Wireshark Lab: TCP v6.2

Supplement to Computer Networking: A Top-Down
Approach, 6" ed., J.F. Kurose and K.W. Ross

Computer Networking
A Top-Down Approach

With modification by Rong Zheng@McMaster

“Tell me and I forget. Show me and I remember. Involve me and 1
understand.” Chinese proverb i

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved KUROSE | ROSS

In this lab, we’ll investigate the behavior of the celebrated TCP protocol in detail. We’ll
do so by analyzing a trace of the TCP segments sent and received in transferring a 1.2Mb
file from your computer to a remote server. We’ll study TCP’s use of sequence and
acknowledgement numbers for providing reliable data transfer; we’ll see TCP’s
congestion control algorithm — slow start and congestion avoidance — in action; and we’ll
look at TCP’s receiver-advertised flow control mechanism. We’ll also briefly consider
TCP connection setup and we’ll investigate the performance (throughput and round-trip
time) of the TCP connection between your computer and the server.

Before beginning this lab, you’ll probably want to review sections 3.5 and 3.7 in the
text'.

1. Capturing a bulk TCP transfer from your computer to a remote
server

Before beginning our exploration of TCP, we’ll need to use Wireshark to obtain a packet
trace of the TCP transfer of a file from your computer to a remote server. You’ll do so by
accessing a Web page that will allow you to enter the name of a file stored on your
computer, and then transfer the file to a Web server using the HTTP POST method (see
section 2.2.3 in the text). We’re using the POST method rather than the GET method as
we’d like to transfer a large amount of data from your computer to another computer. Of
course, we’ll be running Wireshark during this time to obtain the trace of the TCP
segments sent and received from your computer.

Do the following:
e Start up your web browser. Go the
http://www.cas.mcmaster.ca/~rzheng/course/wireshark/TCP/hallway.jpg

! References to figures and sections are for the 6" edition of our text, Computer Networks, A Top-down
Approach, 6" ed., JF. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

http://www.cas.mcmaster.ca/~rzheng/course/wireshark/TCP/hallway.jpg

and retrieve a picture of ITB hallway. Store this file somewhere on your
computer.
e Next goto
http://www.cas.mcmaster.ca/~rzheng/course/wireshark/TCP/TCP-wireshark-file1.html
e You should see a screen that looks like:

Upload page for TCP Wireshark Lab
Computer Networking: A Top Down Approach, 6th edition
Copyright 2012 J.F. Kurose and K.W. Ross, All Rights Reserved

Click on the Browse button below to select the directory/file name for the copy of alice.txt that is stored on your computer.
Choose File hallway

Once you have selected the file, click on the "Upload alice.txt file" button below. This will cause your browser to send a copy of alice.txt over an HTTP connection (using TCP) to the web server at
www.cas.mcmaster.ca. After clicking on the button, wait until a short message is displayed indicating the the upload is complete. Then stop your Wireshark packet sniffer - you're ready to begin
analyzing the TCP transfer of hallway.jpg from your computer to www.cas.mcmaster.cal!

Upload Hallway Pic file

e Use the Browse button in this form to enter the name of the file (full path name)
on your computer containing hallway.jpg (or do so manually). Don’t yet press the
“Upload Hallway pic” button.

e Now start up Wireshark and begin packet capture (Capture->Start) and then press
OK on the Wireshark Packet Capture Options screen (we’ll not need to select any
options here).

e Returning to your browser, press the “Upload Hallway pic” button to upload the
file to the www.cas.mcmaster.ca server. Once the file has been uploaded, a short
congratulations message will be displayed in your browser window.

e Stop Wireshark packet capture. Your Wireshark window should look similar to
the window shown below.

| A [tcp && ip.src_host==130.113.68.10
No. Time Source Destination Protocol Length Info

69 4.191715 130.113.68.10 130.113.70.196 TCP 66 http(80)-62815 [ACK] Seq=1 Ack=2 Win=54 Len=@ TSval=1217176007 TSecr=3438240038

71 4.192757 130.113.68.10 130.113.70.196 TCP 74 http(80)-62818 [SYN, ACK] Seq=@ Ack=1 Win=5792 Len=@ MSS=1460 SACK_PERM=1 TSval=1217176008 TSecr=3438240039 WS=128

74 4.193749 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=623 Win=704@ Len=@ TSval=1217176009 TSecr=3438240039

76 4.194044 130.113.68.10 130.113.70.196 TCP 66 http(80)-+62818 [ACK] Seq=1 Ack=760 Win=8320 Len=0 TSval=1217176010 TSecr=3438240040

82 4.194942 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=2208 Win=11264 Len=0 TSval=1217176011 TSecr=3438240040

83 4.194945 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=3656 Win=14080 Len=0 TSval=1217176011 TSecr=3438240040

84 4.194951 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=5104 Win=17024 Len=0 TSval=1217176011 TSecr=3438240040

85 4.194953 130.113.68.10 130.113.70.196 TCP 66 http(80)-+62818 [ACK] Seq=1 Ack=6552 Win=19968 Len=0 TSval=1217176011 TSecr=3438240040

86 4.194986 130.113.68.10 130.113.70.196 TCP 66 http(80)-+62818 [ACK] Seq=1 Ack=8000 Win=22784 Len=0 TSval=1217176011 TSecr=3438240040
100 4.195727 130.113.68.10 130.113.70.196 TCP 66 http(80)-+62818 [ACK] Seq=1 Ack=9448 Win=25728 Len=0 TSval=1217176011 TSecr=3438240041
101 4.195728 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=10896 Win=28672 Len=0 TSval=1217176011 TSecr=3438240041
102 4.195755 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=12344 Win=31488 Len=0 TSval=1217176011 TSecr=3438240041
106 4.195784 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=13792 Win=34432 Len=@ TSval=1217176011 TSecr=3438240041
108 4.195816 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=1524@ Win=37248 Len=@ TSval=1217176011 TSecr=3438240041
109 4.195821 130.113.68.10 130.113.70.196 TCP 66 http(80)-+62818 [ACK] Seq=1 Ack=16688 Win=40192 Len=0 TSval=1217176011 TSecr=3438240041
112 4.195873 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=18136 Win=43136 Len=0 TSval=1217176011 TSecr=3438240041
113 4.195875 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=19584 Win=45952 Len=0 TSval=1217176011 TSecr=3438240041
114 4.195877 130.113.68.10 130.113.70.196 TCP 66 http(80)-+62818 [ACK] Seq=1 Ack=21032 Win=48896 Len=0 TSval=1217176011 TSecr=3438240041
115 4.195879 130.113.68.10 130.113.70.196 TCP 66 http(80)-+62818 [ACK] Seq=1 Ack=22480 Win=51200 Len=0 TSval=1217176011 TSecr=3438240041
116 4.195881 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=23928 Win=49792 Len=0 TSval=1217176011 TSecr=3438240041
117 4.195919 130.113.68.10 130.113.70.196 TCP 66 http(80)-+62818 [ACK] Seq=1 Ack=25376 38240041

Frame 204: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface @
Ethernet II, Src: Vmware_87:09:bd (00:50:56:87:09:bd), Dst: Apple_50:63:8f (a8:20:66:50:63:8f)
Internet Protocol Version 4, Src: 130.113.68.10, Dst: 130.113.70.196
0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)
Total Length: 52
Identification: @x3e7f (15999)
Flags: @x02 (Don't Fragment)
Fragment offset: @
Time to live: 64
Protocol: TCP (6)
Header checksum: @x6c94 [validation disabled]
[Header checksum status: Unverified]
Source: 130.113.68.10
Destination: 130.113.70.196
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]
Transmission Control Protocol, Src Port: http (8@), Dst Port: 62818 (62818), Seq: 1, Ack: 110648, Len: @

«vv

v

v

v

2. Afirst look at the captured trace

http://www.cas.mcmaster.ca/~rzheng/course/wireshark/TCP/TCP-wireshark-file1.html

Before analyzing the behavior of the TCP connection in detail, let’s take a high level
view of the trace.

o First, filter the packets displayed in the Wireshark window by entering “tcp &&
ip.addr == 130.113.68.10” (lowercase, no quotes, and don’t forget to press return
after entering!) into the display filter specification window towards the top of the
Wireshark window.

What you should see is series of TCP and HTTP messages between your computer and
www.cas.mcmaster.ca. You should see the initial three-way handshake containing a
SYN message. You should see an HTTP POST message. Depending on the version of
Wireshark you are using, you might see a series of “HTTP Continuation” messages being
sent from your computer to www.cas.mcmaster.ca. Recall from our discussion in the
earlier HTTP Wireshark lab, that is no such thing as an HTTP Continuation message —
this is Wireshark’s way of indicating that there are multiple TCP segments being used to
carry a single HTTP message. In more recent versions of Wireshark, you’ll see “[TCP
segment of a reassembled PDU]” in the Info column of the Wireshark display to indicate
that this TCP segment contained data that belonged to an upper layer protocol message
(in our case here, HTTP). You should also see TCP ACK segments being returned from
WWwWw.cas.mcmaster.ca to your computer.

Whenever possible, when answering a question, you should include a screenshot of the
information of the packet(s) within the trace that you used to answer the question asked.
Highlight relevant areas (e.g, using circles, arrows) of the screenshots to explain your
answer. To print a packet, use File->Print, choose Selected packet only, choose Packet
summary line, and select the minimum amount of packet detail that you need to answer
the question.

1. What is the IP address and TCP port number used by the client computer (source)
that is transferring the file to www.cas.mcmaster.ca? To answer this question, it’s
probably easiest to select an HTTP message and explore the details of the TCP
packet used to carry this HTTP message, using the “details of the selected packet
header window” (refer to Figure 2 in the “Getting Started with Wireshark™ Lab if
you’re uncertain about the Wireshark windows.

2. What is the IP address of www.cas.mcmaster.ca? On what port number is it
sending and receiving TCP segments for this connection?

Since this lab is about TCP rather than HTTP, let’s change Wireshark’s “listing of
captured packets” window so that it shows information about the TCP segments
containing the HTTP messages, rather than about the HTTP messages. To have
Wireshark do this, select Analyze->FEnabled Protocols. Then uncheck the HTTP box and
select OK. You should now see a Wireshark window that looks like:

[|ip.addr == 130.113.68.10 && tcp

No. Time Source Destination Protocol Length Info

168 4.197289 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=94880 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
169 4.197291 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=96328 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
170 4.197292 130.113.70.196 130.113.68.10 TCP 1354 62818-http(80) [PSH, ACK] Seq=97776 Ack=1 Win=131744 Len=1288 TSval=3438240043 TSecr=1217176013
171 4.197374 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=99064 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
172 4.197375 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=100512 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
173 4.197377 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=101960 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
174 4.197378 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=103408 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
175 4.197379 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=104856 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
176 4.197382 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=106304 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
177 4.197383 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=107752 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
178 4.197386 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=109200 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
179 4.197685 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=76056 Win=67072 Len=0 TSval=1217176013 TSecr=3438240042

180 4.197688 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=77504 Win=69888 Len=0 TSval=1217176013 TSecr=3438240042

181 4.197693 130.113.68.10 130.113.70.196 TCP 66 http(80)-62818 [ACK] Seq=1 Ack=78952 Win=71296 Len=0 TSval=1217176013 TSecr=3438240042

182 4.197777 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=110648 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
183 4.197780 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=112096 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
184 4.197789 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=113544 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
185 4.197791 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=114992 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
186 4.197799 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=116440 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
187 4.197801 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=117888 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
188 4.197890 130.113.68.10 130.113.70.196 TCP http(80)-+62818 Seq=1 Ack=81848 Win=74112 Len=0 TSval=1217176013 TSecr=3438240042

189 4.197914 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=119336 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
190 4.197917 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=120784 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
191 4.197918 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=122232 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013
192 4.197920 130.113.70.196 130.113.68.10 TCP 1514 62818-http(80) [ACK] Seq=123680 Ack=1 Win=131744 Len=1448 TSval=3438240043 TSecr=1217176013

» Frame 188: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface @
» Ethernet II, Src: Vmware_87:09:bd (00:50:56:87:09:bd), Dst: Apple_50:63:8f (a8:20:66:50:63:8f)
v Internet Protocol Version 4, Src: 130.113.68.10, Dst: 130.113.70.196
0100 = Version: 4
.. 0101 = Header Length: 20 bytes (5)
» Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)
Tatal lanath: 2

3. TCP Basics

Answer the following questions for the TCP segments:

3. What is the actual sequence number of the TCP SYN segment that is used to
initiate the TCP connection between the client computer and
www.cas.mcmaster.ca? Which field in the segment identifies the segment as a
SYN segment?

4. What is the actual sequence number of the SYNACK segment sent by
www.cas.mcmaster.ca to the client computer in reply to the SYN? What is the
value of the Acknowledgement number field in the SYNACK segment? How did
www.cas.mcmaster.ca determine that value? Which field in the segment identifies
the segment as a SYNACK segment?

5. What is the sequence number of the TCP segment containing the HTTP POST
command? Note that in order to find the POST command, you’ll need to dig into
the packet content field at the bottom of the Wireshark window, looking for a
segment with a “POST” within its DATA field.

6. Consider the TCP segment containing the HTTP POST as the first segment in the
TCP connection. What are the sequence numbers of the first six segments in the
TCP connection (including the segment containing the HTTP POST)? At what
time was each segment sent? When was the ACK for each segment received?
Given the difference between when each TCP segment was sent, and when its
acknowledgement was received, what is the RTT value for each of the six
segments? What is the EstimatedRTT value after the receipt of each ACK?
Assume that the value of the EstimatedRTT is equal to the measured RTT for
the first segment, and then is computed using the EstimatedRTT equation in
lecture slides for all subsequent segments.

Note: Wireshark has a nice feature that allows you to plot the RTT for
each of the TCP segments sent. Select a TCP segment in the “listing of
captured packets” window that is being sent from the client to the

http://gaia.cs.umass.edu/ethereal-labs/traces/lab3-1-trace

www.cas.mcmaster.ca server. Then select: Statistics->TCP Stream
Graph->Round Trip Time Graph. Make sure you choose the proper
direction (by toggling “switch direction”)

7. What is the segment length of each of the first six TCP segments from the client?

8. What is the minimum amount of available buffer space advertised at the receiver
for the entire trace? Does the lack of receiver buffer space ever throttle the
sender?

9. Are there any retransmitted segments in the trace file? What did you check for (in
the trace) in order to answer this question?

10. How much data does the receiver typically acknowledge in an ACK? Can you
identify cases where the receiver is ACKing every other received segment (i.e.,
delayed ACK).

11. What is the throughput (bytes transferred per unit time) for the TCP connection?
Explain how you arrived at this value.

4. TCP congestion control in action

Let’s now examine the amount of data sent per unit time from the client to the server.
Rather than (tediously!) calculating this from the raw data in the Wireshark window,
we’ll use one of Wireshark’s TCP graphing utilities - Time-Sequence-Graph(Stevens) - to
plot out data.
e Select a TCP segment in the Wireshark’s “listing of captured-packets” window.
Then select the menu : Statistics->TCP Stream Graph-> Time-Sequence-
Graph(Stevens). You should see a plot that looks similar to the following plot.

(] [] M Sequence Numbers (Stevens) for 130.113.70.196:62818 — 130.113.68.10:80

Sequence Numbers (Stevens) for 130.113.70.196:62818 — 130.113.68.10:80

Display Ethernet: en3

v
125000 i l
& 100000 | |
g l
5 ;
3 75000 | i
[
3
g |
o 50000 | {
3 i
5
25000 [/ {
Okt -) * , L ! | 1 | L
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Time (s)

Hover over the graph for details. —+ 105 pkts, 143 kB « 41 pkts, 711 bytes

Type Time [Sequence (Stevens) u Stream 3 { Switch Direction
Mouse @ drags zooms Reset
Help -'- ?'i"i- Save As...

Here, each dot represents a TCP segment sent, plotting the sequence number of
the segment versus the time at which it was sent. Note that a set of dots stacked
above each other represents a series of packets that were sent back-to-back by the
sender.

Answer the following questions for the trace that you have gathered when you transferred
a file from your computer to www.cas.mcmaster.ca
1. Use the -> Time-Sequence-Graph(Stevens) plotting tool to view the growth of
sequence numbers for the TCP connection from the client to the
www.cas.mcmaster.ca server. Can you identify where TCP’s slow start phase
begins and ends, and where congestion avoidance takes over? Comment on ways
in which the measured data differs from the idealized behavior of TCP that we’ve
studied in the text.

Submission
Include your answers and screen shots if any in a single PDF file named
YOUR MAC ID A3.pdf. Submission should be done through Avenue.

