
Application Layer
K & R Chapter 2

transport
application

physical
link

network
transport
application

physical
link

network

Internet

84

Outline
� Principles of network applications
� Web and HTTP
� DNS
� Socket programming

85

Application layer
� Services: supporting network applications

� Protocols: FTP, SMTP, HTTP, SIP, RTP, RTSP
� Applications: file transfer, email, web browser, skype,

multimedia streaming …

� Use socket interfaces from the transport layer (TCP & UDP)

transport
application

physical

link
network

transport
application

physical
link

network

Internet

86

Application layer architectures
� possible structure of applications:

� client-server
� peer-to-peer (P2P)
� hybrid

87

Client-server architecture
� server:

� always-on host
� permanent IP address
� data centers for scaling

� clients:
� communicate with server
� may be intermittently

connected
� may have dynamic IP

addresses
� do not communicate

directly with each other

client/server

8-88

P2P architecture
� no always-on server
� arbitrary end systems directly

communicate
� peers request service from other

peers, provide service in return to
other peers
� self scalability – new peers bring new

service capacity, as well as new service
demands

� peers are intermittently connected
and change IP addresses
� complex management

peer-peer

1-89

Hybrid
� Servers provides account

authentication and maintains
information for clients

� Data communication is done
directly between clients

2. peer-peer

1. client-server90

Communicating Processes
process: program running
within a host

� within same host, two
processes communicate
using inter-process
communication (supported
by OS)

� processes in different hosts
communicate by
exchanging messages

� client process: process that
initiates communication

� server process: process that
waits to be contacted

applications with P2P
architectures have both client
processes & server processes

clients, servers

aside

91

Sockets
� process sends/receives messages to/from its socket
� socket analogous to door

� sending process shoves message out of a door
� sending process relies on transport infrastructure on other side of

door to deliver message to the socket at the receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

1-92

Addressing processes
� to receive messages, process must have identifier
� host device has unique IP address
� identifier includes both IP address and port numbers

associated with process on host.
� example port numbers:

� HTTP server: 80
� SMTP mail server: 25

� to send HTTP request to www.cas.mcmaster.ca web server:
� IP address: 130.113.68.10
� port number: 80

93

Requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

no
no
no
yes, 100’s
msec
Sensitive to jitter
yes, 100’s
msec
yes and no

94

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

data loss throughput time sensitive

Internet transport protocols services
TCP service:
� reliable transport between

sending and receiving process
� flow control: sender won’t

overwhelm receiver
� congestion control: throttle

sender when network
overloaded

� does not provide: timing,
minimum throughput
guarantee, security

� connection-oriented: setup
required between client and
server processes

UDP service:
� unreliable data transfer

between sending and
receiving process

� does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security,
connection setup

95

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype), WebRTC

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP (& SCTP)

TCP or UDP, (&
SCTP)

96

A conceptual design of a video
conferencing system

97

Outline
� Principles of network applications
� Web and HTTP
� DNS
� Socket programming

98

Web and HTTP
First, a review…
� web page consists of objects
� object can be HTML file, JPEG image, Java applet, audio

file,…
� web page consists of base HTML-file which includes several

referenced objects
� each object is addressable by a uniform resource identifier

(URI), e.g.,
www.someschool.edu/someDept/pic.gif

host name path name

99

HTTP overview
HTTP: hypertext transfer protocol

� Web’s application layer protocol
� Web application follows

client/server model
� client: browser that requests,

receives, (using HTTP
protocol) and “displays” Web
objects

� server: Web server sends
(using HTTP protocol) objects
in response to requests

PC running
Firefox browser

server
running

Apache Web
server

iphone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

100

HTTP Evolution

101

HTTP/1.0 HTTP/1.1 HTTP/2 HTTP/3

1996

Non-persistent connections

1997, 1999, 2014

Persistent connections
HTTP pipelining

2009 SPDY by Google
2015 RFC

Binary framing
Data stream multiplexing

2020 draft
2022 published in RFC 9114

QUIC + UDP

Brief history of HTTP: https://hpbn.co/brief-history-of-http/

https://hpbn.co/brief-history-of-http/

HTTP overview (continued)
uses TCP (prior to HTTP/3):
� client initiates TCP

connection (creates socket)
to server, port 80

� server accepts TCP
connection from client

� HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

� TCP connection closed

HTTP is “stateless”
� Responses do not require

knowledge of past client
requests

protocols that maintain “state”
are complex!

v past history (state) must be maintained
v if server/client crashes, their views of

“state” may be inconsistent, must be
reconciled

aside

102

HTTP connections
Non-persistent HTTP
� at most one object sent

over TCP connection
� connection then closed

� HTTP/1.0 uses non-
persistent HTTP

� Typically multiple TCP
connections

Persistent HTTP
� multiple objects can be

sent over a single TCP
connection between client,
server

� HTTP/1.1 uses persistent
connections in default
mode

103

Non-persistent HTTP Example
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

104

{ 1RTT

Non-persistent HTTP Example (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects (in parallel)

4. HTTP server closes TCP
connection.

time

105

Persistent HTTP Example
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

107

Persistent HTTP Example (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 2-5 repeated for each of
10 jpeg objects (sequentially)

7. HTTP server closes TCP
connection after some time or
when the client closes the
connection

time

108

Persistent HTTP
Persistent without pipelining:
� client issues new request only when previous response has

been received
� one round trip time (RTT) for each referenced object
Persistent with pipelining:

� default in HTTP/1.1
� client sends requests as soon as it encounters a referenced

object
� as little as one RTT for all the referenced objects

109

(a) (b) (c)

RTT
TCP connection
set up

TCP connection
set up

TCP connection
set up

Get /index.html

index.html

Get /index.html

index.html

Get /index.html

index.html

Get /obj1.jpg

Obj1.jpg

TCP connection
set up

Get /obj1.jpg

Obj1.jpg

Get /obj2.jpg

Obj2.jpg

Get /obj3.jpg

Obj1.jpg

110

❶

❷

❸

HTTP request message
� HTTP request message:

� ASCII (human-readable format)
� Request line: method, resource, and protocol version

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~
111

HTTP request message
� HTTP request message:

� ASCII (human-readable format)
� Request line: method, resource, and protocol version

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.php HTTP/1.1\r\n
Host: www.cas.mcmaster.ca\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Time in seconds to keep the
connection open when idle

112

Method types
HTTP/1.0:
� GET

� Request an object specified
by the URL

� POST
� Request that the server

accept the entity enclosed
in the request

� HEAD
� asks server to leave

requested object out of
response (only meta info)

HTTP/1.1:
� GET, POST, HEAD
� PUT

� uploads file/resource in
entity body to path
specified in URL field

� DELETE
� deletes resource specified

in the URL field

113

Security Vulnerabilities
� URI in clear-text (GET)

� Attackers can exploit buffer overflow in buggy server
software by getting/posting a very long URI

http://www.things.com/orders.asp?custID=101&name=Trudeau&part=555A&qy=20&price=10

http://www.things.com/orders.asp?phone_no=3141592653589793238462643383279502884

116

http://www.things.com/orders.asp?custID=101&name=Trudeau&part=555A&qy=20&price=10
http://www.things.com/orders.asp?phone_no=3141592653589793238462643383279502884

HTTP response message

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

� HTTP response message:
� Status line: protocol version, status code, status phrase

117

HTTP response status codes
status code appears in 1st line in server-to-client response
message.
some sample codes:
� 200 OK

� request succeeded, requested object later in this msg
� 301 Moved Permanently

� requested object moved, new location specified later in this msg
(Location:)

� 400 Bad Request
� request msg not understood by server

� 404 Not Found
� requested document not found on this server

� 505 HTTP Version Not Supported

118

Trying out HTTP (client side) for yourself
1. Telnet to your favorite Web server:

opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
anything typed in sent
to port 80 at cis.poly.edu

telnet www.google.com 80

2. type in a GET HTTP request:

GET /index.html HTTP/1.1
Host: www.google.com

by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)
119

User-server state: cookies

http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm120

User-server state: cookies
HTTP itself is stateless
But often desirable to identify users

� Restriction
� Customizing content

Cookies: http messages carry state

There are four components:
1) cookie header line of HTTP response message
2) cookie header line in next HTTP request message
3) cookie file kept on user’s host, managed by user’s browser
4) back-end database at Web site

121

User-server state: cookies
Example:
� Susan always access Internet from her PC
� Visited eBay before and visits Amazon for first time
� when initial HTTP requests arrives at site, site creates:

� unique ID
� entry in backend database for ID

122

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678 ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

123

Cookies (continued)
what cookies can be used for:
� authorization

� shopping carts

� recommendations

� user session state

cookies and privacy:
� cookies permit sites to learn a

lot about you

� Third-party cookies can track
users across multiple sites

aside

124

125

Outline
� Principles of network applications
� Web and HTTP
� DNS -- domain name system
� Socket programming

126

DNS: Domain Name System

� People use hostname
� Hosts, routers use IP address

for addressing datagrams

� How to map between IP
address and hostname?

>> traceroute www.mcmaster.ca
traceroute to pinwps02.uts.mcmaster.ca (130.113.64.30), 64 hops max, 52 byte
packets

127

DNS Service
� Hostname to IP address translation

� Host/server aliasing
� Canonical vs alias names

� Load distribution
� Replicated Web servers: set of IP addresses for one canonical name

traceroute google.com
traceroute: Warning: google.com has multiple addresses; using 74.125.226.105

traceroute google.com
traceroute: Warning: google.com has multiple addresses; using 74.125.226.104

Note: the results subject to changes over time.

>> traceroute www.mcmaster.ca
traceroute to pinwps02.uts.mcmaster.ca (130.113.64.30), 64 hops max, 52 byte
packets

128

DNS: Domain Name System
� distributed database implemented in hierarchy of many name

servers
� application-layer protocol

� address/name translation

Why not centralize DNS?
� single point of failure
� traffic volume
� Latency to access distant centralized database
� Maintenance
 doesn’t scale!

129

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Top-level domain
(TLD) servers

Authoritative
DNS servers

Local DNS servers

4-130

Local Name Server
� Does not strictly belong to hierarchy
� Each ISP (residential ISP, company, university) has one.

� Also called “default name server”

� When a host makes a DNS query, query is sent to its local
DNS server
� Acts as a proxy, forwards query into hierarchy.

131

DNS: Root name servers
� 13 logical servers in total (over 1700 physical servers)
� contacted by local name server that can not resolve name
� root name server:

� contacts authoritative name server for the appropriate TLD domains if
name mapping not known

� gets mapping
� returns mapping to local name server

132

TLD and Authoritative Servers
� Top-level domain (TLD) servers:

� responsible for com, org, net, edu, etc, and all top-level country
domains uk, fr, ca, jp.
� Eg. .edu for edu TLD

� Store records for authoritative DNS servers of the next level
� Authoritative DNS servers:

� organization’s DNS servers, providing authoritative hostname to IP
mappings for organization’s servers (e.g., Web and mail).

� Can be maintained by organization or service provider

133

DNS: caching and updating records
� once (any) name server learns mapping, it caches mapping

� cache entries timeout (disappear) after some time
� TLD servers typically cached in local name servers

� Thus root name servers not often visited

� update/notify mechanisms under design by IETF
� RFC 2136
� http://www.ietf.org/html.charters/dnsind-charter.html

134

How is DNS query resolved

135

� Host at mills.cas.mcmaster.ca wants IP address for
gaia.cs.umass.edu

� Assume results are not cached anywhere but at the
authoritative DNS servers

How is DNS query resolved

136

1.What is the IP address of
gaia.cs.umass.edu?
2.(recursive)Hi, root DNS,
What is the IP address of
gaia.cs.umass.edu?
3.(I don’t know), but here is
the list of domain names and
IP addresses of .edu TLD
server you can contact (e.g.,
d.edu-servers.net or
192.31.80.30 (iterative)

requesting host
mills.cas.mcmaster.ca

root DNS server

local DNS server
blackadder.CI
S.McMaster.CA

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

How is DNS query resolved

137

4.Hi, d.edu-servers.net, what is the
IP address of gaia.cs.umass.edu?

5.(I don’t know), but here is the list
of domain names and IP addresses
of authoritative DNS server you
can contact (e.g., ns1.umass.edu or
128.119.10.27)

6.Hi, ns1.umass.edu, what is the IP
address of gaia.cs.umass.edu?

7.The answer is 128.119.245.12

8.The answer is 128.119.245.12

requesting host
mills.cas.mcmaster.ca

root DNS server

local DNS server
blackadder.CI
S.McMaster.CA

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS Messages Example
dig www.mcmaster.ca

; <<>> DiG 9.10.6 <<>> www.mcmaster.ca
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 58553
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 7

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.mcmaster.ca. IN A

;; ANSWER SECTION:
www.mcmaster.ca. 3600 IN CNAME pinwps02.uts.mcmaster.ca.
pinwps02.uts.mcmaster.ca. 3600 IN A 130.113.64.30

;; AUTHORITY SECTION:
uts.mcmaster.ca. 86400 IN NS pindns01.mcmaster.ca.
uts.mcmaster.ca. 86400 IN NS pindns03.mcmaster.ca.
uts.mcmaster.ca. 86400 IN NS pindns05.mcmaster.ca.

….138

What transport protocol do DNS
query & response use?

139

DNS records
� DNS info stored as resource records (RRs)

� RR format: (name, TTL, class, type, value)
TTL (Time To Live) used by authoritative DNS for indicating the validity of RR to
caching DNS

� Type=A (Address)
� name = hostname
� value = IP address
� e.g., pinwps02.uts.mcmaster.ca. 3600 IN A 130.113.64.30

� Type=NS (Name Server)
� name = domain
� value = name of dns server for domain
� e.g., uts.mcmaster.ca. 86400 IN NS pindns03.mcmaster.ca.

140

DNS records
� Type=CNAME(Canonical NAME)

� name = hostname
� value = canonical name
� Example: www.mcmaster.ca. 3600 IN CNAME

pinwps02.uts.mcmaster.ca

� Type=MX (Mail eXchanger)
� name = domain in email address
� value = canonical name of mail server

141

DNS protocol, messages
DNS protocol : query and reply messages, both with same message format

� Application layer protocol uses UDP Port 53
� Also uses TCP too, but not always implemented

� msg header
� identification: 16 bit # for
 query, reply to query uses
 same #

� flags:
� query or reply
� recursion desired
� recursion available
� reply is authoritative142

DNS protocol, messages

Name, type fields
 for a query

RRs in response
to query

records for
other authoritative servers

additional “helpful”
info that may be used

143

Attacking DNS
DDoS attacks
� Bombard root servers with traffic (October 21, 2002)

� one hr, Oct 21, 2002, ICMP Ping attacks on 13 Root servers
� 24 hrs, Feb. 6th, 2007
� Nov. 30th, 2015/Dec. 1st, 2015, 5 millions queries

� Remedies
� Traffic Filtering
� Distributing requests to other root servers
� Local DNS servers cache IPs of TLD servers, allowing root

server bypass

144

Attacking DNS
DDoS attacks
� Bombard TLD servers

� Potentially more dangerous

Aug. 27, 2013 Servers running China's ".cn" top level domain (TLD) came under
attack Sunday starting at about 2 a.m. Eastern time. The China Internet Network
Information Center, which runs the TLD servers, confirmed the attack and apologized
to affected users.

145

Attacking DNS
Redirect attacks
� Man-in-middle

� Intercept queries

� DNS poisoning
� Send bogus relies to DNS server, which caches

� Exploit DNS for DDoS
� Send queries with spoofed source address: target IP

Solution: use cryptographically signed response, e.g., DNSSEC
and DNSCurve

146

Outline
� Principles of network applications
� Web and HTTP
� DNS -- domain name system
� Socket programming

147

Socket programming
� goal: learn how to build client/server applications that

communicate using sockets

� socket: door between application process and end-end-
transport protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

148

Socket programming
� Two socket types for two transport services:

� UDP: unreliable datagram, connection-less
� TCP: reliable, byte stream-oriented, connection-oriented

Application Example:
1. Client reads a line of characters (data) from its keyboard and sends

the data to the server.
2. The server receives the data and converts characters to upper case.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the line on its

screen.

149

Socket programming with UDP
� UDP: no “connection” between client & server

� no handshaking before sending data
� Sender program explicitly attaches IP destination address and

port # to each packet
� rcvr program extracts sender IP address and port# from

received packet

� UDP: transmitted data may be lost or received out-of-order

� Application viewpoint:
� UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

150

Client/server socket interaction: UDP

151

Example app: UDP client

from socket import *
host = '127.0.0.1'
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_DGRAM)
message = input('Input lowercase sentence:')
clientSocket.sendto(bytes(message, 'utf-8'),(host,
serverPort))
modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)
print(modifiedMessage.decode("utf-8"))
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply (max buffersize)
characters from socket into
string

152

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(("", serverPort))
print ('The server is ready to receive')
while 1:
 message, clientAddress = serverSocket.recvfrom(2048)
 modifiedMessage = (message.decode("utf-8")).upper()
 serverSocket.sendto(bytes(modifiedMessage,'utf-8'),
 clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

153

Socket programming with TCP
� client must connect to server

� server process must first be
running

� server must have created
socket (door) that welcomes
client’s contact

� client connects to server by:
� Creating TCP socket,

specifying IP address, port
number of server process

� Client TCP establishes
connection to server TCP

� when contacted by client,
server TCP creates a new
socket for server process to
communicate with that
particular client
� allows server to talk with

multiple clients
� source port numbers used

to distinguish clients

154

Client/server
socket
interaction:
TCP

155

Example app: TCP client

from socket import *
serverName = ‘127.0.0.1’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
message = input(‘Input lowercase sentence:’)
clientSocket.send(bytes(message, 'utf-8'))
modifiedMessage = clientSocket.recv(2048)
print('From Server: ' + modifiedMessage.decode("utf-8"))
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

156

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_STREAM)
serverSocket.bind(("", serverPort))
serverSocket.listen(1)
print ('The server is ready to receive')
while 1:
 connectionSocket, addr = serverSocket.accept()
 sentence = connectionSocket.recv(1024).decode("utf-8")
 capitalizedSentence = sentence.upper()
 connectionSocket.send(bytes(capitalizedSentence,'utf-8'))
 connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever
server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

157

Comparison of UDP & TCP Sockets

TCP UDP

Client Server Client Server

Socket SOCKET_ST
REAM

SOCKET_ST
REAM

SOCKET_DG
RAM

SOCKET_DG
RAM

Bind to a fixed port x x

Connection setup x x

Send send send sendto(data,
(IP, port))

sendto(data,
(IP, port))

Recv recv recv recvfrom() recvfrom()

158

Port Number
� 16 bit: 0 – 65535
� Port numbers are application layer addresses

� The port numbers in the range from 0 to 1023 are the well-known
ports or system ports
� SSH port 22
� SMTP port 25
� HTTP port 80

� Port numbers from1024 to 49151 can be used w/o superuser
privileges (sometimes registered by a service, e.g. bittorrent 6888
– 6900)

� > 49151 private ports (linux uses the port range 32768 to 60999)

159

Chapter 2: summary
� application architectures

� client-server
� P2P
� Hybrid

� application service requirements:
� reliability, bandwidth, delay

� TCP, UDP, SSL
� HTTP

� Non-persistent vs persistent
� Messages
� Method types

� Cookies

� Web cashing
� DNS

� Services
� 4 records
� Hierarchical
� Iterative, recursive query
� Dig
� Attacking DNS

� DDoS attacks
� Redirect attacks

� Socket programming

160

