
1

Unix Shared Memory

2

What is Shared Memory?

The parent and child processes are run in
separate address spaces.
A shared memory segment is a piece of memory
that can be allocated and attached to an
address space. Thus, processes that have this
memory segment attached will have access to it.
But, race conditions can occur!

3

Procedure for Using Shared Memory

Find a key. Unix uses this key for identifying
shared memory segments.
Use shmget() to allocate a shared memory.
Use shmat() to attach a shared memory to an
address space.
Use shmdt() to detach a shared memory from
an address space.
Use shmctl() to deallocate a shared memory.

4

Keys: 1/2
To use shared memory, include the following:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

A key is a value of type key_t. There are
three ways to generate a key:

Do it yourself
Use function ftok()
Ask the system to provide a private key.

5

Keys: 2/2
Do it yourself: use
key_t SomeKey;

SomeKey = 1234;

Use ftok() to generate one for you:
key_t = ftok(char *path, int ID);
path is a path name (e.g., “./”)
ID is an integer (e.g., ‘a’)
Function ftok() returns a key of type key_t:
SomeKey = ftok(“./”, ‘x’);

Keys are global entities. If other processes know
your key, they can access your shared memory.
Ask the system to provide a private key using
IPC_PRIVATE.

6

Asking for a Shared Memory: 1/4
Include the following:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

Use shmget() to request a shared memory:
shm_id = shmget(

key_t key, /* identity key */

int size, /* memory size */

int flag); /* creation or use */

shmget()returns a shared memory ID.
The flag, for our purpose, is either 0666 (rw)
or IPC_CREAT | 0666. Yes, IPC_CREAT.

7

Asking for a Shared Memory: 2/4
The following creates a shared memory of size
struct Data with a private key
IPC_PRIVATE. This is a creation
(IPC_CREAT) and permits read and write
(0666).

struct Data { int a; double b; char x; };

int ShmID;

ShmID = shmget(

IPC_PRIVATE, /* private key */

sizeof(struct Data), /* size */

IPC_CREAT | 0666);/* cr & rw */

8

Asking for a Shared Memory: 3/4
The following creates a shared memory with a
key based on the current directory:

struct Data { int a; double b; char x;};

int ShmID;

key_t Key;

Key = ftok(“./”, ‘h’);

ShmID = shmget(

Key, /* a key */

sizeof(struct Data),

IPC_CREAT | 0666);

9

Asking for a Shared Memory: 4/4

When asking for a shared memory, the process
that creates it uses IPC_CREAT | 0666 and
the process that accesses a created one uses
0666.
If the return value is negative (Unix
convention), the request was unsuccessful, and
no shared memory is allocated.
Create a shared memory before its use!

10

After the Execution of shmget()

shmget(…,IPC_CREAT|0666);

Process 1 Process 2

shared memory

Shared memory is allocated; but, is not part of the address space

11

Attaching a Shared Memory: 1/3
Use shmat() to attach an existing shared
memory to an address space:
shm_ptr = shmat(

int shm_id, /* ID from shmget() */

char *ptr, /* use NULL here */

int flag); /* use 0 here */

shm_id is the shared memory ID returned by
shmget().
Use NULL and 0 for the second and third
arguments, respectively.
shmat() returns a void pointer to the memory.
If unsuccessful, it returns a negative integer.

12

Attaching a Shared Memory: 2/3
struct Data { int a; double b; char x;};
int ShmID;
key_t Key;
struct Data *p;

Key = ftok(“./”, ‘h’);
ShmID = shmget(Key, sizeof(struct Data),

IPC_CREAT | 0666);
p = (struct Data *) shmat(ShmID, NULL, 0);
if ((int) p < 0) {

printf(“shmat() failed\n”); exit(1);
}
p->a = 1; p->b = 5.0; p->c = ‘.’;

13

Attaching a Shared Memory: 3/3

Shmget(…,IPC_CREAT|0666);
ptr = shmat(………);

Process 1 Process 2

shared memory

ptr = shmat(………);

ptr ptr

Now processes can access the shared memory

14

Detaching/Removing Shared Memory
To detach a shared memory, use

shmdt(shm_ptr);

shm_ptr is the pointer returned by shmat().
After a shared memory is detached, it is still
there. You can re-attach and use it again.
To remove a shared memory, use

shmctl(shm_ID, IPC_RMID, NULL);

shm_ID is the shared memory ID returned by
shmget(). After a shared memory is removed,
it no longer exists.

15

Communicating with a Child: 1/2

void main(int argc, char *argv[])
{

int ShmID, *ShmPTR, status;
pid_t pid;

ShmID = shmget(IPC_PRIVATE,4*sizeof(int),IPC_CREAT|0666);
ShmPTR = (int *) shmat(ShmID, NULL, 0);
ShmPTR[0] = atoi(argv[0]); ShmPTR[1] = atoi(argv[1]);
ShmPTR[2] = atoi(argv[2]); ShmPTR[2] = atoi(argv[3]);
if ((pid = fork()) == 0) {

Child(ShmPTR);
exit(0);

}
wait(&status);
shmdt((void *) ShmPTR); shmctl(ShmID, IPC_RMID, NULL);
exit(0);

}

16

Communicating with a Child: 2/2

Why are shmget() and shmat() unnecessary
in the child process?

void Child(int SharedMem[])
{

printf(“%d %d %d %d\n”, SharedMem[0],
SharedMem[1], SharedMem[2], SharedMem[3]);

}

17

Communicating Among Separate
Processes: 1/5

Define the structure of a shared memory
segment as follows:

#define NOT_READY (-1)
#define FILLED (0)
#define TAKEN (1)

struct Memory {
int status;
int data[4];

};

18

Communicating Among Separate
Processes: 2/5

void main(int argc, char *argv[])
{

key_t ShmKEY;
int ShmID, i;
struct Memory *ShmPTR;

ShmKEY = ftok(“./”, ‘x’);
ShmID = shmget(ShmKEY, sizeof(struct Memory),

IPC_CREAT | 0666);
ShmPTR = (struct Memory *) shmat(ShmID, NULL, 0);

Prepare for a shared memoryThe “Server”

19

Communicating Among Separate
Processes: 3/5

ShmPTR->status = NOT_READY;

for (i = 0; i < 4; i++)
ShmPTR->data[i] = atoi(argv[i]);

ShmPTR->status = FILLED;
while (ShmPTR->status != TAKEN)

sleep(1); /* sleep for 1 second */

shmdt((void *) ShmPTR);
shmctl(ShmID, IPC_RMID, NULL);
exit(0);

}

shared memory not ready

filling in data

wait until the data is taken

detach and remove shared memory

20

Communicating Among Separate
Processes: 4/5

void main(void)
{

key_t ShmKEY;
int ShmID;
struct Memory *ShmPTR;

ShmKEY=ftok(“./”, ‘x’);
ShmID = shmget(ShmKEY, sizeof(struct Memory), 0666);
ShmPTR = (struct Memory *) shmat(ShmID, NULL, 0);
while (ShmPTR->status != FILLED)

;
printf(“%d %d %d %d\n”, ShmPTR->data[0],

ShmPTR->data[1], ShmPTR->data[2], ShmPTR->data[3]);
ShmPTR->status = TAKEN;
shmdt((void *) ShmPTR);
exit(0);

}

prepare for shared memory

The “Client”

21

Communicating Among Separate
Processes: 5/5

The “server” must run first to prepare a shared
memory.
Try run the server in one window, and run the
client in another a little later.
Or, run the server as a background process.
Then, run the client in the foreground:

server 1 3 5 7 &
client

This version uses busy waiting.
One may use Unix semaphores for mutual
exclusion.

22

Important Notes

If you did not remove your shared memory
segments (e.g., program crashes before the
execution of shmctl()), they will be in the
system forever. This will degrade the system
performance.
Use the ipcs command to check if you have
shared memory segments left in the system.
Use the ipcrm command to remove your
shared memory segments.

