(Slide 1 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of AI

Closing Remarks

Testing By and Of AI SFWR ENG 3S03: Software Testing

Alicia Marinache

Department of Computing and Software, McMaster University Canada L8S 4L7, Hamilton, Ontario

Acknowledgments: Material adapted from Dr.I.David

・ロト ・回ト ・ヨト ・ヨト … ヨ

Testing By and Of AI ➡Preliminaries

AI and Machine Learning (ML)

- ML: the process of inferring statistical patterns
 - These patterns are very good at mimicking human reasoning
- Al: any sort of in-silico 'intelligence'
 - Old days: typically, some sort of logic-based framework (e.g., symbolic AI, inductive reasoning: models defined by the human)
 - Nowadays: typically, the artifact of machine learning (e.g., neural AI, deductive reasoning: from data to models)
 - Why not both? (e.g., neuro-symbolic AI: systems that learn, reason, and make decisions)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(Slide 2 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of AI

Closing Remarks

Why AI/ML in Testing?

- AI/ML is useful for automating and improving the testing process
- However, testing AI/ML systems presents unique challenges that require specialized strategies

(Slide 3 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of AI

Closing Remarks

・ロト ・回ト ・ヨト ・ヨト … ヨ

Testing by AI vs. of AI

 Testing by AI: Using AI/ML tools to automate traditional software testing tasks

• [DDB+19]

- Testing of AI: Ensuring AI systems perform correctly and ethically
 - [BK20]
 - [MFBF⁺22]

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of AI

Closing Remarks

Traditional ML Techniques

- Supervised Learning: uses labeled data for training
 - Goal: predict outcome on unseen new data
- Unsupervised Learning: learns patterns in unlabeled data
 - Goal: clustering similar data points
- Reinforcement Learning: learns by interacting with an environment and receiving rewards or penalties
 - Goal: make decisions

(Slide 5 of 33)

SE 3S03: Testing By and Of AI

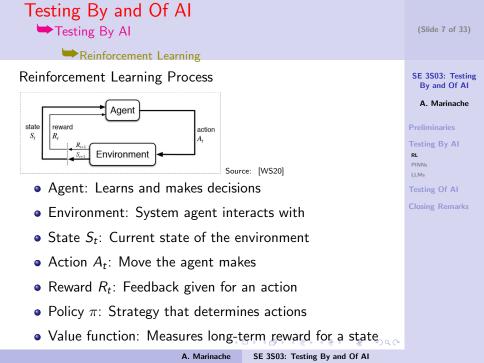
A. Marinache

Preliminaries

Testing By AI RL PINNs LLMs Testing Of AI

Other ML Techniques

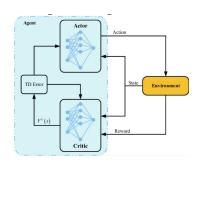
- Deep Learning (DL): uses neural networks with many layers, typically applied in supervised or unsupervised contexts
 - Used for: handling large amounts of data and complex tasks
- Specialized Models in ML
 - PINNs (Physics-Informed Neural Networks): used to solve PDEs by incorporating physical laws as part of the learning process
 - CNNs (Convolutional Neural Networks): specific DL models, used in image and video processing tasks
 - LLMs (Large Language Models): designed to understand and generate human language


(Slide 6 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries


Testing By Al RL PINNs LLMs Testing Of Al Closing Remarks

Testing By and Of AI	
Testing By Al	(Slide 8 of 33)
Reinforcement Learning	
• Exploration: trying new actions to discover their effects	SE 3S03: Testing By and Of AI
• Exploitation: using known actions that yield high	A. Marinache
rewards	Preliminaries
• Trade-off	Testing By AI
 Too much exploration can be inefficient 	PINNs LLMs
 Too much exploitation can miss better strategies 	Testing Of AI
• Balance, e.g., ϵ -greedy	Closing Remarks
$\bullet~$ Exploration: the agent chooses a random action with probability ϵ	
\bullet Exploitation: the agent chooses the action with the highest estimated reward with probability $1-\epsilon$	
• Decay: over time, ϵ is reduced to shift focus from exploration to exploitation	
A Marinache SE 3503: Testing By and Of Al	

Reinforcement Learning

- Policy-based: learn a policy π(a|s), maps states to actions
- Value-based: learn the value of actions (e.g., Q-Learning, DQN)
- Actor-Critic Methods
 - Actor: learns the policy; short-term goals
 - Critic: evaluates the policy; guides Actor; long-term goals

(人間) とうき くうり

3

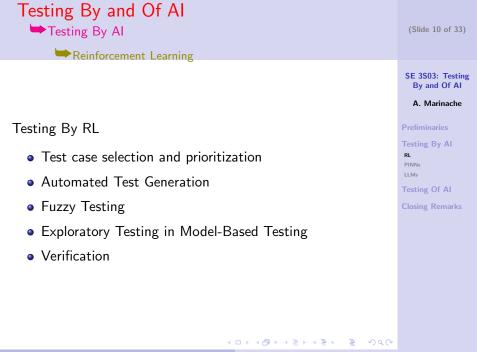
(Slide 9 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI


RL

PINNs

LLMs

Testing Of Al

Closing Remarks

A. Marinache SE 3S03: Testing By and Of AI

Testing By and Of AI	
Testing By Al	(Slide 11 of 33)
Reinforcement Learning	
Test case selection and prioritization	SE 3S03: Testing By and Of AI
 Goal: Run the most valuable tests first, e.g., the ones that are most likely to fail 	A. Marinache Preliminaries
Process	Testing By Al
 Agent learns from historical test results and code changes 	PINNs LLMs Testing Of Al
 Uses feedback (e.g., fault detection and coverage) as rewards 	Closing Remarks
• Continuously adapts as code evolves in the project	
 Benefits: Reduces regression testing time while maximizing bug discovery 	
Common algorithms: Q-learning or Deep Q-Networks (DQN)	
A. Marinache SE 3503: Testing By and Of Al	

Testing By and Of AI	(Slide 12 of 33)
Reinforcement Learning	
Automated Test Generation	SE 3S03: Testing By and Of AI
• Goal: generate effective test cases, especially for GUI	A. Marinache
or API testing	Preliminaries
Process	Testing By AI RL
	PINNs
 Agent explores the software interface 	LLMs
 Observes GUI states and actions (e.g., clicks, swipes, inputs) 	Testing Of AI Closing Remarks
 Learns which action sequences trigger new states or crashes 	
• Reward: based on code coverage or fault discovery	
• Benefits: Reduces manual effort in test case writing	
 Common algorithms: Deep RL 	
< 日 > ・ 一 > ・ (声 > ・ (声 > ・ (声 > ・))))	
A. Marinache SE 3S03: Testing By and Of Al	

Testing By and Of AI	
Testing By Al	(Slide 13 of 33)
Reinforcement Learning	
Fuzzy Testing	SE 3S03: Testing By and Of Al
• Goal: Focuses fuzzing effort on promising input areas	A. Marinache
Process	Preliminaries Testing By Al
 Learns which input patterns increase code coverage or crashes 	RL PINNs LLMs
 State = current input/coverage 	Testing Of AI Closing Remarks
 Action = mutate or try new input 	
 Reward = new path explored or vulnerability found 	
• Benefits	
\bullet Binary testing or embedded systems, e.g., $$ IoT	
 Enhances fuzzers by guiding input mutation strategies 	
· · · · · · · · · · · · · · · · · · ·	
A. Marinache SE 3S03: Testing By and Of Al	

-

Testing By and Of AI ➡ Testing By AI	(Slide 14 of 33)
Reinforcement Learning	
Exploratory Testing in Model-Based Testing	SE 3S03: Testing By and Of Al
 Goal: guide exploration strategies to efficiently discover critical paths 	A. Marinache Preliminaries
• Process	Testing By AI RL PINNS
• Agent navigates state-transition models (e.g., UML)	LLMs
 Learns which paths are likely to reveal faults 	Testing Of AI Closing Remarks
 Replaces random or exhaustive exploration with smart exploration 	Closing Renarks
• Reward: coverage, reaching rare states, fault detection	
• Benefits	
 Safety-critical or embedded system testing 	
 Reduces test suite size & maintains test effectiveness 	

Reinforcement Learning

Verification: calibration of Static Analysis (SA) rules

- State: current configuration of SA rules; context about the project (codebase size, language, history); recent feedback (ignored or fixed warnings)
- Action: enable/disable rules; adjust thresholds/severity levels; tune analysis depth or sensitivity
- Reward: fewer false positives (e.g., ignored warnings); higher developer engagement (e.g., fixed warnings); shorter analysis time without reducing useful results
- Benefits: find a balance between usefulness and overhead; continuously adapt to project evolution or team preferences

(Slide 15 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

RL

LLMs

Testing Of Al

Closing Remarks

Testing By and Of AI Testing By AI Reinforcement Learning Challenges

lpause

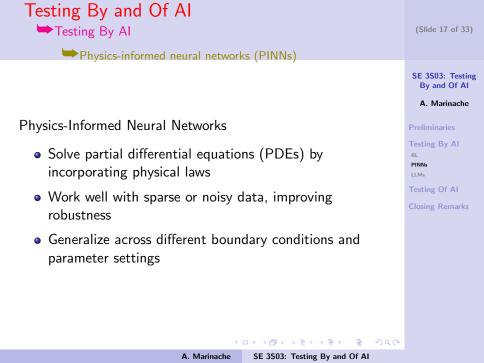
- Exploration vs. Exploitation balance
- Non-Deterministic Behavior: RL models can have inherent variability in their outputs
- Reward Design: Properly designing the reward function to align with desired system behavior is crucial for effective testing
- Scalability: Training RL models to handle complex, large-scale systems can require significant resources and time

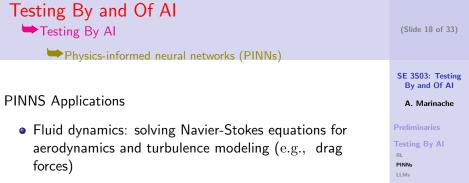
(Slide 16 of 33)

SE 3S03: Testing By and Of AI

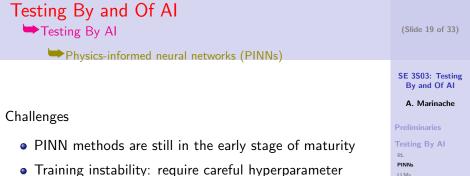
A. Marinache

Preliminaries


Testing By AI


RL

LLMs


Testing Of Al

Closing Remarks



- Heat transfer: modeling thermal diffusion and heat conduction problems
- Structural mechanics: simulating stress-strain behavior in materials
- Medical imaging: predicting biological processes based on partial observations

- tuning; may struggle with complex PDEs
- Scalability: computational cost increases for high-dimensional problems
- Accuracy: hybrid approaches exist to combining PINNs with numerical solvers

Testing By and Of Al	(Slide 20 of 33)
Testing By Al	(Slide 20 01 55)
Physics-informed neural networks (PINNs)	
Nodel-based Testing	SE 3S03: Testing By and Of AI
 Testing for Cyber-Physical Systems 	A. Marinache
 Model the expected physical behavior of the system 	Preliminaries
 Test whether the software controller leads to physically plausible behavior 	RL PINNs LLMs
 Test oracles for physics-based systems where exact outputs aren't known (common in embedded systems or IoT) 	Testing Of AI Closing Remarks
 PINN approximates what "should" happen based on physics 	
• Simulate the physical counterpart in a digital twin	
 Comparing simulated (PINN) behavior to the actual software-controlled device in real-time 	

- Source code is repetitive and predictable, much like natural language
- Justifies applying language modeling techniques to code

Testing By AI

Large Language Models

Validation by LLMs

- Generate test cases from code or specifications
 - LLMs read source code, comments, and requirements and generate tests
- Natural Language to Test Automation Scripts
 - From plain English (e.g., "Test login fails when the password is wrong"), LLMs generate corresponding scripts
 - Bridge the gap between non-technical QA engineers and automation frameworks
- Static Analysis and Code Review Assistance

(Slide 22 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

RL

LLMs

Testing Of Al

Closing Remarks

Testing By and Of AI Testing By AI (Slide 23 of 33) Large Language Models SE 3S03: Testing By and Of Al Validation by LLMs (cont'd) A. Marinache Generate Test Data • Realistic sample data (e.g., names, addresses, configs) **Testing By AI** • Edge cases or malformed inputs (e.g., fuzzy-style tests) RL Synthetic datasets for ML testing or simulations LLMs Improve or Refactor Existing Tests Enhance test readability or modularity Add meaningful assertion messages Refactor repetitive test into fixtures/test builders Analyze Test Results and Logs to Summarize root causes Suggest likely fixes Correlate with recent code changes

A. Marinache SE 3S03: Testing By and Of AI

・ロト ・回ト ・ヨト ・ヨト … ヨ

Challenges

- LLMs can hallucinate incorrect tests if not carefully reviewed
- They may not understand complex domain-specific logic
- They work best when paired with a developer/tester in the loop

Of course, you know this very well at this point, you worked with Gen AI in this course!

(Slide 24 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

RL PINNs

LLMs

Testing Of AI

Closing Remarks

イロト イボト イヨト イヨト 二日

- Testing Of AI: Requires special considerations
- Al: a very special type of software
 - Large
 - Non-deterministic
 - Non-transparent

(Slide 25 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of AI

Closing Remarks

ヘロン 人間 とくほど くほとう

Challenges in Testing AI/ML

- Lack of clear oracle
 - In many ML tasks (e.g., image recognition, NLP), there's no obvious correct output
 - Outputs are often probabilistic/involve uncertainty: hard to say definitively whether a result is right
 - e.g., is a model 80% confidence in "dog" good enough? What if the image is ambiguous?
- Non-deterministic behavior
 - ML models (especially DL) can produce different outputs depending on
 - Initialization
 - Stochastic training steps (e.g., dropout, data shuffling)
 - This makes regression testing and reproducibility harder

(Slide 26 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of Al

Closing Remarks

Challenges in Testing AI/ML (cont'd)

- Testing for generalization, not just functionality
 - ML systems are evaluated on how well they generalize to new data
 - One cannot just test for "does it return expected output"
 - Test on diverse inputs to catch issues like overfitting or data bias
- Bias, fairness, and explainability: test for ethical and societal impacts
 - Bias against certain groups
 - Unintended consequences
 - Require new types of metrics and tests (e.g., fairness metrics, SHAP/LIME explanations)

(Slide 27 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of Al

Closing Remarks

Challenges in Testing AI/ML (cont'd)

- Testing the Training Pipeline
 - ML systems are pipelines: data → preprocessing → model → postprocessing
 - Defects can occur anywhere in this chain (e.g., a defective data transformation could ruin accuracy)
 - Testing the entire pipeline (not just the final model) is crucial
- Lack of Mature Testing Tools
 - Traditional testing tools (unit tests, code coverage) are not designed for ML behavior
 - ML testing is still evolving, and best practices/tools vary widely by domain

(Slide 28 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of AI

Closing Remarks

- AI/ML are transforming software testing
 - There is no modern software engineering (including testing) without AI
 - How confident are you in your AI/ML skills?
- We scratched the surface here
 - There is much more to learn and understand
 - You should understand the basics, classics, and the new opportunities
 - The onus is on you to pick up all this knowledge and use it like a responsible and creative engineer should

(Slide 29 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of AI

Closing Remarks

(Slide 30 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Testing By AI

Testing Of AI

Closing Remarks

You are expected to lead in an industry that is currently transforming: you, too, will become transformers of our industry soon

 Don't be a stranger: send me an email every once in a while, and educate me!

Testing By and Of AI ➡Closing Remarks

(Slide 31 of 33)

A. Marinache SE 3S03: Testing By and Of AI

(Slide 32 of 33)

SE 3S03: Testing By and Of AI

A. Marinache Preliminaries

Testing By AI

Testing Of AI

Closing Remarks

Houssem Ben Braiek and Foutse Khomh. On testing machine learning programs. Journal of Systems and Software, 164:110542, 2020.

Vinicius HS Durelli, Rafael S Durelli, Simone S Borges, Andre T Endo, Marcelo M Eler, Diego RC Dias, and Marcelo P Guimarães.

Machine learning applied to software testing: A systematic mapping study.

IEEE Transactions on Reliability, 68(3):1189–1212, 2019.

イロト 不得 トイヨト イヨト

References II

 Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner.
 Software engineering for ai-based systems: a survey.
 ACM Transactions on Software Engineering and Methodology (TOSEM), 31(2):1–59, 2022.

Dasong Wang and Roland Snooks.
 Artificial intuitions of generative design: an approach based on reinforcement learning.
 In *The International Conference on Computational Design and Robotic Fabrication*, pages 189–198.
 Springer, 2020.

(Slide 33 of 33)

SE 3S03: Testing By and Of AI

A. Marinache

Preliminaries

Testing By AI

Testing Of AI

Closing Remarks

소리 에 소문에 이 문어 가 문어 있다.