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Symmetric Matrix

A square matrix A € R™" is
@ Symmetricif A=AT. Wesay Ae S
® Anti-symmetric if A= —AT
Given any square matrix A € R"™"
@ A+ AT is symmetric
@ A— AT is anti-symmetric
A square matrix can be written as the sum of a symmetric and an
anti-symmetric matrix

A:%m+AU+%m—AU
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Quadratic Forms |

Given a square matrix A € R"" and a vector x € R" the scalar
xTAx € R is called a quadratic form

| |
xTAx:[xl X2 ... x,,] ai a» ... ap 2

Xn

Do AniXi

27:132ixi n n n._n
[Xl X2 ... Xn] . :g (XJ aj,'X,‘)Z E E AjjXiX;

0 j=1 i=1 i=1 j=1
2;21 anjXj
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Quadratic Forms Example

Write f(x) = 2x2 + x2 + 3x1x2 as a quadratic form. (x € R3)
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Quadratic Forms Example

Write f(x) = 2x2 + x? + 3x1x2 as a quadratic form. (x € R3)

1 15 0
f(x)=x" |15 0 O0fx
0 0 2
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Positive Definite Matrix

Given a symmetric matrix A € S"

@ Ais positive definite(PD) if x” Ax > 0 for all non-zero
vectors x € R". Also denoted as A = 0. The set of all positive
definite matrices is denoted as S

@ Ais positive semidefinite(PSD) if x” Ax > 0 for all vectors
x € R". Also denoted as A = 0. The set of all positive
semidefinite matrices is denoted as S’
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Negative Definite Matrix

Given a symmetric matrix A € S"

@ A is negative definite(ND) if x” Ax < 0 for all non-zero
vectors x € R". Also denoted as A < 0.

@ A is negative semidefinite(NSD) if x” Ax < 0 for all vectors
x € R". Also denoted as A < 0.

A symmetric matrix A € S” is indefinite if it is neither positive
semidefinite nor negative semidefinite

Ix1,x € R", xlTAxl > 0, X2TAX2 <0

COMPSCI 4ML3: Tutorial 2 Review of Linear Algebra



Definite Matrices

Positive and Negative Definite Matrices

Given a symmetric matrix A € §”, the matrix —A € S" is
@ negative definite if A is positive definite
@ positive definite if A is negative definite

A positive or negative definite matrix is always full rank and
invertible.
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Positive and Negative Definite Matrices

Example Given any matrix A € R™*" the matrix G = AT A is
positive semidefinite, which is called Gram matrix.
proof.
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Positive and Negative Definite Matrices

Example Given any matrix A € R™*" the matrix G = AT A is
positive semidefinite, which is called Gram matrix.
proof.

Vx cRY xTGx=xTATAx = (AX)T(AX) = ||AX||% >0
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Eigenvectors and Eigenvalues

Given a square matrix A € R"™*", the non-zero vector x € C" is
called the eigenvector of A and A € C is called the corresponding
eigenvalue if

Ax = Ax

Multiplying A by its eigenvector x results in a vector in the same
direction as x, scaled by the corresponding eigenvalue A
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Finding Eigenvectors and Eigenvalues

Rewriting Ax = Ax results in
(A= X)x=0

There exists a non-zero eigenvector iff the nullspace of (A — A/) is
non-empty, which implies (A — Al) is singular

[(A=AN[=0

Expanding the determinant results in a polynomial of degree at
most n

@ Eigenvalues Aq1,..., A, € C are the roots of the polynomial
@ Eigenvectors can be determined by solving linear equations
(A=Xil)x; =0
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Finding Eigenvectors and Eigenvalues

2 4

Example. Find the eigenvalues of A = 1 ol
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Eigenvalues: Properties |

Given a square matrix A € R”

@ The trace of A is equal to the sum of its eigenvalues
n
tr(A) =) N
i=1
@ The determinant of A is equal to the product of its eigenvalues
n
Al =T
i=1

@ Rank of A is equal to the number of its non-zero eigenvalues
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Eigenvalues: Properties Il

@ If Ais invertible, x; are also eigenvectors of A~ with
corresponding eigenvalues (1/);), i.e., A~1x; = (1/A;)(x;)

@ Eigenvalues of D = Diag(d,...,d,) are di,...,d,

n

D= x| =]t =)

i=1

COMPSCI 4ML3: Tutorial 2 Review of Linear Algebra



Quadratic Forms
Definiteness
Eigenvectors and Eigenvalues

Additional rial and Examples Orthogonality

Orthogonal Matrix

@ Two vectors x, y € R” are orthogonal if xTy =0
@ Vector x € R" is normalized if ||x]» =1

@ A matrix U € R"*" is orthogonal if its columns are orthogonal
and are normalized(orthonormal)

vlu=1=uu’

and U1 =UT
@ When multiplied to a vector x € R”, the orthogonal matrix
U € R™"™ will not change the Euclidian norm

[Uxll2 = [[x[|2
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Eigenvectors and Eigenvalues: Symmetric Matrices

Given a symmetric matrix A € S”
@ The eigenvalues of A are real, i.e., A\; € R
@ Eigenvectors of A are orthonormal, i.e., matrix U of
eigenvectors is orthogonal.
The diagonalized form of A € S” is also called eigen
decomposition

A= UNUY = UNUT, A = Diag(\1, ..., An)
Given any vector x € R"

n
xTAx = xTUNUTx = (UTx)TAUTx = yTAy = 3~ Ay
i=1
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Inverse of a Symmetric Matrix

Given a symmetric matrix A € S”, we know that the matrix of its
eigenvectors is orthogonal and full rank, i.e., U™ = UT. If all the
eigenvalues are non-zero, i.e., A is full rank, using the eigen
decomposition we can write

ATt = (UNUTY L = (UT)IAT Ut = untuT

1 1
where A™1 = Diag(/\—l, c )\—n)
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Eigenvalues and Definiteness

The symmetric square matrix A € S” is
@ positive definite if \; > 0
@ positive semidefinite if \; > 0
@ negative definite if \; <0
@ negative semidefinite if A\; <0
()]

indefinite if it has both positive and negative eigenvalues
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Additional Material and Examples
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Quadratic Forms |l

From the equation above it can be concluded that a;; and aj;
contribute to the quadratic form in the same way.
Since xT Ax is a scalar

1 1
xTAx = (xTAx)T =xTATx = xT(EA + EAT)X

1 1
where B = §A + EAT is a symmetric matrix.

@ |If D = Diag(di,...,dn)
xTDx = Z dix?
i=1

COMPSCI 4ML3: Tutorial 2 Review of Linear Algebra



Definition of Singular Values

Singular Values |

Remember Eigenvalues of a symmetric square matrix A € S" are
real.
For a matrix A € R™*" the product AT A € R"™" is a square
symmetric matrix
@ The eigenvalues of AT A are real
@ The eigenvalues of AT A are non-negative
proof. If x € R" is an eigenvector of AT A and X\ is its
corresponding eigenvalue, we know that AT Ax = Ax.
Therefore,

xTAT Ax = (Ax)T(Ax) = ||Ax||3 = x" Ax = \||x]|3

Since ||Ax||3 > 0 and ||x||3 > 0, we conclude that A >0
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Singular Values |l

Given the matrix A € R™*", denote A1,..., A\, € R(may be
repeated) as the eigenvalues of AT A. The singular values of matrix
A are the square root of the eignevalues of AT A

o = VA 1<i<n

@ The rank of matrix A € R™*" is equal to the number of its
non-zero singular values
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Singular Value Decomposition(SVD)

Given a matrix A € R™*" and its non-zero singular values
01,...,0, it can be decomposed(not unique) as

A=UzVvT

@ U c R™™M is orthogonal UTU =/
@ V € R™" is orthogonal VTV = |

@ X e Rmxn
Yi=o, 1<i<r

Y =0, otherwise
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Thin SVD

Given the matrix A € R™*" with rank equal r, the thin SVD can

be represented as
A=UzVvT

@ U € R™* has the only r columns corresponding to
non-negative singular values

@ V € R™" has the only r columns corresponding to
non-negative singular values

@ Y € R™" is a diagonal matrix with

Yi=o;, 1<i<r

Y =0, otherwise
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SVD: Finding Orthogonal Matrices U and V

Eigendecomposition of the symmetric matrix AT A can be
formulated as

ATA=wzvHT(uzvh =(vz"uh(uzvh =v(')vT"

@ The columns v; of matrix V are eigenvectors of AT A

Eigendecomposition of the symmetric matrix AAT can be
formulated as

AAT = (uzvhuzvHT =wzvTyvZ'u") =uExHu"

@ The columns u; of matrix U are eigenvectors of AAT
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SVD and Eigendecomposition

If matrix A € S’} is symmetric and positive semidefinite, the
matrices U and V in the singular value decomposition are the same

A=UzVvT =Uusu’T

In fact, the singular values of A are equal to its eigenvalues \; = o;
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Given A = [1 2], we want to find its SVD. First we compute AT A

ATA = B ﬂ
Solving
‘1;A 43)\‘:)\2—9\:0
eigenvalues of AT A are
A1=5X=0
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Therefore, the singular values of A are
o1 = \/g, oo, =0
Solving

1-5 2 -4 2
(A—)\l)vl—[ ) 4_5:|V1—|:2 _1:|V1—0

. . . . 111
results in the first normalized eignevector v; = 7 |2
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AT A is symmetric and its eigenvectors are orthonormal

»=3s1]

Therefore, matrix V' can be represented as

1 -2
v=|¥ P
NGV
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Computing matrix AAT =1 results in a eignenvector u; = [1]
Therefore, the singular value decomposition of A can be
represented as

1 2)=[1][v5 0]

SINGI-
SIS
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Diagonalizable Matrix

Given a square matrix A € R"*", its eigenvectors x;, and its
eigenvalues \;, two matrices X € R"*" and A € R"*" can be
defined as

X=|x1 x2 ... xn|,N=Diag(A1,..., )

We can write
AX = XA

If X is invertible(i.e, full rank), matrix A is diagonalizable
A=XAX"!
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Orthogonal Matrices Are Full Rank |

If U e R™"is an orthogonal matrix, it is full rank, i.e., all the
columns are linearly independent

U=y w ... u,
| |

proof. If the columns are not linearly independent then

n
Jai,...,an,a; 0, qju; = E ojuj
j=1

J#i
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Orthogonal Matrices Are Full Rank Il

Multiplying by u,-T we have

a,u uj = E ozju uj
176'

Since u;j and u; are orthogonal
ajl|ui® =

which is only possible if a; = 0 and it is a contradiction
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Positive (or Negative) Definite Matrices Are Full Rank

A positive or a negative definite matrix is always full rank.
proof. Suppose ith column is a linear combination of other columns

n
E|X1,...,X,'_1,X,'+1,...,Xn€R7 aj = E Xjaj
Jj=1
JF
Set x; = —1
n X1
E aixi = A =Ax=0
i=1 Xn

Therefore, x” Ax = 0 for a non-zero vector x, which is a
contradiction.
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Eigenvalues and Definiteness: Proof

For the square matrix A € S”, the matrix of eigenvectors
U € R™" is full rank and invertible. Therefore, its columns span
R" and any vector y € R” can be represented in terms of U7 x

n
xTAx=yThy =Y Ny}
i=1

SinceV1<i<n, y,-2 > 0, the symmetric matrix A is
@ positive definite if \; >0
positive semidefinite if A; > 0
negative definite if \; <0
negative semidefinite if A; <0
indefinite if it has both positive and negative eigenvalues
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Rank-Nullity Theorem

Given matrix A € RM*xn

rank(A) + nullity(A) = n
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Eigenvalues: Application to Optimization Problems

Given a symmetric matrix A € S"

@ The solution to the minimization problem

min x" Ax, subject to x|y = 1
xEeR"

is the eigenvector corresponding to the minimum eigenvalue

@ The solution to the maximization problem

max x T Ax, subject to||x|[z =1
x€ERN

is the eigenvector corresponding to the maximum eigenvalue
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Example of Finding Eigenvalues |

Given A= [:g 2] , we want to find its eigenvalues and
eigenvectors
—-5-2A 2 5 5
9 6\ = —30+5A—6A+A"+18 = A°—A—12 = (A+3)(A—4)

Eigenvalues of A are \; = —3 and A\, = 4.
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Solving

-5+3 2] [—2 2
=

(A—)\l)xlz[ 9 ol 1= | g 9:|X1:0

. , . 1
results in the first eignevector x; = [J

Solving

[543 2] [-9 2]
(A—)\g)xz—[ 9 9:|X2—|:_9 2:|X2—0

: . 2
results in the second eignevector x; = 9
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Singular Values: Application to Optimization Problems

Given a matrix A € Rm*n

@ The solution to the minimization problem

A bject t =1
min [|Ax]|, ~ subject tol|x|z

is the eigenvector corresponding to the minimum eigenvalue of
ATA
@ The solution to the maximization problem

A bject t =1
max [|Ax||,  subject to x||2

is the eigenvector corresponding to the maximum eigenvalue
of ATA
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Pseudo-inverse

The pseudo-inverse of a matrix A= ULV T is denoted as
Al = vy tyT
where ¥~1 € R™™ is a diagonal matrix

y:l=1/0;, 1<i<r

-1 _ .
Zij =0, otherwise

@ If m> nand A is full rank, i.e., linearly independent columns,
At = (ATA)7LAT, which is also a left inverse ATA =/

@ If m < nand Ais full rank,i.e., linearly independent rows,
At = AT(AAT)~L, which is also a right inverse AAT = |
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SVD

1 =2 1 =2

s v VT I T v B T R
2 1|l H 2 111op 512
VB VB VB V5

Since A has linearly independent rows, the pseudo-inverse is also a

right inverse

ant =L 2 ) =11

Bl
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Given A = [g 171 ig] we want to find its SVD. First we
compute ATA
80 100 40
ATA= [100 170 140
40 140 200

Eigenvalues of AT A are
A1 =360, A2 =90, \3=0

Note Matrix AT A can have rank at most 2, therefore, it was
expected that A3 = 0.
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Therefore, the singular values of A are
o1 = V360 = 6V10, 02 = v/90 = 3v/10, A3 = 0
The matrix ¥ € R?*3 is represented as

[0 S

Finding eigenvectors of AT A, matrix V can be represented as

1/3  2/3 2/3
V=|-2/3 —2/3 1/3
2/3 —2/3 1/3
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Example of SVD Il

Matrix AAT can be computed as

r [333 81
AA _[81 117

Finding the eigenvalues and eigenvectors of AAT, matrix U can be

represented as
y = [3/vi0 1/V10
~[vo 5
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Example of SVD IV

The singular value decomposition of A can be represented as
4 11 14|
8 7 2|
-

1/v10 -3/¥/10| | 0 3V10 0 —2/3 23 173

[3NE 1/¢EH6¢E 0 0] 13 2/3 2/3
2/3 -2/3 1/3
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Matrix Calculus I

If x e R" and y = f(x) € R”

Iy O 1
Ox1 Oxo " Oxp
dy2  Oyp Oy2
@ | Ox1 Oxp """ Oxp
Ox : : .
Oym  Oym Oym
Ox1 Oxp """ Oxp

@ Given x e R", Ac R™ " and y = Ax € R™

dy
a—A
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Matrix Calculus Il

Given vectors x € R", y € R™, and A € R™*"

oy T Ax T
TR UTA
Ox Y
T
A
Oy A _ \TaT
dy
Given a square matrix A € R"™*"
OxT Ax T T
— = A+ A
Ox X (A+AT)
T
A
o If Ais symmetric, % —2xTA
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