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THE TRADE-OFF

* A POWERFUL/FLEXIBLE CURVE-FITTING METHOD
* SMALL TRAINING ERROR
* REQUIRES MORE TRAINING DATA TO GENERALIZE
* OTHERWISE LARGE TEST ERROR

* A LESS FLEXIBLE CURVE-FITTING METHOD
* LARGER TRAINING ERROR

* REQUIRES LESS TRAINING DATA
* SMALLER DIFFERENCE BETWEEN TRAINING AND TEST ERROR

 THE SO-CALLED “BIAS-VARIANCE" TRADE-OFF



THE CASE OF MULTIVARIATE POLYNOMIALS
* ASSUMEM > d
* NUMBER OF TERMS (MONOMIALS): = (%)d

M
° #TRAINING SAMPLES =~ #PARAMETERS =~ (E)d

* H#TRAINING SAMPLES SHOULD INCREASE EXPONENTIALLY WITH d
* SUSCEPTIBLE TO OVER-FITTING...

* AN EXAMPLE OF CURSE OF DIMENSIONALITY!

 WE CAN SAY SAMPLE COMPLEXITY OF LEARNING MULTIVARIATE
POLYNOMIALS IS EXPONENTIAL IN d

* ORTHOGONAL TO COMPUTATIONAL COMPLEXITY




MODEL SELECTION: HOW TO AVOID OVERFITTING?

* SELECTING' M (THE COMPLEXITY OF THE MODEL)
e BASED ON d (DIMENSION) AND n (NUMBER OF SAMPLES)
* MORE PRACTICALLY, TRY SEVERAL OPTIONS FOR M

* USE A HOLDOUT (EVALUATION) SAMPLE
_r___—____é_

* NEVER USE TEST DATA TO TUNE PARAMETERS!
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" AVOID OVERFITTING WITH REGULARIZED

LEAST SQUARES
min || XW - Y||3 +4|W|3 <~
WeR
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* ENCOURAGE A SOLUTION WITH A SMALLER NORM

g WRLS — (XTX +£)_1XTY PR d J ¢
* EXERCISE: PROVE THAT THIS IS THE OPTIMAL SOLUTION
* DOES THE INVERSE ALWAYS EXIST? /‘T

* YES! (EXERCISE: PROVE) A\ |
‘\

* HOW TO CHOOSE A¢

=
,_«—’\/\_/'\/\/\/VW )\



2,

T ws (0.01,00l,0.l;,0.00) vl Hnocrs
I~~~ ~—~—S

/? S~

/’w: (Ng\‘} 27 O‘),p) — g\owf\S‘e U\CC%G/



POLYNOMIAL CURVE-FITTING REVISITED

* MAP THE INPUTS xi TO A HIGHER DIMENSIONAL SPACE
* A KIND OF “PRE-PROCESSING" THE DATA

DO LINEAR REGRESSION ON THE HIGH-DIMENSIONAL SPACE
* EQUIVALENT TO PERFORMING NON-LINEAR REGRESSION IN THE ORIGINAL SPACE

MAPqu(x)}_lg; — ,.,..liii WHERE d, > d;4 /
(5Y.
¢1(x)
d(x) = S NONLINEAR, E.G., x € R AND ¢p(x) = | x°
X2

WHAT IF d, IS MUCH LARGER THAN THE NUMBER OF SAMPLES?




CURVE-FITTING WITH BASIS FUNCTIONS

» FEATURE MAP: ¢(x):R% +— R%  d, > d;

/°;> nxd, — = [p(x") .. Qb(xn)]T** - Xm,é,
* TRAINING /

s * W' =min||®W - Y||z + A|W]|;
W = (dTd + ) 1Ty
* PREDICTION
Y=<W, o) > =W ()

-



OTHER CHOICES OF ¢ (x)

* PICK A FIXED (NONLINEAR) ®(x)
 ENCODES YOUR PRIOR KNOWLEDGE ABOUT THE DATA
) * FEATURE ENGINEERING!

% POLYNOMIAL BASIS FUNCTIONS
" GAUSSIAN BASIS FUNCTIONS: =~

o=l
* pi(x) =e 202 J

P T), WAVELET FOR TIME SERIES

* IS IT POSSIBLE TO LEARN THE MAPPING ¢; (x) ITSELF2
* LATER, E.G., NEURAL NETWORKS










COMPUTATIONAL COMPLEXITY OF NAIVE RLS

» TRAINING: CALCULATE WRES = (T p + A~ 1ppTY

 BOTTLENECK: MATRIX INVERSION
* HOW MANY OPERATIONS?

 PREDICTION: § =< ¢p(x), wRES >
« HOW MANY OPERATIONS?

* REGULARIZATION ALLOWS US TO GO INTO HIGH-DIMENSIONAL SPACE WITHOUT
OVERFITTING, BUT IT DOES NOT SOLVE THE COMPUTATIONAL PROBLEM



COMPUTATIONAL COMPLEXITY

* MATRIX MULTIPLICATION (N-BY-N MATRICES)
« NATIVE METHOD: O(N3)
* STRASSEN'S ALGORITHM: O(N%807%)

* COPPERSMITH-WINOGRAD-LIKE ALGORITHMS [CURRENT BEST
O(N2'3728639)]

* MATRIX INVERSION
« GAUSSIAN ELIMINATION: O(N3)

* POSSIBLE TO REDUCE IT TO MULTIPLICATION


https://arxiv.org/abs/1401.7714

THE COMPUTATIONAL PROBLEM

* CAN WE SOLVE THE REGULARIZED LEAST SQUARES IN
R92 WITHOUT EXPLICITLY MAPPING THE DATA INTO R%22

¢« W* = min ||®W — Y| + A||W||3
WeR42

e SOMETHING LIKE MULTIPLICATION USING FFT

e [F SO, WE COULD EVEN MAP THE DATA TO AN INFINITE
DIMENSIONAL SPACE!!



FFT AND MULTIPLICATION
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