
Network Security

What is network security?
� Confidentiality: only sender, intended receiver should
“understand” message contents
� sender encrypts message
� receiver decrypts message
� Others cannot understand the message
� The identities, timing or frequency should be secrets as well

� Authentication: sender, receiver want to confirm identity of each
other

� Message Integrity: sender, receiver want to ensure message not
altered (in transit, or afterwards) without detection

� Access and Availability: services must be accessible and available to
users

411

Outline
� Attacks and counter measures
� Security primer
� Security in different layers

412

Internet security threats
Mapping:

� before attacking: “case the joint” – find out what services are
implemented on network

� Use ping to determine what hosts have addresses on network
� Port-scanning: try to establish TCP connection to each port in

sequence (and see what happens)
� nmap (http://www.insecure.org/nmap/) mapper: “network

exploration and security auditing”

Countermeasures?

413

Internet security threats
Mapping: countermeasures

� record traffic entering network
� look for suspicious activity (IP addresses, ports being scanned

sequentially)

414

Internet security threats
Packet sniffing:

� broadcast media
� promiscuous NIC reads all packets passing by
� can read all unencrypted data (e.g. passwords)
� e.g.: C sniffs B’s packets

A

B

C

src:B dest:A payload

Countermeasures?
415

Internet security threats
IP Spoofing:

� can generate “raw” IP packets directly from application, putting
any value into IP source address field

� receiver can’t tell if source is spoofed
� e.g.: C pretends to be B

A

B

C

src:B dest:A payload

Countermeasures?
416

Internet security threats
IP Spoofing: ingress filtering

� routers should not forward outgoing packets with invalid source
addresses (e.g., datagram source address not in router’s
network)

� great, but ingress filtering can not be mandated for all networks

A

B

C

src:B dest:A payload

×
417

Denial of Service (DOS)
� Huge problem in current Internet

� General form
� Prevent legitimate users from

gaining service by overloading or
crashing a server

418

Total number of DDoS attacks

In 2024, Cloudflare’s autonomous DDoS defense
systems blocked around 21.3 million DDoS attacks

DOS: Sync Attack

� Buggy implementations allow unfinished connections to eat all
memory, leading to crash

� Better implementations limit the number of unfinished
connections
� Once limit reached, new SYNs are dropped

A

B

C

SYN

SYNSYNSYN

SYN
SYN

SYN

Countermeasures?

419

Denial-of-Service Attacks: Reflection
� Reflection

� Cause one non-compromised host to attack another
� E.g., host A sends DNS request or TCP SYN with source V to

server R. R sends reply to V

Reflector (R)

Internet

Attacker (A)
DATA RV

Victim (V)
420

Denial-of-Service Attacks: Reflection
� Reflection

� Cause one non-compromised host to attack another
� E.g., host A sends DNS request or TCP SYN with source V to

server R. R sends reply to V

Reflector (R)

Internet

Attacker (A)

DATAV R

Victim (V)
421

Denial of service (DOS): countermeasures
� filter out flooded packets (e.g., SYN) before reaching host:

throw out good with bad
� traceback to source of floods (most likely an innocent,

compromised machine)

A

B

C

SYN

SYNSYNSYN

SYN
SYN

SYN

422

IP Traceback
� Routers probabilistically tag packets

with an identifier
� Destination can infer path to true

source after receiving enough
packets

423

Firewalls

isolates organization’s internal net from larger Internet,
allowing some packets to pass, blocking others.

firewall

administered
network

public
Internet

firewall

424

Firewalls: Why
prevent denial of service attacks:

• SYN flooding: attacker establishes many bogus TCP
connections, no resources left for “real” connections.

prevent illegal modification/access of internal data.
• e.g., attacker replaces CIA’s homepage with something else

allow only authorized access to inside network (set of authenticated
users/hosts)

two types of firewalls:
• packet-filtering: stateless vs stateful
• application-level

425

Stateless packet filtering

� internal network connected to Internet via router firewall
� router filters packet-by-packet, decision to forward/drop packet

based on:
� source IP address, destination IP address
� TCP/UDP source and destination port numbers
� ICMP message type
� TCP SYN and ACK bits

Should arriving
packet be allowed in?
Departing packet let

out?

426

Stateless Packet Filtering Example
� Example 1: block incoming and outgoing datagrams with IP

protocol field = 17 and with either source or dest port = 23.
� All incoming and outgoing UDP traffic and telnet connections

are blocked.
� Example 2: Block inbound TCP segments with ACK=0.

� Prevents external clients from making TCP connections with
internal clients, but allows internal clients to connect to
outside.

427

Stateful packet filtering

428

� stateless packet filter: heavy handed tool
� admits packets that “make no sense,” e.g., source port = 80, ACK bit

set, even though no TCP connection established:

� stateful packet filter: track status of every TCP connection
� track connection setup (SYN), teardown (FIN): determine whether

incoming, outgoing packets “makes sense”
� timeout inactive connections at firewall: no longer admit packets
� Can also be used for UDP datagrams to track request-response

action
source
address

dest
address protocol

source
port

dest
port

flag
bit

allow outside of
222.22/16

222.22/16
TCP 80 > 1023 ACK

action
source
address

dest
address

proto
source

port
dest
port

flag
bit

check
conxion

allow 222.22/16
outside of
222.22/16

TCP > 1023 80
any

allow outside of
222.22/16

222.22/16
TCP 80 > 1023 ACK x

allow 222.22/16
outside of
222.22/16 UDP > 1023 53 ---

allow outside of
222.22/16

222.22/16
UDP 53 > 1023 ----

x

deny all all all all all all

Stateful packet filtering
v Access control list (ACL) augmented to indicate need to check

connection state table before admitting packet

5-429

Firewall State Table

5-430

� Stores information of active “connections”: protocol, IP
addresses, port numbers, process ID, timestamp, timeout,
direction, etc.
� TCP states during connection setup and tear down

Source addr Source port Dest addr Dest port Connection
state

222.22.1.100 1090 210.8.23.11 80 ESTABLISHED

222.22.1.20 33163 66.102.9.88 22 TIME_WAIT

Application gateways

� filters packets on application data
as well as on IP/TCP/UDP
fields.

� example: allow selected internal
users to telnet outside.

host-to-gateway
telnet session

gateway-to-remote
host telnet session

application
gateway

router and filter

1. require all telnet users to telnet through gateway.
2. for authorized users, gateway sets up telnet connection to dest

host. Gateway relays data between 2 connections
3. router filter blocks all telnet connections not originating from

gateway.

431

Limitations of firewalls and gateways
� IP spoofing: router can’t know

if data “really” comes from
claimed source

� if multiple applications need
special treatment, each has
own application gateway.

� For application gateways,
client software must know
how to contact gateway.
� e.g., must set IP address of proxy

in Web browser

� filters often use all or nothing
policy for UDP.

� tradeoff: degree of
communication with outside
world, level of security

� many highly protected sites
still suffer from attacks.

432

Outline
� Attacks and counter measures
� Security primer
� Security in different layers

433

Friends and enemies: Alice, Bob, Trudy
� well-known in network security world

� Bob, Alice (lovers!) want to communicate “securely”
� Trudy (intruder) poses threats to the communication

secure
sender

secure
receiver

channel data, control
messages

data data

Alice Bob

Trudy

1-434

There are bad guys (and girls) out there!
Q: What can a “bad guy” do?
A: a lot!

� eavesdrop: intercept messages
� actively insert/modify messages into connection
� impersonation: can fake (spoof) source address in packet (or

any field in packet)
� hijacking: “take over” ongoing connection by removing

sender or receiver, inserting himself in place
� denial of service: prevent service from being used by others

(e.g., by overloading resources)

435

The language of cryptography

symmetric key crypto: sender, receiver keys identical

public-key crypto: encryption key public, decryption key secret (private)

plaintext plaintextciphertext

KA

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

KB

436

Symmetric key cryptography
substitution cipher: substituting one thing for another

� monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice

ciphertext: nkn. s gktc wky. mgsbc

E.g.:

Q: How hard to break this simple cipher?:
q brute force (how hard?)
q other?

437

Symmetric key cryptography

symmetric key crypto: Bob and Alice share the same (symmetric) key: K
� e.g., key is a known substitution pattern in mono alphabetic substitution

cipher

plaintextciphertext

K
A-B

encryption
algorithm

decryption
algorithm

A-B

K
A-B

plaintext
message, m

K (m)
A-B

K (m)
A-B

m = K ()
A-B

438

Symmetric key crypto: DES
DES: Data Encryption Standard
� US encryption standard [NIST 1993]
� 56-bit symmetric key, 64-bit plaintext input

� How secure is DES?
� DES Challenge III was a joint effort between distributed.net and

Deep Crack. The key was found in just 22 hours 15 minutes in
January 1999, and the plaintext was "See you in Rome (second AES
Conference, March 22-23, 1999)”

� making DES more secure:
� use three keys sequentially (3-DES) on each datum
� use cipher-block chaining

439

Cipher Block Chaining

440

AES: Advanced Encryption Standard
� new (Nov. 2001) symmetric-key NIST standard, replacing

DES
� processes data in 128 bit blocks
� 128, 192, or 256 bit keys
� If brute force decryption (try each key) taking 1 sec on DES,

takes 149 trillion years for AES

At present, there is no known practical attack that would
allow someone without knowledge of the key to read data
encrypted by AES when correctly implemented.

441

Q: how do Bob and Alice agree on key
value?

442

� Key distribution center
� Diffe-Hellman key agreement protocol

Key Distribution Center (KDC)
� Alice, Bob need shared symmetric key.
� KDC: server shares different secret key with each registered user

(many users)
� Alice, Bob know own symmetric keys, KA-KDC , KB-KDC , for

communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

8-443

Key Distribution Center (KDC)

Alice
knows
R1

Bob knows to
use R1 to
communicate
with Alice

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared symmetric secret
key to communicate with each other?

KDC
generates
R1

KB-KDC(A,R1)

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1))

444

Diffie-Hellman Key Agreement Protocol
Allow Alice and Bob to agree on a shared secret in a public channel
(against passive, i.e., eavesdropping only adversaries)
Setup: a prime p and a base g, both public.

ga mod p

gb mod p

K = (ga mod p)b mod p= gab mod p = (gb mod p)a mod p

Pick random, secret a

Compute and send ga mod p

Pick random, secret b

Compute and send gb mod p

445

Diffie-Hellman Example
� Alice and Bob agree on p = 23 and g = 5.
� Alice chooses a = 6 and sends 56 mod 23 = 8
� Bob chooses b = 15 and sends 515 mod 23 = 19
� Alice computes 196 mod 23 = 2.
� Bob computes 815 mod 23 = 2.
� Then 2 is the shared secret.

� Assumption: Finding 5?? mod 23 = 8 and 5?? mod 23 = 19 are
hard

446

Public Key Cryptography

public key cryptography
� public encryption key known to all

� private decryption key known only to receiver

1-447

Public key cryptography

plaintext
message, m

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
messageK (m)B

+

K B
+

Bob’s private
key

K
B
-

m = K (K (m))
B
+

B
-

448

Public key encryption algorithms

need KB+() and KB-() such that

given public key KB+ , it should be
impossible to compute private key KB-

Requirements:

1

2

RSA: Rivest, Shamir, Adelson
algorithm

K (K (m)) = m BB

- +

449

RSA: Choosing keys
1. Choose two large prime numbers p, q.
 (e.g., 1024 bits each)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
 with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is exactly divisible by z.
 (in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

K
B
+ K

B
-

450

RSA: Encryption, decryption
0. Given (n,e) and (n,d) as computed above

1. To encrypt bit pattern, m, compute

c = me mod n (i.e., remainder when m is divided by n)e

2. To decrypt received bit pattern, c, compute

m = cd mod n (i.e., remainder when cd is divided by n)

m = (me mod n)d mod nMagic
happens!

c

K
B

+
K

B

-

451

RSA example:
Bob chooses p=5, q=7. Then n=p*q=35, z=(p-1)*(q-1)=24.

e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z)

letter m m e c = m mod ne

L 12 1524832 17

c m = c mod nd

17 481968572106750915091411825223071697 12

c d
letter

L

encrypt:

decrypt:

452

RSA: Why is that m = (m mod n)e mod nd

(m mod n)e
mod n = m mod nd ed

Useful number theory result: If p,q prime and
n = pq, then:

x mod n = x mod n
y y mod (p-1)(q-1)

= m mod n
ed mod (p-1)(q-1)

= m mod n
1

= m

(using number theory result above)

(since we chose ed to be divisible by
(p-1)(q-1) with remainder 1)

453

RSA: another important property
The following property will be very useful later:

K (K (m)) = m BB

- +
K (K (m)) BB

+ -
=

use public key
first, followed
by private key

use private key
first, followed
by public key

Result is the same!

454

Digital Signatures

Application of public key crypto
Cryptographic technique analogous to hand-written

signatures.
� sender (Bob) digitally signs document, establishing he is

document owner/creator.
� verifiable, nonforgeable: recipient (Alice) can prove to someone

that Bob, and no one else (including Alice), must have signed
document

455

Digital Signatures
Simple digital signature for message m:
� Bob signs m by encrypting with his private key KB, creating
“signed” message, KB(m)

-
-

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message,
m, signed
(encrypted) with
his private key

K B
-(m)

456

Digital Signatures (more)
� Suppose Alice receives msg m, digital signature KB(m)

� Alice verifies m signed by Bob by applying Bob’s public key KB to
KB(m) then checks KB(KB(m)) = m.

� If KB(KB(m)) = m, whoever signed m must have used Bob’s private
key.

+
+

-

-

--

+

Alice thus verifies that:
� Bob signed m.
� No one else signed m.
� Bob signed m and not m’.

Non-repudiation:
ü Alice can take m, and signature KB(m) to court and prove that

Bob signed m.

-

457

Message Digests

Computationally expensive to
public-key-encrypt long
messages

Goal: fixed-length, easy- to-
compute digital “fingerprint”

� apply hash function H to m, get
fixed size message digest, H(m).

Hash function properties:
� many-to-1
� produces fixed-size msg digest

(fingerprint)
� given message digest x,

computationally infeasible to
find m such that x = H(m)

large
message
m

H: Hash
Function

H(m)

458

large
message
m

H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

Alice verifies signature and integrity of
digitally signed message:

KB(H(m))-

encrypted
msg digest

KB(H(m))-

encrypted
msg digest

large
message
m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key K B
+

equal
 ?

Digital signature = signed message digest

8-459

8-460

X.509 certificate of VeriSign

Algo. for signing
the certificate

Generated by hashing the certificate
content and encrypting it with the

CA’s private key

Computed from hashing
certificate data

Hash Function Algorithms
� MD5 hash function widely used (RFC 1321)

� computes 128-bit message digest in 4-step process.
� In 1996 a flaw was found in the design of MD5 L -- “should

be considered cryptographically broken and unsuitable for
further use”

� SHA-2, SHA-3
� 224, 256, 384 or 512 bits in digests

461

Certification for Public Key
Symmetric key problem:
� How do two entities establish

shared secret key over network?

Solution:
� trusted key distribution center

(KDC) acting as intermediary
between entities

� DH

Public key problem:
� When Alice obtains Bob’s

public key (from web site, e-
mail, diskette), how does she
know it is Bob’s public key, not
Trudy’s?

Solution:
� trusted certification authority

(CA)

462

Certification Authorities
� Certification authority (CA): binds public key to particular entity,

E.
� E (person, server) registers its public key with CA.

� E provides “proof of identity” to CA.
� CA creates certificate binding E to its public key.

� certificate containing E’s public key digitally signed by CA – CA says “this is
E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

encrypt

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA
8-463

Certification Authorities
� When Alice wants Bob’s public key:

� gets Bob’s certificate (Bob or elsewhere).
� apply CA’s public key to Bob’s certificate, get Bob’s public key
� Agree or not?

Bob’s
public

key K B
+

Decrypt

CA
public

key
K CA

+

K B
+

8-464

What have we learned so far?
� Message confidentiality: shared key or public key crypto
� Message integrity: hash
� Authenticity of a digital message: digital signature

What about authenticity of sender/receiver?
� ARP poisoning
� IP/MAC address spoofing
� phishing attacks

Need authentication

465

Authentication
Goal: Bob wants Alice to “prove” her identity to him

Protocol: assume pre-shared secret between Alice and Bob

Failure scenario??

466

“I’m Alice”Alice’s
IP addr

encrypted
password

Authentication: Symmetric Key Crypto
Goal: avoid IP proofing, playback attack

Why the use of nonce?

Nonce: number (R) used only once –in-a-lifetime

ap: to prove Alice “live”, Bob sends Alice nonce, R. Alice
must return R, encrypted with shared secret key

“I am Alice”

R

K (R)
A-B

Alice is live, and
only Alice knows
key to encrypt
nonce, so it must
be Alice!

467

Authentication: Public Key Crypto

� can we authenticate using public key techniques?

use nonce, public key cryptography

“I am Alice”

R
K (R)

A
-

“send me your certificate”

Alice’s
public

key K A
+

digital
signature
(decrypt)

K CA
+

K A
+

(K (R)) = R
A
-K

A
+

and knows only Alice
could have the private
key, that encrypted R
such that

(K (R)) = RA
-

K A
+

468

A real-life scenario

469

� Bob logs in to his amazon.ca account to purchase a bag of coffee beans
� What types of network security does Bob want?

� Authentication of the website
� Confidentiality of his account log-in information and credit card information
� Message integrity of his on-line transactions (against alternation, insertion,

replay, reordering)
� Service availability

� What security primitives discussed so far can be used?
� Certificate
� Symmetric key crypto
� Hash
� …

Internet

Outline
� Attacks and counter measures
� Security primer
� Security in different layers

� Transport layer security – TLS
� Network layer security – IPsec VPN
� Data link layer security – 802.11i

470

Transport Layer Security (TLS)
� transport layer security to

any TCP-based application
� Secure socket layer (SSL) is a

predecessor of TLS. Often
used equivalently.

� used between Web browsers,
servers for e-commerce
(https).
� Port 443
� TLS can be used for non-Web

applications, e.g., IMAP.

471

Evolution

472

� security services:
� server authentication
� data encryption
� data integrity
� client authentication (optional)

Developed by
Netscape

POODLE
attack

BEAST attack
Padding oracle
attack

Secure but high
overhead

Vulnerable Faster handshake
Improved security

Source: https://scribbledtech.com/comprehensive_guide_to_tls/

TLS (cont’d)
� server authentication:

� TLS-enabled browser
includes public keys for
trusted CAs.

� Browser requests server
certificate, issued by trusted
CA.

� Browser uses CA’s public
key to verify server’s public
key from certificate.

� check your browser’s
security menu to see its
trusted CAs or from local
keychain

473

TLS (continued)
Encrypted TLS session:
� Generating symmetric session key depending on the key

exchange method agreed
� e.g., if RSA is used for key exchange,
1. browser generates a symmetric session key locally, encrypts it with server’s

public key, sends encrypted key to server;

2. using private key, server decrypts session key.

� Browser, server know the session key
� All data sent into a TCP socket (by client or server)

encrypted with session key.
� (optional) Client authentication can be done with client

certificates.

474

475
Secure data transfer

Handshake

TCP 3-way handshake

KS
+(Pre-master key)

noncec

nonces

Key Exchange and Cipher Suite
Key exchange
algorithm

Authentication Cipher Hash

Elliptic Curve Diffie-
Hellman (ECDH)
RSA
Diffie-Hellman
…

RSA
DSA

3DES
AES
…

MD5
SHA
…

Example:
• ECDHE_RSA_WITH_AES_256_GCM_SHA385
• RSA_WITH_AES_128_CBC_SHA256

476

Key Hierarchy

477

Pre-
master key

Master
key

Enc key

HMAC
key

Initial
vector

Identical for client and
server for each connection

+ nonces

+ noncem

+ nonces

+ noncem

Session keys per sessionMaster Key reusable
between TCP
connections

Outline
� Attacks and counter measures
� Security primer
� Security protocols

� Transport layer security – TLS
� Network layer security –VPN
� Data link layer security – 802.11i

478

What is network-layer confidentiality ?
� between two network entities: sending entity encrypts

datagram payload, payload could be:
� Any IP datagrams including TCP or UDP segments, ICMP

message, OSPF message ….

� all data sent from one entity to other would be hidden:
� “blanket coverage”

479

Virtual Private Networks (VPNs)
� institutions often want private networks for security.

� costly: separate routers, links, DNS infrastructure.

� VPN: institution’s inter-office traffic is sent over public
Internet instead
� encrypted before entering public Internet
� logically separate from other traffic

480

IP
 (R

1,
 R

2)
he

ad
er

IP
 (A

, B
)

he
ad

er
pa

ylo
ad

IP (A,B)

header

payload

headquarters
branch office

router 1 w/
IPv4 and IPsec

router 2 w/
IPv4 and IPsec

public
Internet

Virtual Private Networks (VPNs)

481

Site-to-site VPN

A B

IP
 (A

, B
)

he
ad

er
pa

yl
oa

d

IP (R1, R2)

header

IP (A, B)

header payload

IP
 (R

1,
 C

)
he

ad
er

IP
 (A

, C
)

he
ad

er
pa

ylo
ad

headquarters

router 1 w/
IPv4 and IPsec

public
Internet

Virtual Private Networks (VPNs)

482

IP (R1, C)header

salesperson
in hotel

laptop
w/ IPsec

Remote access VPN

A

C

IP
 (A

, C
)

he
ad

er
pa

yl
oa

d
IP (A, C
header payload

Remote Access VPN

Split mode – only some traffic using secured tunnel,
e.g., traffic destined to internal servers
Full mode – all traffic using secured tunnel

VPN Protocols

483

Protocol “Layer” of
encaputation

Firewall
friendly

TLS/SSL VPN
OpenVPN

Typically TCP
port 443

Yes

WireGuard UDP port 51820 No

IPSec IP protocol 1701
for data

No

VPN services
� confidentiality
� data integrity
� origin authentication
� replay attack prevention

484

TLS/SSL VPN

485

� Implementations: Cisco AnyConnect, OpenVPN
� Phase 1: establish a secured tunnel to a VPN server

� Key exchange and derivation via TLS handshake

� Phase 2: encrypt and encapsulate an IP datagram in a TCP
segment and send over a TCP socket to the VPN server,
which forwards it to the destination

A TLS VPN Example

486

� Goal: ssh to a McMaster server
130.113.72.169 (hopper.cas.mcmaster.ca)
from a laptop off campus

� Connect to campus VPN server
130.113.69.65 using Cisco AnyConnect
� A new tun interface is created with IP

address 172.18.205.252 on the laptop
� Performs TLS handshake, negotiates keys

(pre-master, master, session keys)
� A user ssh to hopper.cas.mcmaster.ca

� 172.18.205.252 (tun) as source IP and
130.113.72.169 as destination IP, port 22

� A TCP segment is sent (including SYN)
� The tun interface “intercepts” the IP

datagram, passes it to the VPN client

public
Internet

public
Internet

hopper.cas.mcmaster.ca

A TLS VPN Example (Cont’d)

487

� The VPN client encrypts the IP datagram
with TLS (and wrap in a TLS record) and
sends over a TCP/UDP socket to the VPN
server (dest IP 130.113.72.169)
� The source IP address should be the

client’s public IP address (e.g., after
NAT)

� VPN server receives TCP/UDP segments,
extracts the original IP datagram and
forwards to the ssh server
� Note that source IP address is the IP of

the tun interface (part of campus subnet)
� Responses from the ssh server will be

routed through the VPN server, which
encrypts them and sends via the VPN
tunnel previously established with the
laptop

public
Internet

public
Internet

hopper.cas.mcmaster.ca

IPSec VPN

488

� Protocols:
� IKE (internet key exchange): Negotiates security associations

(SAs), algorithms, and keys
� ESP (Encapsulating Security Payload):

Provides encryption, integrity, and anti-replay protection
� AH (Authentication Header): Provides integrity and

authentication only

IPsec – tunneling mode

IPsec IPsec IPsec IPsec

Router IP IPSec Header IP Header IP Payload

489

Site-to-site VPN Remote Access VPN

IPsec transport mode
� IPsec datagram emitted and received by end-system
� protects upper level protocols

IPsec IPsec

IP Header IPSec Header IP Payload

490

Modes and Protocols
� Authentication Header (AH) protocol

� provides source authentication & data integrity but not confidentiality

� Encapsulation Security Protocol (ESP)
� provides source authentication, data integrity, and confidentiality
� more widely used than AH

Transport mode
with AH

Transport mode
with ESP

Tunnel mode
with AH

Tunnel mode
with ESP

491

Security associations (SAs)
� before sending data, “security

association (SA)” established from
sending to receiving entity
� SAs are simplex: for only one

direction

� ending, receiving entitles maintain
state information about SA
� recall: TCP endpoints also maintain

state info
� IP is connectionless; IPsec is

connection-oriented!

IP
header

IPsecheader

Securepayload

IP
he
ad
er

IP
se
c

he
ad
er

Se
cu
re

pa
yl
oa
d

IP
header

IPsec

header

Secure

payload

IP
he
ad
er

pa
yl
oa
d IPheader

payload

headquarters
branch office

salesperson
in hotel

laptop
w/ IPsec

router w/
IPv4 and IPsec

router w/
IPv4 and IPsec

public
Internet

492

Example SA from R1 to R2

� R1 stores for SA:
� 32-bit SA identifier: Security Parameter Index (SPI)
� origin SA interface (200.168.1.100)
� destination SA interface (193.68.2.23)
� type of encryption used (e.g., 3DES with CBC)
� encryption key
� type of integrity check used (e.g., HMAC with MD5)
� authentication key

193.68.2.23200.168.1.100

172.16.1/24
172.16.2/24

security association

Internetheadquarters branch office

R1 R2

493

Security Association Database (SAD)

� endpoint holds SA state in security association database (SAD), where it can locate them
during processing.

� One bi-directional IPsec traffic between headquarters and the branch office
� 2 SAs

� One bi-directional IPsec traffic between headquarter and each salesperson
� with n salespersons, 2n SAs in R1’s SAD

� when sending IPsec datagram, R1 accesses SAD to determine how to process datagram.
� when IPsec datagram arrives to R2, R2 examines SPI in IPsec datagram, indexes SAD

with SPI, and processes datagram accordingly.

the institution consists of a headquarters, a branch office, and traveling salespersons
that typically access the Internet from their hotel rooms. (There is only one salesper-
son shown in the figure.) In this VPN, whenever two hosts within headquarters send
IP datagrams to each other or whenever two hosts within the branch office want to
communicate, they use good-old vanilla IPv4 (that is, without IPsec services). How-
ever, when two of the institution’s hosts communicate over a path that traverses the
public Internet, the traffic is encrypted before it enters the Internet.

To get a feel for how a VPN works, let’s walk through a simple example in the
context of Figure 8.27. When a host in headquarters sends an IP datagram to a sales-
person in a hotel, the gateway router in headquarters converts the vanilla IPv4 data-
gram into an IPsec datagram and then forwards this IPsec datagram into the Internet.
This IPsec datagram actually has a traditional IPv4 header, so that the routers in the
public Internet process the datagram as if it were an ordinary IPv4 datagram—to
them, the datagram is a perfectly ordinary datagram. But, as shown Figure 8.27, the
payload of the IPsec datagram includes an IPsec header, which is used for IPsec proc-
essing; furthermore, the payload of the IPsec datagram is encrypted. When the IPsec
datagram arrives at the salesperson’s laptop, the OS in the laptop decrypts the pay-
load (and provides other security services, such as verifying data integrity) and passes
the unencrypted payload to the upper-layer protocol (for example, to TCP or UDP).

8.7 • NETWORK-LAYER SECURITY: IPSEC AND VIRTUAL PRIVATE NETWORKS 719

Figure 8.27 ! Virtual Private Network (VPN)

IP
header

IPsec
header

Secure
payload

IP
header

IPsec
header

Secure
payload

IP
header

IPsec
header

Secure
payload

IP
header Payload

IP
header Payload

Laptop w/IPsec

Router
w/IPv4 and

IPsec

Router
w/IPv4 and

IPsec

Branch Office

Headquarters

Salesperson
in Hotel

Public
Internet

R1

R2

494

IPsec datagram
� focus for now on tunnel mode with ESP

new IP
header

ESP
hdr

original
IP hdr

Original IP
datagram payload

ESP
trl

ESP
auth

encrypted

authenticated

padding pad
length

next
headerSPI Seq

#

IPsec IPsec IPsec IPsec

495

R1: convert original datagram to IPsec
datagram

� appends to back of original datagram (which includes original header fields!) an
“ESP trailer” field.

� encrypts result using algorithm & key specified by SA.
� appends to front of this encrypted quantity the ESP header, creating “enchilada”.
� creates authentication MAC over the whole enchilada, using algorithm and key

specified in SA;
� appends MAC to back of enchilada, forming payload;
� creates brand new IP header, with all the classic IPv4 header fields, which it

appends before payload.

new IP
header

ESP
hdr

original
IP hdr

Original IP
datagram payload

ESP
trl

ESP
auth

encrypted

authenticated

496

Inside the encapsulation

� ESP trailer: Padding for block ciphers
� ESP header:

� SPI, so receiving entity knows what to do
� Sequence number, to thwart replay attacks

� MAC in ESP auth field is created with shared secret key

new IP
header

ESP
hdr

original
IP hdr

Original IP
datagram payload

ESP
trl

ESP
auth

encrypted

authenticated

padding pad
length

next
headerSPI Seq

#

497

IPsec sequence numbers
� for a new SA, sender initializes seq. # to 0
� each time datagram is sent on SA:

� sender increments seq # counter
� places value in seq # field

� goal:
� prevent attacker from sniffing and replaying a packet
� receipt of duplicate, authenticated IP packets may disrupt service

� method:
� destination checks for duplicates
� doesn’t keep track of all received packets; instead uses a window

498

Security Policy Database (SPD)
� policy: For a given datagram, sending entity needs to know if

it should use IPsec – similar to firewall policies
� needs also to know which SA to use

� may use: source and destination IP address; protocol number

� info in SPD indicates “what” to do with arriving datagram
� info in SAD indicates “how” to do it
� Example: based on the destination IP, SPD contains rules to

discard, perform IPsec, or bypass IPsec processing

499

IPSec properties
� suppose Trudy sits somewhere between R1 and R2. she

doesn’t know the keys.
� will Trudy be able to see original contents of datagram? How

about source, dest IP address, transport protocol, application
port?

� flip bits without detection?
� masquerade as R1 using R1’s IP address?
� replay a datagram?

500

IKE: Internet Key Exchange
� previous examples: manual establishment of IPsec SAs in IPsec

endpoints:
� Example SA

� SPI: 12345
� Source IP: 200.168.1.100
� Dest IP: 193.68.2.23
� Protocol: ESP
� Encryption algorithm: 3DES-cbc
� HMAC algorithm: MD5
� Encryption key: 0x7aeaca…
� HMAC key:0xc0291f…

� manual keying is impractical for VPN with 100s of endpoints
� instead use IPsec IKE (Internet Key Exchange)

501

IKE: PSK and PKI
� authentication (prove who you are) with either

� pre-shared secret (PSK) or
� with public key infrastructure (PKI).

� PSK: both sides start with secret
� run IKE to authenticate each other and to generate IPsec SAs

(one in each direction), including encryption, authentication
keys

� PKI: both sides start with public/private key pair, certificate
� run IKE to authenticate each other, obtain IPsec SAs (one in

each direction).
� similar with handshake in SSL.

502

IPsec summary
� Use Internet Key Exchange to derive keys and SPIs
� either AH or ESP protocol (or both)

� AH provides integrity, source authentication
� ESP protocol (with AH) additionally provides encryption

� IPsec peers can be two end systems, two routers/firewalls,
or a router/firewall and an end system

504

Outline
� Attacks and counter measures
� Security primer
� Security protocols

� Transport layer security – TLS
� Network layer security – TLS VPN and IPsec VPN
� Data link layer security – 802.11i

505

IEEE 802.11 security
� War-driving: drive around your neighborhood, see what WiFi networks

available?
� Some uses no encryption/authentication
� packet-sniffing and various attacks easy!

� Securing 802.11
� encryption, authentication
� first attempt at 802.11 security: Wired Equivalent Privacy (WEP): a

failure
� current attempt: 802.11i

506

802.11 Security Overview

Open
Authentication

Preshared-key
Authentication

802.1x
Authentication

Wired Equivalent
Privacy (WEP)

WPA/
WPA2 Personal

WPA2

Catastrophic failure!

Small business/home Large enterprise

Dominating protocol

Authentication
and access control

Data encryption
and MIC

AESTKIPRC4

507

802.11i

Open System Authentication
� Establishing the IEEE 802.11 association with no

authentication

STA AP STA
Probe Request

Probe Response

Open System Authentication Request
(STA Identity)

Open System Authentication Response

Association Request

Association Response

8-508

No authentication
or encryption key
exchanged

Unassociated

Unassociated but
authenticated

Associated and
authenticated

AP: access point
AS:
Authentication
 server

wired
network

STA:
client station

1 Discovery of
security capabilities

STA and AS mutually authenticate, together
generate Master Key (MK). AP serves as “pass through”

2

3
3 STA derives

Pairwise Master
Key (PMK)

AS derives
same PMK,
sends to AP

4 STA, AP use PMK to derive
Temporal Key (PTK) used for message
encryption, integrity

802.11i: four phases of operation

509

Pre-shared Key (PSK) Authentication
� AP co-locates with AS
� Uses a passphase (MK) to generate encryption key
� PMK = PBKDF2(PassPhrase, ssid, ssidLength, 4096, 256)

� PTK = PRF512(PMK, AMAC, SMAC, ANonce, SNonce)

PTK – Pairwise temporary key
MIC -- Message integrity check
GTK – Group template key510

enc(GTK) + MIC

4-way
Handshake for PTK

802.1x Authentication
� An IEEE standard for port-

based network access
control

� Provide authentication for
devices connected via LAN
or WLAN

� RADIUS (Remote
Authentication Dial-In
User Service) implements
the centralized backend
authentication services

Authenticator

511

(RADIUS
Client)

wired
network

EAP TLS
EAP

EAP over LAN (EAPoL)
IEEE 802.11

RADIUS
UDP/IP

EAP: extensible authentication protocol
� EAP: end-end client (mobile) to authentication server protocol

� Originally an extension of point-to-point protocol for dial-ups

� EAP sent over separate “links”
� mobile-to-AP (EAP over LAN)
� AP to authentication server (RADIUS over UDP)

� Support different authentication methods: MD5, TLS, PEAP ..

512

EAP-TLS

515

wired
network

Supplicant Authenticator

Authentication
Server

EAPOL Start

EAPOL Request

EAPOL Response (Identity)

Port open for
EAP msg

Client/user
certificates

Pair-wise Master Key (PMK) generated at Supplicant and AS

PMK sent to authenticator by AS

RADIUS Identity

EAP-TLS Start

Port opened all
traffic

Server Certificate

Client Certificate
RADIUS AcceptanceEAPOL Success

More at https://tools.ietf.org/html/rfc5216

Master Key computed

Master Key
computed

Client/user
certificates

EAP-PEAP

516

wired
network

Supplicant Authenticator

Authentication
Server

EAPOL Start

EAPOL Request

EAPOL Response (Identity)

Port open for
EAP msg RADIUS Identity

Username
/password

EAP-Request/Start-PEAP

Username
/password

Server Certificate

Master Session Key, Pair-wise Master Key (PMK) generated at
Supplicant and AS

PMK sent to authenticator by AS

Establish TLS Tunnel

Phase 1

Phase 2

Challenge/Response of User Identity

Torn Down TLS Tunnel
RADIUS Acceptance

Port opened all
traffic

EAPOL Success

Revisit: a day in the life of a web request
� journey down protocol stack complete!

� application, transport, network, link

� putting-it-all-together: synthesis!
� goal: identify, review, understand protocols (at all layers)

involved in seemingly simple scenario: requesting www page
� scenario: one connects a laptop via Mac WiFi with WPA2, and

requests/receives https://www.google.com

517

A day in the life: scenario

ISP network
68.80.0.0/13

Google’s network
64.233.160.0/19 64.233.169.105

web server

DNS server

campus network
172.16.0.0/16

web page

browser

518

Autentication server

A day in the life… connecting to the Internet

Connect to Mac WiFi

� Scan beacons from APs

� Open authentication

� Association request/response message
(only 802.1x traffic allowed)

� 802.1X/EAP authentication and
derivation of keys

� Network access granted

519

router
(runs DHCP)

A day in the life… connecting to the Internet

� connecting laptop needs to get its own
IP address, addr of first-hop router,
addr of DNS server: use DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCPDHCP

v DHCP request encapsulated in UDP,
encapsulated in IP, encrypted in a 802.11
frame with dest MAC FFFFFFFFFFFF

v AP decrypts the 802.11 frame,
and AP converts 802.11 frame to 802.3
frame

v Ethernet frame broadcast (dest:
FFFFFFFFFFFF) on LAN, received at
router running a DHCP server

v (Switch broadcast the frame to all
LAN segments)

v Ethernet demuxed to IP demuxed,
UDP demuxed to DHCP 520

router
(runs DHCP)

� DHCP server formulates DHCP
ACK containing client’s IP
address, IP address of first-hop
router for client, name & IP
address of DNS server

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP

v encapsulation at DHCP server,
frame forwarded (switch
learning) through LAN,
demultiplexing at client

Client now has IP address, knows name & addr of DNS
server, IP address of its first-hop router

v DHCP client receives DHCP
ACK reply

A day in the life… connecting to the Internet

521

router
(runs DHCP)

A day in the life… ARP (before DNS, before HTTP)
� before sending HTTPs request, need IP

address of www.google.com: DNS
DNS
UDP

IP
Eth
Phy

DNS

DNS

DNS

v DNS query created, encapsulated in
UDP, encapsulated in IP, encapsulated in
Eth. To send frame to router, need
MAC address of router interface: ARP

v ARP query broadcast, received by
router, which replies with ARP reply
giving MAC address of router
interface

v client now knows MAC address of
first hop router, so can now send
frame containing DNS query

ARP query

Eth
Phy

ARP

ARP

ARP reply

522

router
(runs DHCP)

DNS
UDP

IP
Eth
Phy

DNS

DNS

DNS

DNS

DNS

v IP datagram containing DNS
query forwarded via LAN switch
from client to 1st hop router

v IP datagram forwarded from campus
network into congeco network,
routed (tables created by RIP, OSPF,
IS-IS and/or BGP routing protocols)
to DNS server

v demux’ed to DNS server
v DNS server replies to client

with IP address of
www.google.com

DNS server
DNS
UDP

IP
Eth
Phy

DNS

DNS

DNS

DNS
A day in the life… using DNS

523

ISP network
68.80.0.0/13

router
(runs DHCP)

A day in the life…TCP connection carrying HTTP

HTTP
TCP
IP

Eth
Phy

HTTP

v to send HTTPs request, client
first opens TCP socket to web
server

v TCP SYN segment (step 1 in 3-way
handshake) inter-domain routed to
web server

v TCP connection established!64.233.169.105
web server

SYN

SYN

SYN

SYN

TCP
IP

Eth
Phy

SYN

SYN

SYN

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK
v web server responds with TCP

SYNACK (step 2 in 3-way
handshake)

524

router
(runs DHCP)

A day in the life…TCP connection carrying HTTP

HTTP
TCP
IP

Eth
Phy

HTTP

v TLS handshake between the
client and server
v Authenticate server via

server certificate
v Establish session keys for

data encryption, MAC and
IV

64.233.169.105
web server

SYN

SYN

SYN

SYN

TCP
IP

Eth
Phy

SYN

SYN

SYN

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

525

router
(runs DHCP)

A day in the life… HTTP request/reply
HTTP
TCP
IP

Eth
Phy

HTTP

v Encrypted HTTP request sent
into TCP socket,

v IP datagram routed to
www.google.com

v IP datagram containing encrypted
HTTP reply routed back to client64.233.169.105

web server

HTTP
TCP
IP

Eth
Phy

v web server responds with HTTP
reply (containing web page)

HTTP

HTTP

HTTPHTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

526

