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HIGH-DIMENSIONAL DATA VISUALIZATION

• WE HAVE 𝑛 DATA POINTS

• EACH 𝑑 DIMENSIONAL

• HOW CAN WE VISUALIZE 𝑋𝑛×𝑑? 

• FOR NOW ASSUME THERE IS NO 𝑌 VALUE

• IF 𝑑 = 1 OR 𝑑 = 2 (OR MAYBE 𝑑 = 3)?



HIGH-DIMENSIONAL DATA

SAY YOU HAVE A DATA SET OF IMAGES

HOW TO VISUALIZE?

• MAP THE DATA SET TO A LOW DIMENSIONAL SPACE

• OPPOSITE OF WHAT WE DID FOR NON-LINEAR CURVE-FITTING!

• HOW TO MAP THE DATA?





FINDING A GOOD MAPPING

• SIMPLE CASE: 

• THE ORIGINAL SPACE IS 2D

• THE MAPPED SPACE IS 1D

• THE MAPPING IS LINEAR

• EXAMPLE



IN CONTRAST TO LS? (EXAMPLE)



PROBLEM FORMULATION

• MAP 𝑥 ∈ 𝑅𝑑 TO 𝑧 ∈ 𝑅𝑞 WITH 𝑞 < 𝑑

• A 𝑞 × 𝑑 MATRIX CAN REPRESENT A LINEAR MAPPTING: 

𝑧 = 𝐴𝑥

• HOMOGENEOUS MAPPING

• WE ASSUME 𝐴𝐴𝑇 = 𝐼 (WHY?)

• BUT 𝐴𝑇𝐴 ≠ 𝐼! (WHY?)

• WHICH MAPPING 𝐴 IS “GOOD”? HOW TO FIND IT?



RECONSTRUCTING DATA

• A LINEAR MAPPING TO A LOWER DIMENSIONAL SPACE

MAY INEVITABLY LOSE SOME INFORMATION

• TRY TO ``RECONSTRUCT THE DATA’’

• MEASURE THE RECONSTRUCTION ERROR

• EXAMPLE



MINIMIZING THE RECONSTRUCTION ERROR

• MIN
𝐴,𝐵

σ𝑖 𝑥
𝑖 − 𝐵𝐴𝑥𝑖

2

2

WHERE

• 𝐴 IS 𝑞 × 𝑑

• B IS 𝑑 × 𝑞

• 𝐴𝐴𝑇 = 𝐼𝑞×𝑞

• EXAMPLE: WHAT IF 𝑞 = 𝑑?



MINIMIZING THE RECONSTRUCTION ERROR

• MIN
𝐴,𝐵

σ𝑖 𝑥
𝑖 − 𝐵𝐴𝑥𝑖

2

2

• S.T. 𝐴𝐴𝑇 = 𝐼𝑞×𝑞

• GIVEN 𝐴, WHAT IS THE BEST INVERSE MAPPING?

• 𝐵 = 𝐴𝑇



SOLUTION TO THE MINIMIZATION PROBLEM

• 𝐵 = 𝐴𝑇

• MIN
𝐴
σ𝑖 𝑥

𝑖 − 𝐴𝑇𝐴𝑥𝑖
2

SUBJECT TO 𝐴𝐴𝑇 = 𝐼𝑞×𝑞

• ASSUME THE DATA IS CENTERED: 
1

n
σ𝑖 𝑥

𝑖 = [0,… , 0]𝑇

• WHAT TO DO IF DATA IS NOT CENTERED?



CENTERING THE DATA



SOLUTION TO THE MINIMIZATION PROBLEM

• 𝐵 = 𝐴𝑇

• MIN
𝐴
σ𝑖 𝑥

𝑖 − 𝐴𝑇𝐴𝑥𝑖
2

SUBJECT TO 𝐴𝐴𝑇 = 𝐼𝑞×𝑞

• ASSUME THE DATA IS CENTERED: 
1

n
σ𝑖 𝑥

𝑖 = [0,… , 0]𝑇

• OPTIMAL MATRIX 𝐴 CONSISTS OF THE EIGEN-VECTORS OF

THE COVARIANCE MATRIX 𝑋𝑇𝑋 (CORRESPONDING TO THE

TOP 𝑞 EIGENVALUES)



EIGENVALUE DECOMPOSITION

• EIGENVECTORS AND EIGENVALUES: 

• 𝑋𝑇𝑋𝑢 = 𝜆𝑢

• 𝑋𝑇𝑋 = 𝑈TΛU

• Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑑), 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑑

• 𝑈𝑇𝑈 = 𝑈𝑈𝑇 = 𝐼

• THE COLUMNS OF 𝑈 ARE THE EIGENVECTORS



PRINCIPAL COMPONENT ANALYSIS
• INPUT: 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑

• 𝜇 =
1

𝑛
σ𝑥𝑖

• 𝐶 = σ 𝑥𝑖 − 𝜇 𝑥𝑖 − 𝜇
𝑇

• FIND EIGEN-VECTORS/VALUES OF 𝐶

• 𝑋𝑇𝑋 = 𝑈TΛU

• FIND EIGEN-VECTORS/VALUES OF 𝐶

• OPTIMAL MATRIX 𝐴 =

•

•



INTUITIVE EXAMPLE



ALTERNATIVE TO FIND EIGENVECTORS OF C

• 𝐶 = σ 𝑥𝑖 − 𝜇 𝑥𝑖 − 𝜇
𝑇

IS 𝑑 × 𝑑

• HARD TO DEAL WITH WHEN 𝑑 IS SUPER LARGE

• WHEN 𝑑 ≫ 𝑛, WE CAN INSTEAD DO SINGULAR VALUE

DECOMPOSITION (SVD) ON 𝑋

• ASSUME THE DATA IS CENTERED

• 𝑋 = 𝑈Σ𝑉𝑇

• 𝐶 = 𝑉Σ𝑈𝑇𝑈Σ𝑉𝑇 = 𝑉Λ𝑉𝑇



MAP AND THE INVERSE MAP



BENEFITS OF REDUCING DIMENSIONALITY

• VISUALIZATION

• COMPUTATIONAL BENEFITS

• CURSE OF DIMENSIONALITY?



LINEAR VS NON-LINEAR DIMENSIONALITY 

REDUCTION





IDEAS FOR NONLINEAR DIMENSIONALITY 

REDUCTION?
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