
INTRODUCTION TO

MACHINE LEARNING

COMPSCI 4ML3

LECTURE 23

HASSAN ASHTIANI

COMPUTING THE GRADIENT EFFICIENTLY

• ∇W L 𝑤, 𝑏 = σ𝑖 ∇W 𝑙 𝑓𝑤,𝑏(𝑥
𝑖), 𝑦𝑖

• HOW TO CALCULATE ∇W 𝑙 𝑓𝑤,𝑏(𝑥
𝑖), 𝑦𝑖 ?

• THIS CAN BE COMPUTATIONALLY EXPENSIVE

NAÏVE APPROACH

COMPUTING THE GRADIENT?

• NAÏVE APPROACH:

• COMPUTATIONALLY EXPENSIVE FOR DEEP MODELS

• SOME OF THE COMPUTATIONS ARE REPETITIVE

• WHAT TO DO?

• A KIND OF “DYNAMIC PROGRAMMING”

• BACK PROPAGATION

BACK-PROPAGATION

• USE CHAIN RULE (FOR VECTOR-VALUED FUNCTIONS)

• LINEAR TIME IN TERMS OF THE NUMBER OF WEIGHTS!

• FORWARD PHASE

• COMPUTE THE INPUT/OUTPUTS OF ACTIVATION FUNCTIONS

• BACKWARD PHASE

• COMPUTE THE GRADIENTS, LAYER-BY-LAYER

MULTI-VARIATE CHAIN RULE

AND A MODULAR APPROACH

VANISHING GRADIENT

• FOR DEEPER NETWORKS, THE PARTIAL DERIVATIVES

• FOR THE OUTPUT LAYER VS THE INPUT LAYER?

• FOR SIGMOID ACTIVATION FUNCTIONS

• 𝜎′ 𝑥 ∈ [0,1]

• FOR “SATURATED” NEURONS 𝜎′ 𝑥 ≈ 0

• GRADIENT “DOES NOT REACH” THE FIRST LAYERS

• WHAT CAN WE DO?

VANISHING GRADIENT

• SOME ACTIVATION FUNCTIONS ARE BETTER

• LEAKY RELU (ALSO RELU/MAX-OUT)

• BUT GRADIENT STILL CAN VANISH AFTER A COUPLE LAYERS

• BETTER INITIALIZATION

• A POSSIBLE WORKAROUND

• USE “SHORTCUTS” FOR THE GRADIENT TO FLOW

• RESNETS CAN HAVE 100S OF LAYERS!

DEEP RESIDUAL NETWORKS

• THE INPUT CAN DIRECTLY GO TO DEEPER NEURONS, SO THE

GRADIENT CAN FLOW

UNIVERSAL APPROXIMATION THEOREM

• FEED-FORWARD NETWORKS WITH SIGMOID ACTIVATION

FUNCTIONS CAN APPROXIMATE ANY BOUNDED

CONTINUOUS FUNCTION UP TO DESIRABLE ACCURACY

• ONLY A SINGLE HIDDEN LAYER IS NEEDED!

• GEORGE CYBENKO, 1989

• ALSO HOLDS FOR OTHER USUAL ACTIVATION FUNCTIONS

• IS THERE A POINT IN HAVING MORE THAN ONE HIDDEN

LAYER?

DEEP VS SHALLOW NETWORKS

• LOW-LEVEL TO HIGH-LEVEL COMPUTATIONS/DETECTIONS

DEEP VS SHALLOW NETWORKS

• THERE ARE FUNCTIONS THAT CAN BE APPROXIMATED WITH

A SMALL BUT DEEP NETWORK…WHEREAS A WIDE SHALLOW

NETWORK REQUIRES MANY MORE NEURONS TO

APPROXIMATE IT

REGULARIZING NNS

• GOOD NEURAL NETWORKS ARE OFTEN OVER-PARAMETRIZED!

• PRONE TO OVER-FITTING

1. ADDING REGULARIZATION

TERMS TO THE

OBJECTIVE FUNCTION

• E 𝑤 + 𝑤 2

2. EARLY STOPPING

3. ADDING NOISE

4. STRUCTURAL REGULARIZATION

REGULARIZING NNS WITH DROPOUT

TRAINING

• FOR EACH ITERATION OF STOCHASTIC GRADIENT DESCENT AND

FOR EACH TRAINING DATA POINT DO:

• DROP EACH NODE WITH PROBABILITY 𝑝

TESTING

• DON’T DROP THE NODES,

BUT FOR ALL NODES, BUT

MULTIPLY THE VALUE OF

ACTIVATIONS BY (1 − 𝑝)

DOUBLE DESCENT?

	Slide 1: Introduction to machine learning COMPSCI 4ML3
	Slide 2: Computing the Gradient Efficiently
	Slide 3: Naïve approach
	Slide 4: Computing the gradient?
	Slide 5: Back-Propagation
	Slide 6
	Slide 7
	Slide 8: Multi-variate Chain rule and a Modular approach
	Slide 9: Vanishing gradient
	Slide 10
	Slide 11: Vanishing gradient
	Slide 12: Deep Residual Networks
	Slide 13: Universal Approximation Theorem
	Slide 14: Deep vs shallow networks
	Slide 15: Deep vs shallow networks
	Slide 16
	Slide 17: Regularizing NNs
	Slide 18: Regularizing NNs with dropout
	Slide 19: Double Descent?
	Slide 20

