Unix Shared Memory

What 1s Shared Memory?

dThe parent and child processesarerun in
separ ate addr ess spaces.

A shared memory segment is a piece of memory
that can be allocated and attached to an
address space. Thus, processesthat havethis
memory segment attached will have accessto it.

JBut, race conditions can occur!

Procedure for Using Shared Memory

dFind akey. Unix usesthiskey for identifying
shared memory segments.

dUse shmget () to allocate a shared memory.

dUse shmat () toattach ashared memory to an
addr ess space.

dUse shmdt () to detach a shared memory from
an address space.

dUse shmetl () to deallocate a shared memory.

Keys: 1/2

1 To useshared memory, include the following:
#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

JA keyisavalueof typekey t. Thereare
three waysto generate a key:

“*Do it yourself
*Usefunction £tok ()
“*Ask the system to provide a private key.

Keys: 2/2

Dot yourself: use
key t SomeKey;
SomeKey = 1234;
dUse £tok () togenerate onefor you:
key t = ftok(char *path, int ID);
*path Isapath name(eg., “./”)
*IDIsaninteger (e.q., ‘a’)
“*Function £tok () returnsakey of typekey t:
ftOk(“./", \xl);

dKeysareglobal entities. If other processes know
your key, they can access your shared memory.

JAsk the system to provide a private key using
IPC PRIVATE. 5

SomeKey

Asking for a Shared Memory: 1/4

dIncludethe following:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

dUse shmget () torequest a shared memory:
shm id = shmget (

key t key, /* identity key */
int size, /* memory size */
int flag); /* creation or use */

dshmget () returnsashared memory ID.

dTheflag, for our purpose, iseither 0666 (rw)
Or IPC CREAT | 0666. Yes, IPC CREAT.

Asking for a Shared Memory: 2/4

dThefollowing creates a shared memory of size
struct Data with aprivatekey
IPC PRIVATE. Thisisacreation
(IpC CREAT) and permitsread and write
(0666).

struct Data { int a; double b; char x; };
int ShmID;

ShmID = shmget (
IPC PRIVATE, /* private key */
sizeof (struct Data), /* size */
IPC CREAT | 0666);/* cr & rw */

Asking for a Shared Memory: 3/4

A Thefollowing creates a shared memory with a
key based on the current directory:

struct Data { int a; double b; char x;};
int ShmID;
key t Key;

Key = ftok(“./”, ‘h’);

ShmID = shmget (
Key, /* a key */
sizeof (struct Data),
IPC CREAT | 0666);

Asking for a Shared Memory: 4/4

JWhen asking for a shared memory, the process
that createsit usesIpPC CREAT | 0666 and

the processthat accesses a created one uses
0666.

dIf thereturn valueis negative (Unix
convention), the request was unsuccessful, and
no shared memory is allocated.

 Create a shared memory before its use!

After the Execution of shmget ()

Process 1 Process 2

shmget (.., IPC_CREAT|0666) ;
L 2

2

Shared memory is allocated; but, is not part of the address spagce

Attaching a Shared Memory: 1/3

dUse shmat () toattach an existing shared
memory to an address space:

shm ptr = shmat(
int shm id, /* ID from shmget () */
char *ptr, /* use NULL here * /
int flag); /* use 0 here * /
dshm idisthesnared memory ID returned by
shmget ().
JUsenULL and 0 for the second and third
arguments, respectively.
dshmat () returnsavoid pointer tothe memory.
|f unsuccessful, it returns a negative integer.

11

Attaching a Shared Memory: 2/3

struct Data { int a; double b; char x;};
int ShmID;

key t Key;

struct Data *p;

Key = ftok(™“./”, ‘h’);
mf shmget (Key, sizeof (struct Data),

°°°°°°°°°°° IPC.CREAT | 0666);
p = (struct Data *) shmat|{ShmID}, NULL, 0);

if ((int) p < 0) {
printf (“shmat () failed\n”); exit(1l);

12

Attaching a Shared Memory: 3/3

Process 1 Process 2

Shmget (..., IPC_CREAT|0666) ;
ptr = shmat (...) ;

ptr

Now processes can access the shared memory

Detaching/Removing Shared Memory

dTo detach a shared memory, use
shmdt (shm ptr) ;
shm ptristhepointer returned by shmat ().

JAfter ashared memory isdetached, it is still
there. You can re-attach and useit again.

JToremoveashared memory, use
shmctl (shm ID, IPC RMID, NULL) ;

shm ID Istheshared memory ID returned by
shmget (). After ashared memory isremoved,
It no longer exists.

14

Communicating with a Child: 1/2

void main(int argc, char *argv|[])
int ShmID, *ShmPTR, status;
pid t pid;

ShmID = shmget (IPC PRIVATE,4*sizeof (int),IPC CREAT|0666) ;
ShmPTR = (int *) shmat (ShmID, NULL, O0);

ShmPTR[0] = atoi(argv([0]); ShmPTR[1l] = atoi(argv[1l]);
ShmPTR[2] = atoi(argvI[2]); ShmPTR[2] = atoi(argvI[3]):;

if ((pid = fork()) == 0) {
Child (ShmPTR) ;
exit (0) ;

}

wait (&status) ;
shmdt ((void *) ShmPTR) ; shmctl (ShmID, IPC_RMID, NULL) ;
exit (0);

} 15

Communicating with a Child: 2/2

void Child(int SharedMem|[])

{

printf (“*%d %d %d %d\n”, SharedMem[O0],
SharedMem[l] , SharedMem[2], SharedMem[3]) :;

dWhy are shmget () and shmat () unnecessary
In the child process?

16

Communicating Among Separate
Processes: 1/5

dDefinethe structure of a shared memory
segment asfollows:

#define NOT READY (-1)
#define FILLED (0)
#define TAKEN (1)

struct Memory {
int status;
int datal4];

};

17

Communicating Among Separate
Processes: 2/5

The" Server” Prepare for a shared memory
void main(int argc, char *argv|[])
{

key t ShmKEY ;

int ShmID, 1i;

struct Memory *ShmPTR;

ShmKEY = ftok(“./”, ‘x');
ShmID = shmget (ShmKEY, sizeof (struct Memory),
IPC CREAT | 0666) ;
ShmPTR = (struct Memory *) shmat (ShmID, NULL, O0);

18

Communicating Among Separate
Processes: 3/5

shared memory not ready

ShmPTR->status = NOT READY; - :
- filling in data

for (i = 0; i < 4; i++)
ShmPTR->datal[i] = atoi(argv[i]);

ShmPTR->status = FILLED;
while (ShmPTR->status != TAKEN)
sleep(l); /* sleep for 1 second */

shmdt ((void *) ShmPTR) ;
shmctl (ShmID, IPC_RMID, NULL) ;
exit (0) ;

wait until the data is taken

detach and remove shared memory 19

Communicating Among Separate
Processes: 4/5

void main (void) The“Client”

{

key t ShmKEY ; prepare for shared memory

int ShmID;
struct Memory *ShmPTR;

ShmKEY=ftok (“./”, ‘x’);
ShmID = shmget (ShmKEY, sizeof (struct Memory), 0666) ;
ShmPTR = (struct Memory *) shmat (ShmID, NULL, O0);

while (ShmPTR->status != FILLED)

printf (“%d %d %d %d\n”, ShmPTR->datal[0],
ShmPTR->data[l], ShmPTR->data[2], ShmPTR->datal3]):

ShmPTR->status = TAKEN;

shmdt ((void *) ShmPTR); |

exit (0); 20

Communicating Among Separate
Processes: 5/5

dThe"server” must run first to prepare a shared
memory.

dTryruntheserver in onewindow, and run the
client in another alittle later.

dOr, run the server asa background process.
Then, run theclient in the foreground:

server 1 3 5 7 &
client

dThisversion uses busy waiting.

1 One may use Unix semaphores for mutual
exclusion.

21

Important Notes

If you did not remove your shared memory

segments (e.qg., program crashes beforethe
execution of shmect1 ()), they will bein the

system forever. Thiswill degradethe system
performance.

dUsethe ipcs command to check if you have
shared memory segments |eft in the system.

dUsethe ipcxrm command to remove your
shared memory segments.

22

