
Programming Assignment: Peer-to-Peer File Synchronizer
In this programming assignment, you will develop a simple peer-to-peer (P2P) file sharing application
that synchronizes files among peers. It has the flavor of Dropbox but instead of storing and serving files
using the cloud, we utilize a peer-to-peer approach. Recall that the key difference between the client-
server architecture and the peer-to-peer architecture for distributed applications is that in the latter, the
end host acts both as a server (e.g., to serve file transfer requests) and as a client (e.g., to request a file).
One challenge in peer-to-peer applications is that peers do not initially know each other’s presence and IP
addresses. As such, a server, called tracker in this project, is needed to facilitate the “discovery” of peers.
Binary codes of the tracker are provided to you for testing purposes. In this assignment, you only
need to develop the file synchronizer program that runs on the peers.

Figure 1 P2P file sharing architecture

Figure 1 illustrates the architecture of our P2P file sharing application. The tracker runs in a server
(bottom), while each peer (top row) runs a file synchronizer. In the example, ''Tracker'' will trace live peer
nodes and store the meta info of files on 3 peers. Initially, each peer node each has one local file
(fileA.txt, fileB.txt, fileC.txt). After they connect to the tracker and synchronize with other peers, each
peer will eventually have all three files locally. In this assignment, “client”, “peer” and “synchronizer” all
mean the same thing and are used interchangeably.

After unzip the file for Assignment 2 on Avenue, you will find

ü “instructions.pdf” - this document.
ü “Skeleton.py” - the skeleton code for the file synchronizer you will develop.

ü BIN – a folder which contains the tracker in binary format (include Linux, Mac (x86 and M1),
Windows, and a specific version for mills.cas.mcmaster.ca or moore.cas.mcmaster.ca linux server
in CAS department).

Specifications:

The synchronizer is responsible for maintaining file synchronization among peers by communicating
with a tracker and other peers. It announces its available files to the tracker, retrieves updates from other
peers, and serves file requests.

• The synchronizer takes as command line arguments, the IP address and the port number (Port A)
that the tracker runs.

• The synchronizer chooses an available port (Port B) to bind to and listen for file requests from
other peers. This port will be used to accept incoming requests and transfer files to other peers.

• The synchronizer communicates with the tracker through a single TCP socket to perform the
following actions:

1. At start up, sending an Initial message containing 1) names, 2) the last modified time in
seconds (round down to an integer if it is a float in your platform) of the synchronizer
host’s local files, and 3) file serving port (Port B).

2. Periodically sending Keepalive messages every 5 seconds to the tracker. Each message
only contains the file serving port (Port B)

3. Receiving the directory information maintained by the tracker

• Upon reception of an Initial message or Keepalive message from a peer, the tracker refreshes the
state of the peer and also sends Directory Response message to the peer. (this has been
implemented for you in the tracker)	

• Upon receiving a Directory Response message from the tracker, the synchronizer parses the
message and identifies files that are either new or more recent than its own copy by comparing
against the modified time of local files of the same names. If such a file is found, it connects the
corresponding peer using the peer’s IP address and Port number contained in the Directory
Response message, and it sends a File Request message with the name of the requested file to
the said peer. Upon successful retrieval, the requested file from the peer shall be stored in the
working directory of the synchronizer with its modified time set to match the timestamp in
the Directory Response message (using os.utime()). This process is repeated until all new or
more recent files contained in the Directory Response Message have been fetched. 	

• Upon receiving a File Request message from a peer, the synchronizer reads from its directory
and sends the content of the file to the peer.

• In the case that a connection to a peer times out (e.g., using socket.settimeout) or there is no
response to the File Request message, the synchronizer skips the file and proceeds to the next
file, if any, in the Directory Response message.

• The synchronizer should close sockets that are not actively in use to other peers.

As outlined in the specification, the file synchronizer implements both a server and a client. It acts as a
server to handle file requests from other peers, and AS a client when requesting files from other
peers. Therefore, it is advisable to use multi-thread programming for this purpose. The state diagram of
the file synchronizer is given in Figure 2. Messages exchanged between tracker and peers (synchronizers)
are encoded in JSON as specified in Table 1. Messages exchanged between peers are NOT encoded in
JSON, instead, they are either in plain text (filename, text file content) or binary (binary file content) as
listed in Table 2.

Table 1 Message Format between tracker and synchronizer

Message Type Purpose Message Format
(key, value)

Actions in response
to the message

Initial Message From peers to the tracker:
(1) Upload file information and
file serving port.
(2) Request directory
information stored in the tracker.

{‘port’:int, ’files’:
[{‘name’:string,’mt
ime’:int}]}

Note: round the
mtime to integer if
it is a float.

e.g.,
{"port": 8001,
"files": [{"mtime":
1548878750,
"name":
"fileA.txt"}]}

Tracker responds
with a Directory
Response Message
(See the third row
for the format)

Keep-alive
Message

From peers to the tracker:
(1) inform the tracker that the
peer is still alive.

{‘port’:int}

e.g.,
{"port": 8001}

(1) The tracker
refreshes its timer
for the respective
peer
(2) The tracker
responds with a
directory response
message (third row
for format)

Directory
Response Message

From the tracker to peers:
(1) Return the directory at the
tracker.

{filename:{‘ip’:,’po
rt’:,’mtime’:}

e.g.,
{"fileB.txt": {"ip":
"127.0.0.1",
"mtime":
1548878750,
"port": 8002},
"fileA.txt": {"ip":
"127.0.0.1",
"mtime":
1548878750,
"port": 8001}}

A peer requests
new or modified
files from other
peers

Table 2 Message Format between peers

File Request
Message

From peer to peer:
Request a new or more up-to-date file
on the peer.

Plain text of the
file name

Peer responds with
the content of the
file.

File Response
Message

From peer to peer:
Send the content of the requested file

Content of the file,
it can be binary or
text

Peer saves the
received file
locally.

Figure 2 State Diagram of the file synchronizer.

For simplicity,
1) We only consider files in the working folder of the synchronizer (no subfolders).
2) We do not consider changes after peers start, such as file deletion, modification, and addition. In other
words, the initial message that contains local file information is sent only once.
3) If multiple files from different peers have the same file name, the one with the last modified timestamp
will be kept by the tracker.
4) Only one TCP connection is needed (and kept alive) between a peer and a tracker.

Suggested Steps:

1. Read this document carefully to understand the logic.
2. Decide which platform you will use for development and testing, use your own computer if

possible. If you cannot find a binary tracker (from tracker_linux.zip, tracker_mac.zip,
tracker.windows.zip) that can be successfully executed in your computer, ssh to
mills.cas.mcmaster.ca with your CAS credentials, upload and run the tracker code there. (you
need to put a copy of the binary tracker in your home directory on mills using scp)

3. Follow Appendix I to setup the programming environments if you use mills.
4. Enjoy! Any questions please discuss through Avenue or go to tutorial sessions.

Note:

Bind & Listen to file serving
port

Received files and
peer information

from Tracker

Peer-to-Peer Thread Peer-to-Tracker Thread
Connected to

(TrackerIP,
TrackerPort)

Sent Init Message to
Tracker

Request files from
respective peers

sequentially

If new files, or more
recently modified files

timeout

Accepted connection
request from peer A

Sent requested file to peer
A

Close socket

Connection request from
peer A
New thread

Start timer = 5s

Else

Sent Keepalive
Message to

Tracker

1. Your implementation should be based on Python 3 for compatibility.
2. Use ‘ctrl’ + ‘\’ to terminate a running tracker or peer.
3. You may test your program on the same host with different port numbers or different hosts.

Submission:

1. Your code should be named fileSychronizer.py
2. Document your test cases and results in ‘report.pdf'.
3. Put fileSychronizer.py and report.pdf in a single Zip file with name ‘YourStudentNo.zip’ and

upload to Avenue.

Appendix I: Step-by-step guide to test your implementation

(The below example is done in Mac. A similar procedure can be followed in Linux. For windows,
use the corresponding command for creating folders and copying files).

1. Prepare 3 folders named Server, Test1, Test2:

Now find the appropriate binary format server from the BIN folder and copy to the Server folder and
unzip it:

Make sure you can run the tracker:

2. Open another console window and navigate to the Test1 folder, and copy the Skeleton.py to this folder
and rename it to fileSynchronizer.py, then finish the ‘YOUR CODE’ part (you can use any text editing
tools):

3. When you finished the code, create a file to test synchronization:

Also, open another console window in the Test2 folder and copy your code to that folder. Similarly create
another file.

4. Now start your file synchronizer at the two test folders, and check if the two files are synchronized
(you may use another window to check or stop the current running fileSynchronizer).

(note the output may be different, depending what you want to show by yourself)

5. Restart from the above steps for debugging purposes. To restart the program use ‘ctrl’ + ‘\’

Appendix II: Step-by-step guide to test your implementation based on the mills server.

1. To get started, login to the mills server with any SSH tools (note you need to user VPN first, for
windows use MobaXterm as the SSH tool):

2. Then you need to upload tracker_mills.zip to your home directory (use scp in Linux or Mac, if in
windows, you can drag files from Desktop to the server, please Google MobaXterm transfer files). In the
case of scp, open another console window, execute the following command:

(note you need to make sure you are in the BIN directory for the command to work)

3. Similarly, upload Skeleton.py to the server like below:

4. Now, open another two console windows and SSH to the mills server. In total, you need to maintain 3
SSH windows, one for the tracker to run, and two SSH windows simulating two clients.

In the 1st console window, unzip tracker_mills.zip and start the tracker:

<Please use a large random port number to avoid conflicts with other students>

5. In the 2nd console window:

Create a test folder, copy the skeleton code into the folder and rename it like fileSynchronizer.py, and
then create a test file to demo synchronize:

Now you can edit fileSynchronizer.py by open it with vim or other text editing tools in Linux. You need
to finish the YOUR CODE section.

You can test your implementation by running it (make sure the tracker is already started):

(note the output may be different since it is your own implementation and you can decide to print
whatever information)

6. When you finish the code, in the 3rd console window simulates another client:

Now you can open a fourth console window and check if f1.txt and f2.txt has been synchronized in the
two folders:

If you want to restart the server or the client after editing the code, use ‘ctrl’ + ‘\’ to terminate a running
tracker or peer. (It may generate some core.* files in mills, you can either ignore or delete them)

Reference:

• JSON encoder and decode https://docs.python.org/3/library/json.html
• Socket programming https://docs.python.org/3/library/socket.html

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/socket.html

