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Solver Review

—>Recall that we can use Solver to find an

optimal value (maximum, minimum, or target

value) for a formula in the‘objective cell

A B D E F G
Qil Refinery
Country Variable #hbbl Cost/bbl Gas let Lubricant
Canada x1 2608.696 S 50.00 0.3 0.4 0.2
3043.478 S 37.50 0.4 0.15 0.35
$244,565.22 | Forumla: =C4*D4+C5*D5
Constraints Formula
Gas Demand 2000 >= 2000 CA*E4+C5*ES
Jet Demand 1500 »= 1500 CA*F4+C5*F5
Lubricant Demand 1586.956522 >= 1000 C4*GA+C5*G5
Canada Limit 2008.695652 <= 9000 C4
USA Limit 3043.478261 <= 6000 D4
Non-negative x1 2608.695652 >= 0Cc4
Non-negative x2 3043.478261 >= 0 D4
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Solver Review

—>Recall that we can use Solver to find an

optimal value (maximum, minimum, or target A | B c o E F 6
1 |Oil Refinery
2
Va|ue) for a formu|a in the objective cell 3 | Country Variableost{bbl Gas Jet Lubricant
4 |Canada x1 S 50.00 0.3 0.4 0.2
. . . . L TTUSA X2 3043.478) S 37.50 0.4 0.15 0.35
—>Solver adjusts the decision variable cells|to S |Oblactiva Function
7 |Cost |$244,565.22 Forumla: =C4*D4+C5*D5
8
compute the formulas in the objective and 9 [Constraints Formula
10 | Gas Demand 2000 == 2000) C4*E4+C5*ES
11 |Jet Demand I 1500 »= 15000 CA*FA4+C5*F5
konstraint ce"s I 12 Lubricant Demand  1586.956522 >= 1000] C4*G4+C5*G5
I iaad T 2008.695652 <= 9000y C4
14 | USA Limit 3043.478261 <= 60001 D4
15 |Non-negative x1 2608.695652 >= c4
16 |Non-negative x2 3043.478261 >= D4
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Solver Review

—>Recall that we can use Solver to find an

optimal value (maximum, minimum, or target A | s c o . G
1 |Oil Refinery
Value) for a formUIa in the ObjeCtive ce" g Country Variable #bbl Cost/bbl Gas Jet Lubricant
4 |Canada x1 2608.696 S 50.00 0.3 0.4 0.2
—>Solver adjusts the decision variable cells to T MRS 0 3750, 04 015 0%
) ) i 7 |Cost $244,565.22 Forumla: =C4*D4+C5*D5
compute the formulas in the objective and o .
10 | Gas Demand 2000 == 2000 CA*E4+C5*ES
constraint ce"s 11 |Jet Demand 1500 »>= 1500 C4*F4+C5*F5
12 | Lubricant Demand 1586.956522 >= 1000 CA*G4+C5*G5
. . . . . . 13 Canada Limit 2608.695652 <= 9000 C4
—> It will adjust the values in the decision variable 1 usavim: 3043.478261 <= 6000 D4
15 |Non-negative x1 2608.695652 >= 0Cc4
16 MNon-negative x2 3043.478261 >= 0 D4

cells to satisfy the constraints and produce the

optimal solution
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Nonlinear Functions

—>Consider the following NVF with 3 independent decision variables, D, L, and V:

- $3L'D"? L' —0.25VL
NV =$532(1 = cV') - ——— = $32——7
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Nonlinear Functions

—>Consider the following NVF with 3 independent decision variables, D, L, and V:

- $3L'D"? L' —0.25VL
NV =$532(1 — V") - ——— = $32———

where each variable is unitless and defined relative to a starting or default value, i.e.,

D' = and V' = L

— 2mm’ 30 cm’ 5V

D , L

and these relative variables are allowed the following ranges:

D' € (0.05,8),L € (0.1,10),V’ € (0.2,4),
(and ¢ = 0.02 is a parameter).
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Nonlinear Functions

—>Consider the following NVF with 3 independent decision variables, D, L, and V:

- $3L'D"? L' —0.25VL
NV = $532(1 — V') - —— — $32—— 7

—>This objective function is nonlinear in these variables (it isn’t just a linear combination of
them, ¢; D + ¢, L + c3V)
 This means that Simplex LP won't work
» ...but there are other solvers!
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Solving Methods on Excel

1. LP Simplex Solver Parameters 4
» Used for linear models, — e 7]
e eg., NV =500x; + 15,000x, = O @wg Oysbeor

By Changing Variable Cells:

2. Generalized Reduced Gradient (GRG) Nonlinear scsescs :

Subject to the Constraints:

» Used for continuous, smooth nonlinear models

Add
§8513:58314 <= SDS13:50514

° eg’ NV — 500X1X2 _I_ 15,000x22 S§BS15:58816 == SDS15:50516 -~

3. Evolutionary -
' . Reset all
 Used for discontinuous, non-smooth models | -
-+ e.g., Use of IF, COUNT, CEILING, etc. ey [ |
« or continuous ones with multiple local extrema m
3 4 e
([ ] .{d. N — mg-srmuth. f v ¢
L 417 (x—2)2+1 U (x—8)2+1
Help Solve | Close
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Recall: Simplex LP (Solver Option #1)

—>A model in which the objective cell and all constraints are linear functions of the decision
variables
—>Linear models will always be convex and are usually easier to solve than nonlinear models
—>Since all the constraints are linear, the global optimal solution will lie at an “extreme point”
where two or more constraints intersect
—In Simplex LP, it is always possible to determine whether the model has:
1. No feasible solution,
2. An unbounded objective, or

3. Aglobally optimal solution.
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GRG Nonlinear (Solver Option #2)

—>Generalized Reduced Gradient (GRG) Nonlinear is an algorithm used for models in which at
least one of the constraints (or the objective) is a smooth nonlinear function of the decision
variables

—>Nonlinear constraints can make the feasible region have concave boundaries (which means
simplex won’t work even if the objective is linear)

—->GRG approach:

« Compute gradient at trial solution and move in direction of negative (when minimizing) or
positive (when maximizing) gradient
* (do complex things to optimize how much of a step you take based on things like how quickly

the gradient is changing)
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GRG Nonlinear (Solver Option #2)

—>GRG methods can normally only find a local optimal solution
« Based on the starting point of the decision variables, it can get stuck at a local optimum
 The multistart option can increase the chance of finding a global optimal solution
—>Solver will iterate until either:
 The maximum number of iterations (ran out of tries) is met

* The step size is smaller than the defined tolerance (got as close as we asked)
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GRG Nonlinear Example

—>Consider the following nonlinear model:

max ¢
X1,X2

X1, X2

X1, X2

wn
s-l'

IV IA

x5 cos(2x;) + x4 sin(x,)

10
1

X3

20 -

10

-10

-20 .

X2 0 o0 X1
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GRG Nonlinear Example

—>We can express the model in Excel as:

A B C D E F
1 Decision Variables

2 X1= 1

3 X2= 1

4

5 Objective Function

6 Y= 0.425324 "=C3*C0OS(2*C2)+C2*SIN(C3)"
7

8 Constraints

9 (X1 1 <= 10

10 X1 1 >= 1

11 X2 1 <= 10

12 X2 1 >= 1

13 |
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GRG Nonlinear Example

—>We will run the model with the following three starting values:

¢ xl,xz —
¢ xl,xz —

¢ xl,xz —

(1,1)
(5,5)
(9,9)

—>Notice how we get different results with each trial run:

o~ O LB W N

I
P |?

s
[}

J

A | B C D E F
Decision i
X1= 1
x2= 1.141593
Objectivefunction
I v= 0.434227 'I:c3*c05(2*c2}+c2*5|N(cg}"
Constraints
X1 1 <= 10
X1 1 == 1
x2 1.141593 <= 10
X2 1.141593 >= 1

(V=T - DL R - I BT - U T N B Y

Vo
N RO

A | B C D E F
Decision Variables
X1= 6.314007
X2= 8.01272
Objectiv i
i Y= 14.23213 I':ca*cos(z*c2}+c2*5|N(cs}-"
Constraints
X1 6.314007 <= 10
X1 6.314007 >= 1
X2 8.01272 <= 10
X2 8.01272 >= 1

00~ @ U1 B W M

A | B C D E F
Decision i
X1= 9.456031
x2= 7.959724
Objectiv i
I Y= 17.34739 “IC3"‘COS{2"‘C2}+C2"‘SIN(C3}"
Constraints
X1 9.456031 <= 10
X1 9.456031 »= 1
X2 7.959724 <= 10
2 7.959724 == 1
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GRG Nonlinear Example

—>O0ur initial guesses (1,1), (5,5), (9,9) each resulted in a different local maxima!

X6 .

[ 3 | Y8 A xo5
20 - v Z 12.687 V8
Z 10.6494 Z 17.3085 __
10 "
o 0
<
10
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Evolutionary (Solver Option #3)

—>Discontinuous and non-smooth nonlinear models should use the evolutionary solver
* e.g., if the function is non-smooth or discontinuous (so may not always have a gradient)

* e.g., if you have multiple local optima points that could confuse the GRG.
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Evolutionary (Solver Option #3)

—>The Evolutionary Solver:
* uses random sampling to generate a population of trial solutions
» refines where to generate the next generation of samples based on ‘fitness’ of the trial solutions
 Keeps going until the current solution stops getting better
* Relies on randomness, so each run may result in different answers or speeds
 More robust than GRG (i.e., less easily fooled and less sensitive to initial conditions depending on
the objective), but typically slower than GRG (takes more iterations) when the function is well

behaved.
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—>Consider the following NVF with 3 independent decision variables, D, L, and V:

- $3L'D"? L' —0.25VL
NV =$532(1 — V") - ——— = $32———

where each variable is unitless and defined relative to a starting or default value, i.e.,

D=——1=——andV =—

2 mm 30 cm’ 5V

and these relative variables are allowed the following ranges:
D' € (0.05,8),L" € (0.1,10),V" € (0.2,4), (and ¢ = 0.02 is a parameter).

Which solver is best for this?
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—>Consider the following NVF with 3 independent decision variables, D, L, and V:

- $3L'D"? L' —0.25VL
NV =$532(1 — V") - ——— = $32———

—>This objective function is nonlinear in these variables (it isn’t just a linear combination of
them, ¢; D + ¢, L + c3V)
 This means that Simplex LP won't work

—>But it is well behaved in the allowed range of variables (no discontinuities)

« = GRG nonlinear is likely best, but if there are multiple local extrema it could be tricked
and we’'ll need to use GRG with multistart or evolutionary.
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Nonlinear Functions

—>Consider the following NVF in terms with 3 independent decision variables to choose

1D1? 1—0. /
from, D, L, and V: NV = $532(1 — cV") — S3LPZ _ g3 L=025VLr
D14y 12
 Setup and solved with GRG >
H2 v i ﬁc =532*(1-E2*B4)-3*B3*B2"2/B4-32*(B3-0.25*SQRT(B3))/B2"4/B4"2
| A B C D E F G H I
1 Variable Parameter Objective
2 |D' 1.520797 C 0.02 NVFE 525.2?55_'
3 U 0.1
4 |V 0.361139
5
5]
7
& Constraints
g D' 0.05 == 1.520797 <= 8
10 L' 0.1 == 0.1 == 10
11 Vv 0.2 == 0.361139 <= 4
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Nonlinear Functions

—>Consider the following NVF in terms with 3 independent decision variables to choose

1D12 - ;
from, D, L, and V: NV = §532(1 — cV’) — S22 — g3 L0250

 Setup and solved with GRG >

How can we find out how sensitive the optimum (inputs and NV) is to
parameters (like c) if we can’t use Simplex LP and get a sensitivity report?

3 L' 0.1

4 |V 0.361139

5

b

7

& Constraints

9 D 0.05 == 1.520797 <= 8
10 |l 0.1 == 0.1 == 10
11 |V' 0.2 == 0.361139 <= 4
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Nonlinear Solver Sensitivity Analysis

—>Redo the optimization at a different parameter value

V=T o= T I« &

H2 ~ i \ ﬁc =532*(1-E2*B4)-3*B3*B2"2/B4-32*(B3-0.25*SQRT(B3))/|
A B C D E F G H
Variable Parameter Objective
:ID' 1.520797 C 0.02 NVF | 525.2?561

L' 0.1
V! 0.361139
Constraints
D' 0.05 <= 1.520797 <= 8

10 [ 0.1 <= 0.1 <= 10

11 V' 0.2 <= 0.361139 <= 4

H2 v i \ =b32*(1-E2*B4)-3*B3*B2"2/B4-32*(B3-0.25*5QRT(B3))
A B D E F G H

1 |Variable Parameter Objective

2]D' 1.531181 C NVF | 524.8992_'

3| 0.1

4 |y 0.346685

5

6

7

8 Constraints

g D 0.05 <= 1.531181 <= 8

10 | 0.1 <= 0.1 <= 10

11 |v* 0.2 <= 0.346685 <= 4

17y

Increase parameter, ¢, by 10% and redo the optimization
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Nonlinear Solver Sensitivity Analysis

—>Redo the optimization at a different parameter value

V=T o= T I« &

H2 ~ i \ ﬁc =532*(1-E2*B4)-3*B3*B2"2/B4-32*(B3-0.25*SQRT(B3))/|
A B C D E F G , H |
Variable Parameter Objective
:ID' 1.520797 C 0.02 NVF | 525.2?561
L' 0.1
V! 0.361139
Constraints
D' 0.05 <= 1.520797 <= 8
10 [ 0.1 <= 0.1 <= 10
11 V' 0.2 <= 0.361139 <= 4

H2 v i \ ﬁc =b32*(1-E2*B4)-3*B3*B2"2/B4-32*(B3-0.25*5QRT(B3))
A B C D E F G | H |

1 |Variable Parameter Objective

2]D' C 0.022 NVF | 524.8992_'

3|

4 |y

5

6

7

8 Constraints

g D 0.05 <= 1.531181 <= 8

10 | 0.1 <= 0.1 <= 10

11 |v* 0.2 <= 0.346685 <= 4

17y

New optimum values for decision variables
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Nonlinear Solver Sensitivity Analysis

—>Redo the optimization at a different parameter value

V=T o= T I« &

H2 ~ i \ ﬁc =532*(1-E2*B4)-3*B3*B2"2/B4-32*(B3-0.25*SQRT(B3))/|
A B C D E F G , H |
Variable Parameter Objective
:I D' 1.520797 C 0.02 NVF

L' 0.1
V! 0.361139
Constraints
D' 0.05 <= 1.520797 <= 8

10 [ 0.1 <= 0.1 <= 10

11 V' 0.2 <= 0.361139 <= 4

New optimal value for objective function

H2 v i \ ﬁc =b32*(1-E2*B4)-3*B3*B2"2/B4-32*(B3-0.25*5QRT(B3))
A B C D E E G , H |
1 |Variable Parameter Objective
2 ] D' 1.531181 C 0.022 NVF
3| 0.1
4 |V 0.346685
5
6
7
8 |Caonstraints
9 D 0.05 <= 1.531181 <= 8
10 (L' 0.1 <= 0.1 <= 10
11 (V' 0.2 <= 0.346685 <= 4
17y
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Nonlinear Solver Sensitivity Analysis

—>Redo the optimization at a different parameter value

H2 v i Jx  =532%(1-E2*B4)-3*B3*B2"2/B4-32*(B3-0.25*SQRT(B3))/I H2 ~voE Jx  =532%(1-E2*B4)-3*B3*B2"2/B4-32*(B3-0.25*SQRT(B3)),
A B C D E F G H A B c D E F G H

1 Variable Parame ter Objective 1 \Variable Parame ter Objective

2 o 1.520797 c 0.02 nE || 525.2756 2 o 1.531181 c 0.022 NVF
! 3| 0.1

i \L,r Qﬁﬂfé; — |y 0.346685

.| Determine the effect of changing the parameter on NV and decision variable:

7

: ONVaopr ANVgopr 524.8992 — 525.2756 188

T oc Ac 0.022 — 0.02 '
similarly,

6D’ AD’ 1531181 — 1520791 - 1oc
dc ~ Ac 0.022 — 0.02 o
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Nonlinear Solver Sensitivity Analysis

—>Spider plot has optimum’s change for % increase & decrease of parameter (not slope directly)

Sensitivity of Optimum Spider Plot Setup Sensitivity of Optimum Spider Plot Setup
c NV D' c DeltaNV  DeltaD' c NV D' C DeltaNV DeltaD'
0.02 $525.28 1.520797 -10% $0.38| -0.01038 0.02 $525.28 1.520797 -10% $0.38| -0.01038
0.022 $524.90 1.531181 0| $0.00 0 0.022 $524.90 1.531181 0| $0.00 0
Slope: -$188.19 5.192265 10% -50.38| 0.010385 Slope: -5188.19 5.192265 10% -50.38| 0.010385
=(B18-B19=(C18-C19)/(SA$18-5AS519) =(B18-B19=(C18-C19)/(SAS18-SAS519)
D O C D O C
Optimum Value Sensitivity Optimum Solution Sensitivity
$0.50 0.015
$0.40 ——c ——c
= $0.30 ;:E] 0.01
E 50.20 g 0.005
£ so0.10 E
5 $0.00 & o
) © CD ¢ C
£ -$0.10 "
E" 020 _5:%5 -0.005
1)
5 -50.30 Y 001
-$0.40
-$0.50 -0.015
-10% -5% 0% 5% 10% -10% -5% 0% 5% 10%
Relative Change in Parameter Relative Change in Parameter
) i~ ~ N ™ s




Dealing with non-numeric decision variables

—>Recall the NVF for nanoRIMS we worked with in Lecture 6 (to make spider & tornado plots):

$896
NV = M{ - (Cingred + Cspace + Ctime + Cdevice)
. (32V (V
—— | =+ 12vL A
$896 $5 $125 1 $15 s10 PV (nD4 (n ey ) T Z) D>
NV = week - 100 mL X Qingred + T X § X tFumeHood T ? X teradstudent + Cdevice + 52 X 10 mW + $1.1875CW

Is it possible to use a solver with “non-numeric” decision variables???

e.g., suppose we believe we can add a self-correction system to nanoRIMS
for a cost increase of S400/yr reducing Grad Student time required by 1
hr/wk. How could we modify the function to consider this non-numeric
decision variable (add self-correction system or don’t)?
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Dealing with non-nu

Warning — takes a long time!

Note that with evolutionary the lower & upper
1| bounds need to be specified with direct references
(Bll:B\lZ) and not indirect ones (G11:G12)

A B | C D E ) K L M N |
1 Tech Analysis Parameters: nanoRIMS | |
2 pi 3.14 Objective:
3V (flow rate) 5.83E-06 m3/s |N\.r‘ (rel to Purchasing) [___gé_gg_.__iljfweek =B26-SUMPRO (B17:B20,E17:E20)-B21-B22
4 p 1000 kg/m3 Solver Parameters
5 :‘u’ (kinematic visc) 1.00E-06 m2/s Constraints LB var UB
B_g 9.81 m/s2 D 1.00E-03 <= 3.53E-03 <= 1.00E-02 Set Objective: $E53
7 2z 0.2 m Self-Correction 0 == 1.00E+00 <=
8 L 3.00E-01 m To: ® max ) Min O value of:
9
10 Direct Input Decision Variables: LTIl EElscils
11_ D 3.53E-03 m
12 Self-correction 1 Whether to add 5400/yr and reduce GS time by 1 hr fweek .
= e Constraints:
e $B$11:‘$B$12>\$Iis:$|$?
14 Indirect Decision Variables and more parameters: $B%12 = integer
15 |W 1.97E+00 W FESG:FEST <= $BE11:3B512
16 per week needed
17 Ingredients 55//100 mL [=5 2100 mL
18 Fume Hood Time $1.56|/hr =12.5/8 98| hr =14*7
19 Device $1,000|/yr =600+IF(B12=1,400,0) 0.019231 =1/52
20 Grad Student Time S15|(/hr =15 1.5 |hr =2.5-1F(B12=1,1,0)
21 Cost pump 538|/wk =B15/0.01*10/52
22 Cost tube uncertainty $0|/wk =1.1875*B2*B11A2*100A2 Make Unconstrained Vaniables Non-Megative
23 Select a Solving Evolutionary
24 Purchasing Method:
25 |Cost 5112(/25 mL Solving Method
26 Total Cost S896|/week T
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