Application Layer

K & R Chapter 2

application application
transport transport
network network
link link 5
= :
physica physical V

Outline

° Principles of network applications

® Web and HTTP
e DNS

® Socket pro gramming

(

b

Application layer

® Services: supporting network applications
e Protocols: FTP, SMTP, HTTP, SIP, RTP, RTSP

* Applications: file transter, email, web browser, skype,

multimedia streaming ...

® Use socket interfaces from the transport layer (TCP & UDP)

application application

transport

transport

network network
link link Q
physical physical .

Application layer architectures

® possible structure of applications:
® client-server
® peer-to-peer (P2P)
® hybrid

4 N

Client—server architecture

® server:
° alvvays—on host
® permanent IP address

e data centers for scaling

e clients:
® communicate with server

® may be intermittently
connected

® may have dynamic [P
addresses

® do not communicate
directly with each other

" D

P2P architecture

® no aiways—on server

* arbitrary end systems directly

communicate

® peers request service from other
peers, provide service in return to
other peers

® self scalability — new peers bring new
service capacity, as well as new service
demands
® peers are intermittentiy connected

and change [P addresses

o Complex management

o peer-peer

Hybrid

e Servers provides account
authentication and maintains

information for clients

® Data communication is done

directly between clients

roEeroe

2. peer-peer

1. client-server

Communicating Processes

- clients, servers

process: program running _
® client process: process that

within a host o o
Initiates communication
® within same host, two

. ® Server process: process that
processes communicate

, , waits to be contacted
using 1nter—process

communication (supported

by OS)

in diffi h
® processes 1n di erent hosts applications with P2P

architectures have both client
processes & server processes

communicate by

exchanging messages

aside —

/

Sockets

® pI'OCGSS sends/receives messages to/from its socket

® socket analogous to door
o sending process shoves message out of a door

o sending process relies on transport infrastructure on other side of
door to deliver message to the socket at the receiving process

application application

controlled by
app developer

socket
\

controlled

by OS

d

Internet

A
v

Addressing processes

® to receive messages, process must have identifier
® host device has unique IP address

¢ identifier includes both IP address and port numbers
associated with process on host.

o example port numbers:

e HTTP server: 80
® SMTP mail server: 25

® tosend HTTP request to www.cas.mcmaster.ca web server:
® [P address: 130.113.68.10

® port number: 80

©

Requirements: common apps

application dataloss throughput time sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

stored audio/video
Interactive games
text messaging

o

loss-tolerant

loss-tolerant
loss-tolerant
no loss

audio: 5kbps-1Mbps Yes, 100°s
video:10kbps-5Mbps MSEC

same as above Sensitive to jitter
few kbps up yes, 10U s
elastic msec

yes and no

Internet transport protocols services

TCP service: UDP service:
® reliable transport between e unreliable data transfer
sending and receiving process between sending and

e flow control: sender won’t recelving process

overwhelm receiver * does not provide: reliability,

® congestion control: throttle tlow control., congestion
sender when network control, timing, throughput

overloaded guarantee, security,

: o connection setup
* does not provide: timing,

minimum throughput
guarantee, security

® connection-oriented: setup
required between client and
Server processes

Internet apps:

application, transport protocols

streaming multimedia

Internet telephony

application underlying
application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP

HTTP (e.g., YouTube), TCP or UDP (& SCTP)
RTP [RFC 1889]

SIP, RTP, proprietary TCP or UDP, (&
(e.g., Skype), WebRTC SCTP)

~
A conceptual design of a video

conferencing system

Outline

® Principles of network applications

® Web and HTTP
e DNS

® Socket pro gramming

Web and HTTP

First, a review. ..
* web page consists of objects

® object can be HTML file, JPEG image, Java applet, audio
file, ...

® web page consists of base HTML-file which includes several

referenced objects

® cach object is addressable by a uniform resource identifier
(URI), e.g.,

www . someschool.edu/someDept/pic.gif

—— ——

host name path name

o

HTTP overview

HTTP: hypertext transfer protocol
e Web's application layer protocol
® Web application follows

client/server model

® client: browser that requests,
receives, (using HTTP
protocol) and “displays” Web
objects

® server: Web server sends
(using HTTP protocol) objects

1n response to requests

PC running
Firefox browser

iphone running
Safari browser

(—)
server

running
Apache Wel
server

o
o
@

A

HTTP Evolution

HTTP/1.0

HTTP/1.1 HTTP/2

1996

Non—persistent connections

1997, 1999, 2014 2009 SPDY by Google
2015 REC

Persistent connections

HTTP pipelining Binary framing

Data stream multiplexing

HTTP/3

2020 draft

2022 published in RFC 9114

QUIC + UDP

Brief history of HTTP: https://hpbn.co/brief-history-of-http/

/

https://hpbn.co/brief-history-of-http/

HTTP overview (continued)

uses TCP (prior to HTTP/3): HTTP is “stateless”

e client initiates TCP

. ® Responses do not require
connection (creates socket)

to server, port 80 knowledge of past client

requests
® server accepts TCP 9

connection from client aside -

protocols that maintain “state”
are cornplex!

past history (state) must be maintained

® HTTP messages (application-
layer protocol messages)

R/
0’0

R/
0’0

exchanged between browser if server/client crashes, their views of
(HTTP Cliel’lt) and Web “state” may be inconsistent, must be
server (HTTP server) reconciled

® TCP connection closed

©

HTTP connections

Non—persistent HTTP Persistent HT' TP
® at most one object sent ® multiple objects can be
over I CP connection sent over a single TCP
® connection then closed connection between client,
e HTTP/1.0 uses non- Server
persistent HT'TP HITTP/1.1 uses persistent
° Typically multiple TCP connections in default
connections mode

p
Non-persistent HT TP Example

suppose user enters URL: (contains text,
www . someSchool.edu/someDepartment/home.index references to 10

jpeg images)

la. HT TP client initiates TCP

connection to HTTP server Ib. HTTP server at host

(process) at www.someSchool.edu waiting

www.someSchool.edu on port 80 for TCP connection at port 80.
“accepts” connection, notifying
2.HTTP client sends HTTP request client
message (containing URL) into
TCP connection socket. Mess 3.HTTP server receives request
indicates that client wants object message, forms response message

someDepartment/home.ind containing requested object, and
/ sends message into its socket

©

Non-persistent HTTP Example (cont.)

/ 4.HTTP server closes TCP

, , connection.
5.HTTP client receives response

message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps |-5 repeated for each of
|0 jpeg objects (in parallel)

p
Persistent HT TP Example

suppose user enters URL: (contains text,
www . someSchool.edu/someDepartment/home.index references to 10

jpeg images)

la. HT TP client initiates TCP

connection to HTTP server Ib. HTTP server at host

(process) at www.someSchool.edu waiting

www.someSchool.edu on port 80 for TCP connection at port 80.
“accepts” connection, notifying
2.HTTP client sends HTTP request client
message (containing URL) into
TCP connection socket. Mess 3.HTTP server receives request
indicates that client wants object message, forms response message

someDepartment/home.index containing requested object, and
sends message into its socket

o

Persistent HTTP Example (cont.)

5.HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 2-5 repeated for each of
|0 jpeg objects (sequentially)

/.HTTP server closes TCP
connection after some time or
when the client closes the
connection

Persistent HTTP

Persistent without pipelining:

® client issues new request only when previous response has

been received
* one round trip time (RTT) for each referenced object
Persistent with pipelining:
® defaultin HTTP/1.1

® client sends requests as soon as it encounters a referenced

object

® as little as one RTT tor all the referenced objects

RTT

4

[

Get

s

ind

b

i

et /objl Jjpg
b

ObjT:

A

(a)

TCP connection

set up

/index.html

TCP connection

set up

|
\

Get /index.ht

Get /obj2.j

(b)

ml

TCP connection

set up

/ e

Get /index.ht

\

index.html

L\

(©)

~

TCP connection

set up

ml

HTTP request message

o HTTP request message:
® ASCII (human-readable format)

® Request line: method, resource, and protocol version

method [sp| URL |sp| version |cr|If :’i?](;uest
header field name value |cr| If N
| header
g lines
header field name value |cr| If
cr | If
~ entity body -~ body
@

HTTP request message

o HTTP request message:
® ASCII (human-readable format)

® Request line: method, resource, and rotocol version

request line carrl.:?ge]rcetudrn r(]:haratc:ter
(GET, POST, T ine-feed character

HEAD commands) Host: www.cas. mcmaster ca\r\n
User-Agent: Firefox/3.6.10\r\n
head Accept: text/html,application/xhtml+xml\r\n
e‘? er Accept-Language: en-us,en;q=0.5\r\n
lineés | Accept-Encoding: gzip,deflate\r\n
_ A : =8859-1,utf-8;9=0.7\r\n
carriage return, eep-Alive: 115\r\n
line feed at start | Connection: keep-alive\r\n

of line indicates — \r\n
nd of header lines o
Time in seconds to keep the

connection open when idle /

o

Method types

HTTP/1.0:

e GET

® Request an object specified
by the URL

e POST

® Request that the server

accept the entity enclosed
in the request

e HEAD

® asks server to leave

requested object out of
response (only meta info)

HTTP/1.1:
e GET, POST, HEAD
o PUT

® uploads file/resource in
entity body to path
specified in URL field

e DELETE

® deletes resource specified

in the URL field

Security Vulnerabilities
® URIin clear-text (GET)

http: / /Www.things.com/orders.asp?custID: 101 &name:Trudeau&partIS55A&qv320&price: 10

® Attackers can exploit buffer overflow in buggy server

software by getting/posting a very long URI

http: //www.things.com/orders.asp?phone no=3141592653589793238462643383279502884

©

http://www.things.com/orders.asp?custID=101&name=Trudeau&part=555A&qy=20&price=10
http://www.things.com/orders.asp?phone_no=3141592653589793238462643383279502884

HTTP response message

o HTTP response message:

® Status line: protocol version, status code, status phrase

status line /HTTP/I.l 200 OK\r\n

(protocol Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

status code Server: Apache/2.0.52 (CentOS)\r\n

status rwase) Last-Modified: Tue, 30 Oct 2007 17:00:02
p GMT\r\n

header ETag: "17dc6-a5c-b£f716880"\r\n
Accept-Ranges: bytes\r\n

lines Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=IS0-8859-
data, e.g., 1\r\n
requested —\r\n

HTML file —+data data data data data

HTTP response status codes

status code appears in 1st line in server-to-client response
message.

some sarnple codes:

e 200 OK
® request succeeded, requested object later in this msg
® 301 Moved Permanently

® requested object moved, new location specified later in this msg
(Location:)

e 400 Bad Request

® request msg not understood by server

e 404 Not Found

° requested document not found on this server

e 505 HTTP Version Not Supported

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

—

telnet www.google.com 80 [opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.

anything typed in sent

to port 80 at Cis.poly.edu

2. type in a GET HTTP request:

GET /index.html HTTP/1.1 by typing this in (hit carriage

Host: www.google.com return twice), you send

this minimal (but complete)

GET request to HTTP server

3. look at response message sent by HTTP server!

@ (or use Wireshark to look at captured HTTP request/response)

8

User-server state: cookies

cookie policy

Manage My Booking Customer Support Store Locator Speak To A Travel Expert: 01733 224 800

& Thomas Cook Holidays Hotels Flights CityEscapes Flight - Hotel Crulse Lluxury Deals Destinations Extras

idon't mind... Ml : Room

=} Add new room

EUROPA websites must follow the Commission's guidelines on privacy and data protection and inform users that cookies
are not being used to gather information unnecessarily.

The ePrivacy directive — more specifically Article 5(3) - requires prior informed consent for storage or for access to
information stored on a user's terminal equipment. In other words, you must ask users if they agree to most cookies and
similar technologies (e.g. web beacons, Flash cookies, etc.) before the site starts to use them.

For consent to be valid, it must be informed, specific, freely given and must constitute a real indication of the individual's
wishes.

http://ec.europa.eu/ipg/basics/legal / cookies/index_en.htm

User-server state: cookies

HTTP itself is stateless

But often desirable to identity users
® Restriction
® Customizing content

Cookies: http messages carry state

There are four components:
1) cookie header line of HTTP response message
2) cookie header line in next HTTP request message

3) cookie file kept on user’s host, managed by user’s browser

4) back-end database at Web site

User-server state: cookies

Example:
e Susan always access Internet from her PC
® Visited eBay before and visits Amazon for first time

® when initial HTTP requests arrives at site, site creates:

L unique ID

® entry in backend database for ID

4 ™
Cookies: keeping “state” (cont.)

client q

ebay 8734 mam

(E)I

usual http request msg Amazon server

cookie file —— creates ID
usual http response 1678 for user \create backend

<4 = .
ebay 8734 set-cookie: 1678 entry database
amazon 1678 a
access
/

server

—{ usual http request msg

cookie: 1678 cookie-
——— specific
| usual http response msg action
one week later: /
access
CEVETEVEN | usual hitp request msg _
amazon 1678 cookie: 1678 cookie-

—_ > specific

@ .| usual http response msg action)

Cookies (continued)

what cookies can be used for:
® authorization

* shopping carts

® recommendations

® user session state

aside

cookies and privacy:

® cookies permit sites to learn a

lot about you

© Third—party cookies can track

users across multiple sites

Central Intelligence Agency

[About the CIA

About the CIA
CIA Vision, Mission

and Yalues

ClA Today

Virtual tour of the CIA
CIA Museum

George Bush Center
for Intelligence

EEQ Data for No Fear
Act

CIA Frequently Asked
Questions

Web Site Update
Service

CIA Careers

If you submitted an on-line resume
between December 7-9, 2005...

‘asdsada!
RIAL!

Home | Notices | Privacy | Security | Contact Us | Site Map | Index | Search

it A

-

?]

'Z l “?
Iragi Rewards PENEEAG W|k|
Program

Director of National et o (ol Rl

Intelligence

= Main page

Director of National = Community portal
Inteligence ‘ = Recent changes
Intelligence Community v Hel
National Inteligence Council P

= Manual
Central Intelligence Agency = FAQ
Directorate of Intelligence = Forum

Directorate of Science &

= Support desk

‘asdsada!
AL!

2 Log in/ create account

manual discussion edit history

Manual:Parameters to index.php

This page is a partial list of the parameters to index php, the main script
of the MediaWiki software. Most of these arguments are usually given as
GET parameters in the URL, but can also be passed as POST data.
POST is actually required in some cases, such as the purge action for
anornymous users.

Note: The information on this page is not complete

Contents [hide]
1 Actions

CIA Careers
Career FAQs

If you receive unsolicited e-mail
appearing to be from the CIA...

Life at CIA
Current Recruiting Ad

CIA Sth Among Ideal

What's New at the Central Intelligence

Aaeng

Technology 2 Preference overriding

ICE"””FEF for the Study of resources {elsewhere) 3 Identifying a page or revision
ntelligence T :

FOIA Electronic Reading . IRQ .#me‘dla»vlkl 4 View and render

Room = Maliling list 5 History

Office of General Counsel = Bug tracker 6 Raw

Office of Military Affairs + Browse SYN ;)

Office of Public Affairs I 7 Edit and submit

e — » Download from AR st "

cia.gov

mediawiki.org

‘asdsada!

lotofbanners.com

Outline

® Principles of network applications
e Web and HTTP
¢ DNS -- domain name system

® Socket pro gramming

DNS: Domain Name System

>> traceroute www.mcmaster.ca

traceroute to pinwps02.uts.mcmaster.ca (130.113.64.30), 64 hops max, 52 byte

packets

bmo.com.12-53-246-01.com ¢

© People use hostname

BMO M "Bank of Montrea 1

® Hosts, routers use IP address

Client Card Number:

for addressing datagrams N
* How to map between IP

address and hostname?

Worried about
the Canada Post

work disruption?

DNS Service

® Hostname to IP address translation

e Host/server aliasing

® (Canonical vs alias names

=>> traceroute www.mcmaster.ca
traceroute to pinwps02.uts.mcmaster.ca (130.113.64.30), 64 hops max, 52 byte
packets

® | oad distribution

° Replicated Web servers: set of IP addresses for one canonical name

traceroute google. com

traceroute: Warning: google.com has multiple addresses; using 74.125.226.105

traceroute google. com

traceroute: Warning: google.com has multiple addresses; using 74.125.226.104

Note: the results subject to changes over time.

©

DNS: Domain Name System

e distributed database implemented in hierarchy of many name
servers

° application—layer protocol

® address/name translation

Why not centralize DNS?

o single point of failure

e traffic volume

* Latency to access distant centralized database

® Maintenance

doesn’t scale!

4 N
Distributed, Hierarchical Database

Root DNS Servers

Top-level domain
/ \TLD) servers
[com DNS servers org DNS servers €edu QNSgervers }

/ AN v N

poly.edu umass.edu

yahoo.com amazon.com PPS-0rg

DNS servers DNS servers DNS servers DNS servers DNS servers
Authoritative

DNS servers

Local DNS servers

o B

Local Name Server

® Does not strictly belong to hierarchy
® Each ISP (residential ISP, company, university) has one.

® Also called “default name server”

® When a host makes a DNS query, query is sent to its local
DNS server

® Acts as a proxy, forwards query into hierarchy.

4 ™
DNS: Root name servers

® 13 logical servers in total (over 1700 physical servers)
® contacted by local name server that can not resolve name

® root name server:

® contacts authoritative name server for the appropriate TLD domains if

name mapping not known
® gets mapping
® returns mapping to local name server

a Yerisign, Dulles, VA
c Cogent, Herndon, WA (also Los Angeles)

du Maryland CO"ege Park, MD k RIPE Lond | Amsterd

g US DaD Vienna, VA ErR (plantgrcan;
h ARL Aberdeen, MD

j Verisign, {11 locations)

I Autonomica, Stockholm (plus 3

other locations
m WIDE Tokyo

e NASA Mt View, CA
f Internet Software C. Palo Alto
CA{and 17 other t

b USC-IS| Marina del Rey, CA

@ | ICANN Los Angeles, CA

TLD and Authoritative Servers

® Top-level domain (TLD) servers:
® responsible for com, org, net, edu, etc, and all top-level country
domains uk, fr, ca, jp.
Eg. .edu for edu TLD
e Store records for authoritative DNS servers of the next level

e Authoritative DNS servers:

® organization’s DNS servers, providing authoritative hostname to IP
mappings for organization’s servers (e.g., Web and mail).

® Can be maintained by organization or service provider

©

DNS: caching and updating records

® once (any) name server learns mapping, it caches mapping
® cache entries timeout (disappear) after some time
® TLD servers typically cached in local name servers

Thus root name servers not often visited

* update/ notify mechanisms under design by IETF

e RFC 2136
* http://www.ietf. org/ html.charters/dnsind-charter.html

How is DNS query resolved

® Host at mills.cas.mcmaster.ca wants IP address for

gaia.cs.umass.edu

® Assume results are not cached anywhere but at the

authoritative DNS servers

How is DNS query resolved

local DNS server
blackadder.CI
S .McMaster.CA

1

2

root DNS server 1.What is the IP address of
n gaia.cs.umass.edu?
2 (recursive)Hi, root DNS,

% What is the IP address of
TLD DNS server gaia.cs.umass.edu?

4

—p>

<

>

| 8

requesting host

@ mills.cas.mcmaster.ca

. 3.(I don’t know), but here is

S the list of domain names and
[P addresses of .edu TLD

S€rver you can contact (e.g. ,

d.edu-servers.net or

= 192.31.80.30 (iterative)

authoritative DNS server

dns.cs.umass.edu

2

local DNS server
blackadder.CI
S .McMaster.CA

1

2

requesting host

@ mills.cas.mcmaster.ca

2
3
TLD DNS server

root DNS server

>

| 8

4 —
< - n
7 6

How is DNS query resolved

4.Hi, d.edu-servers.net, what is the

IP address of gaia.cs.umass.edu?

5.(don’t know), but here is the list
of domain names and IP addresses
of authoritative DNS server you

can contact (e.g., ns1.umass.edu or

128.119.10.27)

6.Hi, ns1.umass.edu, what is the IP

address of gaia.cs.umass.edu?

7. The answer is 128.119.245.12
8. The answer is 128.119.245.12

authoritative DNS server

dns.cs.umass.edu

2

-
DNS Messages Example

dlg www.mcmaster.ca

; <<>>DiG 9.10.6 <<>> www.mcmaster.ca
;; global options: +cmd

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 58553
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 7

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:

;www.mcmaster.ca. IN A

;3 ANSWER SECTION:
www.mcmaster.ca. 3600 IN CNAME pinwpsOZ.uts.mcmaster. ca.
pinwpsOZ.uts.mcmaster.ca. 3600 IN A 130.113.64.30

;; AUTHORITY SECTION:

uts.mcmaster.ca. 86400 IN NS pindnsO1.mcmaster.ca.
uts.mcmaster.ca. 86400 IN NS pindnsO3.mcmaster.ca.
uts.mcmaster.ca. 86400 IN NS pindnsO5.mcmaster.ca.

94 8.705925€192.168.0.12 24.226.10.193 DNS 75 Standard query Oxcfcd A www.mcmaster.ca ”

058.722821€24.226.10.193 192.168.0.12 DNS 195 Standard query response Oxcfcd CNAME wwwma

1

[« @

b e

» User Datagram Protocol, Src Port: 54242 (54242), Dst Port: domain (53) g
v Domain Name System (query)
[Response In: 95]
Transaction ID: Oxcfcd
> Flags: 0x0100 Standard query
Questions: 1

Authority RRs: 0
Additional RRs: ©

¥ Queries What transport protocol do DNS
v www.mcmaster.ca: type A, class IN
Name: www.mcmaster.ca query & response use’?

Type: A (Host address)
Class: IN (0x0001) t

> User Datagram Protocol, Src Port: domain (53), Dst Port: 50580 (50580)
v Domain Name System (response)
[Request In: 1538]
[Time: ©.004561000 seconds]
Transaction ID: @xbb75
» Flags: 0x8580 Standard query response, No error
Questions: 1
Authority RRs: 3
Additional RRs: 7
» Queries
v Answers
» www.mcmaster.ca: type CNAME, class IN, cname pinwps®2.uts.mcmaster.ca
» pinwps@2.uts.mcmaster.ca: type A, class IN, addr 130.113.64.30
v Authoritative nameservers
uts.mcmaster.ca: type NS, class IN, ns pindns@3.mcmaster.ca
ts.mcmaster.ca: type NS, class IN, ns pindns@5.mcmaster.ca
ts.mcmaster.ca: type NS, class IN, ns pindns@l.mcmaster.ca
» Additional records

DNS records

® DNS info stored as resource records (RRs)

* RR format: (name, TTL, class, type, value)

TTL (TimeTo Live) used by authoritative DNS for indicating the validity of RR to
caching DNS

* Type=A (Address)
® name = hostname
® value = IP address

* c.g, pinwps02.uts.mcmaster.ca. 3600 IN A 130.113.64.30
* Type=NS (Name Server)
® name = domain

® value = name of dns server for domain

® e.g., uts.mcmaster.ca. 86400 IN NS pindnsO3.mcmaster.ca.

o

DNS records

* Type= CNAME(Canonical NAME)

® name = hostname

® value = canonical name

° Example: www.mcmaster.ca. 3600 IN CNAME

pinwps02.uts.mcmaster.ca
* Type=MX (Mail eXChanger)
® name = domain in email address

® value = canonical name of mail server

DNS protocol, messages

DNS protocol : query and reply messages, both with same message format

* Application layer protocol uses UDP Port 53

® Also uses TCP too, but not always implemented

~

O msg header _— identification flags

/

® identification: 16 bit # for number of ons number of answer RRS

query, reply to query uses

number of authority RRs | number of additional RRs

same H#
* flags:
® query or reply
® recursion desired
® recursion available

° reply is authoritative

DNS protocol, messages

identification flags

Name, type fields

number of questions number of answer RRs 12 bytes

for a query

number of authority RRs | number of additional RRs

RRs in response

to query

records for

other authoritative servers

additional “helptul”
info that may be used

©

Attacking DNS

DDoS attacks

® Bombard root servers with traftic (October 21, 2002)
® one hr, Oct 21, 2002, ICMP Ping attacks on 13 Root servers
® 24 hrs, Feb. 6%, 2007
e Nov. 30%, 2015/Dec. 1%, 2015, 5 millions queries
® Remedies
® Traffic Filtering
* Distributing requests to other root servers

® Local DNS servers cache IPs of TLD servers, allowing root

server bypass

®

Attacking DNS

DDoS attacks
e Bombard TLD servers

° Potentially more dangerous

013 Servers running China's ".cn" top level domain (TLD) cam

attack Sunday starting at about 2 a.m. Eastern time. The China Internet Netwo<
ation Center, which runs the TLD servers, confirmed the attack and apologize

to affected Users.

® y

Attacking DNS

Redirect attacks
® Man-in-middle
® Intercept queries
® DNS poisoning
® Send bogus relies to DNS server, which caches
* Exploit DNS for DDoS

* Send queries with spoofed source address: target IP

Solution: use cryptographically signed response, e.g., DNSSEC
and DNSCurve

Outline

® Principles of network applications
e Web and HTTP
® DNS -- domain name system

e Socket programming

Socket programming

° goal: learn how to build client/server applications that

communicate using sockets

® socket: door between application process and end-end-

transport protocol

application socket application controlled b
Cprocess D g
a
\\. pp developer
sl o |n
transpor transpor

controlled

network network
q link link by OS
- physical physical
e
=g

Socket programming

e Two socket types for two transport services:
® UDP: unreliable datagram, connection-less

® TCP: reliable, byte stream-oriented, connection-oriented

App]ication Examp]e:

1.

Client reads a line of characters (data) from its keyboard and sends
the data to the server.

The server receives the data and converts characters to upper case.
The server sends the modified data to the client.

The client receives the modified data and displays the line on its
screen.

Socket programming with UDP

e UDP: no “connection” between client & server
® no handshaking before sending data

® Sender program explicitly attaches IP destination address and

port H to cach packet

® rcvr program extracts sender IP address and port# from

received packet
e UDP: transmitted data may be lost or received out-of-order
o Application viewpoint:

® UDP provides unreliable transfer of groups of bytes

(“datagrams™) between client and server

-

Client/server socket interaction: UDP

UDP Server

socket()

[alal

bind()
UDP Client
socket()
T recvirom() —
blocks until datagram
. sendto() received from the client
data (request)
* —_—
do something
Y
Y
sendto()
recvirom() data (reply) R

close()

g

~

-
Example app: UDP client

Python UDPClient

include Python’s socket _
library > from socket import *

host ='127.0.0.1"
serverPort = 12000
create UDPsocket ____, clientSocket = socket(AF_INET, SOCK_DGRAM)

message = input('Input lowercase sentence:')

%%U%SWT/ clientSocket.sendto(bytes(message, 'utf-8'),(host,

serverPort))

Attach server name, port .
message; send into socket modifiedMessage, serverAddress =

ore clientSocket.recvfrom(2048)
read reply (max buffersize) print(modifiedMessage.decode("utf-8"))

characters from socket into _
string / clientSocket.close()

print out received string
and close socket

©

4 N
Example app: UDP server

Python UDPServer

create UDP socket from socket import *
bind socket to local port serverPort = 12000

number 12000 \ serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(("", serverPort))

loop forever print ('The server is ready to receive’)
L While 1:

[

Read from UDP socket into

message, getting client’s "~ message, clientAddress = serverSocket.recvirom(2048)

address (client IP and port) modifiedMessage = (message.decode("utf-8")).upper()
send upper case string—— ServerSocket.sendto(bytes(modifiedMessage, 'utf-8'),
back to this client clientAddress)

© y

Socket programming with TCP

® client must connect to server * when contacted by client,
® server process must first be server T CP creates a new
running socket for server process to
® server must have created communicate with that

ket (d that wel : :
socket (door) that welcomes particular client

client’s contact

, ¢ allows server to talk with
¢ client connects to server by: liple client
multiple clients

® Creating TCP socket,

specitying IP address, port ® source port numbers used

number of server process to distinguish clients

® Client TCP establishes

connection to server I CP

Client/server
socket
interaction:
TCP

TCP Client

socket()

i

connect()

TCP Server

socket()

.

bind()

.

listen()

1

accept()

blocks until
connection
from client

4 TCP connection establishment ———————»

:

write()

data (request)

read()

:

read()

;

do something

. data(reply) e

write()

o0

EOF notification

close()

read()

:

close()

4 N
Example app: TCP client

Python TCPClient

from socket import *

serverName = ‘127.0.0.1°
serverPort = 12000
create TCP socket for clientSocket = socket(AF_INET, SOCK_STREAM)

server, remote port 12000, ¢lientSocket.connect((server ame,serverPoD

message = input(‘Input lowercase sentence:’)

No need to attach server_____, clientSocket.send(bytes(message, 'utf-8'))

, port e :
name, Bo modifiedMessage = clientSocket.recv(2048)
print('From Server: ' + modifiedMessage.decode("utf-8"))
clientSocket.close()

© y

4 N
Example app: TCP server

Python TCPServer

from socket import *
create TCP welcoming serverPort = 12000
socket »serverSocket = socket(AF _INET, SOCK_STREAM)
serverSocket.bind(("", serverPort))
server begins listening for serverSocket.Iisten(1)
incoming TCP requests print ('The server is ready to receive')
loop forever > while 1:

server waits on accept() : —
for incoming requests, new " connectionSocket, addr = serverSocket.accept()

socket created on return sentence = connectionSocket.recv(1024).decode("utf-8")
/ capitalizedSentence = sentence.upper()
read bytes from socket (but connectionSocket.send(bytes(capitalizedSentence,'utf-8'))

not address as in UDP)

/ connectionSocket.close()
close connection to this

client (but not welcoming
socket)

o y

Comparison of UDP & TCP Sockets

TCP ubnp
Client Server Client Server

Socket SOCKET_ST SOCKET_ST SOCKET_DG SOCKET_DG
REAM REAM RAM RAM
Bind to a fixed port X X
Connection setup X X
Send send send sendto(data, sendto(data,
(IP, port)) (IP, port))
Recv recv recv recviromy() recviromy()

© y

Port Number
e 16 bit: 0 — 65535

® Port numbers are application layer addresses
® The port numbers in the range from 0 to 1023 are the well-known
ports OT system ports
® SSH port 22
® SMTP port 25
® HTTP port 80

* Port numbers from1024 to 49151 can be used w/o superuser

privileges (sometimes registered by a service, e.g. bittorrent 6888
— 6900)
® > 49151 private ports (linux uses the port range 32768 to 60999)

©

Chapter 2: summary

application architectures ® Web cashing
e client-server e DNS
e P2P ® Services
* Hybrid ® 4 records
® Hierarchical

application service requirements:
® Iterative, recursive query

® reliability, bandwidth, delay

* Dig
TCP, UDP, 55L * Attacking DNS
HTTP DDoS attacks
® Non-persistent vs persistent Redirect attacks
® Messages ® Socket programming

® Method types

® Cookies

