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LINEARLY SEPARABLE DATA

* A BINARY CLASSIFICATION DATA SET Z = {(xi,y")}z_l=1 S
LINEARLY SEPARABLE IF
e THERE EXISTS W™ SUCH THAT
- FOR EVERY i € [n] WE HAVE SGN(< x!, W* >) =y
» OR EQUIVALENTLY, FOR EVERY i € [n] WE HAVE (W*"x})yt > 0
* IN OTHER WORDS, THE CLASSIFICATION ERROR ON Z IS O

e CAN WE FIND W™ EFFICIENTLY FOR LINEARLY SEPARABLE
DATAC



LP FOR LINEAR CLASSIFICATION
» DEFINE A = [x}y']

nxd

* THEN FINDING THE OPTIMAL W IS EQUIVALENT TO

max < 0,w >
weRd

&tAwZT

WE CAN USE OFF-THE-SHELF LP SOLVERS!



APPROACH 2: PERCEPTRON

* PROPOSED IN 50'S BY ROSENBLA

» PREDECESSOR OF NEURAL NETWORKS

* MULTI-LAYER PERCEPTRON!
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ROSENBLATT'S PERCEPTRON

Batch Perceptron

input: A training set (x1,¥1),. -, (Xm, Ym)
initialize: w1) = (0,...,0)
fort=1,2,...

if (34 s.t. y;(w®, x;) <0) then
witth = w) 4 4%,
else

output w?)

 IN EACH UPDATE, W BECOMES “MORE CORRECT" ON x!

e HTTPS://PHIRESKY.GITHUB.IO/KOGSYS-DEMOS/NEURAL-NETWORK-DEMO/ ¢PRESET=ROSENBLATT+PERCEPTRON



THE GREEDY UPDATE

* IN EACH UPDATE, W BECOMES “MORE CORRECT"” ON x!:

e WHAT ABOUT OTHER x/ 'S¢
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CONVERGENCE OF PERCEPTRON

THEOREM 9.1
Vi € [m], wyi(w,x;) > 1}, and let R = max; ||X;||. Then, the Perceptron al-

gorithm stops after at most (RB)?* iterations, and when it stops it holds that
Vi e [m], y;(w x;)>0.

o #STEPS DOES NOT EXPLICITLY DEPEND o@

* YOU CAN FIND MORE DETAILS ABOUT THIS LECTURE IN

* UNDERSTANDING MACHINE LEARNING, CHAPTER 9

e HTTPS://WWW.CS.HUJI.AC.IL/~SHAIS/UNDERSTANDINGMACHINELEA
RNING/UNDERSTANDING-MACHINE-LEARNING-THEORY-
ALGORITHMS.PDF






* IN 1969, MARVIN MINSKY AND SEYMOUR PAPERT
ARGUED THAT IT IS IMPOSSIBLE TO LEARN XOR FUNCTION
/w USING MULTILAYER PERCEPTRON...

e ONLY GOOD FOR LINEARLY SEPARABLE DATA
e STACKING PERCEPTRONS?@ L

» 70’S: Al (CONNECTIONISM) WINTER ( /////

e}







SUPPORT VECTOR MACHINES

* AMONG PERFECT LINEAR SEPARATORS, WHICH ONE
SHOULD WE CHOOSE?
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SUPPORT VECTOR MACHINES

Xz

* PICK THE LINEAR SEPARATOR
THAT MAXIMIZES THE “MARGIN"

* MORE ROBUST TO “PERTURBATION"

S LESS PRONE TO OVERFITTING

« WORKS WELL FOR ! Maxnﬁam,
HIGH-DIMENSIONAL DATA (2¢) W

X4

* MORE ON THAT LATER!



DISTANCE OF A POINT TO A HYPERPLANE

THE EUCLIDEAN DISTANCE BETWEEN A POIN@ND THE

HYPERPLANE PARAMETRIZED BY W IS (WHY?¢) W
(WTx + b
AW
7 Wl

e THE DECISION BOUNDARY OF A LINEAR CLASSIFIER IS
DETERMINED BY THE DIRECTION OF W (NOT ||W||,)

* ASSUME ||[W]|,=1, THEN THE DISTANCE IS
_/ T
(W x +b| o



MAXIMUM MARGIN HYPERPLANE

* LET THE HYPERPLANE BE
PARAMETRIZED BY W sud |,

* ASSUME ||[W]|, =1

W/ HAS A ¥ MARGIN [F
« WTx + b > y FOR EVERY BLUE x, AND g Maximam,

e / margin
* . Y

* W'x + b < —y FOR EVERY RED x
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MAXIMIZING THE MARGIN
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L o
THE VERSION WITH “BIAS” LEARNING

input: (X1,91),..., (Xm, ¥
solve:

(Wo, by) = argmin ||w||* s.t. Vi, y;((w,x;) +b) > 1
(w.b)

Wi ?] — b 0

output: w = 20,
p Twoll Twol

« WE COULD HAVE ALSO ADDED A DUMMY “1" FEATURE TO
ALL POINTS SO AS TO ACCOUNT FOR THE BIAS/INTERCEPT



SENSITIVITY TO OUTLIERS
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