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TEXT PROCESSING

e TEXT CLASSIFICATION
e SENTIMENT ANALYSIS
* SUBJECT CLASSIFICATION
o TEXT-TO-TEXT
e TRANSLATION
* SUMMARIZATION
* LANGUAGE MODELLING
e LEARNING THE “DISTRIBUTION"
e NEXT WORD/TOKEN PREDICTION
e GENERATING NEW TEXT

p(r)



VECTORIZING A TEXT

« TEXT CAN BE REGARDED AS A SEQUENCE OF
« WORDS ¢«

e CHARACTERS s

* WHICH ONE SHOULD WE USE@¢



REPRESENTATION OF A TOKEN

e HOW CAN WE REPRESENT A WORD/TOKEN®Z

* INDEX IN A DICTIONARY? BJ l \L L &
'Y — / QK) L
ONE-HOT ENCODING Tolgeee sl » m

* LARGE DICTIONARY => LARGE ONE-HOT EMBEDDING
* BUT VERY SPARSE

* DENSE BUT LOWER DIMENSIONAL REPRESENTATION OF A
WORD? (LATER)



TEXT AS A SEQUENCE OF TOKENS

* ASSUME THE VOCABULARY SIZE IS V=10000
/-71 0000 FEATURES PER TOKEN I

* ASSUME TEXT CONSISTS OF L=20000 TOKENS
* 10KX20k=200M INPUT FEATURES

* STATISTICAI_._IJ AND COMPUTATIONALLY PROHIBITIVE

ii—

 E.G., OVERFITTING

* ALSO, WHAT TO DO WITH THE VARIABLE LENGTH (L)¢




A0 Beoll =7
BAG OF WORDS MODEL

* FORGET ABOUT THE ORDER OF WORDS

e USE JUST THE SET/COUNTS OF WORDS IN A DOCUMENT
« ONLY V FEATURES TO REPRESENT A TEXT AV x L 3>T
 GOOD FOR UNDERSTANDING THE GENERAL TOPIC
* BUT MAY NOT CAPTURE THE IMPORTANT CONTENT

« {A, BOOK, BUT, DID, |, IT, IS, GOOD, LIKE, NOT, SOMEHOW, THINK, THIS} v

&7
,{A=1, BOOK=1, BUT=1, DID=1, |I=2, m=1, 1S=1, GOOD=1, LIKE=1,
/ NOT=1 , SOMEHOW=1, THINK=1, THIS=1}

* TWO DIFFERENT MEANINGS:
* {l THINK THIS IS A GOOD BOOK BUT SOMEHOW | DID NOT LIKE IT}
* {l| THINK THIS IS NOT A GOOD BOOK BUT SOMEHOW | DID LIKE IT}




N-GRAM APPROACH

» CONSIDER N, CONSECUTIVE WORDS/TOKENS AS ONE TOKEN
* ADDS A BIT OF CONTEXT TO THE BAG OF WORDS

% /

v
* N=2 EXAMPLE: {[A GOOD] , [BOOK BUT], [BUT SOMEHOW],
[DID NOT], [GOOD BOOK], [I DID], [l THINK], [IS_A], [LIKE IT],
[NOT LIKE], [THINK THIS], [THIS IS], [SOMEHOW ]}

e “| THINK THIS IS A GOOD BOOK BUT SOMEHOW | DID NOT LIKE IT"

« GENERALIZES THE TWO PREVIOUS IDEAS (N=1 OR N=L) N =z/0

—

* LARGE N IS COMPUTATIONALLY AND STATISTICALLY PROHIBITIVE
?n(}ﬁ Si7e_ 5 N’V



TEXT AS A SEQUENCE

* REPRESENT DOCUMENTS AS A SEQUENCE...BUT KEEPING
THE NUMBER OF FEATURES/PARAMETERS MANAGEABLE?

o CONVNET FOR TEXT CLASSIFICATION
»'* RECURRENT NEURAL NETWORKS..

Yo ATTENTION NETWORKS..
e TRANSFORMERS



LIMITATIONS OF CNN FOR TEXT PROCESSING

DIFFERENCES BETWEEN IMAGES AND TEXT
5‘ WORDS ARE DISCRETE, VALUE IS NOT MEANINGFUL
* UNLIKE PIXELS

* NEIGHBORING WORDS ARE NOT USUALLY SIMILAR
/7 * UNLIKE PIXELS IN AN IMAGE

* A SINGLE WORD CAN MAKE A HUGE DIFFERENCE

e UNLIKE PIXELS

 DOCUMENTS HAVE VARIABLE LENGTHS
* IMAGES CAN BE SCALED TO BE THE SAME SIZE




RECURRENT NEURAL NETWORKS
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UNFOLDED RNN

* SEQ-TO-SEQ VS

CLASSIFICATION J ﬁ

.88




RECURRENT NEURAL NETWORKS

* THEY CAN “REMEMBER" THE PAST
* WE CAN GIVE A DOCUMENT WORD-BY-WORD
e CAN HANDLE VARIABLE LENGTH INPUT

* THEY CAN SUFFER FROM THE PROBLEM OF VANISHING (OR
EXPLODING!) GRADIENTS MORE THAN FEED-FORWARDS...

* FEEDBACK LOOP!

* TOP EIGEN VALUE OF A LINEAR CONTROL SYSTEMS
e > 1: DIVERGENCE (EXPLOSION)
¢ & 1: QUICK CONVERGENCE (SHORT MEMORY)

e THEY ARE SLOW TO TRAIN (WHY?¢)
e ALSO HARD TO PARALLELIZE



Long Short-Term Memory <

Image Source: colah.github.io

Deep Learning A-Z © SuperDataScience

« LSTMS CONTROL THE FEEDBACK, AND ARE MORE ROBUST TO
VANISHING/EXPLODING GRADIENT ISSUES

 BETTER “MEMORY" AND LONGER CONTEXT LENGTH




DENSE REPRESENTATIONS OF A WORD?

* CAN WE EMBED WORDS IN A LOW DIMENSIONAL SPACE
(E.G., 100 DIMENSIONAL) SUCH THAT

» CLOSE WORDS HAVE CLOSE MEANING ¢

« CAN WE USE THE VAST UNLABELED TEXT THAT IS AVAILABLE,
E.G., ON THE INTERNET?

* TRAIN A LANGUAGE MODEL?
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WORD2VEC

* GIVEN A LARGE TEXT CORPUS, TRAIN A NETWORK THAT

* GIVEN 3 WORDS AFTER AND 3 WORDS BEFORE A WORDM,
PREDICTS THAT WORD (OR RSA)

* AFTER TRAINING, USE THE INTERMEDIATE FEATURES TO
REPRESENT EACH WORD!

the raw data). However, natural[~ 1 processing systems traditionally treat words as discrete
atomic and therefore ‘cat' may be represented as Id537 and 'dog’ as Id143. These
encodings are arbitrary, and provide no D information to the system regarding the relationships

that may exist between the individual symbols. This means that[___Imodel can leverage very little of



WORD2VEC /

 KING — MAN + WOMAN =~ QUEENI!

R




ATTENTION >(
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Qutput
Probabilities

TRANSFORMERS

e (GET RID OF THE RECURRENCE

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked

Multi-Head
Attention

Positional

Encoding e

Input
Embedding

T

Inputs

Multi-Head
Attention

A‘ Positional
(> Encoding
Output
Embedding

Outputs

(shifted right)




° X . INPUT WORD t € [T]
e zt = emb(x") . WORD EMBEDDING
» gt =W, z' + b,  QUERY , q € R%“
* Q =[q%1g?|....]" :QUERY MATRIX, T X d;
e kt = Wzt + b, : KEY , k € R%
o K =[k'|k?|....]" :KEYMATRIX, T X d4

c vt =Wzt + b, ' VALUE ,v€ER™M
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* COMPUTE THE ATTENTION MATRIX IN ONE SHOT

o QKT
SOFT—MAX( Jd_l)



OTHER THINGS

* MULTI-HEAD ATTENTION

 POSITIONAL EMBEDDING
* MASKING FOR SEQ-TO-SEQ TASKS
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