COMPSCI 4ML3: Introduction to Machine Learning Tutorial 3

Problem 1: Ordinary Least Squares in Python

Assume the input has one dimension z and the target function is f(z) = (z — 0.1)3 — 5(x — 0.5)? + 102 +
5sin 5z + 10. Using ordinary least squares solution =

(a) Find a € R such that the hyperplane § = ax fits the data the best when z is distributed from a Gaussian
with mean 0 and variance 1, x ~ N(0,1).

(b) Find a,b € R such that the hyperplane § = ax + b fits the data the best when z is distributed from a
Gaussian with mean 0 and variance 1, z ~ N (0, 1).
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Problem 2: Ordinary Least Squares /L\;
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We will use least squares to find the best line § = axz+b that ﬁts a non-linear functlon namely f(z) = 2* 32"+
2. For this, assume that you are given a set of n training points {(z*,y )}” 1= {(( ) (4i/n)*—3(4i/n)*+2)}.
Find a line that fits the training data the best when n — oo.
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In the case that n — oo, we can work with integral instead of summation. In this case, we know that the

training samples come from a uniform distribution on [0,4], i.e., z° ~ Ulo,4) since there is an equal chance for
any « € [0,4] to be drawn. We know that for X ~ Ujg 4}, we have fx(z) = 1/4 if z € [0,4] and fx(z) = 0 if
x ¢ [0,4].

Rewriting the OLS we have

Solution. Writing ordinary least squares we have

r=4 r=4
min/ (am—&—b—f(x))zfx(x)dx:migl/ (ax +b— (x2—3x4+2))2fx(x)dx:miglg(a,b).
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We can then expand the expression inside the integral and calculate the integral
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To obtain the values of a and b that minimize the function g(a,b), we can compute the partial derivatives of
g(a,b) with respect to a and b and find the pair (a,b) that result in zero derivatives.
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Setting the derivatives equal to 0 in equation (2), we need to solve the following system of linear equations

32
30 +4b = —-984
4388
2b+4a = ———.
+ 4a 5
. . . —748 2294 .

Solving the system of linear equation we conclude that ¢ = —— and b = are the solutions of OLS and
§ = —149.6x + 152.93 is the best line that fits f(x) = 22 — 32* + 2 using OLS.
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Figure 1: Optimal values of W found by simulating OLS for n = 1000 training samples. Optimal W =
[—147.18, 148.56].
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