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LINEARLY SEPARABLE DATA

• A BINARY CLASSIFICATION DATA SET 𝑍 = (𝑥𝑖 , 𝑦𝑖)
𝑖=1

𝑛
IS

LINEARLY SEPARABLE IF

• THERE EXISTS 𝑊∗ SUCH THAT

• FOR EVERY 𝑖 ∈ [𝑛] WE HAVE SGN < 𝑥𝑖 ,𝑊∗ > = 𝑦𝑖

• OR EQUIVALENTLY, FOR EVERY 𝑖 ∈ [𝑛] WE HAVE (𝑊∗𝑇𝑥𝑖)𝑦𝑖 > 0

• IN OTHER WORDS, THE CLASSIFICATION ERROR ON 𝑍 IS 0

• CAN WE FIND 𝑊∗ EFFICIENTLY FOR LINEARLY SEPARABLE

DATA?



LP FOR LINEAR CLASSIFICATION

• DEFINE 𝐴 = 𝑥𝑗
𝑖𝑦𝑖

𝑛×𝑑

• THEN FINDING THE OPTIMAL 𝑊 IS EQUIVALENT TO

𝐦𝐚𝐱
𝒘∈ℝ𝒅

< 𝟎,𝒘 >

𝒔. 𝒕. 𝑨𝒘 ≥ 𝟏

WE CAN USE OFF-THE-SHELF LP SOLVERS!



APPROACH 2: PERCEPTRON

• PROPOSED IN 50’S BY ROSENBLATT

• PREDECESSOR OF NEURAL NETWORKS

• MULTI-LAYER PERCEPTRON!



ROSENBLATT'S PERCEPTRON

• IN EACH UPDATE, 𝑊 BECOMES “MORE CORRECT” ON 𝑥𝑖

• HTTPS://PHIRESKY.GITHUB.IO/KOGSYS-DEMOS/NEURAL-NETWORK-DEMO/?PRESET=ROSENBLATT+PERCEPTRON



THE GREEDY UPDATE

• IN EACH UPDATE, 𝑊 BECOMES “MORE CORRECT” ON 𝑥𝑖:

• WHAT ABOUT OTHER 𝑥𝑗’S?



NOVIKOFF,1962



CONVERGENCE OF PERCEPTRON

• #STEPS DOES NOT EXPLICITLY DEPEND ON 𝑑

• YOU CAN FIND MORE DETAILS ABOUT THIS LECTURE IN

• UNDERSTANDING MACHINE LEARNING, CHAPTER 9

• HTTPS://WWW.CS.HUJI.AC.IL/~SHAIS/UNDERSTANDINGMACHINELEA

RNING/UNDERSTANDING-MACHINE-LEARNING-THEORY-
ALGORITHMS.PDF





• IN 1969, MARVIN MINSKY AND SEYMOUR PAPERT

ARGUED THAT IT IS IMPOSSIBLE TO LEARN XOR FUNCTION

USING MULTILAYER PERCEPTRON…

• ONLY GOOD FOR LINEARLY SEPARABLE DATA

• STACKING PERCEPTRONS?

• 70’S: AI (CONNECTIONISM) WINTER





SUPPORT VECTOR MACHINES

• AMONG PERFECT LINEAR SEPARATORS, WHICH ONE

SHOULD WE CHOOSE?



SUPPORT VECTOR MACHINES

• PICK THE LINEAR SEPARATOR

THAT MAXIMIZES THE “MARGIN”

• MORE ROBUST TO “PERTURBATION”

• LESS PRONE TO OVERFITTING

• WORKS WELL FOR

HIGH-DIMENSIONAL DATA (?)

• MORE ON THAT LATER!



DISTANCE OF A POINT TO A HYPERPLANE

THE EUCLIDEAN DISTANCE BETWEEN A POINT 𝑥 AND THE

HYPERPLANE PARAMETRIZED BY 𝑊 IS (WHY?)

|𝑊𝑇𝑥 + 𝑏|

||𝑊||2

• THE DECISION BOUNDARY OF A LINEAR CLASSIFIER IS

DETERMINED BY THE DIRECTION OF 𝑊 (NOT 𝑊 2)

• ASSUME 𝑊 2=1, THEN THE DISTANCE IS

|𝑊𝑇𝑥 + 𝑏|



MAXIMUM MARGIN HYPERPLANE

• LET THE HYPERPLANE BE

PARAMETRIZED BY 𝑊

• ASSUME 𝑊 2 = 1

• 𝑊 HAS A 𝛾 MARGIN IF

• 𝑊𝑇𝑥 + 𝑏 > 𝛾 FOR EVERY BLUE 𝑥, AND

• 𝑊𝑇𝑥 + 𝑏 < −𝛾 FOR EVERY RED 𝑥



THE MARGIN 

• 𝑍 = 𝑥𝑖 , 𝑦𝑖
𝑖=1

𝑛
, 𝑦 ∈ {−1,+1}, |𝑊 |2 = 1



MAXIMIZING THE MARGIN





THE VERSION WITH “BIAS”

• WE COULD HAVE ALSO ADDED A DUMMY “1” FEATURE TO

ALL POINTS SO AS TO ACCOUNT FOR THE BIAS/INTERCEPT



SENSITIVITY TO OUTLIERS
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