
1/18

Searching
SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software
McMaster University

Winter 2024

2/18

2-3 search trees: Toward balanced binary search trees

Balanced tree: any path from the root to a leaf has length ⌈log2(N + 1)⌉
(in terms of the number of nodes on the path).

Maintaining perfect balance during additions and removals sounds highly expensive:
Do we have to check the lengths of all paths and correct?

A balanced binary search tree with N = 4 nodes

just

is

a

or

Consider removing “or”

2/18

2-3 search trees: Toward balanced binary search trees

Balanced tree: any path from the root to a leaf has length ⌈log2(N + 1)⌉
(in terms of the number of nodes on the path).

Maintaining perfect balance during additions and removals sounds highly expensive:
Do we have to check the lengths of all paths and correct?

A balanced binary search tree with N = 4 nodes

just

is

a

or

Consider removing “or”

2/18

2-3 search trees: Toward balanced binary search trees

Balanced tree: any path from the root to a leaf has length ⌈log2(N + 1)⌉
(in terms of the number of nodes on the path).

Maintaining perfect balance during additions and removals sounds highly expensive:
Do we have to check the lengths of all paths and correct?

A balanced binary search tree with N = 4 nodes

just

is

a

or

Consider removing “or”.

2/18

2-3 search trees: Toward balanced binary search trees

Balanced tree: any path from the root to a leaf has length ⌈log2(N + 1)⌉
(in terms of the number of nodes on the path).

Maintaining perfect balance during additions and removals sounds highly expensive:
Do we have to check the lengths of all paths and correct?

A balanced binary search tree with N = 4 nodes

just

is

a

or

Consider removing “or”: paths are now too long!

2/18

2-3 search trees: Toward balanced binary search trees

2/18

2-3 search trees: Toward balanced binary search trees

With a bit of flexibility, we can keep trees balanced-enough when adding or removing v
by only making changes locally along a path from root to the node holding v .

2/18

2-3 search trees: Toward balanced binary search trees

With a bit of flexibility, we can keep trees balanced-enough when adding or removing v
by only making changes locally along a path from root to the node holding v .

2-3 search trees
In a 2-3 tree, there are two types of nodes:

Two-nodes that hold one key value k and two children l and r .

l holds values < k and r holds values > k.

Three-nodes that hold two key values k1, k2 and three children c0, c1, and c2.

c0 holds values < k1, c1 holds values > k1, < k2, and c2 holds values > k2.

Furthermore, all leaf nodes in a 2-3 tree must have the same distance to the root.

2/18

2-3 search trees: Toward balanced binary search trees

With a bit of flexibility, we can keep trees balanced-enough when adding or removing v
by only making changes locally along a path from root to the node holding v .

2-3 search trees
In a 2-3 tree, there are two types of nodes:

Two-nodes that hold one key value k and two children l and r .
l holds values < k and r holds values > k.

Three-nodes that hold two key values k1, k2 and three children c0, c1, and c2.
c0 holds values < k1, c1 holds values > k1, < k2, and c2 holds values > k2.

Furthermore, all leaf nodes in a 2-3 tree must have the same distance to the root.

it not

a is just

juice just

or word

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee
bee

a is

word

or zoo

a is just

juice just

or word

Consider adding “juice”, “bee”, and “zoo”

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee
bee

a is

word

or zoo

a is just

juice just

or word

n

Consider adding “juice”, “bee”, and “zoo”
1. Search for “juice”: we find the leaf two-node n holding “just”.

2. We can turn node n into a three-node.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee
bee

a is

word

or zoo

a is just

juice just

or word

n

Consider adding “juice”, “bee”, and “zoo”
1. Search for “juice”: we find the leaf two-node n holding “just”.

2. We can turn node n into a three-node.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee
bee

a is

word

or zoo

a is

just

juice just or word

n

Consider adding “juice”, “bee”, and “zoo”
1. Search for “juice”: we find the leaf two-node n holding “just”.

2. We can turn node n into a three-node.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee
bee

a is

word

or zoo

a is

just

juice just or word

n

Consider adding “juice”, “bee”, and “zoo”
1. Search for “bee”: we find the leaf three-node n holding “a” and “is”.

2. We can turn the key values “a”, “bee”, “is” into a tree of two-nodes with root r .

3. Remove n and merge root r with the parent p of n:
the merged node will have three key values “bee”, “it”, “not”.

4. Represent these keys by a tree of two-nodes.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee

bee

a is

word

or zoo

a is

just

juice just or word

n

r

Consider adding “juice”, “bee”, and “zoo”
1. Search for “bee”: we find the leaf three-node n holding “a” and “is”.

2. We can turn the key values “a”, “bee”, “is” into a tree of two-nodes with root r .

3. Remove n and merge root r with the parent p of n:
the merged node will have three key values “bee”, “it”, “not”.

4. Represent these keys by a tree of two-nodes.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee

bee

a is

word

or zoo
a is just

juice just or word

r
p

Consider adding “juice”, “bee”, and “zoo”
1. Search for “bee”: we find the leaf three-node n holding “a” and “is”.

2. We can turn the key values “a”, “bee”, “is” into a tree of two-nodes with root r .

3. Remove n and merge root r with the parent p of n:
the merged node will have three key values “bee”, “it”, “not”.

4. Represent these keys by a tree of two-nodes.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee

bee

a is

word

or zoo
a is just

juice just or word

r
p

Consider adding “juice”, “bee”, and “zoo”
1. Search for “bee”: we find the leaf three-node n holding “a” and “is”.

2. We can turn the key values “a”, “bee”, “is” into a tree of two-nodes with root r .

3. Remove n and merge root r with the parent p of n:
the merged node will have three key values “bee”, “it”, “not”.

4. Represent these keys by a tree of two-nodes.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee not

bee

a is

word

or zoo

a is

a is justjuice just or word

juice just or word

Consider adding “juice”, “bee”, and “zoo”
1. Search for “bee”: we find the leaf three-node n holding “a” and “is”.

2. We can turn the key values “a”, “bee”, “is” into a tree of two-nodes with root r .

3. Remove n and merge root r with the parent p of n:
the merged node will have three key values “bee”, “it”, “not”.

4. Represent these keys by a tree of two-nodes.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee not

bee

a is

word

or zoo

a is

a is justjuice just or word

juice just or word

n

Consider adding “juice”, “bee”, and “zoo”
1. Search for “zoo”: we find the leaf three-node n holding “or” and “word”.

2. We can turn the key values “or”, “word”, “zoo” into a tree of two-nodes with root r .

3. Remove n and merge root r with the parent p of n:
the merged node will have two key values “not” and “word”.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee not

bee

a is

word

or zoo
a is

a is justjuice just or word

juice just or word

n

r

Consider adding “juice”, “bee”, and “zoo”
1. Search for “zoo”: we find the leaf three-node n holding “or” and “word”.

2. We can turn the key values “or”, “word”, “zoo” into a tree of two-nodes with root r .

3. Remove n and merge root r with the parent p of n:
the merged node will have two key values “not” and “word”.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee not

bee

a is

word

or zoo
a is

a is justjuice just or word

juice just or word

n

r
p

Consider adding “juice”, “bee”, and “zoo”
1. Search for “zoo”: we find the leaf three-node n holding “or” and “word”.

2. We can turn the key values “or”, “word”, “zoo” into a tree of two-nodes with root r .

3. Remove n and merge root r with the parent p of n:
the merged node will have two key values “not” and “word”.

2/18

2-3 search trees: Toward balanced binary search trees

it not

it

bee not word

bee

a is

word

or zoo

a is

a is justjuice just or word

juice just or zoo

Consider adding “juice”, “bee”, and “zoo”
1. Search for “zoo”: we find the leaf three-node n holding “or” and “word”.

2. We can turn the key values “or”, “word”, “zoo” into a tree of two-nodes with root r .

3. Remove n and merge root r with the parent p of n:
the merged node will have two key values “not” and “word”.

2/18

2-3 search trees: Toward balanced binary search trees

it not

just or worda is

Deleting values from a 2-3 tree

1. Deleting a value from a leaf three-node n.

Straightforward: replace the node n by a two-node.

2. Deleting a value from a leaf two-node.

Complex: borrow an adjacent value from the parent,
recursively if the parent itself is a two-node.

3. Deleting an internal value.

Complex: replace value by the succeeding value (a leaf value),
remove that leaf value.

2/18

2-3 search trees: Toward balanced binary search trees

it not

just or worda is

Deleting values from a 2-3 tree
1. Deleting a value from a leaf three-node n.

Straightforward: replace the node n by a two-node.

2. Deleting a value from a leaf two-node.

Complex: borrow an adjacent value from the parent,
recursively if the parent itself is a two-node.

3. Deleting an internal value.

Complex: replace value by the succeeding value (a leaf value),
remove that leaf value.

2/18

2-3 search trees: Toward balanced binary search trees

it not

just or worda is

Deleting values from a 2-3 tree
1. Deleting a value from a leaf three-node n.

Straightforward: replace the node n by a two-node.

2. Deleting a value from a leaf two-node.

Complex: borrow an adjacent value from the parent,
recursively if the parent itself is a two-node.

3. Deleting an internal value.

Complex: replace value by the succeeding value (a leaf value),
remove that leaf value.

2/18

2-3 search trees: Toward balanced binary search trees

it not

just or worda is

Deleting values from a 2-3 tree
1. Deleting a value from a leaf three-node n.

Straightforward: replace the node n by a two-node.

2. Deleting a value from a leaf two-node.

Complex: borrow an adjacent value from the parent,
recursively if the parent itself is a two-node.

3. Deleting an internal value.

Complex: replace value by the succeeding value (a leaf value),
remove that leaf value.

2/18

2-3 search trees: Toward balanced binary search trees

it not

just or worda is

Deleting values from a 2-3 tree
1. Deleting a value from a leaf three-node n.

Straightforward: replace the node n by a two-node.

2. Deleting a value from a leaf two-node.
Complex: borrow an adjacent value from the parent,
recursively if the parent itself is a two-node.

3. Deleting an internal value.

Complex: replace value by the succeeding value (a leaf value),
remove that leaf value.

2/18

2-3 search trees: Toward balanced binary search trees

it not

just or worda is

Deleting values from a 2-3 tree
1. Deleting a value from a leaf three-node n.

Straightforward: replace the node n by a two-node.

2. Deleting a value from a leaf two-node.
Complex: borrow an adjacent value from the parent,
recursively if the parent itself is a two-node.

3. Deleting an internal value.

Complex: replace value by the succeeding value (a leaf value),
remove that leaf value.

2/18

2-3 search trees: Toward balanced binary search trees

it not

just or worda is

Deleting values from a 2-3 tree
1. Deleting a value from a leaf three-node n.

Straightforward: replace the node n by a two-node.

2. Deleting a value from a leaf two-node.
Complex: borrow an adjacent value from the parent,
recursively if the parent itself is a two-node.

3. Deleting an internal value.
Complex: replace value by the succeeding value (a leaf value),
remove that leaf value.

3/18

2-3 search trees in practice

2-3 trees have at least two children per internal node:
2-3 trees can be compacter (in their height) than balanced search trees!

2-3 trees require complex tree algorithms, however:
e.g., separate code to deal with two-nodes and three-nodes.

2-3 trees are costly for very large values:
when adding or removing values, other values are moved around in memory!

2-3 trees can be generalized to (k − 2k)-trees that are even compacter:
these (k − 2k)-trees are at the basis of external memory data structures,
e.g., B+trees that are widely used in file systems and large-scale databases.

3/18

2-3 search trees in practice

2-3 trees have at least two children per internal node:
2-3 trees can be compacter (in their height) than balanced search trees!

2-3 trees require complex tree algorithms, however:
e.g., separate code to deal with two-nodes and three-nodes.

2-3 trees are costly for very large values:
when adding or removing values, other values are moved around in memory!

2-3 trees can be generalized to (k − 2k)-trees that are even compacter:
these (k − 2k)-trees are at the basis of external memory data structures,
e.g., B+trees that are widely used in file systems and large-scale databases.

3/18

2-3 search trees in practice

2-3 trees have at least two children per internal node:
2-3 trees can be compacter (in their height) than balanced search trees!

2-3 trees require complex tree algorithms, however:
e.g., separate code to deal with two-nodes and three-nodes.

2-3 trees are costly for very large values:
when adding or removing values, other values are moved around in memory!

2-3 trees can be generalized to (k − 2k)-trees that are even compacter:
these (k − 2k)-trees are at the basis of external memory data structures,
e.g., B+trees that are widely used in file systems and large-scale databases.

3/18

2-3 search trees in practice

2-3 trees have at least two children per internal node:
2-3 trees can be compacter (in their height) than balanced search trees!

2-3 trees require complex tree algorithms, however:
e.g., separate code to deal with two-nodes and three-nodes.

2-3 trees are costly for very large values:
when adding or removing values, other values are moved around in memory!

2-3 trees can be generalized to (k − 2k)-trees that are even compacter:
these (k − 2k)-trees are at the basis of external memory data structures,
e.g., B+trees that are widely used in file systems and large-scale databases.

4/18

From 2-3 trees to left-leaning red-black trees

Question: How can we simplify 2-3 trees?
Idea: Turn 2-3 tree nodes into binary search tree structures.

▶ Two-nodes are already binary search tree nodes.
▶ Three-nodes can be replaced by a binary search tree structure with two nodes.

vv w

−→

v w

v

Reusing the addition and removal algorithms from 2-3 trees
We need some way to identify when a binary search tree structure represents a three-node.

→Mark the added left-leaning node (with the color red).

4/18

From 2-3 trees to left-leaning red-black trees

Question: How can we simplify 2-3 trees?
Idea: Turn 2-3 tree nodes into binary search tree structures.
▶ Two-nodes are already binary search tree nodes.

▶ Three-nodes can be replaced by a binary search tree structure with two nodes.

v

v w

−→

v w

v

Reusing the addition and removal algorithms from 2-3 trees
We need some way to identify when a binary search tree structure represents a three-node.

→Mark the added left-leaning node (with the color red).

4/18

From 2-3 trees to left-leaning red-black trees

Question: How can we simplify 2-3 trees?
Idea: Turn 2-3 tree nodes into binary search tree structures.
▶ Two-nodes are already binary search tree nodes.

▶ Three-nodes can be replaced by a binary search tree structure with two nodes.

v

v w

−→

v

w

v

Reusing the addition and removal algorithms from 2-3 trees
We need some way to identify when a binary search tree structure represents a three-node.

→Mark the added left-leaning node (with the color red).

4/18

From 2-3 trees to left-leaning red-black trees

Question: How can we simplify 2-3 trees?
Idea: Turn 2-3 tree nodes into binary search tree structures.
▶ Two-nodes are already binary search tree nodes.
▶ Three-nodes can be replaced by a binary search tree structure with two nodes.

v

v w

−→

v w

v

Reusing the addition and removal algorithms from 2-3 trees
We need some way to identify when a binary search tree structure represents a three-node.

→Mark the added left-leaning node (with the color red).

4/18

From 2-3 trees to left-leaning red-black trees

Question: How can we simplify 2-3 trees?
Idea: Turn 2-3 tree nodes into binary search tree structures.
▶ Two-nodes are already binary search tree nodes.
▶ Three-nodes can be replaced by a binary search tree structure with two nodes.

v

v w

−→

v

w

v

Reusing the addition and removal algorithms from 2-3 trees
We need some way to identify when a binary search tree structure represents a three-node.

→Mark the added left-leaning node (with the color red).

4/18

From 2-3 trees to left-leaning red-black trees

Question: How can we simplify 2-3 trees?
Idea: Turn 2-3 tree nodes into binary search tree structures.
▶ Two-nodes are already binary search tree nodes.
▶ Three-nodes can be replaced by a binary search tree structure with two nodes.

v

v w

−→

v

w

v

Reusing the addition and removal algorithms from 2-3 trees
We need some way to identify when a binary search tree structure represents a three-node.

→Mark the added left-leaning node (with the color red).

4/18

From 2-3 trees to left-leaning red-black trees

Question: How can we simplify 2-3 trees?
Idea: Turn 2-3 tree nodes into binary search tree structures.
▶ Two-nodes are already binary search tree nodes.
▶ Three-nodes can be replaced by a binary search tree structure with two nodes.

v

v w

−→

v

w

v

Reusing the addition and removal algorithms from 2-3 trees
We need some way to identify when a binary search tree structure represents a three-node.

→Mark the added left-leaning node (with the color red).

4/18

From 2-3 trees to left-leaning red-black trees

A 2-3 tree
it not

just or worda is

An equivalent left-leaning red-black tree
not

it

is

a

just

word

or

4/18

From 2-3 trees to left-leaning red-black trees

An equivalent left-leaning red-black tree
not

it

is

a

just

word

or

Some usefull properties

(that we have to maintain)

1. Every path from root to leaf has at-most log2(N) unmarked nodes.

2. Every path from root to leaf has the same number of unmarked nodes.

3. No marked nodes “touch” each other.

4/18

From 2-3 trees to left-leaning red-black trees

An equivalent left-leaning red-black tree
not

it

is

a

just

word

or

Some usefull properties (that we have to maintain)
1. Every path from root to leaf has at-most log2(N) unmarked nodes.

2. Every path from root to leaf has the same number of unmarked nodes.

3. No marked nodes “touch” each other.

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

njuice kidjust nn ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

n

juice kidjust nn ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “juice”: we find the leaf two-node n holding “just”.

2. We can turn node n into a three-node.

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

njuice

kidjust nn ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “juice”: we find the leaf two-node n holding “just”.

2. We can turn node n into a three-node.

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

n

juice kidjust nn ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “kid”: we find the leaf two-node n holding “just”.

2. We can turn node n into a three-node, but simply adding “kid” will not do so!

3. We can rotate left around n to make a proper three-node.

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

n

juice

kid

just nn ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “kid”: we find the leaf two-node n holding “just”.

2. We can turn node n into a three-node, but simply adding “kid” will not do so!

3. We can rotate left around n to make a proper three-node.

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

n

juice

kid

just nn ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “kid”: we find the leaf two-node n holding “just”.

2. We can turn node n into a three-node, but simply adding “kid” will not do so!

3. We can rotate left around n to make a proper three-node.

5/18

Adding to left-leaning red-black trees
not

it

is

a

kid

word

or

njuice kid

just n

n ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “kid”: we find the leaf two-node n holding “just”.

2. We can turn node n into a three-node, but simply adding “kid” will not do so!

3. We can rotate left around n to make a proper three-node.

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

njuice kidjust n

n

ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “ism”: we find the node n holding “is” (part of a three-node).

2. We can turn node n into a three-node, but simply adding “ism” will not do so!

3. Push color toward parent p of n: now marked nodes “touch” each other.

4. We can rotate right around the parent of p toward fixing the marked nodes.

5. Push color toward parent of p (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

njuice kidjust n

n ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “ism”: we find the node n holding “is” (part of a three-node).

2. We can turn node n into a three-node, but simply adding “ism” will not do so!

3. Push color toward parent p of n: now marked nodes “touch” each other.

4. We can rotate right around the parent of p toward fixing the marked nodes.

5. Push color toward parent of p (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

njuice kidjust n

n ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “ism”: we find the node n holding “is” (part of a three-node).

2. We can turn node n into a three-node, but simply adding “ism” will not do so!

3. Push color toward parent p of n: now marked nodes “touch” each other.

4. We can rotate right around the parent of p toward fixing the marked nodes.

5. Push color toward parent of p (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

njuice kidjust n

n ism

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “ism”: we find the node n holding “is” (part of a three-node).

2. We can turn node n into a three-node, but simply adding “ism” will not do so!

3. Push color toward parent p of n: now marked nodes “touch” each other.

4. We can rotate right around the parent of p toward fixing the marked nodes.

5. Push color toward parent of p (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
it

notis

a ism just word

or

n

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “ism”: we find the node n holding “is” (part of a three-node).

2. We can turn node n into a three-node, but simply adding “ism” will not do so!

3. Push color toward parent p of n: now marked nodes “touch” each other.

4. We can rotate right around the parent of p toward fixing the marked nodes.

5. Push color toward parent of p (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
it

notis

a ism just word

or

n

p

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “ism”: we find the node n holding “is” (part of a three-node).

2. We can turn node n into a three-node, but simply adding “ism” will not do so!

3. Push color toward parent p of n: now marked nodes “touch” each other.

4. We can rotate right around the parent of p toward fixing the marked nodes.

5. Push color toward parent of p (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
it

justis

a

bee

a is

n

beea n

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “bee”: we find the node n holding “a” (part of a three-node).

2. Simply adding “bee” invalidates the entire structure.

3. We can rotate left around n to turn this case into a previous case!

4. Marked nodes “touch” each other: we rotate right around the node holding “is”.

5. Push color toward parent.

5/18

Adding to left-leaning red-black trees
it

justis

a

bee

a is

n bee

a n

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “bee”: we find the node n holding “a” (part of a three-node).

2. Simply adding “bee” invalidates the entire structure.

3. We can rotate left around n to turn this case into a previous case!

4. Marked nodes “touch” each other: we rotate right around the node holding “is”.

5. Push color toward parent.

5/18

Adding to left-leaning red-black trees
it

justis

a

bee

a is

n bee

a n

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “bee”: we find the node n holding “a” (part of a three-node).

2. Simply adding “bee” invalidates the entire structure.

3. We can rotate left around n to turn this case into a previous case!

4. Marked nodes “touch” each other: we rotate right around the node holding “is”.

5. Push color toward parent.

5/18

Adding to left-leaning red-black trees
it

justis

bee

bee

a is

n bee

a n

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “bee”: we find the node n holding “a” (part of a three-node).

2. Simply adding “bee” invalidates the entire structure.

3. We can rotate left around n to turn this case into a previous case!

4. Marked nodes “touch” each other: we rotate right around the node holding “is”.

5. Push color toward parent.

5/18

Adding to left-leaning red-black trees
it

justis

bee

bee

a is

n bee

a n

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “bee”: we find the node n holding “a” (part of a three-node).

2. Simply adding “bee” invalidates the entire structure.

3. We can rotate left around n to turn this case into a previous case!

4. Marked nodes “touch” each other: we rotate right around the node holding “is”.

5. Push color toward parent.

5/18

Adding to left-leaning red-black trees
it

just

is

bee

bee

a is

n beea n

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “bee”: we find the node n holding “a” (part of a three-node).

2. Simply adding “bee” invalidates the entire structure.

3. We can rotate left around n to turn this case into a previous case!

4. Marked nodes “touch” each other: we rotate right around the node holding “is”.

5. Push color toward parent.

5/18

Adding to left-leaning red-black trees
it

just

is

bee

bee

a is

n beea n

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “bee”: we find the node n holding “a” (part of a three-node).

2. Simply adding “bee” invalidates the entire structure.

3. We can rotate left around n to turn this case into a previous case!

4. Marked nodes “touch” each other: we rotate right around the node holding “is”.

5. Push color toward parent.

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

n

now

or

now word

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “nor”: we find the node n holding “or” (part of a three-node).

2. Simply adding “nor” invalidates the entire structure.

3. This is a previous case: rotate right .

4. Push color up.

5. Push color up (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

nnow

or

now word

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “nor”: we find the node n holding “or” (part of a three-node).

2. Simply adding “nor” invalidates the entire structure.

3. This is a previous case: rotate right .

4. Push color up.

5. Push color up (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

nnow

or

now word

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “nor”: we find the node n holding “or” (part of a three-node).

2. Simply adding “nor” invalidates the entire structure.

3. This is a previous case: rotate right .

4. Push color up.

5. Push color up (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

nnow

or

now word

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “nor”: we find the node n holding “or” (part of a three-node).

2. Simply adding “nor” invalidates the entire structure.

3. This is a previous case: rotate right .

4. Push color up.

5. Push color up (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

nnow

or

now word

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “nor”: we find the node n holding “or” (part of a three-node).

2. Simply adding “nor” invalidates the entire structure.

3. This is a previous case: rotate right .

4. Push color up.

5. Push color up (roots stay unmarked).

5/18

Adding to left-leaning red-black trees
not

it

is

a

just

word

or

nnow

or

now word

Consider adding “juice”, “kid”, “ism”, “bee”, and “now”
1. Search for “nor”: we find the node n holding “or” (part of a three-node).

2. Simply adding “nor” invalidates the entire structure.

3. This is a previous case: rotate right .

4. Push color up.

5. Push color up (roots stay unmarked).

6/18

The rotate left and rotate right operations

w

v

< v > v, < w

> w

w

v

Rotate right around w

< v

> v, < w > w

Rotate left around v

Rotate operations affect node markings.

Can be implemented using only pointer manipulation.

6/18

The rotate left and rotate right operations

w

v

< v > v, < w

> w

w

v

Rotate right around w

< v

> v, < w > w

Rotate left around v

Rotate operations affect node markings.

Can be implemented using only pointer manipulation.

6/18

The rotate left and rotate right operations

w

v

< v > v, < w

> w

w

v

Rotate right around w

< v

> v, < w > w

Rotate left around v

Rotate operations affect node markings.

Can be implemented using only pointer manipulation.

6/18

The rotate left and rotate right operations

w

v

< v > v, < w

> w

w

v

Rotate right around w

< v

> v, < w > w

Rotate left around v

Rotate operations affect node markings.

Can be implemented using only pointer manipulation.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.

Simple: Removing has zero consequences on the structure of the tree.

▶ n is marked and has one (right) child node r .

Simple: Replace n by r , which has zero consequences on the structure of the tree.

▶ n is not marked

→ Complex: Removing n invalidates the structure of the tree.
Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.

Simple: Removing has zero consequences on the structure of the tree.
▶ n is marked and has one (right) child node r .

Simple: Replace n by r , which has zero consequences on the structure of the tree.

▶ n is not marked

→ Complex: Removing n invalidates the structure of the tree.
Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.
Simple: Removing has zero consequences on the structure of the tree.

▶ n is marked and has one (right) child node r .

Simple: Replace n by r , which has zero consequences on the structure of the tree.

▶ n is not marked

→ Complex: Removing n invalidates the structure of the tree.
Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.
Simple: Removing has zero consequences on the structure of the tree.

▶ n is marked and has one (right) child node r .

Simple: Replace n by r , which has zero consequences on the structure of the tree.

▶ n is not marked

→ Complex: Removing n invalidates the structure of the tree.
Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.
Simple: Removing has zero consequences on the structure of the tree.

▶ n is marked and has one (right) child node r .

Simple: Replace n by r , which has zero consequences on the structure of the tree.
▶ n is not marked

→ Complex: Removing n invalidates the structure of the tree.
Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.
Simple: Removing has zero consequences on the structure of the tree.

▶ n is marked and has one (right) child node r .
Simple: Replace n by r , which has zero consequences on the structure of the tree.

▶ n is not marked

→ Complex: Removing n invalidates the structure of the tree.
Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.
Simple: Removing has zero consequences on the structure of the tree.

▶ n is marked and has one (right) child node r .
Simple: Replace n by r , which has zero consequences on the structure of the tree.

▶ n is not marked

→ Complex: Removing n invalidates the structure of the tree.
Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.
Simple: Removing has zero consequences on the structure of the tree.

▶ n is marked and has one (right) child node r .
Simple: Replace n by r , which has zero consequences on the structure of the tree.

▶ n is not marked.

→ Complex: Removing n invalidates the structure of the tree.
Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.
Simple: Removing has zero consequences on the structure of the tree.

▶ n is marked and has one (right) child node r .
Simple: Replace n by r , which has zero consequences on the structure of the tree.

▶ n is not marked→ Complex: Removing n invalidates the structure of the tree.

Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

▶ n is marked and has no children.
Simple: Removing has zero consequences on the structure of the tree.

▶ n is marked and has one (right) child node r .
Simple: Replace n by r , which has zero consequences on the structure of the tree.

▶ n is not marked→ Complex: Removing n invalidates the structure of the tree.
Idea: Ensure that n is marked.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

Idea: Ensure that n is marked.
▶ We can introduce marked nodes at the root of the tree.
▶ We can push marked nodes down the tree using rotates toward the minimum value.

We have seen the reverse while adding values.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

Idea: Ensure that n is marked.
▶ We can introduce marked nodes at the root of the tree.
▶ We can push marked nodes down the tree using rotates toward the minimum value.

We have seen the reverse while adding values.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

Generalization: Remove arbitrary values.
▶ Replace arbitrary values by their successor.
▶ Removing successor: generalize the methods to remove the minimum from a tree.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

Removal is possible with only local tree modifications along the path from root to value.

Many minute details to deal with in a plethora of cases.

7/18

Removing values from left-leaning red-black trees (sketch)

Consider a minimum value v at node n with parent p

p

n

r

r

Removal is possible with only local tree modifications along the path from root to value.

Many minute details to deal with in a plethora of cases.

8/18

Conclusion: Left-leaning red-black trees

Some usefull properties (that we can maintain)
1. Every path from root to leaf has at-most log2(N) unmarked nodes.

2. Every path from root to leaf has the same number of unmarked nodes.

3. No marked nodes “touch” each other.

Paths from root to leafs have length at-most 2 log2(N):
all operations of interest in worst-case Θ (log2(N)).

8/18

Conclusion: Left-leaning red-black trees

Some usefull properties (that we can maintain)
1. Every path from root to leaf has at-most log2(N) unmarked nodes.

2. Every path from root to leaf has the same number of unmarked nodes.

3. No marked nodes “touch” each other.

Paths from root to leafs have length at-most 2 log2(N):
all operations of interest in worst-case Θ (log2(N)).

9/18

Final notes on binary search trees

We looked at left-leaning red-black trees.
In practice, one typically uses ordinary red-back trees:
Very similar, just more cases to consider when adding or removing values.

C++ Java

Set std::set java.util.TreeSet
Dictionary std::map java.util.TreeMap

Set (duplicates) std::multiset
Dictionary (duplicates) std::multimap

Variants of search trees are used everywhere: file systems, database systems, . . .

9/18

Final notes on binary search trees

We looked at left-leaning red-black trees.
In practice, one typically uses ordinary red-back trees:
Very similar, just more cases to consider when adding or removing values.

C++ Java

Set std::set java.util.TreeSet
Dictionary std::map java.util.TreeMap

Set (duplicates) std::multiset
Dictionary (duplicates) std::multimap

Variants of search trees are used everywhere: file systems, database systems, . . .

9/18

Final notes on binary search trees

We looked at left-leaning red-black trees.
In practice, one typically uses ordinary red-back trees:
Very similar, just more cases to consider when adding or removing values.

C++ Java

Set std::set java.util.TreeSet
Dictionary std::map java.util.TreeMap

Set (duplicates) std::multiset
Dictionary (duplicates) std::multimap

Variants of search trees are used everywhere: file systems, database systems, . . .

10/18

Faster sets and dictionaries: beyond log2(N)

Consider the following variant of WordCount

Algorithm GradeCount(stream):
Input: stream is a sequence of grades, each in 0, . . . , 10.
1: grades := [0 | 0 ≤ i ≤ 10].
2: for all grade g from stream do
3: grades[g] := grades[g] + 1.
4: output each pair (i ↦→ grades[i]), 0 ≤ i ≤ 10.

Result: output a histogram of the grades in stream.

grades is an array that essentially serves as a dictionary
in which grades are keys and a grade-count is the associated value.

Worst-case complexity only Θ (|stream|).

10/18

Faster sets and dictionaries: beyond log2(N)

Consider the following variant of WordCount

Algorithm GradeCount(stream):
Input: stream is a sequence of grades, each in 0, . . . , 10.
1: grades := [0 | 0 ≤ i ≤ 10].
2: for all grade g from stream do
3: grades[g] := grades[g] + 1.
4: output each pair (i ↦→ grades[i]), 0 ≤ i ≤ 10.

Result: output a histogram of the grades in stream.

grades is an array that essentially serves as a dictionary
in which grades are keys and a grade-count is the associated value.

Worst-case complexity only Θ (|stream|).

10/18

Faster sets and dictionaries: beyond log2(N)

Consider the following variant of WordCount

Algorithm GradeCount(stream):
Input: stream is a sequence of grades, each in 0, . . . , 10.
1: grades := [0 | 0 ≤ i ≤ 10].
2: for all grade g from stream do
3: grades[g] := grades[g] + 1.
4: output each pair (i ↦→ grades[i]), 0 ≤ i ≤ 10.

Result: output a histogram of the grades in stream.

grades is an array that essentially serves as a dictionary
in which grades are keys and a grade-count is the associated value.

Worst-case complexity only Θ (|stream|).

11/18

Toward using arrays as dictionaries

An array L[0 . . .N) maps positions 0, . . . ,N onto values.
For sets: the value could be the key itself.

Very resitrictive: most keys are not integers in a very small range.
For example, keys could be strings “a”, “word”, “is”, “just”, “or”, “it”, “not”.

Generalizing array-dictionaries
Given an arbitrary set of keys K , we need a function h : K → {0, . . . ,N − 1}
that maps these keys to array positions.

We want to prevent collisions

▶ What if |K | is very large?
For example, the number of strings is infinite.

▶ What if N is very small?
For example, to save memory when we only aim to store a few keys.

We also want “cheap” hash functions to maximize performance.

11/18

Toward using arrays as dictionaries

An array L[0 . . .N) maps positions 0, . . . ,N onto values.
For sets: the value could be the key itself.

Very resitrictive: most keys are not integers in a very small range.
For example, keys could be strings “a”, “word”, “is”, “just”, “or”, “it”, “not”.

Generalizing array-dictionaries
Given an arbitrary set of keys K , we need a function h : K → {0, . . . ,N − 1}
that maps these keys to array positions.

We want to prevent collisions

▶ What if |K | is very large?
For example, the number of strings is infinite.

▶ What if N is very small?
For example, to save memory when we only aim to store a few keys.

We also want “cheap” hash functions to maximize performance.

11/18

Toward using arrays as dictionaries

An array L[0 . . .N) maps positions 0, . . . ,N onto values.
For sets: the value could be the key itself.

Very resitrictive: most keys are not integers in a very small range.
For example, keys could be strings “a”, “word”, “is”, “just”, “or”, “it”, “not”.

Generalizing array-dictionaries
Given an arbitrary set of keys K , we need a function h : K → {0, . . . ,N − 1}
that maps these keys to array positions.

We want to prevent collisions

▶ What if |K | is very large?
For example, the number of strings is infinite.

▶ What if N is very small?
For example, to save memory when we only aim to store a few keys.

We also want “cheap” hash functions to maximize performance.

11/18

Toward using arrays as dictionaries

An array L[0 . . .N) maps positions 0, . . . ,N onto values.
For sets: the value could be the key itself.

Very resitrictive: most keys are not integers in a very small range.
For example, keys could be strings “a”, “word”, “is”, “just”, “or”, “it”, “not”.

Generalizing array-dictionaries
Given an arbitrary set of keys K , we need a function h : K → {0, . . . ,N − 1}
that maps these keys to array positions→ a hash function.

We want to prevent collisions

▶ What if |K | is very large?
For example, the number of strings is infinite.

▶ What if N is very small?
For example, to save memory when we only aim to store a few keys.

We also want “cheap” hash functions to maximize performance.

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a”

0

“word”

2

“is”

8

“just”

9

“or”

4

“it”

8

“not”

3

a

word

not

or

is

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a”

0

“word”

2

“is”

8

“just”

9

“or”

4

“it”

8

“not”

3

a

word

not

or

is

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a”

0

“word”

2

“is”

8

“just”

9

“or”

4

“it”

8

“not”

3

a

word

not

or

is

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a” 0

“word”

2

“is”

8

“just”

9

“or”

4

“it”

8

“not”

3

a

word

not

or

is

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a” 0

“word” 2
“is”

8

“just”

9

“or”

4

“it”

8

“not”

3

a

word

not

or

is

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a” 0

“word” 2
“is” 8
“just”

9

“or”

4

“it”

8

“not”

3

a

word

not

or

is

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a” 0

“word” 2
“is” 8
“just” 9
“or”

4

“it”

8

“not”

3

a

word

not

or

is

just

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a” 0

“word” 2
“is” 8
“just” 9
“or” 4
“it”

8

“not”

3

a

word

not

or

is

just

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a” 0

“word” 2
“is” 8
“just” 9
“or” 4
“it” 8
“not”

3

a

word

not

or

is

just

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?

it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a” 0

“word” 2
“is” 8
“just” 9
“or” 4
“it” 8
“not”

3

a

word

not

or

is

just

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?

it? ← a collision!

11/18

Toward using arrays as dictionaries

Consider h : Strings→ {0, . . . 9} with

First character h(v)
‘a’, ‘k’, ‘u’ 0
‘b’, ‘l’, ‘v’ 1
‘c’, ‘m’, ‘w’ 2
‘d’, ‘n’, ‘x’ 3
‘e’, ‘o’, ‘y’ 4
‘f’, ‘p’, ‘z’ 5
‘g’, ‘q’ 6
‘h’, ‘r’ 7
‘i’, ‘s’ 8
‘j’, ‘t’ 9

w h(w)
“a” 0

“word” 2
“is” 8
“just” 9
“or” 4
“it” 8
“not” 3

a

word

not

or

is

just

L[0 . . . 10):

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

it?it? ← a collision!

11/18

Toward using arrays as dictionaries

An array L[0 . . .N) maps positions 0, . . . ,N onto values.
For sets: the value could be the key itself.

Very resitrictive: most keys are not integers in a very small range.
For example, keys could be strings “a”, “word”, “is”, “just”, “or”, “it”, “not”.

Generalizing array-dictionaries
Given an arbitrary set of keys K , we need a function h : K → {0, . . . ,N − 1}
that maps these keys to array positions→ a hash function.

We want to prevent collisions

▶ What if |K | is very large?
For example, the number of strings is infinite.

▶ What if N is very small?
For example, to save memory when we only aim to store a few keys.

We also want “cheap” hash functions to maximize performance.

11/18

Toward using arrays as dictionaries

An array L[0 . . .N) maps positions 0, . . . ,N onto values.
For sets: the value could be the key itself.

Very resitrictive: most keys are not integers in a very small range.
For example, keys could be strings “a”, “word”, “is”, “just”, “or”, “it”, “not”.

Generalizing array-dictionaries
Given an arbitrary set of keys K , we need a function h : K → {0, . . . ,N − 1}
that maps these keys to array positions→ a hash function.

We want to prevent collisions
▶ What if |K | is very large?

For example, the number of strings is infinite.
▶ What if N is very small?

For example, to save memory when we only aim to store a few keys.

We also want “cheap” hash functions to maximize performance.

11/18

Toward using arrays as dictionaries

An array L[0 . . .N) maps positions 0, . . . ,N onto values.
For sets: the value could be the key itself.

Very resitrictive: most keys are not integers in a very small range.
For example, keys could be strings “a”, “word”, “is”, “just”, “or”, “it”, “not”.

Generalizing array-dictionaries
Given an arbitrary set of keys K , we need a function h : K → {0, . . . ,N − 1}
that maps these keys to array positions→ a hash function.

We want to prevent collisions
▶ What if |K | is very large?

For example, the number of strings is infinite.
▶ What if N is very small?

For example, to save memory when we only aim to store a few keys.

We also want “cheap” hash functions to maximize performance.

11/18

Toward using arrays as dictionaries

An array L[0 . . .N) maps positions 0, . . . ,N onto values.
For sets: the value could be the key itself.

Very resitrictive: most keys are not integers in a very small range.
For example, keys could be strings “a”, “word”, “is”, “just”, “or”, “it”, “not”.

Generalizing array-dictionaries
Given an arbitrary set of keys K , we need a function h : K → {0, . . . ,N − 1}
that maps these keys to array positions→ a hash function.

We have to deal with collisions
▶ What if |K | is very large?

For example, the number of strings is infinite.
▶ What if N is very small?

For example, to save memory when we only aim to store a few keys.

We also want “cheap” hash functions to maximize performance.

12/18

Hash tables

A hash table is a data structure that uses a hash function
that maps values to array positions that can hold that value.

The way a hash table holds values is determined by how the table deals with collisions:
Typically determines the design of the data structure.

We will look at two main flavors of hash tables:

Chaining Use a linked list to store collisions.

Linear probing Store collisions consecutively in the array.

12/18

Hash tables

A hash table is a data structure that uses a hash function
that maps values to array positions that can hold that value.

The way a hash table holds values is determined by how the table deals with collisions:
Typically determines the design of the data structure.

We will look at two main flavors of hash tables:

Chaining Use a linked list to store collisions.

Linear probing Store collisions consecutively in the array.

12/18

Hash tables

A hash table is a data structure that uses a hash function
that maps values to array positions that can hold that value.

The way a hash table holds values is determined by how the table deals with collisions:
Typically determines the design of the data structure.

We will look at two main flavors of hash tables:

Chaining Use a linked list to store collisions.

Linear probing Store collisions consecutively in the array.

13/18

The uniform hashing assumption

Let h : K → {0, . . . ,N − 1} be a hash function.
We assume that the hash function distributes the values in K
uniformly and independently among the positions {0, . . . ,N − 1}.

For any two distinct values v1, v2 ∈ K , we have h(v1) = h(v2) with a probability of 1
N .

Using this assumption, we can analyze the expected behavior of hash tables.

Some settings allow a collision-free hash function: perfect hashing.
For example: the hash function h(i) = i we used in GradeCount.

13/18

The uniform hashing assumption

Let h : K → {0, . . . ,N − 1} be a hash function.
We assume that the hash function distributes the values in K
uniformly and independently among the positions {0, . . . ,N − 1}.

For any two distinct values v1, v2 ∈ K , we have h(v1) = h(v2) with a probability of 1
N .

Using this assumption, we can analyze the expected behavior of hash tables.

Some settings allow a collision-free hash function: perfect hashing.
For example: the hash function h(i) = i we used in GradeCount.

13/18

The uniform hashing assumption

Let h : K → {0, . . . ,N − 1} be a hash function.
We assume that the hash function distributes the values in K
uniformly and independently among the positions {0, . . . ,N − 1}.

For any two distinct values v1, v2 ∈ K , we have h(v1) = h(v2) with a probability of 1
N .

Using this assumption, we can analyze the expected behavior of hash tables.

Some settings allow a collision-free hash function: perfect hashing.
For example: the hash function h(i) = i we used in GradeCount.

13/18

The uniform hashing assumption

Let h : K → {0, . . . ,N − 1} be a hash function.
We assume that the hash function distributes the values in K
uniformly and independently among the positions {0, . . . ,N − 1}.

For any two distinct values v1, v2 ∈ K , we have h(v1) = h(v2) with a probability of 1
N .

Using this assumption, we can analyze the expected behavior of hash tables.

Some settings allow a collision-free hash function: perfect hashing.
For example: the hash function h(i) = i we used in GradeCount.

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

Contains value v Look up the linked list S at L[h(v)],
search v in S (e.g., using a LinearSearch variant).

Adding value v Look up the linked list S at L[h(v)],
add v to S if v ∉ S (sets do not have duplicates).

Removing value v Look up the linked list S at L[h(v)],
remove v from S if v ∈ S.

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a”

0

“word”

1

“is”

1

“just”

2

“or”

0

“it”

1

“not”

6

@null

@null

@null

@null

@null

@null

@null

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

item: “a”

next: @null

@123A:

item: “word”

next: @null

@4FDE:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “just”

next: @null

@9ACD:

item: “or”

next: @123A

@C362:

item: “a”

next: @null

@123A:

item: “it”

next: @312C

@A128:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “not”

next: @null

@F002:

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word”

1

“is”

1

“just”

2

“or”

0

“it”

1

“not”

6

@123A

@null

@null

@null

@null

@null

@null

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

item: “a”

next: @null

@123A:

item: “word”

next: @null

@4FDE:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “just”

next: @null

@9ACD:

item: “or”

next: @123A

@C362:

item: “a”

next: @null

@123A:

item: “it”

next: @312C

@A128:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “not”

next: @null

@F002:

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“is”

1

“just”

2

“or”

0

“it”

1

“not”

6

@123A

@4FDE

@null

@null

@null

@null

@null

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

item: “a”

next: @null

@123A:

item: “word”

next: @null

@4FDE:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “just”

next: @null

@9ACD:

item: “or”

next: @123A

@C362:

item: “a”

next: @null

@123A:

item: “it”

next: @312C

@A128:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “not”

next: @null

@F002:

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“is” 1
“just”

2

“or”

0

“it”

1

“not”

6

@123A

@312C

@null

@null

@null

@null

@null

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

item: “a”

next: @null

@123A:

item: “word”

next: @null

@4FDE:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “just”

next: @null

@9ACD:

item: “or”

next: @123A

@C362:

item: “a”

next: @null

@123A:

item: “it”

next: @312C

@A128:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “not”

next: @null

@F002:

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“is” 1
“just” 2
“or”

0

“it”

1

“not”

6

@123A

@312C

@9ACD

@null

@null

@null

@null

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

item: “a”

next: @null

@123A:

item: “word”

next: @null

@4FDE:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “just”

next: @null

@9ACD:

item: “or”

next: @123A

@C362:

item: “a”

next: @null

@123A:

item: “it”

next: @312C

@A128:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “not”

next: @null

@F002:

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“is” 1
“just” 2
“or” 0
“it”

1

“not”

6

@C362

@312C

@9ACD

@null

@null

@null

@null

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

item: “a”

next: @null

@123A:

item: “word”

next: @null

@4FDE:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “just”

next: @null

@9ACD:

item: “or”

next: @123A

@C362:

item: “a”

next: @null

@123A:

item: “it”

next: @312C

@A128:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “not”

next: @null

@F002:

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“is” 1
“just” 2
“or” 0
“it” 1
“not”

6

@C362

@A128

@9ACD

@null

@null

@null

@null

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

item: “a”

next: @null

@123A:

item: “word”

next: @null

@4FDE:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “just”

next: @null

@9ACD:

item: “or”

next: @123A

@C362:

item: “a”

next: @null

@123A:

item: “it”

next: @312C

@A128:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “not”

next: @null

@F002:

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“is” 1
“just” 2
“or” 0
“it” 1
“not” 6

@C362

@A128

@9ACD

@null

@null

@null

@F002

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

item: “a”

next: @null

@123A:

item: “word”

next: @null

@4FDE:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “just”

next: @null

@9ACD:

item: “or”

next: @123A

@C362:

item: “a”

next: @null

@123A:

item: “it”

next: @312C

@A128:

item: “is”

next: @4FDE

@312C:

item: “word”

next: @null

@4FDE:

item: “not”

next: @null

@F002:

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

Analysis
Consider a hash table with N positions, holding M values.

▶ On average, each linked list holds M
N values.

▶ If the uniform hashing assumption holds,
then adding or removing random values will cost an expected Θ

(
1 + M

N

)
.

▶ Worst-case: Θ (N) (all values end up in a single linked list).

▶ For somewhat decent hash functions and N > M,
adding and removing values are Θ (1) in practice.

▶ Bad hash functions exist.
For example, the hash function we used in our examples.

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

Analysis
Consider a hash table with N positions, holding M values.
▶ On average, each linked list holds M

N values.

▶ If the uniform hashing assumption holds,
then adding or removing random values will cost an expected Θ

(
1 + M

N

)
.

▶ Worst-case: Θ (N) (all values end up in a single linked list).

▶ For somewhat decent hash functions and N > M,
adding and removing values are Θ (1) in practice.

▶ Bad hash functions exist.
For example, the hash function we used in our examples.

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

Analysis
Consider a hash table with N positions, holding M values.
▶ On average, each linked list holds M

N values.
▶ If the uniform hashing assumption holds,

then adding or removing random values will cost an expected Θ
(
1 + M

N

)
.

▶ Worst-case: Θ (N) (all values end up in a single linked list).

▶ For somewhat decent hash functions and N > M,
adding and removing values are Θ (1) in practice.

▶ Bad hash functions exist.
For example, the hash function we used in our examples.

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

Analysis
Consider a hash table with N positions, holding M values.
▶ On average, each linked list holds M

N values.
▶ If the uniform hashing assumption holds,

then adding or removing random values will cost an expected Θ
(
1 + M

N

)
.

▶ Worst-case: Θ (N) (all values end up in a single linked list).

▶ For somewhat decent hash functions and N > M,
adding and removing values are Θ (1) in practice.

▶ Bad hash functions exist.
For example, the hash function we used in our examples.

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

Analysis
Consider a hash table with N positions, holding M values.
▶ On average, each linked list holds M

N values.
▶ If the uniform hashing assumption holds,

then adding or removing random values will cost an expected Θ
(
1 + M

N

)
.

▶ Worst-case: Θ (N) (all values end up in a single linked list).

▶ For somewhat decent hash functions and N > M,
adding and removing values are Θ (1) in practice.

▶ Bad hash functions exist.
For example, the hash function we used in our examples.

14/18

Hashing with chaining

Idea: the hash table is an array of linked lists,
the i-th linked list holding all values v with h(v) = i.

Analysis
Consider a hash table with N positions, holding M values.
▶ On average, each linked list holds M

N values.
▶ If the uniform hashing assumption holds,

then adding or removing random values will cost an expected Θ
(
1 + M

N

)
.

▶ Worst-case: Θ (N) (all values end up in a single linked list).

▶ For somewhat decent hash functions and N > M,
adding and removing values are Θ (1) in practice.

▶ Bad hash functions exist.
For example, the hash function we used in our examples.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.

At-or-after with wrap around : position 0 comes right after the last position.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Contains value v Inspect each consecutive non-free position j starting at h(v),
return if L[j] = v holds for any such position.

Adding value v Look up the first free position j ≥ h(v) in L,
set L[j] := v if we did not find v in any of the inspected positions.

How to remove a value?
Removing values breaks consecutive sequences of non-free positions!

Option 1 reinsert all values in non-free positions following position j.

Option 2 set L[j] := Removed with Removed a special-purpose value.
When searching: Removed is unequal to any value.

Option 1 is costlier during removal, but cheaper afterwards.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Contains value v Inspect each consecutive non-free position j starting at h(v),
return if L[j] = v holds for any such position.

Adding value v Look up the first free position j ≥ h(v) in L,
set L[j] := v if we did not find v in any of the inspected positions.

How to remove a value?
Removing values breaks consecutive sequences of non-free positions!

Option 1 reinsert all values in non-free positions following position j.

Option 2 set L[j] := Removed with Removed a special-purpose value.
When searching: Removed is unequal to any value.

Option 1 is costlier during removal, but cheaper afterwards.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a”

0

“word”

1

“just”

2

“is”

1

“or”

0

“not”

6

“now”

6

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word”

1

“just”

2

“is”

1

“or”

0

“not”

6

“now”

6

“a”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“just”

2

“is”

1

“or”

0

“not”

6

“now”

6

“a”

“word”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“just” 2
“is”

1

“or”

0

“not”

6

“now”

6

“a”

“word”

“just”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“just” 2
“is” 1
“or”

0

“not”

6

“now”

6

“a”

“word”

“just”

“is”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!

Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“just” 2
“is” 1
“or” 0
“not”

6

“now”

6

“a”

“word”

“just”

“is”

“or”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!

Occupied!

Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“just” 2
“is” 1
“or” 0
“not” 6
“now”

6

“a”

“word”

“just”

“is”

“or”

“not”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

w h(w)
“a” 0

“word” 1
“just” 2
“is” 1
“or” 0
“not” 6
“now” 6

“a”

“word”

“just”

“is”

“or”

“nor”

“not”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!

Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

Consider removing “word”,
by simply erasing the value.

How can we find
“just”, “is”, “or”, “nor”?

Option 1.
We reinsert these three values.

“a”

“word”

“just”

“is”

“or”

“nor”

“not”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

Consider removing “word”,
by simply erasing the value.

How can we find
“just”, “is”, “or”, “nor”?

Option 1.
We reinsert these three values.

“a”

“just”

“is”

“or”

“nor”

“not”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

Consider removing “word”,
by simply erasing the value.

How can we find
“just”, “is”, “or”, “nor”?

Option 1.
We reinsert these three values.

“a”

“just”

“is”

“or”

“nor”

“not”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Contains value v Inspect each consecutive non-free position j starting at h(v),
return if L[j] = v holds for any such position.

Adding value v Look up the first free position j ≥ h(v) in L,
set L[j] := v if we did not find v in any of the inspected positions.

How to remove a value at position j?
Removing values breaks consecutive sequences of non-free positions!

Option 1 reinsert all values in non-free positions following position j.

Option 2 set L[j] := Removed with Removed a special-purpose value.
When searching: Removed is unequal to any value.

Option 1 is costlier during removal, but cheaper afterwards.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Contains value v Inspect each consecutive non-free position j starting at h(v),
return if L[j] = v holds for any such position.

Adding value v Look up the first free position j ≥ h(v) in L,
set L[j] := v if we did not find v in any of the inspected positions.

How to remove a value at position j?
Removing values breaks consecutive sequences of non-free positions!

Option 1 reinsert all values in non-free positions following position j.

Option 2 set L[j] := Removed with Removed a special-purpose value.
When searching: Removed is unequal to any value.

Option 1 is costlier during removal, but cheaper afterwards.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

Consider removing “word”,
by simply erasing the value.

How can we find
“just”, “is”, “or”, “nor”?

Option 1.
We reinsert these three values.

“a”

“just”

“is”

“or”

“nor”

“not”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

h : Strings→ {0, . . . 6}

First character h(v)
‘a’, ‘h’, ‘o’, ‘v’ 0
“b’, ‘i’, ‘p’, ‘w’ 1
“c’, ‘j’, ‘q’, ‘x’ 2
“d’, ‘k’, ‘r’, ‘y’ 3
“e’, ‘l’, ‘s’, ‘z’ 4
“f’, ‘m’, ‘t’ 5
“g’, ‘n’, ‘u’ 6

Consider removing “word”,
by simply erasing the value.

How can we find
“just”, “is”, “or”, “nor”?

Option 1.
We reinsert these three values.

“a”

“is”

“just”

“or”

“nor”

“not”

L[0 . . . 7):

0:

1:

2:

3:

4:

5:

6:

Occupied!Occupied!Occupied!
(wrap around)

Occupied!

At wrong positions!

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Analysis
Consider a hash table with N positions, holding M values. Let 𝛼 = M

N be the fill factor .

▶ If the uniform hashing assumption holds,
then the i-th position holds a value with probability 𝛼

and the probability that j consecutive positions hold a value is at-most 𝛼 j .

▶ To find a non-existing value (adding), we expect to inspect at-most

1 + 𝛼 + 𝛼2 + 𝛼3 + · · · + 𝛼N

≤
∞∑︁
i=0

𝛼 i =
1

1 − 𝛼

positions.
▶ To find an existing value (removing), we expect to inspect at-most 1

𝛼
ln

(1
1−𝛼

)
positions.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Analysis
Consider a hash table with N positions, holding M values. Let 𝛼 = M

N be the fill factor .
▶ If the uniform hashing assumption holds,

then the i-th position holds a value with probability 𝛼 .

and the probability that j consecutive positions hold a value is at-most 𝛼 j .
▶ To find a non-existing value (adding), we expect to inspect at-most

1 + 𝛼 + 𝛼2 + 𝛼3 + · · · + 𝛼N

≤
∞∑︁
i=0

𝛼 i =
1

1 − 𝛼

positions.
▶ To find an existing value (removing), we expect to inspect at-most 1

𝛼
ln

(1
1−𝛼

)
positions.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Analysis
Consider a hash table with N positions, holding M values. Let 𝛼 = M

N be the fill factor .
▶ If the uniform hashing assumption holds,

then the i-th position holds a value with probability 𝛼
and the probability that j consecutive positions hold a value is at-most 𝛼 j .

▶ To find a non-existing value (adding), we expect to inspect at-most

1 + 𝛼 + 𝛼2 + 𝛼3 + · · · + 𝛼N

≤
∞∑︁
i=0

𝛼 i =
1

1 − 𝛼

positions.
▶ To find an existing value (removing), we expect to inspect at-most 1

𝛼
ln

(1
1−𝛼

)
positions.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Analysis
Consider a hash table with N positions, holding M values. Let 𝛼 = M

N be the fill factor .
▶ If the uniform hashing assumption holds,

then the i-th position holds a value with probability 𝛼
and the probability that j consecutive positions hold a value is at-most 𝛼 j .

▶ To find a non-existing value (adding), we expect to inspect at-most

1 + 𝛼 + 𝛼2 + 𝛼3 + · · · + 𝛼N

≤
∞∑︁
i=0

𝛼 i =
1

1 − 𝛼

positions.

▶ To find an existing value (removing), we expect to inspect at-most 1
𝛼
ln

(1
1−𝛼

)
positions.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Analysis
Consider a hash table with N positions, holding M values. Let 𝛼 = M

N be the fill factor .
▶ If the uniform hashing assumption holds,

then the i-th position holds a value with probability 𝛼
and the probability that j consecutive positions hold a value is at-most 𝛼 j .

▶ To find a non-existing value (adding), we expect to inspect at-most

1 + 𝛼 + 𝛼2 + 𝛼3 + · · · + 𝛼N ≤
∞∑︁
i=0

𝛼 i

=
1

1 − 𝛼

positions.

▶ To find an existing value (removing), we expect to inspect at-most 1
𝛼
ln

(1
1−𝛼

)
positions.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Analysis
Consider a hash table with N positions, holding M values. Let 𝛼 = M

N be the fill factor .
▶ If the uniform hashing assumption holds,

then the i-th position holds a value with probability 𝛼
and the probability that j consecutive positions hold a value is at-most 𝛼 j .

▶ To find a non-existing value (adding), we expect to inspect at-most

1 + 𝛼 + 𝛼2 + 𝛼3 + · · · + 𝛼N ≤
∞∑︁
i=0

𝛼 i =
1

1 − 𝛼

positions.

▶ To find an existing value (removing), we expect to inspect at-most 1
𝛼
ln

(1
1−𝛼

)
positions.

15/18

Hashing with linear probing

Idea: the hash table holds all values directly,
the value v will be stored at the first free position at-or-after h(v) = i.
At-or-after with wrap around : position 0 comes right after the last position.

Analysis
Consider a hash table with N positions, holding M values. Let 𝛼 = M

N be the fill factor .
▶ If the uniform hashing assumption holds,

then the i-th position holds a value with probability 𝛼
and the probability that j consecutive positions hold a value is at-most 𝛼 j .

▶ To find a non-existing value (adding), we expect to inspect at-most

1 + 𝛼 + 𝛼2 + 𝛼3 + · · · + 𝛼N ≤
∞∑︁
i=0

𝛼 i =
1

1 − 𝛼

positions.
▶ To find an existing value (removing), we expect to inspect at-most 1

𝛼
ln

(1
1−𝛼

)
positions.

15/18

Hashing with linear probing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

5

10

Fill factor 𝛼

In
sp
ec
te
d
po

si
ti
on

s
Expected-case complexity

Existing value (1
𝛼
ln

(1
1−𝛼

)
)

Non-existing value (1
1−𝛼)

For somewhat decent hash functions and N ≫ M,
adding and removing values are Θ (1) in practice.

15/18

Hashing with linear probing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

5

10

Fill factor 𝛼

In
sp
ec
te
d
po

si
ti
on

s
Expected-case complexity

Existing value (1
𝛼
ln

(1
1−𝛼

)
)

Non-existing value (1
1−𝛼)

For somewhat decent hash functions and N ≫ M,
adding and removing values are Θ (1) in practice.

16/18

Hash tables and functions in practice
Hash tables provide a balance between memory usage and runtime cost:
▶ With mostly-empty tables (high memory usage),

collisions are expected to be rare (low runtime cost).
▶ With mostly-full tables (low memory usage),

collisions are expected to be frequent (high runtime cost).

In practice, one typically resizes the hash table when it gets too full.

This requires a family of hash functions hN : K → {0, . . . ,N − 1}.

Let M be the maximum size of arrays in your system.
Let h : K → {0, . . . ,M − 1} be a hash function. One way to obtain hN , 0 ≤ N ≤ M, is via

hN (i) = h(i) mod N .

16/18

Hash tables and functions in practice
Hash tables provide a balance between memory usage and runtime cost:
▶ With mostly-empty tables (high memory usage),

collisions are expected to be rare (low runtime cost).
▶ With mostly-full tables (low memory usage),

collisions are expected to be frequent (high runtime cost).

In practice, one typically resizes the hash table when it gets too full.

This requires a family of hash functions hN : K → {0, . . . ,N − 1}.

Let M be the maximum size of arrays in your system.
Let h : K → {0, . . . ,M − 1} be a hash function. One way to obtain hN , 0 ≤ N ≤ M, is via

hN (i) = h(i) mod N .

16/18

Hash tables and functions in practice
Hash tables provide a balance between memory usage and runtime cost:
▶ With mostly-empty tables (high memory usage),

collisions are expected to be rare (low runtime cost).
▶ With mostly-full tables (low memory usage),

collisions are expected to be frequent (high runtime cost).

In practice, one typically resizes the hash table when it gets too full.

This requires a family of hash functions hN : K → {0, . . . ,N − 1}.

Let M be the maximum size of arrays in your system.
Let h : K → {0, . . . ,M − 1} be a hash function. One way to obtain hN , 0 ≤ N ≤ M, is via

hN (i) = h(i) mod N .

16/18

Hash tables and functions in practice
Hash tables provide a balance between memory usage and runtime cost:
▶ With mostly-empty tables (high memory usage),

collisions are expected to be rare (low runtime cost).
▶ With mostly-full tables (low memory usage),

collisions are expected to be frequent (high runtime cost).

In practice, one typically resizes the hash table when it gets too full.

This requires a family of hash functions hN : K → {0, . . . ,N − 1}.

Let M be the maximum size of arrays in your system.
Let h : K → {0, . . . ,M − 1} be a hash function. One way to obtain hN , 0 ≤ N ≤ M, is via

hN (i) = h(i) mod N .

17/18

Final notes on hash tables

Most dynamic hash tables are implemented on top of dynamic arrays using chaining.
Linear probing is especially usefull for constant tables.

C++ Java

Set std::unordered_set (C++11) java.util.HashSet
Dictionary std::unordered_map (C++11) java.util.HashMap

Set (duplicates) std::unordered_multiset (C++11)
Dictionary (duplicates) std::unordered_multimap (C++11)

17/18

Final notes on hash tables

Most dynamic hash tables are implemented on top of dynamic arrays using chaining.
Linear probing is especially usefull for constant tables.

C++ Java

Set std::unordered_set (C++11) java.util.HashSet
Dictionary std::unordered_map (C++11) java.util.HashMap

Set (duplicates) std::unordered_multiset (C++11)
Dictionary (duplicates) std::unordered_multimap (C++11)

18/18

Sets and dictionaries in practice

Cost Ordered Principle

Dynamic Arrays Θ (N) No
Ordered Dynamic Arraya Θ (log2(N)), Θ (N) Yes BinarySearch

Binary Search Trees Θ (log2(N)) Yes Red-Black Trees.
Hash Tables Expected Θ (1)b No Chaining.

aSupported in C++23 via std::flat_set (set), std::flat_map (dictionary), std::flat_multiset (set,
with duplicates), and std::flat_multimap (dictionary, with duplicates).

bFor somewhat decent hash functions and large enough hash table.

0 100 200 300 400 500 600 700 800 900 1,000

0

50

100

150

Number of values n

R
un

ni
ng

ti
m
e
(µ
s)

Measured runtime complexity (adding n random values)

18/18

Sets and dictionaries in practice

Binary Search Tree Hashing with Chaining
Bag (Dynamic Array) Ordered Dynamic Array

0 100 200 300 400 500 600 700 800 900 1,000

0

50

100

150

Number of values n

R
un

ni
ng

ti
m
e
(µ
s)

Measured runtime complexity (adding n random values)

18/18

Sets and dictionaries in practice

Binary Search Tree Hashing with Chaining
Bag (Dynamic Array) Ordered Dynamic Array

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0

2

4

6

·105

Number of values n

R
un

ni
ng

ti
m
e
(µ
s)

Measured runtime complexity (adding n random values)

0 100 200 300 400 500 600 700 800 900 1,000

0

50

100

150

Number of values n

R
un

ni
ng

ti
m
e
(µ
s)

Measured runtime complexity (adding n random values)

18/18

Sets and dictionaries in practice

Binary Search Tree Hashing with Chaining
Bag (Dynamic Array) Ordered Dynamic Array

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0

1

2

·105

Number of values n

R
un

ni
ng

ti
m
e
(µ
s)

Measured runtime complexity (adding n values, in order)

0 100 200 300 400 500 600 700 800 900 1,000

0

50

100

150

Number of values n

R
un

ni
ng

ti
m
e
(µ
s)

Measured runtime complexity (adding n random values)

