
Tutorial Week 6
Nishttha Sharma

sharmn99@mcmaster.ca

AGENDA
• Views
• Indexing

• Discussion of Assignment 1

Views
• A view provides a mechanism to hide certain data from the view of

certain users
• Virtual: not stored in the database; just a query for constructing the relation
• Materialized: actually constructed and stored

• How to Declare?
• CREATE [MATERIALIZED] VIEW <name> AS <query>;
• A query to specify the view contents
• Default is virtual

3

Why use Views?
• Easy to access (read) data without query statements repeatedly.
• Simplify the query statement for users (ex. Provide joined table, …)

• Provide limited information to specific users (security)
• Users cannot know the existence of information
• Ex.) If an officer (tax, crime, …) want to check that some specific credit card was

used in a specific area last month or not
• Original DB has all the information about users
• Make a VIEW for credit card number, area (province, city, …), time (date)

4

Views - Example
• Frequents (drinker, bar)

• Sells (bar, beer, price)

5

Drinker Bar

Luke Grit & Grain

John Twisted Tap

Sally Twisted Tap

Lucy Twist & Sip

Bar Beer Price

Grit & Grain Bud Light $4.50

Grit & Grain Coors $5.00

Twisted Tap Guinness $6.50

Twisted Tap Bud Light $5.00

Twisted Tap Coors $5.50

Twist & Sip Guinness $6.00

Views - Example

6

• CREATE VIEW CanDrink AS
• SELECT drinker, beer
• FROM Frequents, Sells
• WHERE Frequents.bar = Sells.bar;

Create CanDrink (drinker, beer) as a view

Drinker Beer

Luke Bud Light

Luke Coors

John Guinness

John Bud Light

John Coors

Sally Guinness

Sally Bud Light

Sally Coors

Lucy Guinness

CanDrink

Same query without the view -
• SELECT beer

• FROM (SELECT drinker, beer

• FROM Frequents, Sells

• WHERE Frequents.bar = Sells.bar)

• WHERE drinker = 'Sally';

Views - Example

7

Create CanDrink (drinker, beer) as a view

Drinker Beer

Luke Bud Light

Luke Coors

John Guinness

John Bud Light

John Coors

Sally Guinness

Sally Bud Light

Sally Coors

Lucy Guinness

A query on the view -
• SELECT beer

• FROM CanDrink

• WHERE drinker = ‘Sally’;

Indexing
• Disk-based structures linked to tables or views.
• Efficient retrieval of records.
• Fast search: without index, system needs full table scan.
• Works well with MIN, MAX, ORDER BY.

• Requires additional space and operations (insert, delete, update).

• When to use?
• Large tables.
• Infrequent insert/delete/update; mostly read.
• Less duplicated data.

8

Indexing Types
Clustered
• Created when both these conditions are satisfied:
• Data should be sorted.
• There should be a key value (i.e., it cannot have repeated values).

• A table can have at most one clustered index.
• If you set the primary key, it automatically acts as the ‘clustered

index.’
• It offers faster retrieval but may slow down insert and update

operations.

9

Indexing Types
Non-Clustered
• Multiple non-clustered indexes are allowed per table.
• The non-clustered index stores both the value and a pointer to the

actual row that holds the data.
• They offer flexibility but may result in slower retrieval compared to

clustered indexes.

10

B+ Trees
• Self-balancing tree.
• Each node at least 50% full.

• Actual data is saved in leaf nodes.

• Leaf nodes are connected via a
linked list.

• Better performance for “<, >”
compared to Hash table.

11

B+ Trees – Insertion

12

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 19 31 37 41 43 47

Insert 10 to this B+ Tree

B+ Trees – Insertion

13

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 19 31 37 41 43 47

Insert 10 to this B+ Tree

10 < 13

10 ≥ 7

Empty Space

B+ Trees – Insertion

14

13

7 23 31 43

2 3 5 7 10 11 13 17 19 23 29 19 31 37 41 43 47

Insert 10 to this B+ Tree

10 < 13

10 ≥ 7

B+ Trees – Insertion

15

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 19 31 37 41 43 47

Insert 40 to this B+ Tree

40 > 13

31 < 40 < 43

B+ Trees – Insertion

16

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 19 31 37 43 47

Insert 40 to this B+ Tree

40 > 13

31 < 40 < 43

40 41

NEW NODE – needs to be linked to the
tree

B+ Trees – Insertion

17

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 19 31 37 43 47

Insert 40 to this B+ Tree
40 41

B+ Trees – Insertion

18

13 40

7 23 31

2 3 5 7 11 13 17 19 23 29 19 31 37 43 47

Insert 40 to this B+ Tree
40 41

43

Hashing
• Good for equality searches.
• Hash function h returns value

(address).

• (Key, Value) pairs.

• Can have collisions.

• Performs best when the data is
discrete and random.

11

For Assignment 2

• How to save the result of query?

• Your queries are in a file queries.sql

$ db2 –tnf queries.sql > queries.results

• Copy queries.results to your local system
$ scp sharmn99@se3db3.cas.mcmaster.ca:/u40/sharmn99/queries.results
/Users/nishttha/Desktop

12

13

