Lecture 5 - Heating/Cooling The Greenhouse Effect

Kevin Trenberth, John Fasullo and Jeff Kiehl

Learning Objectives - Heating/Cooling The Greenhouse Effect

- 1) List examples of radiative forcing processes that impact the energy budgets of planetary atmospheres
- 2) Define the greenhouse effect and describe its impact
- 3) Understand and replicate the toy model of the GH effect with an arbitrary number of absorbing layers
- 4) Compare and contrast the GH effect on the Earth and Venus to the exoplanet population
- 5) List the steps in the Carbon-Silicate cycle on Earth

Radiative Forcing

Any physical process that alters the energy budget of a planet's atmosphere

Cooling processes

- albedo
- blackbody radiation

Kevin Trenberth, John Fasullo and Jeff Kiehl

Radiative Forcing

Any physical process that alters the energy budget of a planet's atmosphere

Heating processes

- incident stellar flux
- GH effect

The Greenhouse Effect The warming of a planet's surface due to the insulating effects of the planet's atmosphere ASTRON 2E03 - Planetary Astronomy | Winter 2024 | Dr Ryan Cloutier

Atmospheric transmission: GH gases

Recall a planet's equilibrium temperature

$$T_{eq} = 279 \,\mathrm{K} \,(1 - A_B)^{1/4} \left(\frac{T_{eff}}{5780 \,\mathrm{K}}\right) \left(\frac{R_{\star}}{R_{\odot}}\right)^{1/2} \left(\frac{a}{\mathrm{au}}\right)^{-1/2}$$

For the Earth, $T_{eq,\oplus} \sim 252 \text{ K (-21 °C)}$ Whereas $T_{surf,\oplus} \sim 288 \text{ K (15 °C)}$

Atmospheric transmission: GH gases

Atmospheric transmission: GH gases

Before we explore a toy model of the GH effect, recall the incident stellar flux is

$$F = \frac{L_{\star}}{4\pi a^2}$$

For the Earth:

$$S_0 = \frac{L_{\odot}}{4\pi (1 \, \text{au})^2}$$

$$= 1362 \, \mathrm{Wm}^{-2}$$

So is known as the solar constant

TPS Activity

Recall our derivation of T_{eq} from Lecture 4, which began by setting the incident power on a planet's cross-section equal to the power out.

$$P_{in} = P_{out}$$

Toy model of the GH effect

Toy model of the GH effect

In class, we'll show that the planet's surface temperature in the presence of an absorbing atmospheric layer is

$$T_{surf} = \left(\frac{2S}{\sigma}\right)^{1/4}$$

$$\sim 1.19 \, T_{atm}$$

Toy model of the GH effect

Temperature

(extended) Toy model of the GH effect

(extended) Toy model of the GH effect

In class, we'll show that the planet's surface temperature in the presence of *n*=2 absorbing atmospheric layers is

$$T_{surf} = \left(\frac{3S}{\sigma}\right)^{1/4}$$
 $\sim 1.32 \, T_{atm.2}$

(extended) Toy model of the GH effect

Temperature

General form of T_{surf} from our toy model with n atmospheric layers

$$T_{surf} = \left[\frac{(n+1)S}{\sigma}\right]^{1/4}$$
$$= (n+1)^{1/4} T_{atm,n}$$

TPS Activity

How many absorbing atmospheric layers are needed to describe the Earth?

Recall that

$$T_{eq} = 252 \text{ K}$$

 $T_{surf} = 288 \text{ K}$

$$T_{surf} = (n+1)^{1/4} T_{atm,n}$$

Recall that our toy model assumed that all outgoing longwave radiation was absorbed by the atmosphere

TPS Activity

How many absorbing atmospheric layers are needed to describe Mars?

Note that

$$T_{eq} = 210 \text{ K}$$

 $T_{surf} = 215 \text{ K}$

$$T_{surf} = (n+1)^{1/4} T_{atm,n}$$

TPS Activity

How many absorbing atmospheric layers are needed to describe Venus?

Note that

$$T_{eq} = 233 \text{ K}$$

 $T_{surf} = 737 \text{ K}$

$$T_{surf} = (n+1)^{1/4} T_{atm,n}$$

Venus and the **Earth** have some remarkably similar properties

	Venus	Earth
Planet radius	0.95 R⊕	1 R⊕
Equilibrium temperature	233 K	252 K
Surface temperature	737 K	288 K

What differed between their evolutionary histories that led to this large difference in Tsurf?

The Carbon-Silicate Cycle

A geochemical process that helps regulate the Earth's temperature

Credit: John Garrett

Credit: Pearson Education Inc

This is an example of a negative feedback process

Fluctuations that cool the planet are geochemically "corrected" back to its equilibrium state

Conversely, a positive feedback process would amplify the temperature perturbation and continue to drive the system away from its previous state

Recall the Maxwell-Boltzmann distribution

$$\left(\frac{dN}{dv}\right)_{m,T} = v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} \times \left(\frac{mv^2}{2k_B T}\right)$$

Runaway greenhouses may be extremely common

