Transport Layer

Objectives

® Understand principles behind transport layer services:
* multiplexing/demultiplexing
e reliable data transfer
¢ flow control

® congestion control

® TCP and UDP protocols

® Message format

° Operations

Transport services and protocols

® provide logical communication P

] networ
between app processes running B deta Tk

on different hosts data link

physical

® transport protocols run in
end systems
® sender side: breaks app

messages into segments,
passes to network layer

® receiver side: reassembles
segments into messages,
passes to app layer

® more than one transport
protocol available to apps

® Internet: TCP and UDP

o

Internet transport-layer protocols

* reliable, in-order delivery e
nerwor
(TCP) Sl data link

® congestion control

data link
physical

® flow control

® connection setup

¢ unreliable, unordered
delivery: UDP

® no-frills extension of

“best-effort” IP

® services not available:

° delay guarantees

® bandwidth guarantees

o

Multiplexing/demultiplexing

- Demultiplexing at receiver host: — Multiplexing at sender host: —
delivering received segments gathering data from multiple
to correct socket sockets, enveloping data with header
(later used for demultiplexing)
[] =socket = process
application ion @ @ application
-] 3 N
transport t ansport transport
network network network
link link link
physical physical physical
host 1 server host 2

o

How demultiplexing works

® host receives IP datagrams

32 bits >

A

® cach datagram has source IP
address, destination IP address

source port #| dest port #

® cach datagram carries 1
transport—layer segment
® cach segment has source, other header fields

destination port number

® host uses IP addresses & port
numbers to direct segment to application
appropriate socket data

® TCP sockets are identified by (S-
IP, D-IP, SP, DP) 4-tuple (message)
® UDP sockets are identified by
D-IP, DP
() TCP/UDP segment format

o

©

Principles of Reliable Data Transfer
Protocols

* Important in applications, transport layer and link layers

® Mechanisms:
® Error detection and correction: a packet is received but may be
erroneous

® | 0ss detection and recovery: a packet 1S missing

L Design 1ssues:
® Where to put the functionality?

e Efficiency: utilization of bandwidth resource

Utilization = maximum app. data rate/available bandwidth

Error Detection

® Problem: detect bit errors in packets (frames)

e Solution: add extra bits to each packet

® Techniques:
® Parity check
® Checksum

® Other sophisticated coding schemes such as Reed-Solomon

code

Parity Checking

Single Bit Parity:
Detect single bit errors

— d databits —Pa

| 0111000110101011‘ 0 l

Odd parity check:

« Sum up information bits and mod 2
« If zero, add 1 as the parity bit

* Otherwise, add O

Even parity check

« Sum up information bits and mod 2
« If zero, add O as the parity bit

* Oftherwise, add 1

@

® e.g.,d =7, even parity
Received message: 00101010

Redundancy
Number of bits used in full
R=

Number of bits in message

Q: Can it detect multiple bit errors?

Can it correct any bit error?

Internet Checksum

® 16-bit one's complement of the one's complement sum of all

16-bit words in the content to be protected

® Two’s complement sum: summing the numbers (with

carries)

e One’s complement sum: summing the numbers and aclding

the carry (or carries)

111001

1001100110
1101010101010101

wraparound (1)1011101110111011

sum 1011101110111100
checksum 0100010001000011
@

®

Internet checksum

Sender: Receiver:

® treat contents to be ® compute checksum of
protected as sequence of received data
16-bit integers ® check it computed

* checksum: addition (1’s checksum equals checksum
complement sum) of tield value:
segment contents ® NO - error detected

® sender puts checksum ® YES - no error detected.

value into the checksum But maybe errors

field nonetheless? More later

Q: Can it detect multiple bit errors?

Can it correct any bit error?

Example

® Original: 01 00 F2 03 F4 F5 F6 F7 00 00

o)'s complement sum: 0100 + F203 + F4F5 + F6F7 + 0000
= 2DEEF

* 1's complement sum:

® Checksum =7

® Result:

® Recv: 0100F203F4F5F6F70100210E

o Redundancy? [Limitations?

e the checksum is

Checksum in UDP

Pseudo header \

32 bits >

A

Computed using the Length, in source port #| dest port #

payload and a "pseudo bytes of UDP | —>length checksum

header” that contains segment,

some of the same including 16-word checksum
header

information from the real

[P header.

for UDP segment

Application
data
(message)

UDP segment format

Loss Detection

e Causes of packet losses

e Buffer overflow

® Drop after error detection

® Detection methods
e At the crime scene

e At the receiver

How do I know that [am
supposed to get certain data?

® At the sender

Loss Recovery

® Once packet losses are detected, the source needs to be

informed
* Negative ACK (NACK): “packet xx is missing” vs.
® Positive ACK: "packet xx is received” -- timeout

® Source action

® Should I proceed to transmit the next message W/ o the

knowledge of the reliable delivery of the current one?

® Retransmission

® Retransmit every unacked packet?

® Selective retransmit the lost packet only?

@

®

Flow Control

® In Internet terms, flow control aims to control the rate of the

sender not to overwhelm the receiver

® How?

application 0 ion @ application
L] 1 S
transport trahsport transport
network network network
link link link
physical physical physical
host 1 host 2 host 3

Congestion Control

Congestion:

o informally: “too many sources sending too much data too

fast for network to handle”
¢ different from flow control!

® Flow control concerns not to overload the receiver
® manifestations:

® Jost packets (buffer overflow at routers)

® long delays (queueing in router bufters)

Causes/costs of congestion: scenario 1

two senders, two

receivers

one router, infinite

buffers
output link capacity: R

no retransmission

7

7"out

7\4” R/2

maximum per—connection

throughput: R/2

original data: 7\.in Host A
——

unlimited shared
output link buffers

-2

delay

}‘“in R/2

large delays as arrival rate, 7\vina

approaches capacity

vd'

S
®)
c
~

(

a
o)
4

Host C

Causes/costs of congestion: scenario 2

® one router, finite buffers

* Ifapacket is lost at router due to a full buffer, the sender retransmits
lost packet

o application—layer: kin — 7Lout

e transport-layer input includes retransmissions: A'j, = A,

Host A

\in - Original data Ut Host C

A'in - original data, plus A
retransmitted data

finite shared output
link buffers

Host D

Causes/costs of congestion: scenario 2

* Realistic: when Aj, approaching R/2, some packets are

retransmissions including duplicated that are delivered!

R/2 |-] rR2 |------------mm - ’ o

3 =
P R/I2 , R/IZ
7"in 7"in

a. perfect rate control b. loss & retransmission

“costs” of congestion:
® more work (retransmits) for given “goodput”

® unneeded retransmissions: link carries multiple copies of packet

o

Causes/costs of congestion: scenario 3

Q: what happens as A'j;, and A, increase?

A:Asred A, increses, nearly all blue packets at higher
finite queue are dropped. Blue throughput approaches 0.

Host A Aout Host C

A - original data, plus
retransmitted data

* multihop paths

finite shared output
R1 lipk buffers

® timeout/retransmit

Causes/costs of congestion: scenario 3
C/2-

N

Ain

A’ouT

Another “cost” of congestion:

® when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

Approaches towards congestion control

Two broad approaches towards congestion control:
End-to-end congestion control:
® no explicit feedback from network

® congestion inferred from end—system observed loss and

delay
® approach taken by TCP
Network-assisted congestion control:

® routers provide feedback to end systems

® single bit indicating congestion (SNA, DECbit, TCP/IP
ECN, ATM)

@ ® explicit rate sender should send at

-
Bag of Tricks

Multiplexing/ demultiplexing X X

Reliable data transfer * Checksum * Checksum
* Sequence number
* ACK from receivers
* Retransmission
* Buffering outstanding
packets

Flow control Throttled by the receiver,

sender reacts

Congestion control J End—system estimates and
adjusts transmission rate
based on congestion

“signal” from the network

Connection X
@ establishment/tear down

RSES

UDP and TCP

® Understanding the protocol details of UDP and TCP
® Header format
® TCP state machine
Connection setup and tear-down
¢ Sliding window in TCP
e TCP tlow control

e TCP congestion control

UDP: User Datagram Protocol [RFC 768]

e “bare bones” Internet transport e Why is there a UDP?

protocol ® no connection establishment

o “best effort” service, UDP (less delay)

segments may be: , ,
® 51mple: no connection state at

® Jost :
sender, receiver

® delivered out of order to app
. * small segment header
® connectionless:

¢ no handshaking between ® no congestion control: UDP

can blast away as fast as

“desired”

UDP sender, receiver

e cach UDP segment handled
independently of others

o

/ Pseudo header

UDP: more

® often used for streaming) 32 bits

ltimedi
mHTHmEdia apps Length, in source port #| dest port #
® loss tolerant bytes of UDP\\’leng’rh Ch%CkSle
® rate sensitive segment,
e other UDP uses including 16-word checksum
e DNS. SNMP header for UDP segment
® reliable transfer over UDP: add Application
bl leation 1 data
reliabi 1ty at app 1cation ayer (m essag e)
© application—specific error

recovery!

@ Size of UDP header?

UDP segment format

TCP Outline

® TCP: Overview
® TCP header format

® TCP connection establishment & tear down

e What are the error scenarios?

e Reliable data transfer

o Congestion control

TCP: Overview rrcs: 793, 1122, 1323, 2018, 2581

® point-to-point:
® one sender, one receiver
® reliable, in-order byte steam:
* no “message boundaries”
* pipelined:
® TCP congestion and flow

control set window size

® send & receive buffers

e full duplex data:

® bi-directional data flow in same
connection
® MSS (maximum segment size):

largest data payload in TCP

® connection-oriented:

* handshaking (exchange of
control msgs) initiates sender,
receiver state before data

exchange
® flow controlled:

® sender will not overwhelm

receiver

TCP segment strycture

URG: urgent data

source port #

dest port #

counting

(generally not used)\

ACK: ACK #

. Sequence number

by bytes
of data

valid

(not segmentsl!)

Header length (4 bits)
in 32-bit words—

acknowledgement number
i‘,‘;‘:\d not FSF Receive window

PSH: push data how —

chec /su/

Urg data pnter

bytes
rcvr willing

(generally not used)

/O//((var'lable length)

to accept

RST, SYN, FIN:

connection estab /

(setup, teardown
commands)

Internet
checksum

(as in UDP)

/ application

data

(variable length)

o

TCP: Segments

e TCP “Stream of Bytes” Service
o TCP segment

® No more than Maximum Segment Size (MSS) bytes

® Segment sent when Segment full (MSS) or “Pushed” by
application

Example:

® MSS = 100 bytes, Data receive from application

vo llve v/
oo 0| 2| O
%ﬁﬁﬁ EE B
OO0 — RO
S = B9 LI g g S
| - S
TCPSegment

TCP Segment

TCP: Sequence Numbers, ACKs

e TCP “Stream of Bvtes” Service
oo oo | OF

Fééé E
S| | N LI &
, 3

® Sequence numbers:

d

4

® Starting byte offset of data carried in this segment

* ACKs: ("What Byte is Next”)
® gives seq# just beyond highest seq# received in order

TCP: Sequence Numbers, ACKs Example

® Sequence Number = 1001. Sender sends 500 bytes.
Receiver acknowledges with ACK number:
A)501 B)1002 C)1500 D) 1501 E) 1502
Answer: D) 1501

* Next sequence number to send by sender is:
A)1500 B) 1501 C) 1502

Answer: B) 1501

Establishing Connection

® Three-Way Handshake Client Server

¢ Each side notifies the other of SYN: SeqC

starting sequence number it will \

use for sending CK: SeqC
ACK: SeqC+1

* Each side acknowledges other’s SYN: SeqS
sequence number /
ACK: SeqS+1

SYN-ACK: Acknowledge \
sequence number + 1
® The third segment may piggyback

some data

®* Why 3-way handshake?

o y

g Client tu‘p—

— |
LC'—OSEU - 7 active OPEN
Server * Snd SYN
passive OPEN CLOSE
| LISTEN CLOSE
delete TCB
rcv SYN SEND v
p snd SYN ACK snd SYN S
SYN rcv SYN SYN
RCVD) [snd ACK SENT
rcv ACK of SYN Rev SYN, ACK
Snd ACK
CLOSE LAl
Send FIN ESTAB 1. Retransmission if response not received

2. Client can start data after sending ACK

~

/

Tearing Down ConneAction

e Either Side Can Initiate Tear Down
FIN, SeqA

® Send FIN signal \

® ’'m not going to send any more ACK, SeqA+1
data /
ata
¢ Other Side Can Continue Sending /

ACK

Data \
* Half open connection W
® Must continue to acknowledge ACK, SeqB+1

* Acknowledging FIN \

o Acknowledge last sequence

B

number + 1

©

a A
State Diagram: Connection P—
Tear-down o

CLOSE A i
send FIN chve °seL ESTAB J
v CLOSE revFIN passive Close
FIN | send FIN send ACK J CLOSE
WAIT-1 | WAIT
rcv FIN
l ACK snd ACK E LOSE
CcVv F|N+ACK 4 Snd FIN
FIN WAIT-2 Snd ACK ICLOSING LAST-ACK
rcvACK of FIN ~ FOVACKBIFIN
= STiiE WAIT : |CLOSED
rev Timeout=30sec
snd ACK

TCP Window Control

Packet Sent Packet Received

Dest. Por

Source Port
Window HL/Flags { Window |
i Checksum

Options.. Options..

S~—_/

App write Increasing

1 i i 1 Seci number

acknowledged\ sent to be sent outside \Jindow

@ Y Sender buffer /

TCP reliable data transfer

® TCP creates reliable data transport service on top of IP’s

unreliable service

° Pipelined segments
Data

ugllﬂllll-llll-"u“'

Ao 25
Pl 12}
;_;A"
| o ;

LU T T

In one round trip time (RTT) time, a maximum BWxRTT bits can

be sent to fill up the pipe

TCP reliable data transfer
¢ Cumulative acks @ Host A Host B

Seq=

A0
Se = G\(’ 1
=100, 29, "
X Sdata
loss
_220
P\G\(,'\'l

time

TCP reliable data
transfer

® Retransmission

triggered by timeout

A (client) B (server)

SYN, Seq # = 455

SYN, ACK, Seq # =

ACK;, =456, Ack #= 322
data
Seq#=3 =556 56 bytes qf data

= 556, Ack #=378 120 bytes]of data

= 676, Ack #=378 100 bytes pf data

, Ack #=556 56 bytes ¢f data

6, Ack #=378 120 bytegof data

, Ack #= 776 0 bytes of data

~

/

TCP reliable data transfer

® Retransmissions

triggered by:

® duplicate acks

TCP: retransmission timeout

® If the sender hasn’t received an ACK by timeout,
retransmit the first packet in the window,
restart timer

e How do we pick a timeout value?

=99

LastByteAcked

TCP: retransmission timeout

@ Host A

«—timeout ——

v

time

Host B@

v

@ Timeout too long — inefficient

@Hosf A

I
3
o
Q
E
+
N
o
lUI"
Q
0
LastByteAcked %_
=99 +
3
LastByteAcked 3
=119 E
+
N
o))
IUI‘
Q
0
LastByteAcked
=119 -L
v .
time Iimeout too short -

duplicate packets

/

TCP Round Trip Time

Q: how to estimate RTT?

o SampleRTT: measured time from segment transmission until

ACK receipt

® ignore retransmissions (?)

* SampleRTT will vary, want estimated RTT “smoother”

® average several recent measurements, not just current

SampleRTT

—_

nds

RTT (milliseco

Example RIT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

300

250
200 - v y X%N%y‘ $¥ . 31
150
100 : : : : : : : : : : : : : : :
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—¢— SampleRTT —®— Estimated RTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1— OL)*EstimatedRTT + ()L*SampleRTT

® Exponential weighted moving average
* influence of past sample decreases exponentially fast (?)

* typical value: a0 = 0.125

Effect of OL?

TCP Round Trip Time and Timeout

Setting the timeout
* EstimatedRTT plus "safety margin"
° large variation in EstimatedRTT -> larger safety margin

® first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT |
(typically, B = 0.25)
® Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT

@

nextByteEXpected

-
/

nextByteEXpected

y €

nextByteEXpected

1

nextByteEXpected

—

8

TCP receiver buffer

TCP Receiver Event/ACK generation
[RFC 1122, RFC 2581]

Accept packets within receiver window

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment starts lower end of gap

TCP Congestion Control

Congestion detection:

® Joss event = timeout or 3 duplicate acks

® TCP sender reduces rate (congestion window) after loss

cvent

Rate adjustment: (probing)

® slow start

® Congestion avoidance: additive Increase and Multiplicative
Decrease (AIMD)

® conservative after timeout events

Packet loss == congestion?

Congestion Window (cwnd)

® [imits how much data can be in transit

® Implemented in number of bytes

MaxWindow = min(cwnd, rwnd)

EffectiveWindow = MaxWindow — (LastByteSent — LastByteAcked)

Max\Vindow

LastByteAcked ‘ I

=
EffectiveWindo
LastByteSent e

l“l%"h'

N

>

sequence number increases

min(rwnd,cwnd)
RTT

rate = Bytes/sec

Self-clocking

* If we have a large window, ACKs “self-clock” the data to the
rate of the bottleneck link

e Observe: received ACK spacing = L/ bottlepeck bandwidth
P, '

+“—>

I

receiver
sender

Tiny ACK

@ Ay (very thin)

TCP: Slow Start

® Goal: discover roughly the proper sending rate quickly
® Whenever starting traffic on a new connection, or whenever
increasing traffic after congestion (timeout) was

experienced:
Initial cwnd =1MSS

Each time a segment is acknowledged, increment cwnd by
one MSS
¢ Continue until
® Reach ss_thresh

® Packet loss

Slow Start lllustration

® The congestion window

cwnd = 1MS

segment 1

size grows very rapidly

e TCP slows down the cwnd = 2ms

ACK for segment 1

segment 2

segment 3

increase of cwnd when

_ K for segments i
cwnd >= ss thresh g,y
- cwnd = 4MS§

2+3

segment 4

e Observe:

segment 5

segment 6

e Fach ACK generates

segment 7

two packets W _
cwnd = 8MS$

® slow start increases rate

exponentially fast

(doubled every RTT)!

A+5+6+T

assume 1 MSS = 1 byte

:

Congestion Avoidance (After Slow Start)

e Slow Start figures out roughly the rate at which the network
starts getting congested

® Congestion Avoidance continues to react to network
condition

® Probes for more bandwidth, increase cwnd if more bandwidth

available

® If congestion detected, aggressively cut back cwnd

® How?

TCP Multiplicative Decrease & Additive
increase (AIMD)

e multiplicative decrease: cut additive increase: increase cwnd
cwnd in half after loss event by 1 MSS every RTT in the
absence of loss events:
probing
congestion
window
24 Kbytes —
16 Kbytes —
8Kbytes —

p time

Why AIMD

e Two Competing sessions

* Additive increase (Al) gives slope of 1, as throughout increases

* multiplicative decrease (MD) decreases throughput proportionally

equal bandwidth share

Fair and link fully utilized (rate R)
loss: decrease window by factor of 2

congestion avoidance: additive increase

Connection 2 throughput >g

Connection 1 throughput R

AIMD Example

A

D

Limit rates:
X=Y

AIMD Sharing Dynamics

ARZ /B

y
DI —1E

60

50

4

(@)

'Rates equalize - fair share
30 I
ol
ayiil
N

— O W
AN WO

T~
—
]
_—
_
——
T —
T —
——
-
—
]
]
—_
_
_—
——
T —
=
~
—]
—

AN
(o]

109
136
163
190
217
244
271
298
325
352
379
406
433
460
487

O No congestion - rate increases by one packet/RTT every RTT
@ 0 Congestion > decrease rate by factor 2

-

Example of Slow Start + Congestion

Avoldance

e Assume that ss_thresh = §MSS "~

14

12 .
— 10 ‘ssthresn . //
o 8
= /
g ° 7
- 4
§ 2 /
© «

0 :

Roundtrip times

o

cwnd = 2

cwnd =4

cwnd =8

cwnd =9

cwnd =10

~

Responses to Congestion (Loss)

® There are algorithms developed tor TCP to respond to

congestion

e TCPTahoe
e TCP Reno

® and many more:

® TCP Vegas (research: use timing of ACKs to avoid loss)
* TCP SACK (future deployment: selective ACK)

TCP Reno

* Upon timeout, cut ss_thresh by /2 and cwnd = 1MSS

® Go to slow start phase

* Fast retransmit and fast recovery mechanism
® Upon receiving 3 duplicate ACKs, retransmit the presumed lost
segment ("fast retransmit")

® But do not enter slow-start. Instead enter congestion avoidance

(“fast recovery")

MaxWindow
A
—

Fast retransmit L :- |

a | go rlth m : LastByteSent .

sequence number increases

event: ACK received, with ACK field value of y
if (y > LastByteAcked+1) {
LastByteAcked = y-1
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

| \

a duplicate ACK for fast retransmit
already ACKed segment

o

~
EffectiveWindo

<

Fast Recovery

® After a fast-retransmit
® cwnd = cwnd/2 (vs. 1 inTahoe)
® ss thresh = cwnd
® i.e. starts congestion avoidance at new cwnd

Not slow start from cwnd = 1MSS

® After a timeout
® ss thresh = cwnd/2
e cwnd = 1MSS

® Do slow start

o

Fast Retransmit and Fast Recovery

* Slow start only once per session (if no timeouts)

® In steady state, cwnd oscillates around the ideal window size.

cwnd 4

Congestion

Avoidance
Slow Start

Time

-

Summary (1)

State Event TCP Reno
Sender Action Comment
Slow Start (SS) ACK receipt for cwnd = cwnd + MSS, Resulting in a doubling of
previously unacked data If (cwnd > Threshold) cwnd every RTT
set state to “Congestion
Avoidance”
Congestion ACK receipt for cwnd = cwnd +MSS * (MSS/cwnd) Additive increase, resulting
Avoidance (CA) previously unacked data in increase of cwnd by 1
MSS every RTT
SS or CA Loss event detected by ss_threshold = cwnd /2, Fast recovery, implementing
triple duplicate ACK cwnd = ss_threshold, multiplicative decrease.
Set state to “Congestion cwnd will not drop below 1
Avoidance” MSS.
SS or CA Timeout ss_threshold = cwnd /2, Enter slow start
cwnd =1 MSS,
Set state to “Slow Start”
SS or CA Duplicate ACK Increment duplicate ACK count for cwnd and ss_thresh not

segment being acked

changed

Summary (2)

Distinguish algorithms & protocols!
o Multiplexing and demultiplexing

® Port number

* Error detection/recovery
® Internet checksum (inclusion of pseudo header)
® Stop-n-Wait, Go-back-N; selective repeat
® Connection establishment/termination
* Flow control
* Congestion control
® Sliding window
e AIMD

® Slow start

@ ® Fast retransmit & recovery

