 - p + 1.
» then the right child is at position rchild(p) =2 - p + 2.

Algorithm SINk(L[O. .. N), p): Algorithm Swim(L[0...N), p):
1: while true do 1: while p # 0 and
22 np:=p. L[p] > L[parent(p)] do
3= if Ichild(p) < N and 2. Exchange L[p] and L[parent(p)].
L[np] < L[lIchild(p)] then 3: := parent(p).

4: np := Ichild(p).

5. if rchild(p) < N and
L[np] < L[rchild(p)] then
6: np := rchild(p).
7. if np = p then return.
8: Exchange L[p] and L[np].
9: p:=np.

HEeAPSoRT: Filling in the details

Algorithm HeAPSORT(L):

Input: List L[0... N) of N values.
1: Turn L into a max-heap.
2: for pos := N to 2 do
3: max = DELMAX(L[O... pos))
4 L[pos— 1] := max.

HEeAPSoRT: Filling in the details

Algorithm HeAPSORT(L):

Input: List L[0... N) of N values.
1: Turn L into a max-heap.
2: for pos := N to 2 do
3: max = DELMAX(L[O... pos))
4 L[pos— 1] := max.

Algorithm MAKEHEAP(L[O. .. N)):
1: len:=1.
/*inv: L[0...lenis a max-heap, bf: N — len x/
2: while len # N do
3: Abpbp(L[0...len), L[len]).
4. len:=len+1.

HEeAPSoRT: Filling in the details

Algorithm HeAPSORT(L):

Input: List L[0... N) of N values.
1: Turn L into a max-heap.
2: for pos := N to 2 do
3: max = DELMAX(L[O... pos))
4 L[pos—1] := max.

Algorithm MAKEHEAP(L[O. .. N)):
1: len:=1.
/*inv: L[0... lenis a max-heap, bf: N — len x/
2: while len # N do
32 AbpD(L[0...len), L[len]). N — 1 Swim operations.
4 len:=len+1.

HEeAPSoRT: Filling in the details

A faster MAKEHEAP

L:|?2 (1?2?2252 ?2]?2]7]10]13]7

Consider a position p in L such that
» the left child at position Ichild(p) already forms a valid max-heap in L; and

> the right child at position rchild(p) already forms a valid max-heap in L.

HEeAPSoRT: Filling in the details

A faster MAKEHEAP

L:|?2 (1?2?2252 ?2]?2]7]10]13]7

Pt

lc rc

Consider a position p in L such that
» the left child at position Ichild(p) already forms a valid max-heap in L; and

> the right child at position rchild(p) already forms a valid max-heap in L.

HEeAPSoRT: Filling in the details

A faster MAKEHEAP

L:|?2 (1?2?2252 ?2]?2]7]10]13]7

Pt

lc rc

Consider a position p in L such that
» the left child at position Ichild(p) already forms a valid max-heap in L; and
> the right child at position rchild(p) already forms a valid max-heap in L.

(L[0...N), p) assures that p also forms a valid max-heap in L.

HEeAPSoRT: Filling in the details

A faster MAKEHEAP

L:| 2?2 | 7?2 |7 70?20 ?7]10 ?
A K
lc rc

Consider a position p in L such that
» the left child at position Ichild(p) already forms a valid max-heap in L; and
> the right child at position rchild(p) already forms a valid max-heap in L.

(L[0...N), p) assures that p also forms a valid max-heap in L.

HEeAPSoRT: Filling in the details

A faster MAKEHEAP

L:| 2?2 | 7?2 |7 70?20 ?7]10 ?
A K
lc rc

Consider a position p in L such that
» the left child at position Ichild(p) already forms a valid max-heap in L; and
> the right child at position rchild(p) already forms a valid max-heap in L.

(L[0...N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

HEeAPSoRT: Filling in the details

A faster MAKEHEAP

L:| 2?2 | 7?2 |7 70?20 ?7]10 ?
A K
lc rc

Consider a position p in L such that
» the left child at position Ichild(p) already forms a valid max-heap in L; and
> the right child at position rchild(p) already forms a valid max-heap in L.

(L[0...N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions m < N with Ichild(m) = m- 2+ 1 > N represent the leaves in a max-heap of L.

HEeAPSoRT: Filling in the details

A faster MAKEHEAP

L:| 2?2 | 7?2 |7 70?20 ?7]10 ?
A K
lc rc

Consider a position p in L such that
» the left child at position Ichild(p) already forms a valid max-heap in L; and
> the right child at position rchild(p) already forms a valid max-heap in L.

(L[0...N), p) assures that p also forms a valid max-heap in L.

Leaves always form valid max-heaps.

Positions m < N with Ichild(m) = m- 2+ 1 > N represent the leaves in a max-heap of L

— The last non-child in a max-heap of L values is at position L%J

HEeAPSoRT: Filling in the details

A faster MAKEHEAP

Algorithm FASTMAKEHEAP(L):

1

» P W

L:| ? | ?

10

: k:=N—-(Ndiv2).

while k # 0 do
SINK(L[O...N), k).
k=k-1.

lc

rc

HEeAPSoRT: Filling in the details

A faster MAKEHEAP

L:| 2?2 | 7?2 |7 70?20 ?7]10
A K
lc rc

Algorithm FASTMAKEHEAP(L):
1: k:=N—(Ndiv2).

while k # 0 do
SINK(L[O...N), k). L%J SINK operations.
k:=k-1.

» P W

Comparing HEAPSORT with MERGESORT and QuUICKSORT

Comparisons Changes Memory Stable

MEeRGESORT © (N log,(N)) N log,(N) O (N) yes
© (Nlogy(N)) © (Nlog,(N)) O (log,(N))

(expected) (expected) (expected)
HeapSort © (Nlog,(N)) Nlog,(N) 1 no

QUICKSORT no

Comparing HEAPSORT with MERGESORT and QuUICKSORT

Running time (us)

1.5

0.5

Measured runtime complexity

108 (sorting a list of n random values)

T T T T T T T T
MERGESORT

MERGESORT p=3
—— QUICKSORT{.1nd
QUICKSORTfm|
=== QUICKSORTf (nd,M=16
QUICKSORTfmIM=16
—— HEAPSORT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number of values n

2100

Comparing HEAPSORT with MERGESORT and QuUICKSORT

Running time (us)

1.5

0.5

Measured runtime complexity

108 (sorting a list of n random values)

T T T T T T T T
MERGESORT

MERGESORT p=3
—— QUICKSORT{.1nd
QUICKSORTfm|
=== QUICKSORTf (nd,M=16
QUICKSORTfmIM=16
—— HEAPSORT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number of values n

2100

Final notes on HEAPSORT

A max-heap is often referred to as a Priority Queue.

There are also min-heaps that provide fast access to minimum values.

Final notes on HEAPSORT

A max-heap is often referred to as a Priority Queue.

There are also min-heaps that provide fast access to minimum values.

C++ Java
Priority Queues std::priority_queue java.util.PriorityQueue
ADD std: :push_heap
DeLMAX std: :pop_heap
std: :make_heap
std::is_heap
| _
(relenec) std::is_heap_until
std: :sort_heap

INTROSORT: Putting all sorts together

Algorithm INTROSORT(L[start ... end), potential):
potential is the number of values we could have sorted with perfect pivot choices.
1: if end — start < M then
2. Sort L[start...end] using INSERTIONSORT.
3: else if potential < 1.5 -|L| then
4. Sort L[start...end] using HEAPSORT.
5: else
6: Choose the position € [start, end) of the pivot value = := L[pos].
7: pos := PARTITION(L, start, end, p).
8: INTROSORT(pos), 2 - potential).
9: INTROSORT(L[pos+ 1...end),2 - potential).

Algorithm INTROSORT(L[O ... N)):
10: INTROSORT(L[0...N), 1).

INTROSORT:

1.5

Putting all sorts together

Measured runtime complexity

108 (sorting a list of n random values)

0.5

Running time (ps)

T T T T T T T T
MERGESORT

MERGESORT p=3
—— QUICKSORT{.1nd
QUICKSORTfm|
=== QUICKSORTf (nd,M=16
QUICKSORTfmIM=16
—— HEAPSORT
INTROSORT{rnd,M-16

— INTROSORTfmIM=-16
—_—

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Number of values n

—_

2100

