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REVIEW AUTOENCODER
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REVIEW: TAMING AUTOENCODERS

* [DEA: TRAIN AUTOENCODER IN A WAY THAT THE LATENT
SPACE DISTRIBUTION LOOKS LIKE ISOTOPIC GAUSSIAN(<!)

* DECODER LEARNS TO TURN GAUSSIAN NOISE INTO NEW IMAGES
* FOR GENERATING NEW IMAGES, SIMPLY FEED (GAUSSIAN

NOISE TO THE DECODER I



SIMPLIFIED VARIATIONAL AUTOENCODER

*  Gaussian Sampler

MIN <2||Dec(5ampler(Enc(x))) — x||5 + Az(—LOG (02) + o? + ))
7 =1 /



VARIATIONAL AUTOENCODERS

*VAE'S ORIGINAL FORMULATION IS MORE COMPLICATED

T
P BASED ON EVIDENCE LOWER BOUND [ELBO], WHICH IS NOT
COVERED IN THIS COURSE

» THE GENERATED IMAGES ARE SOMETIMES BLURRY...

* ALTHOUGH(P(z|x)\Is GAUSSIAN BY DESIGN... ¢ q(;{)
« P(z) MAYNOTBE... D2y = O P2 » 2 p (2 \5)L

— 7«

e OTHER ISSUES?

¥ /‘/\’Mi.rxk?vz reconstraction  evvoly =
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LATENT SPACE VISUALIZATION

* VAE FOR MNIST




GENERATIVE ADVERSARIAL NETWORKS

* CAN GENERATE REALISTIC IMAGES
* BUT A BIT HARD TO TRAIN

* HTTPS://THISPERSONDOESNOTEXIST.COM/
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GENERATIVE ADVERSARIAL NETWORKS ~*

* TURN GAUSSIAN SAMPLES INTO REALISTIC IMAGES?
e ONLY TRAIN A DECODER (SO NO LATENT REP)

 BUT HOW TO TRAIN IT¢

* IDEA: A SET OF GENERATED
IMAGES ARE REALISTIC IF IT IS
HARD TO DISTINGUISH THEM
FROM REAL IMAGES

e TRAIN A CLASSIFIER THAT
TRIES TO DISTINGUISH REAL
FROM FAKE IMAGES




ADVERSARIAL TRAINING

 (GENERATE GENERATES AN IMAGE

 GOAL: FOOL THE ADVERSARY
_\_/\/_\_/_\/—M/-\/“

* THE ADVERSARY RECEIVES AN IMAGE AND DECIDES
N IVAANSE
WHETHER THE IMAGE WAS REAL OR FAKE

—

 (GOAL: CLASSIFY CORRECTLY
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—2 DIS(?LRIMINATOR’S OBJECTIVE
* MAX ZW + 2zencon LOG(1 — Di;c(g (2))) -

~* GENERATOR'S OBJECTIVE ~

5" Min Y. zenco,n LOG(1 — Disc(gr{(z)))

* TRAIN THEM AT THE SAME TIME
* DELICATE OPTIMIZATION, CAN BE UNSTABLE

* |IDEALLY, THE GENERATOR WOULD CONVERGE TO A SOLUTION THAT
MANAGES TO FOOL THE DISCRIMINATOR




MODE COLLAPSE
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 SOME TRICKS FOR TRAINING GANS
- * BALANCE THE POWER OF DISC/GEN

* IN THE BEGINNING THE DISCRIMINATOR CAN EASILY WIN

* ORIGINAL GAN PAPER USED AN ALTERNATIVE OBJECTIVE FUNCTION ... TO
/ HELP THE GENERATOR

 USE OF ADAM INSTEAD OF SGD
e ESPECIALLY FOR THE GENERATOR

e HTTPS://GITHUB.COM/SOUMITH/ HACKS




SGD ALTERNATIVES

e wttl = wt — aV, (E(w))
» PERFORMANCE IS SENSITIVE TO THE CHOICE OF a
» VARIABLE RATE DECAY

* ALTERNATIVES TO GRADIENT DESCENT

* USING MOMENTUM
« RMSPROP

s+ BDAM]




STYLE TRANSFER VIA (CYCLE) GANS

Monet 4 Photos . Zebras T Horses " Summer _ Winter

Cezanne



CYCLE GAN

* TWO DATA SETS (DOMAIN X AND Y)
* FIND A TRANSFORMATION THAT MAPS X TO Y AND VICE VERSA
* UNPAIRED DATA
* NO LABELS EITHER

« GANS: MAP GGAUSSIANS TO IMAGES...
e HERE: MAP ONE DOMAIN TO THE OTHER...

* ...AND VICE VERSA
* TRAIN A DISCRIMINATOR/GEN FOR EACH DOMAIN




CYCLE-CONSISTENCY CONSTRAINT

~« ADDITIONAL CONSTRAINT/LOSS:

. \/. v \/. .

X YD vl
: cycle-consistency
onsistency S\ i \‘ """"" loss
cle-consistency | ... i
0ss * kOV. 4'
(b) ' ( C)




ADVERSARIAL AUTOENCODER

* HOW TO ENFORCE THE LATENT SPACE TO BE GAUSSIAN®?

1




PITFALLS OF VAE




ADVERSARIAL AUTOENCODERS




Adversarial Autoencoder Variational Autoencoder

C

MAKHZANI ET AL
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