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Introduction

Linear algebra is useful to operate on sets of linear equations.

Example: The set of linear equations

x1 + x2 + x3 = 5

x1 − 2x2 − 3x3 = −1

2x1 + x2 − x3 = 3

Can be written in matrix format as Ax = b, where

A =

1 1 1
1 −2 −3
2 1 −1

 , x =

x1x2
x3

 , b =

 5
−1
3


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Notations I

A ∈ Rm×n: Matrix with m rows and n columns

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


Aij denotes the entry in row i and column j of matrix A
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Notations II

x ∈ Rn: Vector with n-dimensions

Column vector: x =


x1
x2
...
xn

 , Row vector: x =
[
x1 x2 . . . xn

]

xi denotes the ith element of vector
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Definitions I

Main diagonal of matrix: Entries aij where i = j

A =


a11 a12 . . . a1n
a21 a22 . . . a1n
...

...
. . .

...
an1 an2 . . . ann

 , B =



a11 a12 . . . a1n
a21 a22 . . . a1n
...

...
. . .

...
an1 an2 . . . ann
...

...
. . .

...
am1 am2 . . . amn


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Definitions II

Diagonal matrix: Every entry except the main diagonal is zero

A =


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an


Also denoted by Diag(a1, . . . , an)

Trace: Sum of the entries in main diagonal

tr(A) =
n∑

i=1

aii
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Definitions III

Identity matrix: I = Diag(1, . . . , 1)

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Transpose: If A ∈ Rm×n then AT ∈ Rn×m, where (AT )ij = Aji

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , AT =


a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn


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Inner Product

Given x , y ∈ Rn, the product xT y ∈ R is called the inner product
or dot product

xT y =
[
x1 x2 . . . xn

]

y1
y2
...
yn

 =
n∑

i=1

xiyi

Also denoted by ⟨x , y⟩
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Matrix Multiplication

Given matrices A ∈ Rm×n and B ∈ Rn×p the product
C = AB ∈ Rm×p is given by

AB =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



b11 b12 . . . b1p
b21 b22 . . . b2p
...

...
. . .

...
bn1 bn2 . . . bnp



=


∑n

i=1 a1ibi1
∑n

i=1 a1ibi2 . . .
∑n

i=1 a1ibip∑n
i=1 a2ibi1

∑n
i=1 a2ibi2 . . .

∑n
i=1 a2ibip

...
...

. . .
...∑n

i=1 amibi1
∑n

i=1 amibi2 . . .
∑n

i=1 amibip


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Matrix Multiplication: Properties

Compatibility: Matrices A ∈ Rm×n and B ∈ Rp×q are
compatible iff n = p, which means they can be multiplied

Matrix multiplication is associative: (AB)C = A(BC )

Matrix multiplication is distributive: A(B + C ) = AB + AC

Matrix multiplication is not commutative: AB ̸= BA
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Matrix-Vector Multiplication

Given a matrix A ∈ Rm×n and a column vector x ∈ Rn the product
Ax ∈ Rm is defined as follows

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



x1
x2
...
xn

 =


∑n

i=1 a1ixi∑n
i=1 a2ixi

...∑n
i=1 amixi


Can be interpreted as a linear combination of columns

Ax =

a1
 x1 +

a2
 x2 + . . .+

an
 xn
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Matrix-Vector multiplication

Matrix-Matrix Multiplication I

AB can be computed by inner product of rows of A and columns
of B

AB =


aT1
aT2
...
aTm


b1 b2 . . . bp



=


aT1 b1 aT1 b2 . . . aT1 bp
aT2 b1 aT2 b2 . . . aT2 bp
...

...
. . .

...
aTmb1 aTmb2 . . . aTmbp


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Matrix-Vector multiplication

Matrix-Matrix Multiplication II

AB can also be interpreted by vector-matrix multiplication of
A and columns of B

AB = A

b1 b2 . . . bp

 =

Ab1 Ab2 . . . Abp


Multiplication by identity: If A ∈ Rm×n, AIn = ImA = A
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Inverse

Inverse of a Matrix

The inverse of a square matrix A ∈ Rn×n is a unique matrix
denoted as A−1 ∈ Rn×n such that

A−1A = I = AA−1

Not every matrix has an inverse:

If the inverse exists, the matrix A is called invertible or
non-singular

If the inverse does not exist, the matrix A is called
non-invertible or singular
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Properties

Transpose: Properties

(AT )T = A

(AB)T = BTAT

(A+ B)T = AT + BT
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Properties

Inverse: Properties

(A−1)−1 = A

(AB)−1 = B−1A−1

(A−1)T = (AT )−1
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Norms

Norms

A function f : Rn → R is a norm if it satisfies:

1 Non-negativity: ∀x ∈ Rn, f (x) ≥ 0

2 Definiteness: f (x) = 0 iff x = 0

3 Homogeneity: ∀x ∈ Rn, t ∈ R, f (tx) ≤ |t|f (x)
4 Triangle inequality: ∀x , y ∈ Rn, f (x + y) ≤ f (x) + f (y)
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Norms

Vector Norms

Euclidean norm(ℓ2 norm): ∥x∥2 =

√√√√ n∑
i=0

x2i

∥x∥22 = xT x

ℓ1 norm: ∥x∥1 =
n∑

i=0

|xi |

ℓ∞ norm: ∥x∥∞ = max
i

|xi |

ℓp norm: ∥x∥p =
( n∑

i=0

|xi |p
)1/p
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Linear Dependency

Linear Dependency

Given a set of vectors {x1, . . . , xn} ⊂ Rm they are

Linearly independent if no vector can be represented as a
linear combination of the remaining vectors:

∀i ∈ [n], ∀{α1, . . . , αi−1, αi+1, . . . , αn} ⊂ R, xi ̸=
n∑

j=1
j ̸=i

αjxj

Linearly dependent if one of the vectors can be represented
as a linear combination of the remaining vectors:

∃i ∈ [n], {α1, . . . , αi−1, αi+1, . . . , αn} ⊂ R, xi =
n∑

j=1
j ̸=i

αjxj
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Linear Dependency

Linear Dependency: Example

The following vectors are linearly dependent

x1 =

12
3

 , x2 =

41
5

 , x3 =

 2
−3
−1


since x3 = −2x1 + x2
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Span and Spaces

Span

Given a set of vectors S = {x1, . . . , xn}, the span of S is the set of
vectors that can be written as the linear combination of vectors in
set S

span({x1, . . . , xn}) = {y : y =
n∑

i=1

αixi , αi ∈ R}

If x1, . . . , xn ∈ Rn are linearly independent

span({x1, . . . , xn}) = Rn
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Rank

Rank

For a matrix A ∈ Rm×n

The column rank of a matrix A is the maximum number of
linearly independent columns of A

The row rank of a matrix A is the maximum number of
linearly independent rows of A

The column rank and row rank are equal and they are called
the rank of matrix A

If rank(A) ≤ m, the rows are linearly dependent
If rank(A) ≤ n, the columns are linearly dependent
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Rank

Rank: Properties

For A ∈ Rm×n

rank(A) ≤ min(m, n) and if rank(A) = min(m, n), A is called
full rank

rank(A) = rank(AT )

If B ∈ Rn×p, rank(AB) ≤ min(rank(A), rank(B))

If B ∈ Rm×n, rank(A+ B) ≤ rank(A) + rank(B)
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Solving Linear System of Equations I

A set of m equations with n variables x1, . . . , xn can be represented
by matrices

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

am1x1 + am2x2 + . . .+ amnxn = bm
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Solving Linear System of Equations II

We can represent the equations in previous slide in matrix form
Ax = b

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bm


Note It can be interpreted as linear combination of columns of Aa1

 x1 +

a2
 x2 + . . .+

an
 xn =

b

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Solving Linear System of Equations: Solution Set

If A ∈ Rn is invertible, there exists a unique solution

x = A−1b

In terms of rank for the system Ax = b we have

If rank(A) = rank[A|b] we know that b ∈ R(A)

If rank(A) = rank[A|b] = n, the system has a unique solution
If rank(A) = rank[A|b] < n, the system has infinitely many
solutions

If rank(A) < rank[A|b], we know that b /∈ R(A) and the
system is inconsistent and has no solution
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Trace: Properties

tr(A) = tr(AT )

tr(A+ B) = tr(A) + tr(B)

∀t ∈ R, tr(tA) = ttr(A)

if AB is square, tr(AB) = tr(BA)

if ABC is square, tr(ABC ) = tr(CAB) = tr(BCA)
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Norm Inequalities

Triangle inequality: ∥x + y∥ ≤ ∥x∥+ ∥y∥

Cauchy–Schwarz inequality: For vectors u and v ,
|⟨u, v⟩|2 ≤ ⟨u, u⟩⟨v , v⟩ or |⟨u, v⟩| ≤ ∥u∥∥v∥
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Range and Projection

The range of a matrix A ∈ Rm×n is denoted by R(A) and is
the span of columns of A

R(A) = {y ∈ Rm : y = Ax , x ∈ Rm}

The projection of a vector y ∈ Rm onto
span({x1, . . . , xn}), xi ∈ Rm is a vector in the span that is as
close as possible to y with respect to ℓ2 norm

Proj(y ; {x1, . . . , xn}) = argmin
v∈span({x1,...,xn})

∥y − v∥2
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Nullspace

Nullspace of matrix A ∈ Rm×n is the set of all vectors that their
matrix vector multiplication by A is equal to 0

N (A) = {x ∈ Rn : Ax = 0}
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Outer Product

Given vectors x ∈ Rn and y ∈ Rm, the outer product
xyT ∈ Rn×m is defined as

xyT =


x1
x2
...
xn

 [
y1 y2 . . . ym

]
=


x1y1 x1y2 . . . x1ym
x2y1 x2y2 . . . x2ym
...

...
. . .

...
xny1 xny2 . . . xnym


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Matrix Norms

∥A∥p = sup
x ̸=0

∥Ax∥p
∥x∥p

For A ∈ Rm×n

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij |, which is the maximum of absolute

column sum

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij |, which is the maximum of absolute

row sum

Frobenius norm: ∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij | =
√

tr(ATA)
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Projection and Linear equations

If A ∈ Rm×n is full rank and n ≤ m for y ∈ Rm

Proj(y ;A) = argmin
v∈R(A)

∥y − v∥2 = A(ATA)−1AT y

Remember If A ∈ Rm×n and x ∈ Rn, ŷ = Ax is a vector in Rm and
given y ∈ Rm

∥ŷ − y∥22 =
m∑
i=1

(ŷi − yi )
2 = (ŷ − y)T (ŷ − y) = (Ax − y)T (Ax − y)
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Range and Nullspace

For A ∈ Rm×n,R(AT ) and N (A) are disjoint sets that span the
entire space of Rn. These are called orthogonal complements
and are denoted as R(AT ) = N (A)⊥

{u + v : u ∈ R(AT ), v ∈ N (A)} = Rn, R(AT ) ∩N (A) = {0}
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More on Linear System of Equations

For the linear equation Ax = b, where A ∈ Rn×n, the following are
equivalent

Ax = b has a unique solution in Rn

A is invertible

rank(A) = n

Ax = 0 has a unique solution of x = 0

N (A) = {0}
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Determinant I

The determinant of A ∈ R2×2 can be computed as∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

The determinant of A ∈ R3×3 can be computed as∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a12a21a33 − a13a22a31

COMPSCI 4ML3: Tutorial 1 Review of Linear Algebra



Basic Concepts
Matrix Multiplication

Operations
Concepts

Linear System of Equations
Additional Material and Examples

Determinant II

Minors: For a square matrix A ∈ Rn×n, the minor of the
entry aij denoted by Mij is the determinant of a smaller square
matrix by removing the ith row and jth column of A
Cofactors: For a square matrix A ∈ Rn×n, the cofactor of the
entry aij denoted by Cij is expressed as (−1)i+jMij

The determinant of the square matrix A ∈ Rn×n can be
computed by cofactor expansion along column j or row i

Column expansion: det(A) =
n∑

i=1

aijCij =
n∑

i=1

aij(−1)i+jMij

Row expansion: det(A) =
n∑

j=1

aijCij =
n∑

j=1

aij(−1)i+jMij
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Determinant: Properties

For a square matrix A ∈ Rn

|A| = |AT |

|AB| = |A||B|

|A| = 0 iff A is singular

If A is non-singular, |A| = 1

|A−1|
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Inverse: Calculation

Cofactor Matrix: The matrix consisted of cofactors

C =


C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn


Adjoint Matrix: The adjoint of the square matrix A is the
transpose of cofactor matrix: adj(A) = CT

The inverse of a square matrix A ∈ Rn can be calculated as

A−1 =
1

det(A)
adj(A)
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Solving Linear System of Equations I

For a linear equation Ax = b,

Ax =

a1 a2 . . . an



x1
x2
...
xn

 =


b1
b2
...
bn


Denote Di as the matrix that replaces the column i in matrix A
with the column vector b

Di =

a1 a2 . . . ai−1 b ai+1 . . . an


COMPSCI 4ML3: Tutorial 1 Review of Linear Algebra



Basic Concepts
Matrix Multiplication

Operations
Concepts

Linear System of Equations
Additional Material and Examples

Solving Linear System of Equations II

The solution set of Ax = b can be found by Cramer’s rule

∀i ∈ [n], xi =
det(Di )

det(A)

COMPSCI 4ML3: Tutorial 1 Review of Linear Algebra



Basic Concepts
Matrix Multiplication

Operations
Concepts

Linear System of Equations
Additional Material and Examples

First Example Revisited I

Consider the linear system of equations Ax = b

A =

1 1 1
1 −2 −3
2 1 −1

 , x =

x1x2
x3

 , b =

 5
−1
3


Di s are constructed as

D1 =

 5 1 1
−1 −2 −3
3 1 −1

 , D2 =

1 5 1
1 −1 −3
2 3 −1

 , D3 =

1 1 5
1 −2 −1
2 1 3


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First Example Revisited II

The determinant are computed

|A| = 5,

|D1| = 20, |D2| = −10, |D3| = 15

Therefore,

x1 =
20

5
= 4, x1 =

−10

5
= −2, x1 =

15

5
= 3
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