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MATRIX FORM OLS
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BIAS/INTERCEPT TERM
WE ARE MISSING THE BIAS TERM (w)
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BIAS/INTERCEPT TERM

* ADD A NEW AUXILIARY DIMENSION TO THE DATA

w
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« SOLVE OLS:  MIN _ |IXW = Y||5
WeR(d+1)X1

* Wy WILL BE THE BIAS TERM!



“NON-LINEAR” DATA?

* FOR EXAMPLE, WHAT IS THE BEST DEGREE 2 POLYNOMIAL?

A
Height Height

A

« HOW CAN WE REUSE THE “LEAST-SQUARES MACHINERY''¢



IDEA: DATA TRANSFORMATION

* WE INCREASED THE FLEXIBILITY OF OUR PREDICTOR BY A
FORM OF DATA TRANSFORMATION/AUGMENTATION
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* CAN WE USE THE SAME IDEA TO MAKE OUR PREDICTOR
EVEN MORE FLEXIBLE (NON-LINEAR) ¢
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LEAST-SQUARES FOR POLYNOMIALS

* IDEA: ax® + bx + ¢ IS STILL LINEAR WITH RESPECT TO THE
PARAMETERS! (W.R.T. a, b AND c)

x! x1 (x1)* 1
* INSTEAD OF X;;1 = | ... JUSEX w3 =1| ..

xn xn (xn)z 1
* TREAT X,,x3 AS IF IT WAS YOUR ORIGINAL INPUT DATA

« WE CAN EXTEND THIS TO HIGHER DEGREE POLYNOMIALS
SIMILARLY, E.G., ax3 +bx%?+cx+d

* NOTEBOOK EXAMPLE
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MULTIVARIATE POLYNOMIALS Cﬁ

» HOW ABOUT WHEN x IS MULTIVARIATE ITSELFe~ d =&
2
* WiX1 + WXy + WaXx1Xy + Wa(x1)? + ws ()% + we

Ee—— ——

* INSTEAD OF (xq1,X5) USE (X1 x5 x1;2 ()% (x,)? 1)

* TREAT THE NEW X AS (A HIGHER-DIMENSIONAL) INPUT
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* INPUT DIMENSION: d /
* DEGREE OF POLYNOMIAL: M

* NUMBER OF TERMS (MONOMIALS) OF DEGREE AT MOST M =

M=) 2 (4)=6

M =2

O o ®‘® Q‘Q N N \qu\S



OVERFITTING




OVERFITTING

* DIVIDE THE DATA
RANDOMLY TO
“TRAIN" AND “TEST" SETS

e ROOT-MEAN-SQUARE
ERROR FOR EACH SET:
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—— Test




MORE DATA, LESS OVER-FITTING

N =100

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.




THE TRADE-OFF

* A POWERFUL/FLEXIBLE. CURVE-FITTING METHOD
_¥* SMALL TRAINING ERROR
_»* REQUIRES MORE TRAINING DATA TO GENERALIZE

* OTHERWISE LARGE TEST ERROR

* A LESS FLEXIBLE CURVE-FITTING METHOD
/;v LARGER TRAINING ERROR
_» REQUIRES LESS TRAINING DATA

X SMALLER DIFFERENCE BETWEEN TRAINING AND TEST ERROR
* THE SO-CALLED “BIAS—VARIANCE_” TRADE-OFF




THE CASE OF MULTIVARIATE POLYNOMIALS
* ASSUME M > d § | /vug\) s
* NUMBER OF TERMS (MONOMIALS): =~ (E)d/p < /N C | )

dJ= |

M
* #TRAINING SAMPLES = #PARAMETERS = (E)d = ;f_)v‘e'

* H#TRAINING SAMPLES SHOULD INCREASE EXPONENTIALLY WITH d
* SUSCEPTIBLE TO OVER-FITTING...

* AN EXAMPLE OF CURSE OF DIMENSIONALITY!

 WE CAN SAY SAMPLE COMPLEXITY OF LEARNING MULTIVARIATE
POLYNOMIALS IS EXPONENTIAL IN d

* ORTHOGONAL TO COMPUTATIONAL COMPLEXITY
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