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Basic Elements I

Sample space Ω: The set of all possible outcomes.

Event space F : The set containing all possible subsets of
outcomes. i.e., A collection of possible outcomes

Event A: Any element of the event space. ∀A ∈ F , A ⊆ Ω

For the event of rolling a dice:

Ω = {1, 2, 3, 4, 5, 6}
F =
{{1}, . . . , {6}, {1, 2}, . . . , {5, 6}, {1, 2, 3}, . . . , {1, 2, 3, 4, 5, 6}}
An example of an event is A = {2, 3, 6}
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Basic Elements II

Probability measure P: A funtion P : F → R that satisfies
the following properties:

P(A) ≥ 0, ∀A ∈ F
P(Ω) = 1

For a collection of disjoint events Ai i.e., (∀i ̸= j , Ai ∩Aj = ∅)
we have

P(
⋃
i

Ai ) =
∑
i

P(Ai )
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Probability Measure: Properties

If A ⊆ B, P(A) ≤ P(B)

P(A ∪ B) ≤ P(A) + P(B), which is called Union Bound

P(A ∩ B) ≤ min(P(A),P(B))

P(Ac) = 1− P(A)

For disjoint events A1, . . . ,Ak such that ∪k
i=1Ai = Ω

k∑
i=1

P(Ai ) = 1,

which is also called the law of total probability.
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Conditional Probability and Independence

The conditional probability P(A|B) is the probability of
observing event A after the occurrence of B

P(A|B) = P(A ∩ B)

P(B)

Two events A and B are independent iff
P(A ∩ B) = P(A)P(B). i.e, observing B does not give any
information about occurrence of A and P(A|B) = P(A)
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Conditional Probability and Independence

Example: Probability of a person’s weight being y , given that her
height is x .

P(weight = y |height = x)

These two features are correlated.

P(weight = 200lb | height = 190cm) = 0.2

P(weight = 200lb | height = 140cm) = 0.01
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Bayes’ Rule

For two events A and B

P(A|B) = P(A ∩ B)

P(B)

P(B|A) = P(A ∩ B)

P(A)

This implies that

P(A|B) = P(B|A)P(A)
P(B)

P(B|A) = P(A|B)P(B)
P(A)
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Chain Rule and Law of Total Probability

For events A1, . . . ,An, chain rule states that

P(An ∩ . . . ∩ A1) =P(An|An−1 ∩ . . . ∩ A1)P(An−1 ∩ . . . ∩ A1) =

P(A1)
n∏

i=2

(Ai |
i−1⋂
k=1

Ak)

If B1, . . . ,Bn are finite partition of the sample space (i.e.,
∀i ̸= j ,Bi ∩ Bj = ∅ and ∪n

i=1Bi = Ω), the law of total
probability states that for an event A

P(A) =
n∑

i=1

P(A ∩ Bi ) =
n∑

i=1

P(A|Bi )P(Bi )
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Random Variables

A real-valued random variable X is a mapping from sample space
to real values, i.e., X : Ω → R, which assigns to each element
ω ∈ Ω a real value X (w)

A random variable helps us describe some functions of observed
events

We usually denote random variables with capital letters X (ω)
and simply denote it with X

We usually use small letters for the value that a random
variable may take. i.e., we write X = x instead of X (ω) = x
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Random Variables: Example

Example: We toss coin for 20 times. What is the probability that
we observe 6 heads?

Sample space Ω can be defined as the sequences of heads and
tails with length 20

Random variable X is a function that assigns to each sequence
ω ∈ Ω the number of heads in that sequence. i.e.,
X (ω) = number of heads in ω

We are interested in finding P(X (ω) = 6) or simply P(X = 6)
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Random Variables

A random variable that only takes finite number of values is
called a discrete random variable

The probability that a random variable X takes value x is

P(X = x) := P({ω ∈ Ω : X (ω) = x})

A random variable that can take infinite number of values is
called a continuous random variable

The probability that a random variable X takes values between
a and b is

P(a ≤ X ≤ b) := P({ω ∈ Ω : a ≤ X (ω) ≤ b})

COMPSCI 4ML3 Tutorial 4 Review of Probability Theory



Definitions and Basics
Density Functions

Common Distributions
Joint Densities

CDF

Cumulative Distribution Function

For a random variable X , we can define P(X ≤ x) as a function of
x :

The Cumulative Distribution Function (CDF) is a function
FX (x) : R → [0, 1] that is defined as

FX (x) := P(X ≤ x)

Properties:

0 ≤ FX (x) ≤ 1

P(a ≤ X ≤ b) = FX (b)− FX (a)
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Cumulative Distribution Function

Example:
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Probability Mass Function

For a discrete random variable, the Probability Density
Function(PMF) pX (x) : R → [0, 1] is a function that returns the
probability of a random variable taking a specific value

pX (x) := P(X = x)

Properties:

0 ≤ pX (x) ≤ 1∑
x∈D pX (x) = 1, where D is the set of all possible values that

X can take.

P(X ∈ A) = P({ω : X (ω) ∈ A}) =
∑

x∈A pX (x)
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Probability Mass Function

Example:
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Probability Density Function

For a continuous random variable, we are interested in
P(x ≤ X ≤ x +∆x) when ∆ → 0.
If FX (x) is differentiable everywhere, the Probability Density
Function (PDF) fX (x) is the derivative of the CDF function

fX (x) :=
dFX (x)

dx

P(x ≤ X ≤ x +∆x) ≈ fX (x)∆x

Unlike PMF, fX (x) is not the probability that the random
variable X takes a value x . i.e., fX (x) ̸= P(X = x). In fact,
for a continuous distribution, the probability that the random
variable takes a specific value is zero. i.e, P(X=x)=0
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Probability Density Function

Example:
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PDF: Properties

fX (x) ≥ 0∫ ∞

−∞
fX (x) = 1

FX (x) =

∫ x

−∞
fX (x)dx

COMPSCI 4ML3 Tutorial 4 Review of Probability Theory



Definitions and Basics
Density Functions

Common Distributions
Joint Densities

Expectation and Variance

Expectation

For a discrete random variable with PMF pX (x) and a
function g(x) : R → R, g(X ) can be considered as a random
variable and the expectation or expected value of g(X ) is
defined as

E[g(X )] =
∑
x∈D

g(x)pX (x)

For a continuous random variable with PDF fX (x), the
expectation or expected value of g(X ) is defined as

E[g(X )] =

∫ ∞

−∞
g(x)fX (x)dx
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Mean and Variance

Setting g(x) = x , the mean of a random variable X is defined
as

µ = E[X ] =

∫ ∞

−∞
x fX (x)dx

The variance of a random variable X is a measure of how
concentrated the random variable is around its mean

σ2 = Var = E[(X − E[X ])2] = E[X 2 + (E[X ])2 − 2XE[X ]]

= E[X 2] + (E[X ])2 − 2E[XE[X ]] = E[X 2]− (E[X ])2
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Mean and Variance: Example I

Example Find the mean and variance of rolling a dice with equal
probability for each face

µ = E[X ] =
6∑

i=1

iP(X = i) =
6∑

i=1

i
1

6
=

21

6
= 3.5

σ2 = E[(X − µ)2] =
6∑

i=1

(i − 3.5)2P(X = i)

=
6∑

i=1

(i − 3.5)2
1

6
=

35

12
≈ 2.92
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Mean and Variance: Example II

Example Find the mean and variance of a random variable with
PDF fX (x) = 3x2, 0 ≤ x ≤ 1

µ = E[X ] =

∫ ∞

−∞
xfX (x)dx =

∫ 1

0
xfX (x)dx =

∫ 1

0
3x3dx =

3x4

4

∣∣∣1
0
=

3

4

σ2 = E[(X − µ)2] =

∫ ∞

−∞
(x − µ)2fX (x)dx =

∫ 1

0
(x − 3

4
)23x2dx

=

∫ 1

0
(x − 3

4
)23x2dx =

3

16
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Expectation: Properties

E[c] = c , ∀c ∈ R

E[cg(X )] = cE[g(X )], ∀c ∈ R

E[f (X ) + g(X )] = E[f (X )] + E[g(X )]
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Variance: Properties

Var(c) = 0, ∀c ∈ R

Var(f (X ) + c) = Var(f (X )), ∀c ∈ R

Var(cf (X )) = c2Var(f (X )), ∀c ∈ R
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Discrete Random Variables: Bernoulli

X ∼ Bernoulli(p), where 0 ≤ p ≤ 1

pX (x) =

{
p x = 1

1− p x = 0

E[X ] = p

Var(X ) = p(1− p)
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Discrete Random Variables: Binomial

X ∼ Binomial(n, p), where 0 ≤ p ≤ 1

pX (x) =

(
n
x

)
px(1− p)n−x

E[X ] = np

Var(X ) = np(1− p)
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Discrete Random Variables: Poisson

X ∼ Possion(λ), where λ > 0

pX (x) =
e−λλx

x!

E[X ] = λ

Var(X ) = λ
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Continuous Random Variables: Uniform

X ∼ U[a,b], where a ≤ b

fX (x) =

{
1

b−a x ∈ [a, b]

0 otherwise

E[X ] =
b + a

2

Var(X ) =
(b − a)2

12
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Continuous Random Variables: Exponential

X ∼ Exponential(λ), where λ > 0

fX (x) = λe−λx

E[X ] =
1

λ

Var(X ) =
1

λ2
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Continuous Random Variables: Gaussian/Normal

X ∼ N (µ, σ2)

pX (x) =
1√
2πσ

e−
(x−µ)2

2σ2

E[X ] = µ

Var(X ) = σ2
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Example:
X = image :

Y = label (1 if image contains cat and 0 otherwise)
What is the probability of an image contains a cat?

P(X = image,Y = 0) =?

P(X = image,Y = 1) =?
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Joint Cumulative Distributions

It happens that we need to consider two random variables X and
Y together and discuss X and Y at the same time during a
random experiment.

The joint cumulative distribution function for random
variables X and Y is defined as

FX ,Y (x , y) = P(X ≤ x , Y ≤ y)

The marginal CDFs can be found by

FX (x) = lim
y→∞

FX ,Y (x , y)

FY (y) = lim
x→∞

FX ,Y (x , y)
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Joint CDF: Properties

0 ≤ FX ,Y (x , y) ≤ 1

lim
x ,y→∞

FX ,Y (x , y) = 1

lim
x ,y→−∞

FX ,Y (x , y) = 0
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Joint Probability Mass Function

The joint probability mass function for discrete random
variables X and Y is defined as

pX ,Y (x , y) = P(X = x , Y = y)

The marginal PMFs can be found by

pX (x) =
∑
y∈Dy

pX ,Y (x , y)

pY (y) =
∑
x∈Dy

pX ,Y (x , y)
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Joint PMF: Properties

0 ≤ pX ,Y (x , y) ≤ 1

∑
x∈Dx ,y∈Dy

pX ,Y (x , y) = 1
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Joint Probability Density Function

If the joint CDF is differentiable everywhere in x and y , the
joint probability density function for continuous random
variables X and Y is defined as

fX ,Y (x , y) =
∂2FX ,Y (x , y)

∂x∂y

The marginal PDFs can be found by

fX (x) =

∫ ∞

−∞
fX ,Y (x , y)dy

fY (y) =

∫ ∞

−∞
fX ,Y (x , y)dx
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Joint PDF: Properties

∫ ∞

−∞

∫ ∞

−∞
fX ,Y (x , y)dxdy = 1

∫ ∫
A
fX ,Y (x , y)dxdy = P((X ,Y ) ∈ A)
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Conditional Distributions

Conditional PMF refers to the probability distribution over X
when we know that Y has taken a certain value (if pY (y) ̸= 0)

pX |Y (x |y) = P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

pX ,Y (x , y)

pY (y)

Conditional PDF is defined as (if fY (y) ̸= 0)

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
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Independent Random Variables

Two random variables X and Y are independent iff

FX ,Y (x |y) = FX (x)FY (y), ∀x , y

If two discrete random variables X and Y are independent

pX ,Y (x , y) = pX (x)pY (y), ∀x , y
pX |Y (x |y) = pX (x), ∀x , y such that pY (y) ̸= 0

If two continuous random variables X and Y are independent

fX ,Y (x , y) = fX (x)fY (y), ∀x , y
fX |Y (x |y) = fX (x), ∀x , y such that fY (y) ̸= 0

COMPSCI 4ML3 Tutorial 4 Review of Probability Theory



Definitions and Basics
Density Functions

Common Distributions
Joint Densities

Bayes’ Rule

Bayes’ Rule for Joint Probability Distribution

For two discrete random variables X and Y

pX |Y (x |y) =
pY |X (y |x)pX (x)

pY (y)

For two continuous random variables X and Y

fX |Y (x |y) =
fY |X (y |x)fX (x)

fY (y)
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Expectation of Joint Distributions

For discrete random variables X and Y with joint PMF
pX ,Y (x , y) and a function g(x , y) : R2 → R, g(X ,Y ) can be
considered as a random variable and the expectation or
expected value of g(X ,Y ) is defined as

E[g(X ,Y )] =
∑
x∈Dx

∑
y∈Dy

g(x , y)pX ,Y (x , y)

For continuous random variables X and Y with joint PDF
fX ,Y (x , y), the expectation or expected value of g(X ,Y ) is
defined as

E[g(X ,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x , y)fX ,Y (x , y)dxdy

COMPSCI 4ML3 Tutorial 4 Review of Probability Theory



Definitions and Basics
Density Functions

Common Distributions
Joint Densities

Expectation and Covariance

Covariance of Joint Distributions

The covariance of two random variables X and Y is defined as

Cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]

= E[XY − YE[X ]− XE[Y ] + E[X ]E[Y ]]

= E[XY ]− E[X ]E[Y ]− E[X ]E[Y ] + E[X ]E[Y ]

= E[XY ]− E[X ]E[Y ]

If Cov(X ,Y ) = 0, two random real-valued variables are called
uncorrelated.
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Expectation and Covariance: Properties

E[f (X ,Y ) + g(X ,Y )] = E[f (X ,Y )] + E[g(X ,Y )]

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

If X and Y are independent, Cov(X ,Y ) = 0

If X and Y are independent, E[f (X )g(Y )] = E[f (X )]E[g(Y )]

COMPSCI 4ML3 Tutorial 4 Review of Probability Theory



Definitions and Basics
Density Functions

Common Distributions
Joint Densities

Multivariate distributions

Generalized Joint Distribution for n Variables

For n random variables X1, . . . ,Xn

Joint CDF is defined as

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn)

For discrete random variables joint PMF is defined as

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn)

For continuous random variables joint PDF is defined as

fX1,...,Xn(x1, . . . , xn) =
∂nFX1,...,Xn(x1, . . . , xn)

∂x1 . . . ∂xn
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Joint Distribution for n Variables

For n randaom variable X1, . . . ,Xn

Marginal PDFs can be derived by

fX1(x1) =

∫ ∞

−∞
. . .

∫ ∞

−∞
fX1,...,Xn(x1, . . . , xn)dx2 . . . dxn

P((X1, . . . ,Xn) ∈ A) =

∫
. . .

∫
A
fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn

X1, . . . ,Xn are mutually independent iff

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi
(xi )
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Random Vectors

When dealing with n random variables, we can consider them as a
random vector X = [X1, . . . ,Xn]

T

For the random vector X , the expectation is in the form of a
vector. For a function g : Rn → Rm

E[g(X )] =

E[g1(X )]
...

E[gm(X )]


The mean vector is µ = E[X ] = [E[X1], . . . ,E[Xn]]

T
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Covariance Matrix

For a random vector X ∈ Rn, its covariance matrix Σ ∈ Rn×n is a
symmetric positive semidefinite matrix, where Σi ,j = Cov(Xi ,Xj)

Σ =


Cov(X1,X1) Cov(X1,X2) . . . Cov(X1,Xn)
Cov(X2,X1) Cov(X2,X2) . . . Cov(X2,Xn)

...
...

. . .
...

Cov(Xn,X1) Cov(Xn,X2) . . . Cov(Xn,Xn)


= E[(X − E[X ])(X − E[X ])T ] = E[XXT ]− E[X ]E[X ]T

Note Cov(Xi ,Xi ) = Var(Xi )
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Multivariate Gaussian Distribution

A multivariate Gaussian random variable X ∼ N (µ,Σ) can be
defined as

fX1,...,Xn(x1, . . . , xn) =
1√

(2π)n|Σ|1/2
exp(−1

2
(x − µ)TΣ−1(x − µ))

If variables X1, . . . ,Xn are uncorrelated, the covariance matrix Σ
will become a diagonal matrix with variances of individual variables
in its main diagonal. In this case,

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

1√
2πσi

exp(−(xi − µi )
2

2σ2
i

)
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