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REVIEW: INDEPENDENCE

* X AND Y ARE INDEPENDENT IF P(X,Y) = p(OPLY

ASSUME X1, ...., X;, ARE INDEPENDENT GIVEN Y

e P(Xy, Xy, oo, Xe|Y) =
' Z?CX\\I;) ?(XE\Y) S PCXK[Y)



STATISTICAL APPROACH TO ML

* OUR GOAL IS TO DO WELL ON NEW/UNSEEN (TEST) DATA
* WE WERE MOSTLY MINIMIZING THE TRAINING ERROR
e DIRECTLY/SYSTEMATICALLY OPTIMIZING THE TEST ERROR?

* THERE IS UNCERTAINLY ABOUT THE UNSEEN DATA

* WE CANNOT BE 100% SURE ABOUT THE PERFORMANCE OF ANY
METHOD ON THE TEST DATA

* A METHOD THAT WORKS WELL ON TEST SET MOST OF THE TIME<¢




I.D ASSUMPTION

* ASSUME THERE IS AN UNDERLYING (UNKNOWN]
DISTRIBUTION D

* ASSUME THAT EACH OF THE TRAINING AND TEST INSTANCES

ARE SAMPLED INDEPENDENTLY FROM D
e

* WE SAY TRAIN AND TEST SETS ARE I.I.D. (INDEPENDENT AND
IDENTICALLY DISTRIBUTED) SAMPLES GENERATED FROM D




l.1.D ASSUMPTION

* WHY ARE THESE ASSUMPTIONS NECESSARY ¢
* SAME DISTRIBUTION FOR ALL SAMPLES (“IDENTICALLY")
* INDEPENDENT SAMPLES ("'INDEPENDENTLY")
* SAME DISTRIBUTION FOR TRAIN AND TEST
e THE DISTRIBUTION IS UNKNOWN
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PARAMETER ESTIMATION

* ASSUME THAT THE DISTRIBUTION COMES FROM SOME
KNOWN FAMILY

 BERNOULLI, GAUSSIAN, ...

* USE THE TRAINING SET TO ESTIMATE THE VALUE OF THE
UNKNOWN DISTRIBUTION PARAMETERS

» USEFUL IN BOTH UNSUPERVISED AND SUPERVISED LEARNING




BIASED COIN EXAMPLE (UNSUPERVISED)

* FLIPPING A COIN
* OUTCOME IS HEAD (O) ORTAIL (1), SO x € {0,1}

*Px=0)=a,Px=1)=1—«a
—
* x IS A BERNOULLI RANDOM VARIABLE
* BIAS (a) IS UNKNOWN (THE PARAMETER)

* GIVEN AN I.I.D SAMPLE, ESTIMATE «

« X = (x1,x?%,x53,...,x™) A g
c EG. n = 10, X = (0,0,1,1,0,1,0,1,0,0) A= o
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ESTIMATING THE BIAS OF THE COIN

* LET ny =#HEADS, n, = #TAILS (SO ny + ny = n)
— —~
Mo

A GOOD ESTIMATE®?

IS =
n0+n1

* [S THERE A RATIONAL BEHIND THIS ESTIMATE?



MAXIMUM LIKELIHOOD ESTIMATE (MLE)

GIVEN THE TRAINING SET X = (x1,x2, ..., x™), ESTIMATE a.

* MLE MAXIMIZES THE PROBABILITY OF THE OBSERVATIONS

GIVEN THE PARAMETERS > ke \ﬁ\m&
,
= argmax P (X|a)
a -
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* EQUIVALENTLY (WHY?)

 aMl = argmin -0 XP(x'|a))
) log (?U&'\“’U)



NEGATIVE-LOG-LIKELIHOOD
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MAXIMUM LIKELIHOOD FOR COINS
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MAXIMUM A POSTERIORI ESTIMATE

* MAXIMIZES THE PROBABILITY OF THE PARAMETERS GIVEN
THE OBSERVATIONS

MAP

‘a = argmax P (a|X)
a

o aMAP = argmin(—Loc(P(@)) — X, L0G P(x!|a))






PRIOR VS POSTERIOR DISTRIBUTIONS

* P(a) CAPTURES THE PRIOR DISTRIBUTION
* P(a|X) CAPTURES THE POSTERIOR DISTRIBUTION

* I[N OTHER WORDS,
* WE START BY A PRIOR BELIEF ABOUT VALUE OF «
e OUR BELIEF IS UPDATED AFTER SEEING SOME REAL DATA
* THIS IS A BAYESIAN APPROACH



MAP FOR COINS = UNIFORM PRIOR



MAP FOR COINS = NONUNIFORM PRIOR
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