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Learning Objectives — Heating/Cooling -
Star-Planet Interactions

1) Understand the definition and the emission spectra of
blackbodies

2) Calculate the luminosity of a blackbody and the peak
wavelength of its emission spectrum

3) Understand the quantities that determine a planet’s
equilibrium temperature

4) Recite examples of physical processes that result in
planetary atmospheric escape along with the
guantities that determine their efficacy

5) Understand a planet’s cooling mechanism and how its
cooling timescale depends on the planet’s size
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Blackbody Radiation
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Relationship between the colour of light
emitted by a hot object and its temperature

‘ E.g. Albireo - a double
star showing clearly

distinct colors
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Blackbodies
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Wein’s displacement law
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TPS Activity 60

The Sun’s BB curve peaks at a wavelength of about 0.5 microns
whereas the Earth’s BB curve peaks at about 10 microns.

How much hotter is the Sun’s surface compared to the Earth?




Blackbodies emit a -
continuous
spectrum of
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Problem: the ultraviolet catastrophe
- Consider an oven < L >
with length L and

filled with blackbody
radiation in thermal \//—\\/

equilibrium

- Classically, this
radiation is a set of
standing waves with
wavelengths 2L, L,
2L/3, L/2, 2L/5, etc

- For a thermalized

have equal energies
= k*T
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Problem: the ultraviolet catastrophe
L

<

Ultraviolet catastrophe:
with an infinite number \//—\\/

of decreasing
wavelengths, this
system would have an
unlimited amount of
blackbody radiation
energy from short
wavelength standing

waves —

ASTRON 2EO03 - Planetary Astronomy | Winter 2024 | Dr Ryan Cloutier
GGG



bl
£
—
o

|

S
Iy
7
<
)
3]
c
0
o
g
g
Q.
n

Classical physics made the
following prediction for the
blackbody spectrum, but it only
works for long wavelengths

ZCkBT
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Aside:
Maxwell-Boltzmann
distribution
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The BB spectrum at short
wavelengths was revised based
on the Maxwell-Boltzmann
distribution
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German physicist Max Planck modified Wein’s
law to fit the BB curve at all wavelengths,
thus avoiding the ultraviolet catastrophe

BAT) = (%) eb/1>‘T

a 1
= BA(T) = (F> b/ AT _ 1

2hc? 1
— B)\(T) — ( A\ ) ehc/AksT _ 1

The Planck function
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Requires that standing waves have
quantized energy, not arbitrary energy

Quantized radiation waves are known as
photons (i.e. “particles” of light)

One quantum of energy is E p— hV

where v is the oscillating frequency

C
and h became known as V = X
Planck’s constant
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TPS Activity

Rescale the expression for photon
energy E to the following form:

—1
D he » ¢ Joules i
A nm

(i.e. solve for x in units of Joules)
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Stars are only approximate blackbodies

- The continuum of
the solar spectrum
well-described as a
blackbody curve

- But it does show
additional complexity
from atmospheric

absorbers (e.g. H, O,
Mg, Fe, etc)

- We will ignore

absorption for now 500 1000 1500 2000 2500 3000
wavelength [nm]
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.

Planets and stars
radiate as blackbodies.
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Stefan-Boltzmann equation

[, = AocT*

L:
Luminosity A: Surface T:
[energy/time] area Temperature

o: Stefan-Boltzmann
constant
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TPS Activity

L = AcT?

If the Sun’s radius is 100x the Earth’s
and it’'s surface is ~20x hotter,

how much more luminous is the Sun
compared to the Earth?

60
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Remember how direct imaging is hard?
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Stars and planets are spheres...

L =AoT* = 4nR*cT*
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Inverse square law
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Equilibrium temperature

n class, we’ll derive the equilibrium temperature
Of a planet at a distance a around a star with a

luminosity L = 4xR%c T4,
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Equilibrium temperature
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Planets reflect some light

THE SPECTRUM OF JUPITER

SOLAR PLANETARY

INCIDENT
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wavelengths)

100 300

ASTRON 2EO03 - Planetary Astronomy | Winter 2024 | Dr Ryan Cloutier




Clear Sky Albedo

Continents, ice,
clouds, etc. have
different albedos

REFLECTANCE SPECTRA: EARTH'S SURFACE MATERIALS

Reflectance

400 800 1,200 1,600 2,000 2,400
Wavelength (nanometers)

NASA




(modified) Equilibrium temperature
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(modified) Equilibrium temperature

R,
Teq = (1 — Ap)"* Topy o

T. R, 12 0\ -1/2
= 279K (1 - Ap)""" (5786fK> (R@) (5)
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TPS Activity

T. R, L2 0\ —1/2
Teg = 219K (1 - Ap)'/* <5786fK> (R@> (£>

Earth’s Bond albedo is 0.33.
What is Earth’s equilibrium temperature?

How does this compare to its surface temperature?
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Bond albedos () in the
inner solar system

-

Mercury Venus Earth Mars

2290 662 342 145
0.10 0.75 0.30 | 0.25
437 (163) 232 (-41) 255(-18) 209 (-64)
~440 (167) 735(462) | 288(15) | 215(-58)

ASTRON 2EQ03 - Planetary Astronomy | Winter 2024 | Dr Ryan Cloutier
OGS



Stars can drive planetary
atmospheric escape

ASTRON 2EQ03 - Planetary Astrono



Non-thermal escape process

A physical process that results in the full or partial
loss of a planet’s atmosphere and that is *not
driven by heating the atmospheric gas

*often driven by interactions between a
planet’s magnetic field and energetic particles
from the host star (i.e. the stellar wind)
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Non-thermal escape process

A physical process that results in the full or partial
loss of a planet’s atmosphere and that is *not
driven by heating the atmospheric gas

*another example is planetary collisions,

but in this lecture we’re focusing on
star-planet interactions
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Planets with the
following properties
are believed to have

large-scale
magnetic fields ckoLé’é%on

CURRENTS
- an interior that is
- conductive
- convective
- has kinetic energy
AN

(from rotation) to
drive the dynamo

Coriolis effect rolls

_—
') - \)

Wikimedia
Commons
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Stellar Winds

A continuous flow of ionized particles
(mostly free protons and electrons) emitted by
the Sun and by other stars.

Note that the solar wind is not a radiation
field (i.e. no photons)
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Charge exchange and sputtering from stellar
wind particles to planetary atmospheric
particles can results in atmospheric escape...
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Charge exchange

Fast neutral

3) momentum is
transferred to the
atmospheric particle,
which can escape

‘ @ 4) the now low-

momentum wind particle
is trapped by the Earth’s
magnetic field

2) collides w/ an
atmospheric particle

Slow neutral

Slow 1on

1) incoming
wind particle

Fast 1on

Credit: Atmospheric Anna




Charge exchange

Earth’s magnetic field behaves
like a large scale bar magnetic

X

Credit: Cordelia Malloy
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Charge exchange
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Charge exchange
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But magnetic field lines are not closed at the poles

Therefore, there are some slow moving ions produced by charge exchange
that do escape at the poles as they are directed away by open field lines

ASTRON 2EQ03 - Planetary Astronomy | Winter 2024 | Dr Ryan Cloutier




sputtering

incoming ion
sputtered atom o sputtered atom - momentum exchange
between an coming wind
particle and and an upper
atmospheric layer produces
a collisional cascade

- momentum propagates
through the material and can
result in a sputtered atom
that escapes

Credit: Polygon Physics




Strong magnetic fields help
shield a planet’s atmosphere
from the stellar wind
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Thermal escape process

A physical process that results in the full or partial
loss of a planet’s atmosphere and that is driven by
heating the atmospheric gas
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Thermal Escape I:
Jeans escape

Recall the
Maxwell-Boltzmann distribution

I
dv Theoretical Prediction
m, 1’

B Measured

timestep = 0




Thermal Escape |: Jeans escape

Recall a planet’s escape velocity (see lecture 2)

[26M,

Uesc —
R
p
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For gas in the uppermost layers of a planet’s
atmosphere where Tgas ~ Teq, thermal velocities may
exceed and vesc and gas particles are lost to space
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Jeans escape efficiency is moderated by
Vesc, the gas particle mass, and gas
temperature

Mean molecular weight, u = average particle
mass in units of the mass of hydrogen atom
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For atomic hydrogen, H
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For molecular hydrogen, H:
p=2
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For atomic carbon, C
u=12
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Thermal Escape ll:
Hydrodynamic escape

Unlike Jeans escape, instead of
losing individual atoms or
molecules, rapid heating drives a
bulk outward flow of material

Like Jeans escape, atmospheric
gas particles are heated and can
escape the planet’s gravity

Credit: Atmospheric Anna
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Thermal Escape ll:
Hydrodynamic escape

Unlike Jeans escape, instead of
losing individual atoms or
molecules, rapid heating drives a
bulk outward flow of material

Credit: Atmospheric Anna
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A hydrodynamically-driven outward flow can
be seen as a trail of material as the evaporating
planet orbits its host star

NASA/ESA
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Light weight He atoms are more easily lost than
heavier molecules in a planet’s upper atmosphere

Astronomers have witnessed ongoing hydrodynamic escape via
excess He absorption at 1083 nm in a handful of hot exoplanets
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Hydrodynamic escape can explain a major feature in
the planet size distribution of close-in exoplanets:

The Radius Valley

Super-Earths Sub-Neptunes
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XUV-driven hydrodynamic escape

Decreasing XUV
instellation produces
fewer super-Earths

Models of XUV-driven
heating and subsequent
hydrodynamic escape
can reproduce the
Radius Valley
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XUV-driven hydrodynamic escape

Model states that
everything forms as a
sub-Neptune

P

XUV heating results in
either partial or
complete atmospheric
loss

Depends on the planet’s semi-

major axis and surface gravity
(i.e. its mass)



A closing note on understanding the impact of
atmospheric escape on exoplanets:

Thermal escape processes depend on planetary heating
by radiation from the host star
- Our telescopes are good at seeing radiation (i.e. light)

But non-thermal escape processes depend on the
stellar wind

- We can’t directly observe ions in stellar winds because
they’'re composed of mostly free protons and electrons, not light
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A closing note on understanding the impact of
atmospheric escape on exoplanets:
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Summary of planetary heating and
cooling processes discussed so far

Heating Cooling

lanet’s can resist heati
Teq is set by the host star’s having a ge-scale
ol vagacliafy magnetic i mpisn’'t really
cooling

AUV haziting, which can drive a Planets radiate as olackooclias
hydrodynamlc flow at their Teq

e impart
energy via collisions with atmospheric
particles

Tkl haaiing (see lecture 3)
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Planet size determines its
cooling timescale

In class, we’ll derive the following scaling between a planet’s
cooling timescale and its radius

tcool X Rp
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Mars’ small size is the reason its
interior is no longer molten and why
it has a weak magnetic field
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