
Transport Layer

Objectives
� Understand principles behind transport layer services:

� multiplexing/demultiplexing
� reliable data transfer
� flow control
� congestion control

� TCP and UDP protocols
� Message format
� Operations

162

Transport services and protocols
� provide logical communication

between app processes running
on different hosts

� transport protocols run in
end systems
� sender side: breaks app

messages into segments,
passes to network layer

� receiver side: reassembles
segments into messages,
passes to app layer

� more than one transport
protocol available to apps
� Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

163

Internet transport-layer protocols
� reliable, in-order delivery

(TCP)
� congestion control
� flow control
� connection setup

� unreliable, unordered
delivery: UDP
� no-frills extension of
“best-effort” IP

� services not available:
� delay guarantees
� bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

165

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 server host 2

= process= socket

delivering received segments
to correct socket

Demultiplexing at receiver host:
gathering data from multiple
sockets, enveloping data with header
(later used for demultiplexing)

Multiplexing at sender host:

166

How demultiplexing works
� host receives IP datagrams

� each datagram has source IP
address, destination IP address

� each datagram carries 1
transport-layer segment

� each segment has source,
destination port number

� host uses IP addresses & port
numbers to direct segment to
appropriate socket
� TCP sockets are identified by (S-

IP, D-IP, SP, DP) 4-tuple
� UDP sockets are identified by

(D-IP, DP)

source port # dest port #

32 bits

application
data
(message)

other header fields

TCP/UDP segment format

167

Principles of Reliable Data Transfer
Protocols
� Important in applications, transport layer and link layers
� Mechanisms:

� Error detection and correction: a packet is received but may be
erroneous

� Loss detection and recovery: a packet is missing

� Design issues:
� Where to put the functionality?
� Efficiency: utilization of bandwidth resource

Utilization = maximum app. data rate/available bandwidth

168

Error Detection
� Problem: detect bit errors in packets (frames)
� Solution: add extra bits to each packet
� Techniques:

� Parity check
� Checksum
� Other sophisticated coding schemes such as Reed-Solomon

code

169

Parity Checking
� e.g., d = 7, even parity
Received message: 00101010

Single Bit Parity:
Detect single bit errors

Odd parity check:
• Sum up information bits and mod 2
• If zero, add 1 as the parity bit
• Otherwise, add 0
Even parity check
• Sum up information bits and mod 2
• If zero, add 0 as the parity bit
• Otherwise, add 1

Redundancy
 Number of bits used in full
R = --------------------------------
 Number of bits in message

170

Q: Can it detect multiple bit errors?
Can it correct any bit error?

Internet Checksum
� 16-bit one's complement of the one's complement sum of all

16-bit words in the content to be protected

� Two’s complement sum: summing the numbers (with
carries)

� One’s complement sum: summing the numbers and adding
the carry (or carries)

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1

wraparound

sum
checksum

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

173

Internet checksum
Sender:
� treat contents to be

protected as sequence of
16-bit integers

� checksum: addition (1’s
complement sum) of
segment contents

� sender puts checksum
value into the checksum
field

Receiver:
� compute checksum of

received data
� check if computed

checksum equals checksum
field value:
� NO - error detected
� YES - no error detected.

But maybe errors
nonetheless? More later
….

174

Q: Can it detect multiple bit errors?
Can it correct any bit error?

Example
� Original: 01 00 F2 03 F4 F5 F6 F7 00 00
� 2’s complement sum: 0100 + F203 + F4F5 + F6F7 + 0000

= 2DEEF

� 1’s complement sum:
� Checksum = ?

� Result:
� Recv: 01 00 F2 03 F4 F5 F6 F7 01 00 210E
� Redundancy? Limitations?

175

Checksum in UDP

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Dest IP
Source IP

Pseudo header

protocol lengthresv

16-word checksum
for UDP segment

� the checksum is
computed using the
payload and a "pseudo
header” that contains
some of the same
information from the real
IP header.

176

Loss Detection
� Causes of packet losses

� Buffer overflow
� Drop after error detection

� Detection methods
� At the crime scene
� At the receiver

� How do I know that I am
supposed to get certain data?

� At the sender

1-177

Loss Recovery
� Once packet losses are detected, the source needs to be

informed
� Negative ACK (NACK): “packet xx is missing” vs.
� Positive ACK: “packet xx is received” -- timeout

� Source action
� Should I proceed to transmit the next message w/o the

knowledge of the reliable delivery of the current one?

� Retransmission
� Retransmit every unacked packet?
� Selective retransmit the lost packet only?

178

Flow Control
� In Internet terms, flow control aims to control the rate of the

sender not to overwhelm the receiver

� How?

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3
179

Congestion Control
Congestion:
� informally: “too many sources sending too much data too

fast for network to handle”
� different from flow control!

� Flow control concerns not to overload the receiver
� manifestations:

� lost packets (buffer overflow at routers)
� long delays (queueing in router buffers)

180

Causes/costs of congestion: scenario 1
� two senders, two

receivers

� one router, infinite
buffers

� output link capacity: R

� no retransmission

unlimited shared
output link buffers

Host Aoriginal data: lin

Host B

R/2

R/2

l o
ut

lin

lout

R/2
de
la
y

lin

large delays as arrival rate, lin,
approaches capacity

maximum per-connection
throughput: R/2

181

Host C

Host D

Causes/costs of congestion: scenario 2
� one router, finite buffers

� If a packet is lost at router due to a full buffer, the sender retransmits
lost packet
� application-layer: lin = lout

� transport-layer input includes retransmissions: l'in ≥ lin

finite shared output
link buffers

Host A lin : original data

Host B

lout

l'in : original data, plus
retransmitted data

182

Host C

Host D

Causes/costs of congestion: scenario 2
� Realistic: when lin approaching R/2, some packets are

retransmissions including duplicated that are delivered!

“costs” of congestion:
� more work (retransmits) for given “goodput”
� unneeded retransmissions: link carries multiple copies of packet

R/2

R/2
lin

l o
ut

b. loss & retransmission

R/2

R/2
lin

l o
ut

a. perfect rate control

183

Q: what happens as l'in and lin increase?
Causes/costs of congestion: scenario 3

� four senders
� multihop paths

� timeout/retransmit finite shared output
link buffers

Host A
lin : original data

Host B

lout

l'in : original data, plus
retransmitted data

A: As red l'in increses, nearly all blue packets at higher
finite queue are dropped. Blue throughput approaches 0.

Host C

Host D

184

R1

R2

R3

R4

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
� when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

l
o
u
t

185

Approaches towards congestion control

Two broad approaches towards congestion control:
End-to-end congestion control:
� no explicit feedback from network
� congestion inferred from end-system observed loss and

delay

� approach taken by TCP
Network-assisted congestion control:
� routers provide feedback to end systems

� single bit indicating congestion (SNA, DECbit, TCP/IP
ECN, ATM)

� explicit rate sender should send at186

Bag of Tricks
Functions TCP UDP

Multiplexing/demultiplexing x x

Reliable data transfer • Checksum
• Sequence number
• ACK from receivers
• Retransmission
• Buffering outstanding

packets

• Checksum

Flow control Throttled by the receiver,
sender reacts

Congestion control • End-system estimates and
adjusts transmission rate
based on congestion
“signal” from the network

Connection
establishment/tear down

x
187

UDP and TCP
� Understanding the protocol details of UDP and TCP

� Header format
� TCP state machine
� Connection setup and tear-down

� Sliding window in TCP
� TCP flow control
� TCP congestion control

188

UDP: User Datagram Protocol [RFC 768]
� “bare bones” Internet transport

protocol

� “best effort” service, UDP
segments may be:
� lost
� delivered out of order to app

� connectionless:
� no handshaking between

UDP sender, receiver
� each UDP segment handled

independently of others

� Why is there a UDP?
� no connection establishment

(less delay)
� simple: no connection state at

sender, receiver
� small segment header
� no congestion control: UDP

can blast away as fast as
“desired”

189

UDP: more
� often used for streaming

multimedia apps
� loss tolerant
� rate sensitive

� other UDP uses
� DNS, SNMP

� reliable transfer over UDP: add
reliability at application layer
� application-specific error

recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Dest IP
Source IP

Pseudo header

protocol lengthresv

16-word checksum
for UDP segment

Size of UDP header?
190

TCP Outline
� TCP: Overview
� TCP header format
� TCP connection establishment & tear down

� What are the error scenarios?

� Reliable data transfer
� Congestion control

191

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

� full duplex data:
� bi-directional data flow in same

connection
� MSS (maximum segment size):

largest data payload in TCP

� connection-oriented:
� handshaking (exchange of

control msgs) initiates sender,
receiver state before data
exchange

� flow controlled:
� sender will not overwhelm

receiver

� point-to-point:
� one sender, one receiver

� reliable, in-order byte steam:
� no “message boundaries”

� pipelined:
� TCP congestion and flow

control set window size

� send & receive buffers

192

TCP segment structure
source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Header length (4 bits)
in 32-bit words

193

TCP: Segments
� TCP “Stream of Bytes” Service
� TCP segment

� No more than Maximum Segment Size (MSS) bytes
� Segment sent when Segment full (MSS) or “Pushed” by

application

Example:
� MSS = 100 bytes, Data receive from application

Byte 0
Byte 1
Byte 2
Byte 3

Byte 100

TCP Segment

Byte 101

Byte 200
TCP Segment

194

TCP: Sequence Numbers, ACKs
� TCP “Stream of Bytes” Service

� Sequence numbers:
� Starting byte offset of data carried in this segment

� ACKs: (“What Byte is Next”)
� gives seq# just beyond highest seq# received in order

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80
195

TCP: Sequence Numbers, ACKs Example
� Sequence Number = 1001. Sender sends 500 bytes.

Receiver acknowledges with ACK number:
 A) 501 B) 1002 C) 1500 D) 1501 E) 1502

Answer: D) 1501
� Next sequence number to send by sender is:

 A) 1500 B) 1501 C) 1502

Answer: B) 1501

196

Establishing Connection
� Three-Way Handshake

� Each side notifies the other of
starting sequence number it will
use for sending

� Each side acknowledges other’s
sequence number
� SYN-ACK: Acknowledge

sequence number + 1
� The third segment may piggyback

some data

� Why 3-way handshake?

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server

197

TCP State Diagram: Connection Setup
CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
Snd SYN

passive OPEN CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK
Rcv SYN, ACK

rcv SYN
snd ACK

Client

Server

1. Retransmission if response not received
2. Client can start data after sending ACK

198

Tearing Down Connection
� Either Side Can Initiate Tear Down

� Send FIN signal
� I’m not going to send any more

data

� Other Side Can Continue Sending
Data
� Half open connection
� Must continue to acknowledge

� Acknowledging FIN
� Acknowledge last sequence

number + 1

A B

FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB

199

State Diagram: Connection
Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN
CLOSE

send FIN
CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK
rcv FIN Timeout=30sec

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

rcv ACK of FIN

snd ACK
rcv FIN+ACK

ACK

Active Close

Passive Close

A B

FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB

200

acknowledged sent to be sent outside window

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
Checksum Urgent Pointer

Options..

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
Checksum Urgent Pointer

Options..

Packet Sent Packet Received

App write

TCP Window Control

Increasing
Seq number

Sender buffer
201

TCP reliable data transfer
� TCP creates reliable data transport service on top of IP’s

unreliable service
� Pipelined segments

Data

In one round trip time (RTT) time, a maximum BWxRTT bits can
be sent to fill up the pipe

202

TCP reliable data transfer
� Cumulative acks Host A

Seq=92, 8 bytes data

ACK=100

loss

Host B

X

Seq=100, 20 bytes data

ACK=120

time

203

TCP reliable data
transfer
� Retransmission

triggered by timeout

A (client) B (server)

SYN, Seq # = 455

SYN, ACK, Seq # = 321, Ack #=456

ACK, Seq # = 456, Ack #= 322

Seq # = 456, Ack #= 322 100 bytes data

Seq # = 322, Ack #=556 56 bytes of data

Seq # = 556, Ack #=378 0 bytes of data

Seq # = 556, Ack #=378 120 bytes of data

Seq # = 676, Ack #=378 100 bytes of data

Seq # = 378, Ack #=556 56 bytes of data

Seq # = 556, Ack #=378 120 bytes of data

Seq # = 434, Ack #= 776 0 bytes of data 204

TCP reliable data transfer
� Retransmissions

triggered by:
� duplicate acks

Host A

time

Host B

Seq=120, 10 bytes data

ACK=92

Seq=100, 20 bytes data

Seq=92, 8 bytes data

Seq=130, 8 bytes data

ACK=92

ACK=92

Seq=92, 8 bytes data

ACK=92

ACK=138205

TCP: retransmission timeout
� If the sender hasn’t received an ACK by timeout,

retransmit the first packet in the window,
restart timer

� How do we pick a timeout value?

206

TCP: retransmission timeout
Host A

Seq=100, 20 bytes data

ACK=100

time Timeout too short à
duplicate packets

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data
loss

ti
m

eo
ut

Timeout too long → inefficient

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut

LastByteAcked
= 99

LastByteAcked
= 119

LastByteAcked
=119

LastByteAcked
= 99

207

TCP Round Trip Time
Q: how to estimate RTT?
� SampleRTT: measured time from segment transmission until

ACK receipt
� ignore retransmissions (?)

� SampleRTT will vary, want estimated RTT “smoother”
� average several recent measurements, not just current

SampleRTT

208

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

209

TCP Round Trip Time and Timeout
EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
� Exponential weighted moving average

� influence of past sample decreases exponentially fast (?)

� typical value: a = 0.125

Effect of a?

210

TCP Round Trip Time and Timeout
Setting the timeout

� EstimatedRTT plus “safety margin”
� large variation in EstimatedRTT -> larger safety margin

� first estimate of how much SampleRTT deviates from
EstimatedRTT:

� Then set timeout interval:
TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-b)*DevRTT +
 b*|SampleRTT-EstimatedRTT|

(typically, b = 0.25)

211

TCP Receiver Event/ACK generation
[RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts lower end of gap

nextByteExpected

nextByteExpected

nextByteExpected

nextByteExpected

Accept packets within receiver window

212

TCP receiver buffer

TCP Congestion Control
Congestion detection:
� loss event = timeout or 3 duplicate acks
� TCP sender reduces rate (congestion window) after loss

event
Rate adjustment: (probing)

� slow start
� Congestion avoidance: additive Increase and Multiplicative

Decrease (AIMD)
� conservative after timeout events

Packet loss == congestion?

213

Congestion Window (cwnd)
� Limits how much data can be in transit
� Implemented in number of bytes

EffectiveWindow = MaxWindow – (LastByteSent – LastByteAcked)

MaxWindow = min(cwnd, rwnd)

LastByteAcked
LastByteSent

sequence number increases

MaxWindow

EffectiveWindow

rate @
min(rwnd,cwnd)

RTT
Bytes/sec

214

Data

Self-clocking
� If we have a large window, ACKs “self-clock” the data to the

rate of the bottleneck link

� Observe: received ACK spacing @ L/bottleneck bandwidth
Pr

Pb

Ar

Ab
As

sender
receiver

Tiny ACK
(very thin)215

TCP: Slow Start
� Goal: discover roughly the proper sending rate quickly
� Whenever starting traffic on a new connection, or whenever

increasing traffic after congestion (timeout) was
experienced:

� Initial cwnd =1MSS
� Each time a segment is acknowledged, increment cwnd by

one MSS

� Continue until
� Reach ss_thresh
� Packet loss

216

Slow Start Illustration
� The congestion window

size grows very rapidly

� TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

� Observe:
� Each ACK generates

two packets
� slow start increases rate

exponentially fast
(doubled every RTT)!

ACK for segment 1

segment 1cwnd = 1MSS

cwnd = 2MSS segment 2
segment 3

ACK for segments 2 + 3

cwnd = 4MSS segment 4
segment 5
segment 6
segment 7

ACK for segments 4+5+6+7

cwnd = 8MSS

assume 1 MSS = 1 byte

217

Congestion Avoidance (After Slow Start)
� Slow Start figures out roughly the rate at which the network

starts getting congested

� Congestion Avoidance continues to react to network
condition
� Probes for more bandwidth, increase cwnd if more bandwidth

available
� If congestion detected, aggressively cut back cwnd

� How?

218

TCP Multiplicative Decrease & Additive
increase (AIMD)

219

� multiplicative decrease: cut
cwnd in half after loss event

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

additive increase: increase cwnd
by 1 MSS every RTT in the
absence of loss events:
probing

Why AIMD

220

� Two competing sessions
� Additive increase (AI) gives slope of 1, as throughout increases

� multiplicative decrease (MD) decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase

loss: decrease window by factor of 2

Fair and link fully utilized (rate R)

AIMD Example

221

C

x

y

A Bx
C

D Ey

Limit rates:
x = y

R

R

AIMD Sharing Dynamics

222

0

10

20

30

40

50

60

1 28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

A Bx

D E

q No congestion à rate increases by one packet/RTT every RTT
q Congestion à decrease rate by factor 2

Rates equalize à fair share

y

Example of Slow Start + Congestion
Avoidance
� Assume that ss_thresh = 8MSS cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

cwnd = 10

0
2
4
6
8
10
12
14

t=0 t=2 t=4 t=6

Roundtrip times

C
w

nd
 (i

n
M

SS
) ssthresh

223

Responses to Congestion (Loss)
� There are algorithms developed for TCP to respond to

congestion
� TCP Tahoe
� TCP Reno

� and many more:
� TCP Vegas (research: use timing of ACKs to avoid loss)
� TCP SACK (future deployment: selective ACK)

224

TCP Reno
� Upon timeout, cut ss_thresh by ½ and cwnd = 1MSS

� Go to slow start phase

� Fast retransmit and fast recovery mechanism
� Upon receiving 3 duplicate ACKs, retransmit the presumed lost

segment (“fast retransmit”)
� But do not enter slow-start. Instead enter congestion avoidance

(“fast recovery”)

225

event: ACK received, with ACK field value of y
 if (y > LastByteAcked+1) {
 LastByteAcked = y-1
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y = 3) {
 resend segment with sequence number y
 }

Fast retransmit
algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

LastByteAcked
LastByteSent

sequence number increases

MaxWindow

EffectiveWindow

226

Fast Recovery
� After a fast-retransmit

� cwnd = cwnd/2 (vs. 1 in Tahoe)
� ss_thresh = cwnd
� i.e. starts congestion avoidance at new cwnd

� Not slow start from cwnd = 1MSS

� After a timeout
� ss_thresh = cwnd/2
� cwnd = 1MSS
� Do slow start

227

Fast Retransmit and Fast Recovery
� Slow start only once per session (if no timeouts)
� In steady state, cwnd oscillates around the ideal window size.

Time

cwnd

Slow Start

Congestion
Avoidance

228

Summary (1)
State Event TCP Reno

Sender Action Comment

Slow Start (SS) ACK receipt for
previously unacked data

cwnd = cwnd + MSS,
If (cwnd > Threshold)
 set state to “Congestion
Avoidance”

Resulting in a doubling of
cwnd every RTT

Congestion
Avoidance (CA)

ACK receipt for
previously unacked data

cwnd = cwnd +MSS * (MSS/cwnd)

Additive increase, resulting
in increase of cwnd by 1
MSS every RTT

SS or CA Loss event detected by
triple duplicate ACK

ss_threshold = cwnd /2,
cwnd = ss_threshold,
Set state to “Congestion
Avoidance”

Fast recovery, implementing
multiplicative decrease.
cwnd will not drop below 1
MSS.

SS or CA Timeout ss_threshold = cwnd /2,
cwnd = 1 MSS,
Set state to “Slow Start”

Enter slow start

SS or CA Duplicate ACK Increment duplicate ACK count for
segment being acked

cwnd and ss_thresh not
changed

229

Summary (2)

� Multiplexing and demultiplexing
� Port number

� Error detection/recovery
� Internet checksum (inclusion of pseudo header)
� Stop-n-Wait, Go-back-N, selective repeat

� Connection establishment/termination
� Flow control
� Congestion control

� Sliding window
� AIMD
� Slow start
� Fast retransmit & recovery

Distinguish algorithms & protocols!

230

