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COMPUTING THE GRADIENT EFFICIENTLY

• ∇W L 𝑤, 𝑏 = σ𝑖 ∇W 𝑙 𝑓𝑤,𝑏(𝑥
𝑖), 𝑦𝑖

• HOW TO CALCULATE ∇W 𝑙 𝑓𝑤,𝑏(𝑥
𝑖), 𝑦𝑖 ?

• THIS CAN BE COMPUTATIONALLY EXPENSIVE



NAÏVE APPROACH



COMPUTING THE GRADIENT?

• NAÏVE APPROACH:

• COMPUTATIONALLY EXPENSIVE FOR DEEP MODELS

• SOME OF THE COMPUTATIONS ARE REPETITIVE

• WHAT TO DO?

• A KIND OF “DYNAMIC PROGRAMMING”

• BACK PROPAGATION



BACK-PROPAGATION

• USE CHAIN RULE (FOR VECTOR-VALUED FUNCTIONS)

• LINEAR TIME IN TERMS OF THE NUMBER OF WEIGHTS!

• FORWARD PHASE

• COMPUTE THE INPUT/OUTPUTS OF ACTIVATION FUNCTIONS

• BACKWARD PHASE

• COMPUTE THE GRADIENTS, LAYER-BY-LAYER







MULTI-VARIATE CHAIN RULE 

AND A MODULAR APPROACH



VANISHING GRADIENT

• FOR DEEPER NETWORKS, THE PARTIAL DERIVATIVES

• FOR THE OUTPUT LAYER VS THE INPUT LAYER?

• FOR SIGMOID ACTIVATION FUNCTIONS

• 𝜎′ 𝑥 ∈ [0,1]

• FOR “SATURATED” NEURONS 𝜎′ 𝑥 ≈ 0

• GRADIENT “DOES NOT REACH” THE FIRST LAYERS

• WHAT CAN WE DO?





VANISHING GRADIENT

• SOME ACTIVATION FUNCTIONS ARE BETTER

• LEAKY RELU (ALSO RELU/MAX-OUT)

• BUT GRADIENT STILL CAN VANISH AFTER A COUPLE LAYERS

• BETTER INITIALIZATION

• A POSSIBLE WORKAROUND

• USE “SHORTCUTS” FOR THE GRADIENT TO FLOW

• RESNETS CAN HAVE 100S OF LAYERS!



DEEP RESIDUAL NETWORKS

• THE INPUT CAN DIRECTLY GO TO DEEPER NEURONS, SO THE

GRADIENT CAN FLOW



UNIVERSAL APPROXIMATION THEOREM

• FEED-FORWARD NETWORKS WITH SIGMOID ACTIVATION

FUNCTIONS CAN APPROXIMATE ANY BOUNDED

CONTINUOUS FUNCTION UP TO DESIRABLE ACCURACY

• ONLY A SINGLE HIDDEN LAYER IS NEEDED!

• GEORGE CYBENKO, 1989

• ALSO HOLDS FOR OTHER USUAL ACTIVATION FUNCTIONS

• IS THERE A POINT IN HAVING MORE THAN ONE HIDDEN

LAYER?



DEEP VS SHALLOW NETWORKS

• LOW-LEVEL TO HIGH-LEVEL COMPUTATIONS/DETECTIONS



DEEP VS SHALLOW NETWORKS

• THERE ARE FUNCTIONS THAT CAN BE APPROXIMATED WITH

A SMALL BUT DEEP NETWORK…WHEREAS A WIDE SHALLOW

NETWORK REQUIRES MANY MORE NEURONS TO

APPROXIMATE IT





REGULARIZING NNS

• GOOD NEURAL NETWORKS ARE OFTEN OVER-PARAMETRIZED!

• PRONE TO OVER-FITTING

1. ADDING REGULARIZATION

TERMS TO THE

OBJECTIVE FUNCTION

• E 𝑤 + 𝑤 2

2. EARLY STOPPING

3. ADDING NOISE

4. STRUCTURAL REGULARIZATION



REGULARIZING NNS WITH DROPOUT

TRAINING

• FOR EACH ITERATION OF STOCHASTIC GRADIENT DESCENT AND

FOR EACH TRAINING DATA POINT DO:

• DROP EACH NODE WITH PROBABILITY 𝑝

TESTING

• DON’T DROP THE NODES,

BUT FOR ALL NODES, BUT

MULTIPLY THE VALUE OF

ACTIVATIONS BY (1 − 𝑝)



DOUBLE DESCENT?
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