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REVIEW: BAYES RULE, CHAIN RULE

• JOINT DISTRIBUTION: 𝑃(𝑋, 𝑌)

• SUM RULE: 𝑃 𝑋 =

• CONDITIONAL DISTRIBUTION: 𝑃(𝑋|𝑌) =

• BAYES RULE: 𝑃 𝑋, 𝑌

• CHAIN RULE: 𝑃 𝑋1, 𝑋2, … , 𝑋𝑘 =

• 𝑃 𝑋1, 𝑋2, … , 𝑋𝑘|𝑌 =

•



REVIEW: INDEPENDENCE

• 𝑋 AND 𝑌 ARE INDEPENDENT IF 𝑃(𝑋, 𝑌)

ASSUME 𝑋1, … . , 𝑋𝑘 ARE INDEPENDENT GIVEN Y

• 𝑃 𝑋1, 𝑋2, … , 𝑋𝑘|𝑌 =

•



STATISTICAL APPROACH TO ML

• OUR GOAL IS TO DO WELL ON NEW/UNSEEN (TEST) DATA

• WE WERE MOSTLY MINIMIZING THE TRAINING ERROR

• DIRECTLY/SYSTEMATICALLY OPTIMIZING THE TEST ERROR?

• THERE IS UNCERTAINLY ABOUT THE UNSEEN DATA

• WE CANNOT BE 100% SURE ABOUT THE PERFORMANCE OF ANY

METHOD ON THE TEST DATA

• A METHOD THAT WORKS WELL ON TEST SET MOST OF THE TIME?



I.I.D ASSUMPTION

• ASSUME THERE IS AN UNDERLYING (UNKNOWN) 

DISTRIBUTION 𝐷

• ASSUME THAT EACH OF THE TRAINING AND TEST INSTANCES

ARE SAMPLED INDEPENDENTLY FROM 𝐷

• WE SAY TRAIN AND TEST SETS ARE I.I.D. (INDEPENDENT AND

IDENTICALLY DISTRIBUTED) SAMPLES GENERATED FROM 𝐷



I.I.D ASSUMPTION

• WHY ARE THESE ASSUMPTIONS NECESSARY?

• SAME DISTRIBUTION FOR ALL SAMPLES (“IDENTICALLY”)

• INDEPENDENT SAMPLES (“INDEPENDENTLY”)

• SAME DISTRIBUTION FOR TRAIN AND TEST

• THE DISTRIBUTION IS UNKNOWN



PARAMETER ESTIMATION

• ASSUME THAT THE DISTRIBUTION COMES FROM SOME

KNOWN FAMILY

• BERNOULLI, GAUSSIAN, …

• USE THE TRAINING SET TO ESTIMATE THE VALUE OF THE

UNKNOWN DISTRIBUTION PARAMETERS

• USEFUL IN BOTH UNSUPERVISED AND SUPERVISED LEARNING



BIASED COIN EXAMPLE (UNSUPERVISED)

• FLIPPING A COIN

• OUTCOME IS HEAD (0) OR TAIL (1), SO 𝑥 ∈ {0,1}

• 𝑃 𝑥 = 0 = 𝛼, 𝑃 𝑥 = 1 = 1 − 𝛼

• 𝑥 IS A BERNOULLI RANDOM VARIABLE

• BIAS (𝛼) IS UNKNOWN (THE PARAMETER)

• GIVEN AN I.I.D SAMPLE, ESTIMATE 𝜶

• 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)

• E.G., 𝑛 = 10, 𝑋 = (0,0,1,1,0,1,0,1,0,0)



ESTIMATING THE BIAS OF THE COIN

• LET 𝑛0 =#HEADS, 𝑛1 = #TAILS (SO 𝑛0 + 𝑛1 = 𝑛)

• IS ො𝛼 =
𝑛0

𝑛0+𝑛1
A GOOD ESTIMATE?

• IS THERE A RATIONAL BEHIND THIS ESTIMATE?



MAXIMUM LIKELIHOOD ESTIMATE (MLE)

GIVEN THE TRAINING SET 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), ESTIMATE 𝛼.

• MLE MAXIMIZES THE PROBABILITY OF THE OBSERVATIONS

GIVEN THE PARAMETERS

• 𝜶𝑴𝑳 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝜶

𝑷 (𝑿|𝜶)

• EQUIVALENTLY (WHY?)

• 𝜶𝑴𝑳 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝜶

−LOG σ𝑖𝑷 𝒙𝒊 𝜶



NEGATIVE-LOG-LIKELIHOOD



MAXIMUM LIKELIHOOD FOR COINS





MAXIMUM A POSTERIORI ESTIMATE

• MAXIMIZES THE PROBABILITY OF THE PARAMETERS GIVEN

THE OBSERVATIONS

• 𝜶𝑴𝑨𝑷 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝜶

𝑷 (𝜶|𝑿)

• 𝛼𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼

−LOG 𝑃(𝛼) − σ𝑖=1
𝑛

LOG𝑷(𝑥𝑖|𝛼)





PRIOR VS POSTERIOR DISTRIBUTIONS

• P(𝛼) CAPTURES THE PRIOR DISTRIBUTION

• P(𝛼|𝑋) CAPTURES THE POSTERIOR DISTRIBUTION

• IN OTHER WORDS, 

• WE START BY A PRIOR BELIEF ABOUT VALUE OF 𝛼

• OUR BELIEF IS UPDATED AFTER SEEING SOME REAL DATA

• THIS IS A BAYESIAN APPROACH



MAP FOR COINS – UNIFORM PRIOR



MAP FOR COINS – NONUNIFORM PRIOR
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