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Introduction

Linear algebra is useful to operate on sets of linear equations.

@ Example: The set of linear equations

xX1+x0+x3=5
x] —2xp —3x3 = —1
2x1+xp —x3 =3

Can be written in matrix format as Ax = b, where

1 1 1 X1 5
A= (1 =2 =3|,x=|x|,b=]-1
2 1 -1 X3 3
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Notations |

A € R™*" Matrix with m rows and n columns

a1 a1 ain

az1  ax azn
A=

dml  am2 dmn

Ajj denotes the entry in row / and column j of matrix A
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Notations Il

x € R": Vector with n-dimensions
X1
X2
Column vector:x = | |, Row vector:x = [x1 x> ... X

Xn

x; denotes the ith element of vector
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@ Main diagonal of matrix: Entries a;; where / = j

a1l a2 ... din
a1 a12 ... adin a1 a2 ... din
dp1 d22 ... din

ani an?2 dnn
dnl dan2 ... dnpn

dmi dm2 --- dmn]
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Definitions Il

@ Diagonal matrix: Every entry except the main diagonal is zero

ai 0o ... 0

0 a» ... 0
A=

0 0 ... a,

Also denoted by Diag(ai, ..., an)
@ Trace: Sum of the entries in main diagonal

tr(A) = zn: aji
i=1
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= O
o

1
0
00 ...1

@ Transpose: If A€ R™" then AT € R™™, where (AT); = Aji

a1l aip din dil] d21 ... amil

a1 a2 ... dazp T d12 a2 ... adm2
A= . . . . ) Al =

dmli dm2 .- d@mn dln d2n -+- A@mn
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Inner Product

Given x,y € R", the product xTy € R is called the inner product
or dot product

Y1
T Y2 .
X y:[xl X2 ... Xn] : :Zx;y,-
. i—1
Yn l

Also denoted by (x,y)
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Matrix Multiplication

Given matrices A € R™*" and B € R"*P the product
C = AB € R™*P is given by

air an ain | [b11 b1z bip
a1 ax acy | (b1 b2 bap

AB = ] ]
| dm1  dm?2 dmn bnl bn2 bnp

B n
> oiqaiibin

n
> i1 a2ibin

n
| > i1 amibit
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n
>orqaiibio
n
> oim1a2ibi

n
> i1 amibio

n

>ie1 @ibip
n

> i1 @2ibip

n
> i1 amibip
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Matrix Multiplication: Properties

Compatibility: Matrices A € R™*" and B € RP*9 are
compatible iff n = p, which means they can be multiplied

Matrix multiplication is associative: (AB)C = A(BC)
Matrix multiplication is distributive: A(B + C) = AB + AC
Matrix multiplication is not commutative: AB # BA
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Matrix-Vector Multiplication

Given a matrix A € R™*" and a column vector x € R” the product
Ax € R™ is defined as follows

n
a1 d12 ... din X1 Z;Zl ariX;
n
a1 axn ... an| |x D oiq a2iXi
Ax = | . . . = .
n
dml @m2 --- dmn Xn Zi:]_ amiXi

Can be interpreted as a linear combination of columns

Ax=|a1| x1+ |ax| xo+ ...+ |an| xn
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Matrix-Matrix Multiplication

AB can be computed by inner product of rows of A and columns
of B ~

. ai"

SR S |

AB = _ by by ... b

R |
m

[af b1 alby ... a]b,
ajbi ajby ... alb,

\'

— a

T T T
lamb1 apb2 ... apbp
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Matrix-Matrix Multiplication

@ AB can also be interpreted by vector-matrix multiplication of
A and columns of B

AB=A by by ... by| = |Aby Aby ... Ab,

@ Multiplication by identity: If A€ R™*" Al, =I,A=A

COMPSCI 4ML3: Tutorial 1 Review of Linear Algebra



Basic Concepts

Matrix Multiplication

Operations

Concepts

Linear System of Eq ns

Additional Material and Examples
Inverse

Inverse of a Matrix

The inverse of a square matrix A € R"*" is a unique matrix
denoted as A~! € R"*" such that

ATA=1=AA""1

Not every matrix has an inverse:

@ If the inverse exists, the matrix A is called invertible or
non-singular

@ |If the inverse does not exist, the matrix A is called
non-invertible or singular
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Transpose: Properties

o (AT =A

o (AB)T =BTAT

@ (A+B)T =AT+BT

COMPSCI 4ML3: Tutorial 1 Review of Linear Algebra



Basic Concepts

Matrix Multiplication
Operations

Co ts

Linear m of Equations

Additionz al and Examples .
Properties

Inverse: Properties

o (AH)l=A

@ (AB)1=B"1A"1

P (A—l)T — (AT)_l
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Basic Concepts

A function f : R” — R is a norm if it satisfies:
Non-negativity: Vx € R", f(x) >0
Definiteness: f(x) =0iff x =0
Homogeneity: Vx € R", t € R, f(tx) < |t|f(x)
Triangle inequality: Vx,y € R", f(x +y) < f(x) + f(y)
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Vector Norms

@ Euclidean norm(¢2 norm): ||x||2 =

2 T
Ix[[2 = x " x

n
® {1 norm: [|x[ly =) |xi
i=0

@ /oo norm: ||x||ec = max |x;
1

n

o 0, norm: |||, = (Z|x,-yp)1/"

i=0
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Linear Dependency

Given a set of vectors {xi,...,x,} C R they are

@ Linearly independent if no vector can be represented as a
linear combination of the remaining vectors:

n
Vi e [n], V{Oq, e QG1, Oy e, Oén} CR, x; # Zanj
j=1
JF#i
@ Linearly dependent if one of the vectors can be represented
as a linear combination of the remaining vectors:

n

di e [n], {051,... s OG—1, Qg1 - ,Oln} CR, x; = E QjX;
j=1
J#i
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Linear Dependency: Example

The following vectors are linearly dependent

1 4 2
x1=12|,x=1|1|,x3=[-3
3 5 -1

since x3 = —2x1 + xo
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Given a set of vectors S = {x1,..., Xy}, the span of S is the set of
vectors that can be written as the linear combination of vectors in

set S
n
span({x1,...,xp}) ={y:y = Za;x,-, aj € R}
i=1
If x1,...,x, € R" are linearly independent

span({xq,...,xp}) =R"
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For a matrix A € R™M*n

@ The column rank of a matrix A is the maximum number of
linearly independent columns of A

@ The row rank of a matrix A is the maximum number of
linearly independent rows of A

@ The column rank and row rank are equal and they are called
the rank of matrix A

m If rank(A) < m, the rows are linearly dependent
m If rank(A) < n, the columns are linearly dependent
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Rank: Properties

For A e R™*"
@ rank(A) < min(m, n) and if rank(A) = min(m, n), A is called
full rank
@ rank(A) = rank(AT)
@ If B € R"™P, rank(AB) < min(rank(A), rank(B))
@ If B R™" rank(A+ B) < rank(A) + rank(B)
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Solving Linear System of Equations |

A set of m equations with n variables xq, ..., x, can be represented
by matrices

ai1x1 + apxe + ...+ ainxy = by

as1x1 + amxa + ...+ anxp = by

am1X1 + ameXo + ... + amnXn = bm
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Solving Linear System of Equations Il

We can represent the equations in previous slide in matrix form
Ax=0b

all ai? . din X1 b1
a1 axn ... an X2 b
A= . . . . y X = . ) b=

ami am2 ... amn Xp bm

Note It can be interpreted as linear combination of columns of A

alxi+la|x+...4+ |an| xn= | b
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Solving Linear System of Equations: Solution Set

If A€ R"is invertible, there exists a unique solution
x=A"1bh

In terms of rank for the system Ax = b we have
@ If rank(A) = rank[A|b] we know that b € R(A)

m If rank(A) = rank[A|b] = n, the system has a unique solution
m If rank(A) = rank[A|b] < n, the system has infinitely many
solutions

@ If rank(A) < rank[A|b], we know that b ¢ R(.A) and the
system is inconsistent and has no solution
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Trace: Properties

o tr(A) =tr(AT)

tr(A+ B) = tr(A) + tr(B)

Vt € R, tr(tA) = ttr(A)

if AB is square, tr(AB) = tr(BA)

@ if ABC is square, tr(ABC) = tr(CAB) = tr(BCA)
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Norm Inequalities

@ Triangle inequality: |x + y|| < ||x]| + [|¥l

@ Cauchy-Schwarz inequality: For vectors u and v,
[{u, V)12 < (u, u){v, v) or [{u,v)] < [lufl|lv]]
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Range and Projection

@ The range of a matrix A € R™*" is denoted by R(A) and is
the span of columns of A

R(A)={y e R":y=Ax, x € R"}

@ The projection of a vector y € R™ onto
span({x1,...,Xxn}), X € R™ is a vector in the span that is as
close as possible to y with respect to £ norm

Proj(y; {x1,...,xn}) = arg min lly — vl|2
vespan({x1,...,xn})
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Nullspace

Nullspace of matrix A € R™*" is the set of all vectors that their
matrix vector multiplication by A is equal to 0

N(A)={xeR": Ax =0}
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Outer Product

Given vectors x € R" and y € R, the outer product
xyT € R™™ is defined as

X1 X1yr X1y2 ... X1Ym

T+ |*x Xo¥1 XeY2 ... XoYm
= oy ooyml =0 .

Xn XnY1 XnY2 .. XnYm
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Matrix Norms

IAx]
o Al = sup 12l

XF# 0 ” ”P
For A € RM™*"

o ||A1 = 1n<—1lax Z |ajj|, which is the maximum of absolute

column sum
n

@ ||Alloc = max Z |ajj|, which is the maximum of absolute

1<i<m
ZZIau! =/ tr(ATA)

j=1
row sum
i=1 j=1

@ Frobenius norm: ||A||F =
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Projection and Linear equations

If Ae R™ " is full rank and n < m for y € R™

Proj(y; A) = argmin|ly — v[2 = A(ATA) ATy
VER(A)

Remember If A € R™*" and x € R", y = Ax is a vector in R™ and
given y € R™

m

1F—ylB=>Y G-y =0-y)(—y)=(Ax—y) (Ax—y)
i=1
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Range and Nullspace

For A€ R™" R(AT) and N(A) are disjoint sets that span the
entire space of R". These are called orthogonal complements
and are denoted as R(AT) = N(A)*

{u+v:ueR(AT), ve N(A)} =R", R(AT) NN (A) = {0}
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More on Linear System of Equations

For the linear equation Ax = b, where A € R"*" the following are
equivalent

Ax = b has a unique solution in R”

A is invertible

rank(A) = n

Ax = 0 has a unique solution of x =0

N(A) = {0}
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Determinant |

The determinant of A € R2*? can be computed as

a1 a2

= d11822 — 412421
a1 a»

The determinant of A € R3%3 can be computed as

a1 ape a3
a1 ax ax3| = aiiazassz + ai2a23as1 + aizasi1asp
a3l a32 a3

—d11423432 — d12421433 — d13422431
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Determinant Il

@ Minors: For a square matrix A € R™" the minor of the
entry a;; denoted by M;; is the determinant of a smaller square
matrix by removing the ith row and jth column of A

@ Cofactors: For a square matrix A € R"*", the cofactor of the
entry a;; denoted by Cj; is expressed as (—1)i+jl\/l,-J-

@ The determinant of the square matrix A € R"*" can be
computed by cofactor expansion along column j or row i

n n
Column expansion: det(A) = Z a;Cj = Z aj(—=1)" My
i=1 i=1

Row expansion: det(A) = Z a;Cj = Z aj(—1)" My
j=1 j=1
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Determinant: Properties

For a square matrix A € R"
o |Al=|AT|

o |AB|=|A||B|

@ |A| =0 iff A is singular

@ If Ais non-singular, |A| =
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@ Adjoint Matrix: The adjoint of the square matrix A is the
transpose of cofactor matrix: adj(A) = CT
@ The inverse of a square matrix A € R" can be calculated as

~ 1
A7l = = t(A)adJ(A)
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Solving Linear System of Equations |

For a linear equation Ax = b,

IR I
b

Ax = day a2 ... ap X:2 = .2
| s,

Denote D; as the matrix that replaces the column i in matrix A
with the column vector b

D,'z a‘l 3‘2 a,-‘_l b a,-‘+1 a‘,,
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Solving Linear System of Equations Il

The solution set of Ax = b can be found by Cramer’s rule

det(D,-)

Vi e [n], xi = det(A)
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First Example Revisited |

Consider the linear system of equations Ax = b

1 1 1 X1 5
A= |1 -2 -3|,x=|x]|,b=|-1
2 1 -1 X3 3

D;s are constructed as

5 1 1 1 5 1 1 1 5
Di=|-1 -2 -3|,Db=|1 -1 =3|,D3=1]1 —2 -1
3 01 -1 2 3 -1 2 1 3
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First Example Revisited |l

The determinant are computed

|A| =5,
|D1| = 207 |D2| = _107 |D3| =15
Therefore,
2 -1 1
X1—€0:4,X1—T0——2,X1——5:3
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