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PREFACE

The advantage of doing one's praising for oneself is that one can lay it on so thick
and exactly in the right places.

--Samuel Butler

Database management systems are now an indispensable tool for managing
information, and a course on the principles and practice of database systems
is now an integral part of computer science curricula. This book covers the
fundamentals of modern database management systems, in particular relational
database systems.

We have attempted to present the material in a clear, simple style. A quantita­
tive approach is used throughout with many detailed examples. An extensive
set of exercises (for which solutions are available online to instructors) accom­
panies each chapter and reinforces students' ability to apply the concepts to
real problems.

The book can be used with the accompanying software and programming as­
signments in two distinct kinds of introductory courses:

1. Applications Emphasis: A course that covers the principles of database
systems, and emphasizes how they are used in developing data-intensive ap­
plications. Two new chapters on application development (one on database­
backed applications, and one on Java and Internet application architec­
tures) have been added to the third edition, and the entire book has been
extensively revised and reorganized to support such a course. A running
case-study and extensive online materials (e.g., code for SQL queries and
Java applications, online databases and solutions) make it easy to teach a
hands-on application-centric course.

2. Systems Emphasis: A course that has a strong systems emphasis and
assumes that students have good programming skills in C and C++. In
this case the accompanying Minibase software can be llsed as the basis
for projects in which students are asked to implement various parts of a
relational DBMS. Several central modules in the project software (e.g.,
heap files, buffer manager, B+ trees, hash indexes, various join methods)

xxiv
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are described in sufficient detail in the text to enable students to implement
them, given the (C++) class interfaces.

r..,1any instructors will no doubt teach a course that falls between these two
extremes. The restructuring in the third edition offers a very modular orga­
nization that facilitates such hybrid courses. The also book contains enough
material to support advanced courses in a two-course sequence.

Organization of the Third Edition

The book is organized into six main parts plus a collection of advanced topics, as
shown in Figure 0.1. The Foundations chapters introduce database systems, the

(1) Foundations Both
(2) Application Development Applications emphasis
(3) Storage and Indexing Systems emphasis
(4) Query Evaluation Systems emphasis
(5) Transaction Management Systems emphasis
(6) Database Design and Tuning Applications emphasis
(7) Additional Topics Both

Figure 0.1 Organization of Parts in the Third Edition

ER model and the relational model. They explain how databases are created
and used, and cover the basics of database design and querying, including an
in-depth treatment of SQL queries. While an instructor can omit some of this
material at their discretion (e.g., relational calculus, some sections on the ER
model or SQL queries), this material is relevant to every student of database
systems, and we recommend that it be covered in as much detail as possible.

Each of the remaining five main parts has either an application or a systems
empha.sis. Each of the three Systems parts has an overview chapter, designed to
provide a self-contained treatment, e.g., Chapter 8 is an overview of storage and
indexing. The overview chapters can be used to provide stand-alone coverage
of the topic, or as the first chapter in a more detailed treatment. Thus, in an
application-oriented course, Chapter 8 might be the only material covered on
file organizations and indexing, whereas in a systems-oriented course it would be
supplemented by a selection from Chapters 9 through 11. The Database Design
and Tuning part contains a discussion of performance tuning and designing for
secure access. These application topics are best covered after giving students
a good grasp of database system architecture, and are therefore placed later in
the chapter sequence.
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Suggested Course Outlines

DATABASE ~1ANAGEMENTSYSTEMS

The book can be used in two kinds of introductory database courses, one with
an applications emphasis and one with a systems empha..':iis.

The introductory applications- oriented course could cover the :Foundations chap­
ters, then the Application Development chapters, followed by the overview sys­
tems chapters, and conclude with the Database Design and Tuning material.
Chapter dependencies have been kept to a minimum, enabling instructors to
easily fine tune what material to include. The Foundations material, Part I,
should be covered first, and within Parts III, IV, and V, the overview chapters
should be covered first. The only remaining dependencies between chapters
in Parts I to VI are shown as arrows in Figure 0.2. The chapters in Part I
should be covered in sequence. However, the coverage of algebra and calculus
can be skipped in order to get to SQL queries sooner (although we believe this
material is important and recommend that it should be covered before SQL).

The introductory systems-oriented course would cover the Foundations chap­
ters and a selection of Applications and Systems chapters. An important point
for systems-oriented courses is that the timing of programming projects (e.g.,
using Minibase) makes it desirable to cover some systems topics early. Chap­
ter dependencies have been carefully limited to allow the Systems chapters to
be covered as soon as Chapters 1 and 3 have been covered. The remaining
Foundations chapters and Applications chapters can be covered subsequently.

The book also has ample material to support a multi-course sequence. Obvi­
ously, choosing an applications or systems emphasis in the introductory course
results in dropping certain material from the course; the material in the book
supports a comprehensive two-course sequence that covers both applications
and systems a.spects. The Additional Topics range over a broad set of issues,
and can be used as the core material for an advanced course, supplemented
with further readings.

Supplementary Material

This book comes with extensive online supplements:

.. Online Chapter: To make space for new material such a.'3 application
development, information retrieval, and XML, we've moved the coverage
of QBE to an online chapter. Students can freely download the chapter
from the book's web site, and solutions to exercises from this chapter are
included in solutions manual.
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Figure 0.2 Chapter Organization and Dependencies

lIII Lecture Slides: Lecture slides are freely available for all chapters in
Postscript, and PDF formats. Course instructors can also obtain these
slides in Microsoft Powerpoint format, and can adapt them to their teach­
ing needs. Instructors also have access to all figures llsed in the book (in
xfig format), and can use them to modify the slides.
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• Solutions to Chapter Exercises: The book has an UnUS1H:l,lly extensive
set of in-depth exercises. Students can obtain solutioIls to odd-numbered
chapter exercises and a set of lecture slides for each chapter through the
vVeb in Postscript and Adobe PDF formats. Course instructors can obtain
solutions to all exercises.

• Software: The book comes with two kinds of software. First, we have
J\!Iinibase, a small relational DBMS intended for use in systems-oriented
courses. Minibase comes with sample assignments and solutions, as de­
scribed in Appendix 30. Access is restricted to course instructors. Second,
we offer code for all SQL and Java application development exercises in
the book, together with scripts to create sample databases, and scripts for
setting up several commercial DBMSs. Students can only access solution
code for odd-numbered exercises, whereas instructors have access to all
solutions.

• Instructor's Manual: The book comes with an online manual that of­
fers instructors comments on the material in each chapter. It provides a
summary of each chapter and identifies choices for material to emphasize
or omit. The manual also discusses the on-line supporting material for
that chapter and offers numerous suggestions for hands-on exercises and
projects. Finally, it includes samples of examination papers from courses
taught by the authors using the book. It is restricted to course instructors.

For More Information

The home page for this book is at URL:

http://www.cs.wisc.edu/-dbbook

It contains a list of the changes between the 2nd and 3rd editions, and a fre­
quently updated link to all known erTOT8 in the book and its accompanying
supplements. Instructors should visit this site periodically or register at this
site to be notified of important changes by email.
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1
OVERVIEW OF

DATABASE SYSTEMS

-- What is a DBMS, in particular, a relational DBMS?

.. Why should we consider a DBMS to manage data?

.. How is application data represented in a DBMS?

-- How is data in a DBMS retrieved and manipulated?

.. How does a DBMS support concurrent access and protect data during
system failures?

.. What are the main components of a DBMS?

.. Who is involved with databases in real life?

.. Key concepts: database management, data independence, database
design, data model; relational databases and queries; schemas, levels
of abstraction; transactions, concurrency and locking, recovery and
logging; DBMS architecture; database administrator, application pro­
grammer, end user

Has everyone noticed that all the letters of the word database are typed with
the left hand? Now the layout of the QWEHTY typewriter keyboard was designed,
among other things, to facilitate the even use of both hands. It follows, therefore,
that writing about databases is not only unnatural, but a lot harder than it appears.

---Anonymous

The alIlount of information available to us is literally exploding, and the value
of data as an organizational asset is widely recognized. To get the most out of
their large and complex datasets, users require tools that simplify the tasks of

3
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The area of database management systenls is a microcosm of computer sci­
ence in general. The issues addressed and the techniques used span a wide
spectrum, including languages, object-orientation and other progTamming
paradigms, compilation, operating systems, concurrent programming, data
structures, algorithms, theory, parallel and distributed systems, user inter­
faces, expert systems and artificial intelligence, statistical techniques, and
dynamic programming. \Ve cannot go into all these &<;jpects of database
management in one book, but we hope to give the reader a sense of the
excitement in this rich and vibrant discipline.

managing the data and extracting useful information in a timely fashion. Oth­
erwise, data can become a liability, with the cost of acquiring it and managing
it far exceeding the value derived from it.

A database is a collection of data, typically describing the activities of one or
more related organizations. For example, a university database might contain
information about the following:

• Entities such as students, faculty, courses, and classrooms.

• Relationships between entities, such as students' enrollment in courses,
faculty teaching courses, and the use of rooms for courses.

A database management system, or DBMS, is software designed to assist
in maintaining and utilizing large collections of data. The need for such systems,
as well as their use, is growing rapidly. The alternative to using a DBMS is
to store the data in files and write application-specific code to manage it. The
use of a DBMS has several important advantages, as we will see in Section 1.4.

1.1 MANAGING DATA

The goal of this book is to present an in-depth introduction to database man­
agement systems, with an empha.sis on how to design a database and 'li8C a
DBMS effectively. Not surprisingly, many decisions about how to use a DBIvIS
for a given application depend on what capabilities the DBMS supports effi­
ciently. Therefore, to use a DBMS well, it is necessary to also understand how
a DBMS work8.

Many kinds of database management systems are in use, but this book concen­
trates on relational database systems (RDBMSs), which are by far the
dominant type of DB~'IS today. The following questions are addressed in the
corc chapters of this hook:
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1. Database Design and Application Development: How can a user
describe a real-world enterprise (e.g., a university) in terms of the data
stored in a DBMS? \Vhat factors must be considered in deciding how to
organize the stored data? How can ,ve develop applications that rely upon
a DBMS? (Chapters 2, 3, 6, 7, 19, 20, and 21.)

2. Data Analysis: How can a user answer questions about the enterprise by
posing queries over the data in the DBMS? (Chapters 4 and 5.)1

3. Concurrency and Robustness: How does a DBMS allow many users to
access data concurrently, and how does it protect the data in the event of
system failures? (Chapters 16, 17, and 18.)

4. Efficiency and Scalability: How does a DBMS store large datasets and
answer questions against this data efficiently? (Chapters 8, 9, la, 11, 12,
13, 14, and 15.)

Later chapters cover important and rapidly evolving topics, such as parallel and
distributed database management, data warehousing and complex queries for
decision support, data mining, databases and information retrieval, XML repos­
itories, object databases, spatial data management, and rule-oriented DBMS
extensions.

In the rest of this chapter, we introduce these issues. In Section 1.2, we be­
gin with a brief history of the field and a discussion of the role of database
management in modern information systems. We then identify the benefits of
storing data in a DBMS instead of a file system in Section 1.3, and discuss
the advantages of using a DBMS to manage data in Section 1.4. In Section
1.5, we consider how information about an enterprise should be organized and
stored in a DBMS. A user probably thinks about this information in high-level
terms that correspond to the entities in the organization and their relation­
ships, whereas the DBMS ultimately stores data in the form of (rnany, many)
bits. The gap between how users think of their data and how the data is ul­
timately stored is bridged through several levels of abstract1:on supported by
the DBMS. Intuitively, a user can begin by describing the data in fairly high­
level terms, then refine this description by considering additional storage and
representation details as needed.

In Section 1.6, we consider how users can retrieve data stored in a DBMS and
the need for techniques to efficiently compute answers to questions involving
such data. In Section 1.7, we provide an overview of how a DBMS supports
concurrent access to data by several users and how it protects the data in the
event of system failures.

1 An online chapter on Query-by-Example (QBE) is also available.
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vVe then briefly describe the internal structure of a DBMS in Section 1.8, and
mention various groups of people associated with the development and use of
a DBMS in Section 1.9.

1.2 A HISTORICAL PERSPECTIVE

From the earliest days of computers, storing and manipulating data have been a
major application focus. The first general-purpose DBMS, designed by Charles
Bachman at General Electric in the early 1960s, was called the Integrated Data
Store. It formed the basis for the network data model, which was standardized
by the Conference on Data Systems Languages (CODASYL) and strongly in­
fluenced database systems through the 1960s. Bachman was the first recipient
of ACM's Turing Award (the computer science equivalent of a Nobel Prize) for
work in the database area; he received the award in 1973.

In the late 1960s, IBM developed the Information Management System (IMS)
DBMS, used even today in many major installations. IMS formed the basis for
an alternative data representation framework called the hierarchical data model.
The SABRE system for making airline reservations was jointly developed by
American Airlines and IBM around the same time, and it allowed several people
to access the same data through a computer network. Interestingly, today the
same SABRE system is used to power popular Web-based travel services such
as Travelocity.

In 1970, Edgar Codd, at IBM's San Jose Research Laboratory, proposed a new
data representation framework called the relational data model. This proved to
be a watershed in the development of database systems: It sparked the rapid
development of several DBMSs based on the relational model, along with a rich
body of theoretical results that placed the field on a firm foundation. Codd
won the 1981 Turing Award for his seminal work. Database systems matured
as an academic discipline, and the popularity of relational DBMSs changed the
commercial landscape. Their benefits were widely recognized, and the use of
DBMSs for managing corporate data became standard practice.

In the 1980s, the relational model consolidated its position as the dominant
DBMS paradigm, and database systems continued to gain widespread use. The
SQL query language for relational databases, developed as part of IBM's Sys­
tem R project, is now the standard query language. SQL was standardized
in the late 1980s, and the current standard, SQL:1999, was adopted by the
American National Standards Institute (ANSI) and International Organization
for Standardization (ISO). Arguably, the most widely used form of concurrent
programming is the concurrent execution of database programs (called trans­
actions). Users write programs a." if they are to be run by themselves, and
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the responsibility for running them concurrently is given to the DBl\/IS. James
Gray won the 1999 Turing award for his contributions to database transaction
management.

In the late 1980s and the 1990s, advances were made in many areas of database
systems. Considerable research was carried out into more powerful query lan­
guages and richer data models, with emphasis placed on supporting complex
analysis of data from all parts of an enterprise. Several vendors (e.g., IBM's
DB2, Oracle 8, Informix2 UDS) extended their systems with the ability to store
new data types such as images and text, and to ask more complex queries. Spe­
cialized systems have been developed by numerous vendors for creating data
warehouses, consolidating data from several databases, and for carrying out
specialized analysis.

An interesting phenomenon is the emergence of several enterprise resource
planning (ERP) and management resource planning (MRP) packages,
which add a substantial layer of application-oriented features on top of a DBMS.
Widely used. packages include systems from Baan, Oracle, PeopleSoft, SAP,
and Siebel. These packages identify a set of common tasks (e.g., inventory
management, human resources planning, financial analysis) encountered by a
large number of organizations and provide a general application layer to carry
out these ta.'3ks. The data is stored in a relational DBMS and the application
layer can be customized to different companies, leading to lower overall costs
for the companies, compared to the cost of building the application layer from
scratch.

Most significant, perhaps, DBMSs have entered the Internet Age. While the
first generation of websites stored their data exclusively in operating systems
files, the use of a DBMS to store data accessed through a Web browser is
becoming widespread. Queries are generated through Web-accessible forms
and answers are formatted using a markup language such as HTML to be
easily displayed in a browser. All the database vendors are adding features to
their DBMS aimed at making it more suitable for deployment over the Internet.

Databclse management continues to gain importance as more and more data is
brought online and made ever more accessible through computer networking.
Today the field is being driven by exciting visions such a'S multimedia databases,
interactive video, streaming data, digital libraries, a host of scientific projects
such as the human genome mapping effort and NASA's Earth Observation Sys­
tem project, and the desire of companies to consolidate their decision-making
processes and mine their data repositories for useful information about their
businesses. Commercially, database management systems represent one of the

2Informix was recently acquired by IBM.
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largest and most vigorous market segments. Thus the study of database sys­
tems could prove to be richly rewarding in more ways than one!

1.3 FILE SYSTEMS VERSUS A DBMS

To understand the need for a DB:~,,1S, let us consider a motivating scenario: A
company has a large collection (say, 500 GB3 ) of data on employees, depart­
ments, products, sales, and so on. This data is accessed concurrently by several
employees. Questions about the data must be answered quickly, changes made
to the data by different users must be applied consistently, and access to certain
parts of the data (e.g., salaries) must be restricted.

We can try to manage the data by storing it in operating system files. This
approach has many drawbacks, including the following:

• We probably do not have 500 GB of main memory to hold all the data.
We must therefore store data in a storage device such as a disk or tape and
bring relevant parts into main memory for processing as needed.

• Even if we have 500 GB of main memory, on computer systems with 32-bit
addressing, we cannot refer directly to more than about 4 GB of data. We
have to program some method of identifying all data items.

• We have to write special programs to answer each question a user may want
to ask about the data. These programs are likely to be complex because
of the large volume of data to be searched.

• We must protect the data from inconsistent changes made by different users
accessing the data concurrently. If applications must address the details of
such concurrent access, this adds greatly to their complexity.

• We must ensure that data is restored to a consistent state if the system
crac;hes while changes are being made.

• Operating systems provide only a password mechanism for security. This is
not sufficiently flexible to enforce security policies in which different users
have permission to access different subsets of the data.

A DBMS is a piece of software designed to make the preceding tasks easier. By
storing data in.a DBNIS rather than as a collection of operating system files,
we can use the DBMS's features to manage the data in a robust and efficient
rnanner. As the volume of data and the number of users grow hundreds of
gigabytes of data and thousands of users are common in current corporate
databases DBMS support becomes indispensable.
------,- .

3 A kilobyte (KB) is 1024 bytes, a megabyte (MB) is 1024 KBs, a gigabyte (GB) is 1024 MBs, a
terabyte ('1'B) is 1024 CBs, and a petabyte (PB) is 1024 terabytes.
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1.4 ADVANTAGES OF A DBMS

Using a DBMS to manage data h3..'3 many advantages:

9

II Data Independence: Application programs should not, ideally, be ex­
posed to details of data representation and storage, The DBJVIS provides
an abstract view of the data that hides such details.

II Efficient Data Access: A DBMS utilizes a variety of sophisticated tech­
niques to store and retrieve data efficiently. This feature is especially im­
pOl'tant if the data is stored on external storage devices.

II Data Integrity and Security: If data is always accessed through the
DBMS, the DBMS can enforce integrity constraints. For example, before
inserting salary information for an employee, the DBMS can check that
the department budget is not exceeded. Also, it can enforce access contmls
that govern what data is visible to different classes of users.

II Data Administration: When several users share the data, centralizing
the administration of data can offer sig11ificant improvements. Experienced
professionals who understand the nature of the data being managed, and
how different groups of users use it, can be responsible for organizing the
data representation to minimize redundancy and for fine-tuning the storage
of the data to make retrieval efficient.

II Concurrent Access and Crash Recovery: A DBMS schedules concur­
rent accesses to the data in such a manner that users can think of the data
as being accessed by only one user at a time. Further, the DBMS protects
users from the effects of system failures.

II Reduced Application Development Time: Clearly, the DBMS sup­
ports important functions that are common to many applications accessing
data in the DBMS. This, in conjunction with the high-level interface to the
data, facilitates quick application development. DBMS applications are
also likely to be more robust than similar stand-alone applications because
many important tasks are handled by the DBMS (and do not have to be
debugged and tested in the application).

Given all these advantages, is there ever a reason not to use a DBMS? Some­
times, yes. A DBMS is a complex piece of software, optimized for certain kinds
of workloads (e.g., answering complex queries or handling many concurrent
requests), and its performance may not be adequate for certain specialized ap­
plications. Examples include applications with tight real-time constraints or
just a few well-defined critical operations for which efficient custom code must
be written. Another reason for not using a DBMS is that an application may
need to manipulate the data in ways not supported by the query language. In
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such a situation, the abstract view of the datet presented by the DBlVIS does
not match the application's needs and actually gets in the way. As an exam­
ple, relational databa.'3es do not support flexible analysis of text data (although
vendors are now extending their products in this direction).

If specialized performance or data manipulation requirements are central to an
application, the application may choose not to use a DBMS, especially if the
added benefits of a DBMS (e.g., flexible querying, security, concurrent access,
and crash recovery) are not required. In most situations calling for large-scale
data management, however, DBlVISs have become an indispensable tool.

1.5 DESCRIBING AND STORING DATA IN A DBMS

The user of a DBMS is ultimately concerned with some real-world enterprise,
and the data to be stored describes various aspects of this enterprise. For
example, there are students, faculty, and courses in a university, and the data
in a university database describes these entities and their relationships.

A data model is a collection of high-level data description constructs that hide
many low-level storage details. A DBMS allows a user to define the data to be
stored in terms of a data model. Most database management systems today
are based on the relational data model, which we focus on in this book.

While the data model of the DBMS hides many details, it is nonetheless closer
to how the DBMS stores data than to how a user thinks about the underlying
enterprise. A semantic data model is a more abstract, high-level data model
that makes it easier for a user to come up with a good initial description of
the data in an enterprise. These models contain a wide variety of constructs
that help describe a real application scenario. A DBMS is not intended to
support all these constructs directly; it is typically built around a data model
with just a few bi:1Sic constructs, such as the relational model. A databa.se
design in terms of a semantic model serves as a useful starting point and is
subsequently translated into a database design in terms of the data model the
DBMS actually supports.

A widely used semantic data model called the entity-relationship (ER) model
allows us to pictorially denote entities and the relationships among them. vVe
cover the ER model in Chapter 2.
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An Example of Poor Design: The relational schema for Students il­
lustrates a poor design choice; you should neVCT create a field such as age,
whose value is constantly changing. A better choice would be DOB (for
date of birth); age can be computed from this. \Ve continue to use age in
our examples, however, because it makes them easier to read.

1.5.1 The Relational Model

In this section we provide a brief introduction to the relational model. The
central data description construct in this model is a relation, which can be
thought of as a set of records.

A description of data in terms of a data model is called a schema. In the
relational model, the schema for a relation specifies its name, the name of each
field (or attribute or column), and the type of each field. As an example,
student information in a university database may be stored in a relation with
the following schema:

Students( sid: string, name: string, login: string,
age: integer, gpa: real)

The preceding schema says that each record in the Students relation has five
fields, with field names and types as indicated. An example instance of the
Students relation appears in Figure 1.1.

I sid [ name IZogin

53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8
53831 Madayan madayan(gmusic 11 1.8
53832 Guldu guldui:Qhnusic 12 2.0

Figure 1.1 An Instance of the Students Relation

Each row in the Students relation is a record that describes a student. The
description is rlOt completeo----for example, the student's height is not included--­
but is presumably adequate for the intended applications in the university
database. Every row follows the schema of the Students relation. The schema
call therefore be regarded as a template for describing a student.

vVe can make the description of a collection of students more precise by specify­
ing integrity constraints, which are conditions that the records in a relation
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must satisfy. for example, we could specify that every student has a unique
sid value. Observe that we cannot capture this information by simply adding
another field to the Students schema. Thus, the ability to specify uniqueness
of the values in a field increases the accuracy with which we can describe our
data. The expressiveness of the constructs available for specifying integrity
constraints is an important ar;;pect of a data model.

Other Data Models

In addition to the relational data model (which is used in numerous systems,
including IBM's DB2, Informix, Oracle, Sybase, Microsoft's Access, FoxBase,
Paradox, Tandem, and Teradata), other important data models include the
hierarchical model (e.g., used in IBM's IMS DBMS), the network model (e.g.,
used in IDS and IDMS), the object-oriented model (e.g., used in Objectstore
and Versant), and the object-relational model (e.g., used in DBMS products
from IBM, Informix, ObjectStore, Oracle, Versant, and others). While many
databases use the hierarchical and network models and systems based on the
object-oriented and object-relational models are gaining acceptance in the mar­
ketplace, the dominant model today is the relational model.

In this book, we focus on the relational model because of its wide use and im­
portance. Indeed, the object-relational model, which is gaining in popularity, is
an effort to combine the best features of the relational and object-oriented mod­
els, and a good grasp of the relational model is necessary to understand object­
relational concepts. (We discuss the object-oriented and object-relational mod­
els in Chapter 23.)

1.5.2 Levels of Abstraction in a DBMS

The data in a DBMS is described at three levels of abstraction, ar;; illustrated
in Figure 1.2. The database description consists of a schema at each of these
three levels of abstraction: the conceptual, physical, and external.

A data definition language (DDL) is used to define the external and coneep­
tual schemas. \;Ye discuss the DDL facilities of the Inost wid(~ly used database
language, SQL, in Chapter 3. All DBMS vendors also support SQL commands
to describe aspects of the physical schema, but these commands are not part of
the SQL language standard. Information about the conceptual, external, and
physical schemas is stored in the system catalogs (Section 12.1). vVe discuss
the three levels of abstraction in the rest of this section.
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External Schema 1 External Schema 2 External Schema 3

Figure 1.2 Levels of Abstraction in a DBMS

Conceptual Schema

The conceptual schema (sometimes called the logical schema) describes the
stored data in terms of the data model of the DBMS. In a relational DBMS,
the conceptual schema describes all relations that are stored in the database.
In our sample university databa..'3e, these relations contain information about
entities, such as students and faculty, and about relationships, such as students'
enrollment in courses. All student entities can be described using records in
a Students relation, as we saw earlier. In fact, each collection of entities and
each collection of relationships can be described as a relation, leading to the
following conceptual schema:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

Faculty(fid: string, fname: string, sal: real)
Courses( cid: string, cname: string, credits: integer)
Rooms(nw: integer, address: string, capacity: integer)
Enrolled (sid: string, cid: string, grade: string)
Teaches(fid: string, cid: string)
Meets_In( cid: string, rno: integer, ti'fne: string)

The choice of relations, and the choice of fields for each relation, is not always
obvious, and the process of arriving at a good conceptual schema is called
conceptual database design. vVe discuss conceptual databa..se design in
Chapters 2 and 19.
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Physical Schema

CHAPTER»1

The physical schema specifies additional storage details. Essentially, the
physical schema summarizes how the relations described in the conceptual
schema are actually stored on secondary storage devices such as disks and
tapes.

We must decide what file organizations to use to store the relations and create
auxiliary data structures, called indexes, to speed up data retrieval operations.
A sample physical schema for the university database follows:

• Store all relations as unsorted files of records. (A file in a DBMS is either
a collection of records or a collection of pages, rather than a string of
characters as in an operating system.)

• Create indexes on the first column of the Students, Faculty, and Courses
relations, the sal column of Faculty, and the capacity column of Rooms.

Decisions about the physical schema are based on an understanding of how the
data is typically accessed. The process of arriving at a good physical schema
is called physical database design. We discuss physical database design in
Chapter 20.

External Schema

External schemas, which usually are also in terms of the data model of
the DBMS, allow data access to be customized (and authorized) at the level
of individual users or groups of users. Any given database has exactly one
conceptual schema and one physical schema because it has just one set of
stored relations, but it may have several external schemas, each tailored to a
particular group of users. Each external schema consists of a collection of one or
more views and relations from the conceptual schema. A view is conceptually
a relation, but the records in a view are not stored in the DBMS. Rather, they
are computed using a definition for the view, in terms of relations stored in the
DBMS. \iVe discuss views in more detail in Chapters 3 and 25.

The external schema design is guided by end user requirements. For exalnple,
we might want to allow students to find out the names of faculty members
teaching courses as well as course enrollments. This can be done by defining
the following view:

Courseinfo( rid: string, fname: string, enTollment: integer)

A user can treat a view just like a relation and ask questions about the records
in the view. Even though the records in the view are not stored explicitly,
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they are computed as needed. vVe did not include Courseinfo in the conceptual
schema because we can compute Courseinfo from the relations in the conceptual
schema, and to store it in addition would be redundant. Such redundancy, in
addition to the wasted space, could lead to inconsistencies. For example, a
tuple may be inserted into the Enrolled relation, indicating that a particular
student has enrolled in some course, without incrementing the value in the
enrollment field of the corresponding record of Courseinfo (if the latter also is
part of the conceptual schema and its tuples are stored in the DBMS).

L5.3 Data Independence

A very important advantage of using a DBMS is that it offers data indepen­
dence. That is, application programs are insulated from changes in the way
the data is structured and stored. Data independence is achieved through use
of the three levels of data abstraction; in particular, the conceptual schema and
the external schema provide distinct benefits in this area.

Relations in the external schema (view relations) are in principle generated
on demand from the relations corresponding to the conceptual schema.4 If
the underlying data is reorganized, that is, the conceptual schema is changed,
the definition of a view relation can be modified so that the same relation is
computed as before. For example, suppose that the Faculty relation in our
university database is replaced by the following two relations:

Faculty_public (fid: string, fname: string, office: integer)
Faculty_private (J£d: string, sal: real)

Intuitively, some confidential information about faculty has been placed in a
separate relation and information about offices has been added. The Courseinfo
view relation can be redefined in terms of Faculty_public and Faculty_private,
which together contain all the information in Faculty, so that a user who queries
Courseinfo will get the same answers as before.

Thus, users can be shielded from changes in the logical structure of the data, or
changes in the choice of relations to be stored. This property is called logical
data independence.

In turn, the conceptual schema insulates users from changes in physical storage
details. This property is referred to as physical data independence. The
conceptual schema hides details such as how the data is actually laid out on
disk, the file structure, and the choice of indexes. As long as the conceptual

4In practice, they could be precomputed and stored to speed up queries on view relations, but the
computed view relations must be updated whenever the underlying relations are updated.



16 CHAPTE~ 1

schema remains the same, we can change these storage details without altering
applications. (Of course, performance might be affected by such changes.)

1.6 QUERIES IN A DBMS

The ease \vith which information can be obtained from a database often de­
termines its value to a user. In contrast to older database systems, relational
database systems allow a rich class of questions to be posed easily; this feature
has contributed greatly to their popularity. Consider the sample university
database in Section 1.5.2. Here are some questions a user might ask:

1. What is the name of the student with student ID 1234567

2. What is the average salary of professors who teach course CS5647

3. How many students are enrolled in CS5647

4. What fraction of students in CS564 received a grade better than B7

5. Is any student with a CPA less than 3.0 enrolled in CS5647

Such questions involving the data stored in a DBMS are called queries. A
DBMS provides a specialized language, called the query language, in which
queries can be posed. A very attractive feature of the relational model is
that it supports powerful query languages. Relational calculus is a formal
query language based on mathematical logic, and queries in this language have
an intuitive, precise meaning. Relational algebra is another formal query
language, based on a collection of operators for manipulating relations, which
is equivalent in power to the calculus.

A DBMS takes great care to evaluate queries as efficiently as possible. vVe
discuss query optimization and evaluation in Chapters 12, Vl, and 15. Of
course, the efficiency of query evaluation is determined to a large extent by
how the data is stored physically. Indexes can be used to speed up many
queries----in fact, a good choice of indexes for the underlying relations can speed
up each query in the preceding list. \Ve discuss data storage and indexing in
Chapters 8, 9, 10, and 11.

A DBMS enables users to create, modify, and query data through a data
manipulation language (DML). Thus, the query language is only one part
of the Dl\ilL, which also provides constructs to insert, delete, and modify data,.
vVe will discuss the DML features of SQL in Chapter 5. The DML and DDL
are collectively referred to cl.s the data sublanguage when embedded within
a host language (e.g., C or COBOL).
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1.7 TRANSACTION MANAGEMENT

Consider a database that holds information about airline reservations. At any
given instant, it is possible (and likely) that several travel agents are look­
ing up information about available seats OIl various flights and making new
seat reservations. When several users access (and possibly modify) a database
concurrently, the DBMS must order their requests carefully to avoid conflicts.
For example, when one travel agent looks up Flight 100 on some given day
and finds an empty seat, another travel agent may simultaneously be making
a reservation for that seat, thereby making the information seen by the first
agent obsolete.

Another example of concurrent use is a bank's database. While one user's
application program is computing the total deposits, another application may
transfer money from an account that the first application has just 'seen' to an
account that has not yet been seen, thereby causing the total to appear larger
than it should be. Clearly, such anomalies should not be allowed to occur.
However, disallowing concurrent access can degrade performance.

Further, the DBMS must protect users from the effects of system failures by
ensuring that all data (and the status of active applications) is restored to a
consistent state when the system is restarted after a crash. For example, if a
travel agent asks for a reservation to be made, and the DBMS responds saying
that the reservation has been made, the reservation should not be lost if the
system crashes. On the other hand, if the DBMS has not yet responded to
the request, but is making the necessary changes to the data when the crash
occurs, the partial changes should be undone when the system comes back up.

A transaction is anyone execution of a user program in a DBMS. (Executing
the same program several times will generate several transactions.) This is the
basic unit of change as seen by the DBMS: Partial transactions are not allowed,
and the effect of a group of transactions is equivalent to some serial execution
of all transactions. vVe briefly outline how these properties are guaranteed,
deferring a detailed discussion to later chapters.

1.7.1 Concurrent Execution of Transactions

An important task of a DBMS is to schedule concurrent accesses to data so
that each user can safely ignore the fact that others are accessing the data
concurrently. The importance of this ta.sk cannot be underestimated because
a database is typically shared by a large number of users, who submit their
requests to the DBMS independently and simply cannot be expected to deal
with arbitrary changes being made concurrently by other users. A DBMS
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allows users to think of their programs &'3 if they were executing in isolation,
one after the other in some order chosen by the DBJ\;:IS. For example, if a
progTam that deposits cash into an account is submitted to the DBMS at the
same time as another program that debits money from the same account, either
of these programs could be run first by the DBMS, but their steps will not be
interleaved in such a way that they interfere with each other.

A locking protocol is a set of rules to be followed by each transaction (and en­
forced by the DBMS) to ensure that, even though actions of several transactions
might be interleaved, the net effect is identical to executing all transactions in
some serial order. A lock is a mechanism used to control access to database
objects. Two kinds of locks are commonly supported by a DBMS: shared
locks on an object can be held by two different transactions at the same time,
but an exclusive lock on an object ensures that no other transactions hold
any lock on this object.

Suppose that the following locking protocol is followed: Every transaction be­
gins by obtaining a shared lock on each data object that it needs to read and an
exclusive lock on each data object that it needs to rnod~fy, then releases all its
locks after completing all actions. Consider two transactions T1 and T2 such
that T1 wants to modify a data object and T2 wants to read the same object.
Intuitively, if T1's request for an exclusive lock on the object is granted first,
T2 cannot proceed until T1 relea..':les this lock, because T2's request for a shared
lock will not be granted by the DBMS until then. Thus, all of T1's actions will
be completed before any of T2's actions are initiated. We consider locking in
more detail in Chapters 16 and 17.

1.7.2 Incomplete Transactions and System Crashes

Transactions can be interrupted before running to completion for a va,riety of
reasons, e.g., a system crash. A DBMS must ensure that the changes made by
such incomplete transactions are removed from the database. For example, if
the DBMS is in the middle of transferring money from account A to account
B and has debited the first account but not yet credited the second when the
crash occurs, the money debited from account A must be restored when the
system comes back up after the crash.

To do so, the DBMS maintains a log of all writes to the database. A crucial
property of the log is that each write action must be recorded in the log (on disk)
before the corresponding change is reflected in the database itself--otherwise, if
the system crcLShes just after making the change in the datab(Lse but before the
change is recorded in the log, the DBIVIS would be unable to detect and undo
this change. This property is called Write-Ahead Log, or WAL. To ensure
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this property, the DBMS must be able to selectively force a page in memory to
disk.

The log is also used to ensure that the changes made by a successfully com­
pleted transaction are not lost due to a system crash, as explained in Chapter
18. Bringing the database to a consistent state after a system crash can be
a slow process, since the DBMS must ensure that the effects of all transac­
tions that completed prior to the crash are restored, and that the effects of
incomplete transactions are undone. The time required to recover from a crash
can be reduced by periodically forcing some information to disk; this periodic
operation is called a checkpoint.

1.7.3 Points to Note

In summary, there are three points to remember with respect to DBMS support
for concurrency control and recovery:

1. Every object that is read or written by a transaction is first locked in shared
or exclusive mode, respectively. Placing a lock on an object restricts its
availability to other transactions and thereby affects performance.

2. For efficient log maintenance, the DBMS must be able to selectively force
a collection of pages in main memory to disk. Operating system support
for this operation is not always satisfactory.

3. Periodic checkpointing can reduce the time needed to recover from a crash.
Of course, this must be balanced against the fact that checkpointing too
often slows down normal execution.

1.8 STRUCTURE OF A DBMS

Figure 1.3 shows the structure (with some simplification) of a typical DBMS
based on the relational data model.

The DBMS accepts SQL comma,nels generated from a variety of user interfaces,
produces query evaluation plans, executes these plans against the databc4'le, and
returns the answers. (This is a simplification: SQL commands can be embedded
in host-language application programs, e.g., Java or COBOL programs. vVe
ignore these issues to concentrate on the core DBl\ilS functionality.)

vVhen a user issues a query, the parsed query is presented to a query opti­
mizer, which uses information about how the data is stored to produce an
efficient execution plan for evaluating the query. An execution plan is a
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Figure 1.3 Architecture of a DBMS

blueprint for evaluating a query, usually represented as a tree of relational op­
erators (with annotations that contain additional detailed information about
which access methods to use, etc.). We discuss query optimization in Chapters
12 and 15. Relational operators serve as the building blocks for evaluating
queries posed against the data. The implementation of these operators is dis­
cussed in Chapters 12 and 14.

The code that implements relational operators sits on top of the file and access
methods layer. This layer supports the concept of a file, which, in a DBMS, is a
collection of pages or a collection of records. Heap files, or files of unordered
pages, a:s well as indexes are supported. In addition to keeping track of the
pages in a file, this layer organizes the information within a page. File and
page level storage issues are considered in Chapter 9. File organizations and
indexes are cQIlsidered in Chapter 8.

The files and access methods layer code sits on top of the buffer manager,
which brings pages in from disk to main memory ct." needed in response to read
requests. Buffer management is discussed in Chapter 9.
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The lowest layer of the DBMS software deals with management of space on
disk, where the data is stored. Higher layers allocate, deallocate, read, and
write pages through (routines provided by) this layer, called the disk space
manager. This layer is discussed in Chapter 9.

The DBMS supports concurrency and crash recovery by carefully scheduling
user requests and maintaining a log of all changes to the database. DBNIS com­
ponents associated with concurrency control and recovery include the trans­
action manager, which ensures that transactions request and release locks
according to a suitable locking protocol and schedules the execution transac­
tions; the lock manager, which keeps track of requests for locks and grants
locks on database objects when they become available; and the recovery man­
ager, which is responsible for maintaining a log and restoring the system to a
consistent state after a crash. The disk space manager, buffer manager, and
file and access method layers must interact with these components. We discuss
concurrency control and recovery in detail in Chapter 16.

1.9 PEOPLE WHO WORK WITH DATABASES

Quite a variety of people are associated with the creation and use of databases.
Obviously, there are database implementors, who build DBMS software,
and end users who wish to store and use data in a DBMS. Dat,abase imple­
mentors work for vendors such as IBM or Oracle. End users come from a diverse
and increasing number of fields. As data grows in complexity ant(volume, and
is increasingly recognized as a major asset, the importance of maintaining it
professionally in a DBMS is being widely accepted. Many end user.s simply use
applications written by database application programmers (see below) and so
require little technical knowledge about DBMS software. Of course, sophisti­
cated users who make more extensive use of a DBMS, such as writing their own
queries, require a deeper understanding of its features.

In addition to end users and implementors, two other cla.'3ses of people are
associated with a DBMS: application programmer-s and database administrators.

Database application programmers develop packages that facilitate data
access for end users, who are usually not computer professionals, using the
host or data languages and software tools that DBMS vendors provide. (Such
tools include report writers, spreadsheets, statistical packages, and the like.)
Application programs should ideally access data through the external schema.
It is possible to write applications that access data at a lower level, but such
applications would comprornise data independence.
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A personal databa'3e is typically maintained by the individual who owns it and
uses it. However, corporate or enterprise-wide databases are typically impor­
tant enough and complex enough that the task of designing and maintaining the
database is entrusted to a professional, called the database administrator
(DBA). The DBA is responsible for many critical tasks:

III Design of the Conceptual and Physical Schemas: The DBA is re­
sponsible for interacting with the users of the system to understand what
data is to be stored in the DBMS and how it is likely to be used. Based on
this knowledge, the DBA must design the conceptual schema (decide what
relations to store) and the physical schema (decide how to store them).
The DBA may also design widely used portions of the external schema, al­
though users probably augment this schema by creating additional views.

III Security and Authorization: The DBA is responsible for ensuring that
unauthorized data access is not permitted. In general, not everyone should
be able to access all the data. In a relational DBMS, users can be granted
permission to access only certain views and relations. For example, al­
though you might allow students to find out course enrollments and who
teaches a given course, you would not want students to see faculty salaries
or each other's grade information. The DBA can enforce this policy by
giving students permission to read only the Courseinfo view.

III Data Availability and Recovery from Failures: The DBA must take
steps to ensure that if the system fails, users can continue to access as much
of the uncorrupted data as possible. The DBA must also work to restore
the data to a consistent state. The DB.I\!IS provides software support for
these functions, but the DBA is responsible for implementing procedures
to back up the data periodically and maintain logs of system activity (to
facilitate recovery from a crash).

l'il Database Tuning: Users' needs are likely to evolve with time. The DBA
is responsible for modifying the database, in particular the conceptual and
physical schemas, to ensure adequate performance as requirements change.

1.10 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

III vVhat are the main benefits of using a DBMS to manage data in applica­
tions involving extensive data access? (Sections 1.1, 1.4)

III vVhen would you store data in a DBMS instead of in operating system files
and vice-versa? (Section 1.3)
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• What is a data model? \Vhat is the relational data model? What is data
independence and how does a DBNIS support it? (Section 1.5)

• Explain the advantages of using a query language instead of custom pro­
grams to process data. (Section 1.6)

• What is a transaction? \Vhat guarantees does a DBMS offer with respect
to transactions? (Section 1.7)

• What are locks in a DBMS, and why are they used? What is write-ahead
logging, and why is it used? What is checkpointing and why is it used?
(Section 1.7)

• Identify the main components in a DBMS and briefly explain what they
do. (Section 1.8)

• Explain the different roles of database administrators, application program­
mers, and end users of a database. Who needs to know the most about
database systems? (Section 1.9)

EXERCISES

Exercise 1.1 Why would you choose a database system instead of simply storing data in
operating system files? When would it make sense not to use a database system?

Exercise 1.2 What is logical data independence and why is it important?

Exercise 1.3 Explain the difference between logical and physical data independence.

Exercise 1.4 Explain the difference between external, internal, and conceptual schemas.
How are these different schema layers related to the concepts of logical and physical data
independence?

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA is never
interested in running his or her own queries, does the DBA still need to understand query
optimization? Why?

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, descriptions
of embarrassing moments, etc.) about the many ducks on his payroll. Not surprisingly, the
volume of data compels him to buy a database system. To save money, he wants to buy one
with the fewest possible features, and he plans to run it as a stand-alone application on his
PC clone. Of course, Scrooge does not plan to share his list with anyone. Indicate which of
the following DBMS features Scrooge should pay for; in each case, also indicate why Scrooge
should (or should not) pay for that feature in the system he buys.

1. A security facility.

2. Concurrency control.

3. Crash recovery.

4. A view mechanism.
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5. A query language.

Exercise 1.1 Which of the following plays an important role in representing information
about the real world in a database'? Explain briefly.

1. The data definition language.

2. The data manipulation language.

3. The buffer manager.

4. The data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded to
support some new functions on as files (e.g., the ability to force some sequence of bytes to
disk), which layer(s) of the DBMS would you have to rewrite to take advantage of these new
functions?

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions instead of executing
transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consistency?
What should a DBMS guarantee with respect to concurrent execution of several trans­
actions and database consistency'?

4. Explain the strict two-phase locking protocol.

5. What is the WAL property, and why is it important?

PROJECT-BASED EXERCISES

Exercise 1.10 Use a Web browser to look at the HTML documentation for Minibase. Try
to get a feel for the overall architecture.

BIBLIOGRAPHIC NOTES

The evolution of database management systems is traced in [289]. The use of data models
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model is described in [186], and [775] discusses several commercial systems based on this
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INTRODUCTION TO
DATABASE DESIGN

.. What are the steps in designing a database?

.. Why is the ER model used to create an initial design?

.. What are the main concepts in the ER model?

.. What are guidelines for using the ER model effectively?

.. How does database design fit within the overall design framework for
complex software within large enterprises?

.. What is UML and how is it related to the ER model?

.. Key concepts: database design, conceptual, logical, and physical
design; entity-relationship (ER) model, entity set, relationship set,
attribute, instance, key; integrity constraints, one-to-many and many­
to-many relationships, participation constraints; weak entities, class
hierarchies, aggregation; UML, class diagrams, clataba,se diagrams,
component diagrams.

The great successful men of the \vorld have used their imaginations. They
think ahead and create their mental picture. and then go to work materializing that
picture in all its details, filling in here, adding a little there, altering this bit and
that bit, but steadily building, steadily building.

Robert Collier

The (~ntitY-T'd(ltion8hip(ER) data 'model allows us to describe the data involved
in a real-world enterprise in terms of objects and their relationships and is
widely used to (levelop an initial databa.'3e design. It provides useful eoncepts
that allow us to move fronl an informal description of what users we:mt 1'rorn

25
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their database to a more detailed, precise description that can be implemented
in a DBMS. In this chapter, we introduce the ER model and discuss how its
features allow us to model a wide range of data faithfully.

\Ve begin with an overview of databa...')e design in Section 2.1 in order to motivate
our discussion of the ER model. \Vithin the larger context of the overall design
process, the ER model is used in a phase called conceptual database design.
\Ve then introduce the ER model in Sections 2.2, 2.3, and 2.4. In Section 2.5,
we discuss database design issues involving the ER model. We briefly discuss
conceptual database design for large enterprises in Section 2.6. In Section 2.7,
we present an overview of UML, a design and modeling approach that is more
general in its scope than the ER model.

In Section 2.8, we introduce a case study that is used as a running example
throughout the book. The case study is an end-to-end database design for an
Internet shop. We illustrate the first two steps in database design (requirements
analysis and conceptual design) in Section 2.8. In later chapters, we extend this
case study to cover the remaining steps in the design process.

We note that many variations of ER diagrams are in use and no widely accepted
standards prevail. The presentation in this chapter is representative of the
family of ER models and includes a selection of the most popular features.

2.1 DATABASE DESIGN AND ER DIAGRAMS

We begin our discussion of database design by observing that this is typically
just one part, although a central part in data-intensive applications, of a larger
software system design. Our primary focus is the design of the database, how­
ever, and we will not discuss other aspects of software design in any detail. We
revisit this point in Section 2.7.

The database design process can be divided into six steps. The ER model is
most relevant to the first three steps.

1. Requirements Analysis: The very first step in designing a database
application is to understand what data is to be stored in the database,
what applications must be built on top of it, and what operations are
most frequent and subject to performance requirements. In other words,
we must find out what the users want from the database. This is usually
an informal process that involves discussions with user groups, a study
of the current operating environment and how it is expected to change,
analysis of any available documentation on existing applications that are
expected to be replaced or complemented by the database, and so OIl.
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Database Design Tools: Design tools are available from RDBwiS ven­
dors as well as third-party vendors. For example! see the following link for
details on design and analysis tools from Sybase:
http://www.sybase.com/products/application_tools
The following provides details on Oracle's tools:
http://www.oracle.com/tools

Several methodologies have been proposed for organizing and presenting
the information gathered in this step, and some automated tools have been
developed to support this process.

2. Conceptual Database Design: The information gathered in the require­
ments analysis step is used to develop a high-level description of the data
to be stored in the database, along with the constraints known to hold over
this data. This step is often carried out using the ER model and is dis­
cussed in the rest of this chapter. The ER model is one of several high-level,
or semantic, data models used in database design. The goal is to create
a simple description of the data that closely matches how users and devel­
opers think of the data (and the people and processes to be represented in
the data). This facilitates discussion among all the people involved in the
design process, even those who have no technical background. At the same
time, the initial design must be sufficiently precise to enable a straightfor­
ward translation into a data model supported by a commercial database
system (which, in practice, means the relational model).

3. Logical Database Design: We must choose a DBMS to implement
our databctse design, and convert the conceptual database design into a
database schema in the data model of the chosen DBMS. We will consider
only relational DBMSs, and therefore, the task in the logical design step
is to convert an ER schema into a relational database schema. We dis­
cuss this step in detail in Chapter 3; the result is a conceptual schema,
sometimes called the logical schema, in the relational data model.

2.1.1 Beyond ER Design

The ER diagram is just an approximate description of the data, constructed
through a subjective evaluation of the information collected during require­
ments analysis. A more careful analysis can often refine the logical schema
obtained at the end of Step 3. Once we have a good logical schema, we must
consider performance criteria and design the physical schema. Finally, we must
address security issues and ensure that users are able to access the data they
need, but not data that we wish to hide from them. The remaining three steps
of clatabase design are briefly described next:
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4. Schema Refinement: The fourth step ill databa')e design is to analyze
the collection of relations in our relational database schema to identify po­
tential problems, and to refine it. In contrast to the requirements analysis
and conceptual design steps, which are essentially subjective, schema re­
finement can be guided by some elegant and powerful theory. \Ve discuss
the theory of normalizing relations-restructuring them to ensure some
desirable properties-in Chapter 19.

5. Physical Database Design: In this step, we consider typical expected
workloads that our database must support and further refine the database
design to ensure that it meets desired performance criteria. This step may
simply involve building indexes on some tables and clustering some tables,
or it may involve a substantial redesign of parts of the database schema
obtained from the earlier design steps. We discuss physical design and
database tuning in Chapter 20.

6. Application and Security Design: Any software project that involves
a DBMS must consider aspects of the application that go beyond the
database itself. Design methodologies like UML (Section 2.7) try to ad­
dress the complete software design and development cycle. Briefly, we must
identify the entities (e.g., users, user groups, departments) and processes
involved in the application. We must describe the role of each entity in ev­
ery process that is reflected in some application task, as part of a complete
workflow for that task. For each role, we must identify the parts of the
database that must be accessible and the parts of the database that must
not be accessible, and we must take steps to ensure that these access rules
are enforced. A DBMS provides several mechanisms to assist in this step,
and we discuss this in Chapter 21.

In the implementation phase, we must code each task in an application lan­
guage (e.g., Java), using the DBlVIS to access data. We discuss application
development in Chapters 6 and 7.

In general, our division of the design process into steps should be seen as a
classification of the kinds of steps involved in design. Realistically, although
we might begin with the six step process outlined here, a complete database
design will probably require a subsequent tuning phase in which all six kinds
of design steps are interleaved and repeated until the design is satisfactory.

2.2 ENTITIES, ATTRIBUTES, AND ENTITY SETS

An entity is an object in the real world that is distinguishable frQm other
objects. Examples include the following: the Green Dragonzord toy, the toy
department, the manager of the toy department, the home address of the rnan-
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agel' of the toy department. It is often useful to identify a collection of similar
entities. Such a collection is called an entity set. Note that entity sets need
not be disjoint; the collection of toy department employees and the collection
of appliance department employees may both contain employee John Doe (who
happens to work in both departments). \Ve could also define an entity set called
Employees that contains both the toy and appliance department employee sets.

An entity is described using a set of attributes. All entities in a given entity
set have the same attributes; this is what we mean by similar. (This statement
is an oversimplification, as we will see when we discuss inheritance hierarchies
in Section 2.4.4, but it suffices for now and highlights the main idea.) Our
choice of attributes reflects the level of detail at which we wish to represent
information about entities. For example, the Employees entity set could use
name, social security number (ssn), and parking lot (lot) as attributes. In this
case we will store the name, social security number, and lot number for each
employee. However, we will not store, say, an employee's address (or gender or
age).

For each attribute associated with an entity set, we must identify a domain of
possible values. For example, the domain associated with the attribute name
of Employees might be the set of 20-character strings. 1 As another example, if
the company rates employees on a scale of 1 to 10 and stores ratings in a field
called mting, the associated domain consists of integers 1 through 10. FUrther,
for each entity set, we choose a key. A key is a minimal set of attributes whose
values uniquely identify an entity in the set. There could be more than one
candidate key; if so, we designate one of them as the primary key. For now we
assume that each entity set contains at least one set of attributes that uniquely
identifies an entity in the entity set; that is, the set of attributes contains a key.
We revisit this point in Section 2.4.3.

The Employees entity set with attributes ssn, name, and lot is shown in Figure
2.1. An entity set is represented by a rectangle, and an attribute is represented
by an oval. Each attribute in the primary key is underlined. The domain
information could be listed along with the attribute name, but we omit this to
keep the figures compact. The key is s.m.

2.3 REL~TIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more entities. For example, we
may have the relationship that Attishoo works in the pharmacy department.

iTo avoid confusion, we assume that attribute names do not repeat across entity sets. This is not
a real limitation because we can always use the entity set name to resolve ambiguities if the same
attribute name is used in more than one entity set.
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Figure 2.1 The Employees Entity Set

As with entities, we may wish to collect a set of similar relationships into a
relationship set. A relationship set can be thought of as a set of n-tuples:

Each n-tuple denotes a relationship involving n entities el through en, where
entity ei is in entity set E i . In Figure 2.2 we show the relationship set Works_In,
in which each relationship indicates a department in which an employee works.
Note that several relationship sets might involve the same entity sets. For
example, we could also have a Manages relationship set involving Employees
and Departments.

Figure 2.2 The Works-ln Relationship Set

A relationship can also have descriptive attributes. Descriptive attributes
are used to record information about the relationship, rather than about any
one of the participating entities; for example, we may wish to record that At­
tishoo works in the pharmacy department as of January 1991. This information
is captured in Figure 2.2 by adding an attribute, since, to Works_In. A relation­
ship must be uniquely identified by the participating entities, without reference
to the descriptive attributes. In the Works_In relationship set, for example, each
Works_In relationship must be uniquely identified by the combination of em­
ployee ssn and department d'id. Thus, for a given employee-department pair,
we cannot have more than one associated since value.

An instance of a relationship set is a set of relationships. Intuitively, an
instance can be thought of &'3 a 'snapshot' of the relationship set at some instant
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in time. An instance of the vVorks.ln relationship set is shown in Figure 2.3.
Each Employees entity is denoted by its ssn, and each Departments entity
is denoted by its did, for simplicity. The since value is shown beside each
relationship. (The 'many-te-many' and 'total participation' comments in the
figure are discussed later, when we discuss integrity constraints.)

~__I---\-~---r-~5J

---IIL---t----j-----W~

--.__---t-----\I-:::::~~

EMPLOYEES

Total participation

WORKS_IN

Many to Many

DEPARTMENTS

Total participation

Figure 2.3 An Instance of the Works_In Relationship Set

As another example of an ER diagram, suppose that each department has offices
in several locations and we want to record the locations at which each employee
works. This relationship is ternary because we must record an association
between an employee, a department, and a location. The ER diagram for this
variant of Works_In, which we call Works.ln2, is shown in Figure 2.4.

Figure 2.4 A Ternary Relationship Set

The entity sets that participate in a relationship set need not be distinct; some­
times a relationship might involve two entities in the same entity set. For ex­
ample, consider the Reports_To relationship set shown in Figure 2.5. Since
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employees report. to other employees, every relationship in Reports_To is of
the form (emlJ1. emp2) , where both empl and empz are entities in Employees.
However, they play different roles: ernpl reports to the managing employee
emp2, which is reflected in the role indicators supervisor and subordinate in
Figure 2.5. If an entity set plays more than one role, the role indicator concate­
nated with an attribute name from the entity set gives us a unique name for
each attribute in the relationship set. For example, the Reports_To relation­
ship set has attributes corresponding to the ssn of the supervisor and the ssn
of the subordinate, and the names of these attributes are supcrvisoLssn and
subordinate-ssn.

Figure 2.5 The Reports_To Relationship Set

2.4 ADDITIONAL FEATURES OF THE ER MODEL

We now look at some of the constructs in the ER model that allow us to describe
some subtle properties of the data. The expressiveness of the ER model is a
big reason for its widespread lise.

2.4.1 Key Constraints

Consider the Works-.In relationship shown in Figure 2.2. An employee can
work in several departments, and a department can have several employees, &.,
illustrated in the vVorks_In instance shown in Figure 2.3. Employee 231-31-5368
h&., worked in Department 51 since 3/3/93 and in Department 56 since 2/2/92.
Department 51 h&'3 two employees.

Now consider another relationship set called Manages between the Employ­
ees and Departments entity sets such that each department h&') at most one
manager, although a single employee is allowed to manage more than one de­
partment. The restriction that each department h&,> at most one manager is
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an example of a key constraint, and it implies that each Departments entity
appears in at most one 1Jlanages relationship in any allowable instance of Man­
ages. This restriction is indicated in the ER diagram of Figure 2.6 by using an
arrow from Departments to Manages. Intuitively, the arrow states that given
a Departments entity, we can uniquely determine the Manages relationship in
which it appears.

Figure 2.6 Key Constraint on Manages

An instance of the Manages relationship set is shown in Figure 2.7. While this
is also a potential instance for the WorksJn relationship set, the instance of
Works_In shown in Figure 2.3 violates the key constraint on Manages.

1123-22-36661.

!231-31-53681

[223-32-6316\

--..----t-------;'-------a~

~

~

EMPLOYEES

Partial participation

MANAGES

One to Many

DEPARTMENTS

Total participation

Figure 2.7 An Instance of the Manages Relationship Set

A relationship set like Manages is sometimes said to be one-to-many, to
indicate that one employee can be associated with many departments (in the
capacity of a manager), whereas each department can be associated with at
most one employee as its manager. In contrast, the \Vorks-.In relationship set, in
which an employee is allowed to work in several departments and a department
is allowed to have several employees, is said to be many-to-many.
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If we add the restriction that each employee can manage at most one depl:1J't­
ment to the Manages relationship set, which would be indicated by adding
an arrow from Employees to lVlanages in Figure 2.6, we have a one-to-one
relationship set.

Key Constraints for Ternary Relationships

We can extend this convention-and the underlying key constraint concept-to
relationship sets involving three or more entity sets: If an entity set E has a
key constraint in a relationship set R, each entity in an instance of E appears
in at most one relationship in (a corresponding instance of) R. To indicate a
key constraint on entity set E in relationship set R, we draw an arrow from E
to R.

In Figure 2.8, we show a ternary relationship with key constraints. Each em­
ploy~e works in at most one department and at a single location. An instance
of the Works_In3 relationship set is shown in Figure 2.9. Note that each depart­
ment can be associated with several employees and locations and each location
can be associated with several departments and employees; however, each em­
ployee is associated with a single department and location.

lot

Employees WorksJn3 Departments

Figure 2.8 A Ternary Relationship Set with Key Constraints

2.4.2 Participation Constraints

The key constraint on Manages tells us that a department ha:s at most one
manager. A natural question to ask is whether every department ha.'3 a Inan­
agel'. Let us say that every department is required to have a manager. This
requirement is an example of a participation constraint; the particip::ltion of
the entity set Departments in the relationship set Manages is said to be total.
A participation that is not total is said to be partial. As an example, the
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Figure 2.9 An Instance of Works_In3

participation of the entity set Employees in Manages is partial, since not every
employee gets to manage a department.

Revisiting the Works..ln relationship set, it is natural to expect that each em­
ployee works in at least one department and that each department has at least
one employee. This means that the participation of both Employees and De­
partments in Works..ln is total. The ER diagram in Figure 2.10 shows both
the Manages and Works..ln relationship sets and all the given constraints. If
the participation of an entity set in a relationship set is total, the two are con­
nected by a thick line; independently, the presence of an arrow indicates a key
constraint. The instances of Works_In and Manages shown in Figures 2.3 and
2.7 satisfy all the constraints in Figure 2.10.

2.4.3 Weak Entities

Thus far, we have assumed that the attributes associated with an entity set
include a key. This assumption does not always hold. For example, suppose
that employees can purchase insurance policies to cover their dependents. "Ve
wish to record information about policies, including who is covered by each
policy, but this information is really our only interest in the dependents of an
employee. If an employee quits, any policy owned by the employee is terminated
and we want to delete all the relevant policy and dependent information from
the database.
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Figure 2.10 Manages and Works_In

We might choose to identify a dependent by name alone in this situation, since
it is reasonable to expect that the dependents of a given employee have different
names. Thus the attributes of the Dependents entity set might be pname and
age. The attribute pname does not identify a dependent uniquely. Recall
that the key for Employees is ssn; thus we might have two employees called
Smethurst and each might have a son called Joe.

Dependents is an example of a weak entity set. A weak entity can be iden­
tified uniquely only by considering some of its attributes in conjunction with
the primary key of another entity, which is called the identifying owner.

The following restrictions must hold:

11'I The owner entity set and the weak entity set must participate in a one­
to-many relationship set (one owner entity is associated with one or more
weak entities, but each weak entity has a single owner). This relationship
set is called the identifying relationship set of the weak entity set.

III The weak entity set must have total participation in the identifying rela­
tionship set.

For example, a Dependents entity can be identified uniquely only if we take the
key of the owning Employees entity and the pname of the Dependents entity.
The set of attributes of a weak entity set that uniquely identify a weak entity
for a given owner entity is called a partial key of the weak entity set. In our
example, pname is a partial key for Dependents.
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The Dependents weak entity set and its relationship to Employees is shown in
Figure 2.1.1. The total participation of Dependents in Policy is indicated by
linking them with a dark line. The arrow from Dependents to Policy indicates
that each Dependents entity appears in at most one (indeed, exactly one, be­
cause of the participation constraint) Policy relationship. To underscore the
fact that Dependents is a weak entity and Policy is its identifying relationship,
we draw both with dark lines. To indicate that pname is a partial key for
Dependents, we underline it using a broken line. This means that there may
well be two dependents with the same pname value.

Employees

Figure 2.11 A Weak Entity Set

2.4.4 Class Hierarchies

Sometimes it is natural to classify the entities in an entity set into subclasses.
For example, we might want to talk about an Hourly-Emps entity set and a
ContracLEmps entity set to distinguish the basis on which they are paid. We
might have attributes hours_worked and hourly_wage defined for Hourly_Emps
and an attribute contractid defined for ContracLEmps.

We want the semantics that every entity in one of these sets is also an Em­
ployees entity and, as such, must have all the attributes of Employees defined.
Therefore, the attributes defined for an Hourly_Emps entity are the attributes
for Employees plus Hourly~mps. \Ve say that the attributes for the entity set
Employees are inherited by the entity set Hourly_Emps and that Hourly-Emps
ISA (read is a) Employees. In addition-and in contrast to class hierarchies
in programming languages such &'3 C++~~~there is a constraint on queries over
instances of these entity sets: A query that asks for all Employees entities
must consider all Hourly_Emps and ContracLEmps entities as well. Figure
2.12 illustrates,the cl&ss hierarchy.

The entity set Employees may also be classified using a different criterion. For
example, we might identify a subset of employees &'3 SenioLEmps. We can
rnodify Figure 2.12 to reflect this change by adding a second ISA node &'3 a
child of Employees and making SenioLEmps a child of this node. Each of these
entity sets might be classified further, creating a multilevel ISA hierarchy.
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hourly-wages

Figure 2.12 Class Hierarchy

A class hierarchy can be viewed in one of two ways:

• Employees is specialized into subclasses. Specialization is the process
of identifying subsets of an entity set (the superclass) that share some
distinguishing characteristic. Typically, the superclass is defined first, the
subclasses are defined next, and subclass-specific attributes and relation­
ship sets are then added.

• Hourly-Emps and ContracLEmps are generalized by Employees. As an­
other example, two entity sets Motorboats and Cars may be generalized
into an entity set MotoLVehicles. Generalization consists of identifying
some common characteristics of a collection of entity sets and creating a
new entity set that contains entities possessing these common character­
istics. Typically, the subclasses are defined first, the superclass is defined
next, and any relationship sets that involve the superclass are then defined.

We can specify two kinds of constraints with respect to ISA hierarchies, namely,
overlap and covering constraints. Overlap constraints determine whether
two subclasses are allowed to contain the same entity. For example, can At­
tishoo be both an Hourly_Emps entity and a ContracLEmps entity? Intuitively,
no. Can he be both a ContracLEmps entity and a Senior-Emps entity? Intu­
itively, yes. We denote this by writing 'ContracLE;mps OVERLAPS Senior-Emps.'
In the absence of such a statement, we assume by default that entity sets are
constrained to have no overlap.

Covering constraints determine whether the entities in the subclasses collec­
tively include all entities in the superclass. For example, does every Employees
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entity have to belong to one of its subclasses? Intuitively, no. Does every
~'IotoLVehicles entity have to be either a Motorboats entity or a Cars entity?
Intuitively, yes; a characteristic property of generalization hierarchies is that
every instance of a superclass is an instance of a subclass. vVe denote this by
writing 'Motorboats AND Cars COVER Motor-Vehicles.' In the absence of such a
statement, we assume by default that there is no covering constraint; we can
have motor vehicles that are not motorboats or cars.

There are two basic reasons for identifying subclasses (by specialization or
generalization) :

1. We might want to add descriptive attributes that make sense only for the
entities in a subclass. For example, hourly_wages does not make sense for a
ContracLEmps entity, whose pay is determined by an individual contract.

2. We might want to identify the set of entities that participate in some rela­
tionship. For example, we might wish to define the Manages relationship
so that the participating entity sets are Senior-Emps and Departments,
to ensure that only senior employees can be managers. As another exam­
ple, Motorboats and Cars may have different descriptive attributes (say,
tonnage and number of doors), but as Motor_Vehicles entities, they must
be licensed. The licensing information can be captured by a Licensed_To
relationship between Motor_Vehicles and an entity set called Owners.

2.4.5 Aggregation

As defined thus far, a relationship set is an association between entity sets.
Sometimes, we have to model a relationship between a collection of entities
and relationships. Suppose that we have an entity set called Projects and that
each Projects entity is sponsored by one or more departments. The Spon­
sors relationship set captures this information. A department that sponsors a
project might assign employees to monitor the sponsorship. Intuitively, Moni­
tors should be a relationship set that associates a Sponsors relationship (rather
than a Projects or Departments entity) with an Employees entity. However,
we have defined relationships to &'3sociate two or more entities.

To define a relationship set such &'3 Monitors, we introduce a new feature of
the ER model, called aggregation. Aggregation allows us to indicate that
a relationship set (identified through a dashed box) participates in another
relationship set. This is illustrated in Figure 2.13, with a dashed box around
Sponsors (and its participating entity sets) used to denote aggregation. This
effectively allows us to treat Sponsors as an entity set for purposes of defining
the Monitors relationship set.
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Figure 2.13 Aggregation

When should we use aggregation? Intuitively, we use it when we need to ex­
press a relationship among relationships. But can we not express relationships
involving other relationships without using aggregation? In our example, why
not make Sponsors a ternary relationship? The answer is that there are really
two distinct relationships, Sponsors and Monitors, each possibly with attributes
of its own. For instance, the Monitors relationship has an attribute 1tntil that
records the date until when the employee is appointed as the sponsorship mon­
itor. Compare this attribute with the attribute since of Sponsors, which is the
date when the sponsorship took effect. The use of aggregation versus a ternary
relationship may also be guided by certain integrity constraints, as explained
in Section 2.5.4.

2.5 CONCEPTUAL DESIGN WITH THE ER MODEL

Developing an ER diagram presents several choices, including the following:

.. Should a concept be modeled as an entity or an attribute?

.. Should a concept be modeled &'3 an entity or a relationship?

II "Vhat arc the relationship sets and their participating entity sets? Should
we use binary or ternary relationships?

II Should we use aggregation?
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\Ve now discuss the issues involved in making these choices.

2.5.1 Entity versus Attribute

41

\Vhile identifying the attributes of an entity set, it is sometimes not clear
whether a property should be modeled as an attribute or as an entity set (and
related to the first entity set using a relationship set). For example, consider
adding address information to the Employees entity set. One option is to use
an attribute address. This option is appropriate if we need to record only
one address per employee, and it suffices to think of an address as a string. An
alternative is to create an entity set called Addresses and to record associations
between employees and addresses using a relationship (say, Has_Address). This
more complex alternative is necessary in two situations:

• We have to record more than one address for an employee.

• We want to capture the structure of an address in our ER diagram. For
example, we might break down an address into city, state, country, and
Zip code, in addition to a string for street information. By representing an
address as an entity with these attributes, we can support queries such as
"Find all employees with an address in Madison, WI."

For another example of when to model a concept as an entity set rather than
an attribute, consider the relationship set (called WorksJ:n4) shown in Figure
2.14.

Figure 2.14 The \Vorks_In4 Relationship Set

It differs from the \Vorks_In relationship set of Figure 2.2 only in that it has
attributes JTOtn and to, instead of since. Intuitively, it records the interval
during which an employee works for a department. Now suppose that it is
possible for an employee to work in a given department over more than one
period.

This possibility is ruled out by the ER diagram's semantics, because a rela­
tionship is uniquely identified by the participating entities (recall from Section



42 CHAPTER' 2

2.3). The problem is that we want to record several values for the descriptive
attributes for each instance of the vVorks-ln2 relationship. (This situation is
analogous to wanting to record several addresses for each employee.) vVe can
address this problem by introducing an entity set called, say, Duration, with
attributes from and to, as shown in Figure 2.15.

(~~-T:~~~)
I Employees I WorksJn4 Departments

from to

Figure 2.15 The Works-ln4 Relationship Set

In some versions of the' ER model, attributes are allowed to take on sets as
values. Given this feature, we could make Duration an attribute of Works_In,
rather than an entity set; associated with each Works_In relationship, we would
have a set of intervals. This approach is perhaps more intuitive than model­
ing Duration as an entity set. Nonetheless, when such set-valued attributes
are translated into the relational model, which does not support set-valued
attributes, the resulting relational schema is very similar to what we get by
regarding Duration as an entity set.

2.5.2 Entity versus Relationship

Consider the relationship set called Manages in Figure 2.6. Suppose that each
department manager is given a discretionary budget (dbudget) , as shown in
Figure 2.16, in which we have also renamed the relationship set to Manages2.

Figure 2.16 Entity versus Relationship
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Given a department, we know the manager, as well &'3 the manager's starting
date and budget for that department. This approach is natural if we t'l"ssume
that a manager receives a separate discretionary budget for each department
that he or she manages.

But what if the discretionary budget is a sum that covers all departments
managed by that employee? In this case, each Manages2 relationship that
involves a given employee will have the same value in the db1Ldget field, leading
to redundant storage of the same information. Another problem with this
design is that it is misleading; it suggests that the budget is associated with
the relationship, when it is actually associated with the manager.

We can address these problems by introducing a new entity set called Managers
(which can be placed below Employees in an ISA hierarchy, to show that every
manager is also an employee). The attributes since and dbudget now describe
a manager entity, as intended. As a variation, while every manager has a
budget, each manager may have a different starting date (as manager) for each
department. In this case dbudget is an attribute of Managers, but since is an
attribute of the relationship set between managers and departments.

The imprecise nature of ER modeling can thus make it difficult to recognize
underlying entities, and we might associate attributes with relationships rather
than the appropriate entities. In general, such mistakes lead to redundant
storage of the same information and can cause many problems. We discuss
redundancy and its attendant problems in Chapter 19, and present a technique
called normalization to eliminate redundancies from tables.

2.5.3 Binary versus Ternary Relationships

Consider the ER diagram shown in Figure 2.17. It models a situation in which
an employee can own several policies, each policy can be owned by several
employees, and each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

III A policy cannot be owned jointly by two or more employees.

11II Every policy must be owned by some employee.

lIII Dependents is a weak entity set, and each dependent entity is uniquely
identified by taking pname in conjunction with the policyid of a policy
entity (which, intuitively, covers the given dependent).

The first requirement suggests that we impose a key constraint on Policies with
respect to Covers, but this constraint has the unintended side effect that a
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policy can cover only one dependent. The second requirement suggests that we
impose a total participation constraint on Policies. This solution is acceptable
if each policy covers at least one dependent. The third requirement forces us
to introduce an identifying relationship that is binary (in our version of ER
diagrams, although there are versions in which this is not the case).

Even ignoring the third requirement, the best way to model this situation is to
use two binary relationships, as shown in Figure 2.18.

Figure 2.18 Policy Revisited
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This example really has two relationships involving Policies, and our attempt
to use a single ternary relationship (Figure 2.17) is inappropriate. There are
situations, however, "vhere a relationship inherently a.'3sociates more than two
entities. vVe have seen such an example in Figures 2,4 and 2.15.

As a typical example of a ternary relationship, consider entity sets Parts, Sup­
pliers, and Departments, and a relationship set Contracts (with descriptive
attribute qty) that involves all of them. A contract specifies that a supplier will
supply (some quantity of) a part to a department. This relationship cannot
be adequately captured by a collection of binary relationships (without the use
of aggregation). With binary relationships, we can denote that a supplier 'can
supply' certain parts, that a department 'needs' some parts, or that a depart­
ment 'deals with' a certain supplier. No combination of these relationships
expresses the meaning of a contract adequately, for at least two reasons:

• The facts that supplier S can supply part P, that department D needs part
P, and that D will buy from S do not necessarily imply that department D
indeed buys part P from supplier S!

• We cannot represent the qty attribute of a contract cleanly.

2.5.4 Aggregation versus Ternary Relationships

As we noted in Section 2.4.5, the choice between using aggregation or a ternary
relationship is mainly determined by the existence of a relationship that relates
a relationship set to an entity set (or second relationship set). The choice may
also be guided by certain integrity constraints that we want to express. For
example, consider the ER diagram shown in Figure 2.13. According to this dia­
gram, a project can be sponsored by any number of departments, a department
can sponsor one or more projects, and each sponsorship is monitored by one
or more employees. If we don't need to record the unt-il attribute of Monitors,
then we might reasonably use a ternal'Y relationship, say, Sponsors2, as shown
in Figure 2.19.

Consider the constraint that each sponsorship (of a project by a department)
be monitored by at most one employee. VVe cannot express this constraint
in terms of the Sponsors2 relationship set. On the other hand, we can easily
express the cOnstraint by drawing an arrow from the aggregated relationship
Sponsors to the relationship Monitors in Figure 2.13. Thus, the presence of
such a constraint serves &s another reason for using aggregation rather than a
ternary relationship set.
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Figure 2.19 Using a Ternary Relationship instead of Aggregation

2.6 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES

We have thus far concentrated on the constructs available in the ER model
for describing various application concepts and relationships. The process of
conceptual design consists of more than just describing small fragments of the
application in terms of ER diagrams. For a large enterprise, the design may re­
quire the efforts of more than one designer and span data and application code
used by a number of user groups. Using a high-level, semantic data model,
such as ER diagrams, for conceptual design in such an environment offers the
additional advantage that the high-level design can be diagrammatically rep­
resented and easily understood by the many people who must provide input to
the design process.

An important aspect of the design process is the methodology used to structure
the development of the overall design and ensure that the design takes into
account all user requirements and is consistent. The usual approach is that the
requirements of various user groups are considered, any conflicting requirements
are somehow resolved, and a single set of global requirements is generated at
the end of the.requirements analysis phase. Generating a single set of global
requirements is a difficult task, but it allows the conceptual design phase to
proceed with the development of a logical schema that spans all the data and
applications throughout the enterprise.

An alternative approach is to develop separate conceptual scherna.'-l for different
user groups and then integTate these conceptual schemas. To integrate multi~
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pIe conceptual schemas, we must €'Btablish correspondences between entities,
relationships, and attributes, and we must resolve numerous kinds of conflicts
(e.g., naming conflicts, domain mismatches, differences in measurement units).
This task is difficult in its own right. In some situations, schema integration
cannot be avoided; for example, when one organization merges with another,
existing databases may have to be integrated. Schema integration is also in­
creasing in importance as users demand access to heterogeneous data sources,
often maintained by different organizations.

2.7 THE UNIFIED MODELING LANGUAGE

There are many approaches to end-to-end software system design, covering all
the steps from identifying the business requirements to the final specifications
for a complete application, including workflow, user interfaces, and many as­
pects of software systems that go well beyond databases and the data stored in
them. In this section, we briefly discuss an approach that is becoming popular,
called the unified modeling language (UML) approach.

UML, like the ER model, has the attractive feature that its constructs can be
drawn as diagrams. It encompasses a broader spectrum of the software design
process than the ER model:

III Business Modeling: In this phase, the goal is to describe the business
processes involved in the software application being developed.

III System Modeling: The understanding of business processes is used to
identify the requirements for the software application. One part of the
requirements is the database requirements.

III Conceptual Database Modeling: This step corresponds to the creation
of the ER design for the database. For this purpose, UML provides many
constructs that parallel the ER constructs.

III Physical Database Modeling: Ul\IL also provides pictorial represen­
tations for physical database design choices, such &'3 the creation of table
spaces and indexes. (\\1e discuss physical databa"se design in later chapters,
but not the corresponding UML constructs.)

III Hardware System Modeling: UML diagrams can be used to describe
the hardware configuration used for the application.

Th(~re are many kinds of diagrams in UML. Use case diagrams describe the
actions performed by the system in response to user requests, and the people
involved in these actions. These diagrams specify the external functionality
<-hat the system is expected to support.
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Activity diagrams 8hmv the flow of actions in a business process. Statechart
diagrams describe dynamic interactions between system objects. These dia­
grams, used in busine.c;s and systern modeling, describe how the external func­
tionality is to be implemented, consistent with the business rules and processes
of the enterprise.

Class diagrams are similar to ER diagrams, although they are more general
in that they are intended to model application entities (intuitively, important
program components) and their logical relationships in addition to data entities
and their relationships.

Both entity sets and relationship sets can be represented as classes in UML,
together with key constraints, weak entities, and class hierarchies. The term
relationship is used slightly differently in UML, and UML's relationships are
binary. This sometimes leads to confusion over whether relationship sets in
an ER diagram involving three or more entity sets can be directly represented
in UML. The confusion disappears once we understand that all relationship
sets (in the ER sense) are represented as classes in UML; the binary UML
'relationships' are essentially just the links shown in ER diagrams between
entity sets and relationship sets.

Relationship sets with key constraints are usually omitted from UML diagrams,
and the relationship is indicated by directly linking the entity sets involved.
For example, consider Figure 2.6. A UML representation of this ER diagram
would have a class for Employees, a class for Departments, and the relationship
Manages is shown by linking these two classes. The link can be labeled with
a name and cardinality information to show that a department can have only
one manager.

As we will see in Chapter 3, ER diagrams are translated into the relational
model by mapping each entity set into a table and each relationship set into
a table. FUrther, as we will see in Section 3.5.3, the table corresponding to a
one-to-many relationship set is typically omitted by including some additional
information about the relationship in the table for one of the entity sets in­
volved. Thus, UML class diagrams correspond closely to the tables created by
mapping an ER diagram.

Indeed, every class in a U1I1L class diagram is mapped into a table in the cor­
responding U]\'1L database diagram. UML's database diagrams show how
classes are represented in the database and contain additional details about
the structure of the database such as integrity constraints and indexes. Links
(UML's 'relationships') between UML classes lead to various integrity con­
straints between the corresponding tables. Many details specific to the re­
lational model (e.g., views, fOTe'ign keys, null-allowed fields) and that reflect
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physical design choices (e.g., indexed fields) can be modeled ill UN[L database
diagrams.

UML's component diagrams describe storage aspects of the database, such
as tablespaces and database pa,titions) , as well as interfaces to applications
that access the database. Finally, deployment diagrams show the hardware
aspects of the system.

Our objective in this book is to concentrate on the data stored in a database
and the related design issues. To this end, we deliberately take a simplified
view of the other steps involved in software design and development. Beyond
the specific discussion of UlIIL, the material in this section is intended to place
the design issues that we cover within the context of the larger software design
process. \Ve hope that this will assist readers interested in a more comprehen­
sive discussion of software design to complement our discussion by referring to
other material on their preferred approach to overall system design.

2.8 CASE STUDY: THE INTERNET SHOP

We now introduce an illustrative, 'cradle-to-grave' design case study that we
use as a running example throughout this book. DBDudes Inc., a well-known
database consulting firm, has been called in to help Barns and Nobble (B&N)
with its database design and implementation. B&N is a large bookstore special­
izing in books on horse racing, and it has decided to go online. DBDudes first
verifies that B&N is willing and able to pay its steep fees and then schedules a
lunch meeting--billed to B&N, naturally~to do requirements analysis.

2.8.1 Requirements Analysis

The owner of B&N, unlike many people who need a database, has thought
extensively about what he wants and offers a concise summary:

"I would like my customers to be able to browse my catalog of books and
place orders over the Internet. Currently, I take orders over the phone. I have
mostly corporate customers who call me and give me the ISBN number of a
book and a quantity; they often pay by credit card. I then prepare a shipment
that contains the books they ordered. If I don't have enough copies in stock,
I order additional copies and delay the shipment until the new copies arrive;
I want to ship a customer's entire order together. My catalog includes all the
books I sell. For each book, the catalog contains its ISBN number, title, author,
purcha.se price, sales price, and the year the book was published. Most of my
sustomers are regulars, and I have records with their names and addresses.
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New customers have to call me first and establish an account before they can
use my website.

On my new website, customers should first identify themselves by their unique
customer identification number. Then they should be able to browse my catalog
and to place orders online."

DBDudes's consultants are a little surprised by how quickly the requirements
phase is completed--it usually takes weeks of discussions (and many lunches
and dinners) to get this done~~but return to their offices to analyze this infor­
mation.

2.8.2 Conceptual Design

In the conceptual design step, DBDudes develops a high level description of
the data in terms of the ER model. The initial design is shown in Figure
2.20. Books and customers are modeled as entities and related through orders
that customers place. Orders is a relationship set connecting the Books and
Customers entity sets. For each order, the following attributes are stored:
quantity, order date, and ship date. As soon as an order is shipped, the ship
date is set; until then the ship date is set to null, indicating that this order has
not been shipped yet.

DBDudes has an internal design review at this point, and several questions are
raised. To protect their identities, we will refer to the design team leader as
Dude 1 and the design reviewer as Dude 2.

Dude 2: \\That if a. customer places two orders for the same book in one day?
Dude 1: The first order is ha,ndlecl by crea.ting a new Orders relationship and
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the second order is handled by updating the value of the quantity attribute in
this relationship.
Dude 2: \\That if a customer places two orders for different books in one day?
Dude 1: No problem. Each instance of the Orders relationship set relates the
customer to a different book.
Dude 2: Ah, but what if a customer places two orders for the same book on
different days?
Dude 1: \Ve can use the attribute order date of the orders relationship to
distinguish the two orders.
Dude 2: Oh no you can't. The attributes of Customers and Books must jointly
contain a key for Orders. So this design does not allow a customer to place
orders for the same book on different days.
Dude 1: Yikes, you're right. Oh well, B&N probably won't care; we'll see.

DBDudes decides to proceed with the next phase, logical database design; we
rejoin them in Section 3.8.

2.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• Name the main steps in database design. What is the goal of each step?
In which step is the ER model mainly used? (Section 2.1)

• Define these terms: entity, entity set, attribute, key. (Section 2.2)

• Define these terms: relationship, relationship set, descriptive attributes.
(Section 2.3)

• Define the following kinds of constraints, and give an example of each: key
constraint, participation constraint. What is a weak entity? What are class
hierarchies'? What is aggregation? Give an example scenario motivating
the use of each of these ER model design constructs. (Section 2.4)

• What guidelines would you use for each of these choices when doing ER
design: \Vhether to use an attribute or an entity set, an entity or a relation­
ship set, a binary or ternary relationship, or aggregation. (Section 2.5)

III'l Why is designing a database for a large enterprise especially hard? (Sec­
tion 2.6)

• What is UML? How does databa"se design fit into the overall design of
a data-intensive software system? How is UML related to ER diagrams?
(Section 2.7)
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Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relationship,.
entity set, relationship set, one-to-many relat'ionship, many-to-many 1'elationship. pan·tcipa­
tion constmint. overlap constraint, covering constraint, weak entity set,. aggregat'ion, and role
indicator.

Exercise 2.2 A university database contains information about professors (identified by so­
cial security number, or SSN) and courses (identified by courseid). Professors teach courses;
each of the following situations concerns the Teaches relationship set. For each situation,
draw an ER diagram that describes it (assuming no further constraints hold).

1. Professors can teach the same course in several semesters, and each offering must be
recorded.

2. Professors can teach the same course in several semesters, and only the most recent
such offering needs to be recorded. (Assume this condition applies in all subsequent
questions. )

3. Every professor must teach some course.

4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course must be
taught by some professor.

6. Now suppose that certain courses can be taught by a team of professors jointly, but it
is possible that no one professor in a team can teach the course. Model this situation,
introducing additional entity sets and relationship sets if necessary.

Exercise 2.3 Consider the following information about a university database:

II Professors have an SSN, a name, an age, a rank, and a research specialty.

II Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending
date, and a budget.

II Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or
Ph.D.).

II Each project is managed by one professor (known as the project's principal investigator).

II Each project is worked on by one or more professors (known as the project's co-investigators).

III Professors can manage and/or work on multiple projects.

II Each project is worked on by one or more graduate students (known as the project's
research assistants).

II When graduate students >'lark on a project, a professor must supervise their work on the
project. Graduate students can work on multiple projects, in which case they will have
a (potentially different) supervisor for each one.

II Departments have a department number, a department name, and a main office.

II Departments have a professor (known as the chairman) who runs the department.

II Professors work in one or more departments, and for each department that they work
in, a time percentage is associated with their job.

II Graduate students have one major department in which they are working OIl their degree.
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III Each graduate student has another, more senior graduate student (known as a student
advisor) who advises him or her OIl what courses to take.

Design and dra\v an ER diagram that captures the information about the university. Use only
the basic ER model here; that is, entities, relationships, and attributes. Be sure to indicate
any key and participation constraints.

Exercise 2.4 A company database needs to store information about employees (identified
by ssn, with salary and phone as attributes), departments (identified by dna, with dname and
budget as attributes), and children of employees (with name and age as attributes). Employees
work in departments; each department is managed by an employee; a child must be identified
uniquely by name when the parent (who is an employee; assume that only one parent works
for the company) is known. We are not interested in information about a child once the
parent leaves the company.

Draw an ER diagram that captures this information.

Exercise 2.5 Notown Records has decided to store information about musicians who perform
on its albums (as well as other company data) in a database. The company has wisely chosen
to hire you as a database designer (at your usual consulting fee of $2500jday).

III Each musician that records at Notown has an SSN, a name, an address, and a phone
number. Poorly paid musicians often share the same address, and no address has more
than one phone.

III Each instrument used in songs recorded at Notown has a name (e.g., guitar, synthesizer,
flute) and a musical key (e.g., C, B-flat, E-flat).

III Each album recorded on the Notown label has a title, a copyright date, a format (e.g.,
CD or MC), and an album identifier.

III Each song recorded at Notown has a title and an author.

III Each musician may play several instruments, and a given instrument may be played by
several musicians.

III Each album has a number of songs on it, but no song may appear on more than one
album.

III Each song is performed by one or more musicians, and a musician may perform a number
of songs.

III Each album has exactly one musician who acts as its producer. A musician may produce
several albums, of course.

Design' a conceptual schema for Notown and draw an ER diagram for your schema. The
preceding information describes the situation that the Notown database must model. Be sure
to indicate all key and cardinality constraints and any assumptions you make. Identify any
constraints you are unable to capture in the ER diagram and briefly explain why you could
not express them.

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to Dane
County Airport officials about the poor organization at the airport. As a result, the officials
decided that all information related to the airport should be organized using a DBMS, and
you have been hired to design the database. Your first task is to organize the information
about all the airplanes stationed and maintainecl at the airport. The relevant information is
as follows:
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• Every airplane has a registration number, and each airplane is of a specific model.

• The airport accommodates a number of airplane models, and each model is identified by
a model number (e.g., DC-lO) and has a capacity and a weight.

• A number of technicians work at the airport. You need to store the name, SSN, address,
phone number, and salary of each technician.

• Each technician is an expert on one or more plane model(s), and his or her expertise may
overlap with that of other technicians. This information about technicians must also be
recorded.

• Traffic controllers must have an annual medical examination. For each traffic controller,
you must store the date of the most recent exam.

• All airport employees (including technicians) belong to a union. You must store the
union membership number of each employee. You can assume that each employee is
uniquely identified by a social security number.

• The airport has a number of tests that are used periodically to ensure that airplanes are
still airworthy. Each test has a Federal Aviation Administration (FAA) test number, a
name, and a maximum possible score.

• The FAA requires the airport to keep track of each time a given airplane is tested by a
given technician using a given test. For each testing event, the information needed is the
date, the number of hours the technician spent doing the test, and the score the airplane
received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various attributes
of each entity and relationship set; also specify the key and participation constraints for
each relationship set. Specify any necessary overlap and covering constraints a.s well (in
English).

2. The FAA passes a regulation that tests on a plane must be conducted by a technician
who is an expert on that model. How would you express this constraint in the ER
diagram? If you cannot express it, explain briefly.

Exercise 2.7 The Prescriptions-R-X chain of pharmacies ha.s offered to give you a free life­
time supply of medicine if you design its database. Given the rising cost of health care, you
agree. Here's the information that you gather:

11II Patients are identified by an SSN, and their names, addresses, and ages must be recorded.

11II Doctors are identified by an SSN. For each doctor, the name, specialty, and years of
experience must be recorded.

III Each pharmaceutical company is identified by name and has a phone number.

III For each drug, the trade name and formula must be recorded. Each drug is sold by
a given pharmaceutical company, and the trade name identifies a drug uniquely from
among the pJ;oducts of that company. If a pharmaceutical company is deleted, you need
not keep track of its products any longer.

III Each pharmacy has a name, address, and phone number.

III Every patient has a primary physician. Every doctor has at least one patient.

• Each pharmacy sells several drugs and has a price for each. A drug could be sold at
several pharmacies, and the price could vary from one pharmacy to another.
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• Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for
several patients, and a patient could obtain prescriptions from several doctors. Each
prescription has a date and a quantity associated with it. You can assume that, if a
doctor prescribes the same drug for the same patient more than once, only the last such
prescription needs to be stored.

• Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical
company can contract with several pharmacies, and a pharmacy can contract with several
pharmaceutical companies. For each contract, you have to store a start date, an end date,
and the text of the contract.

• Pharmacies appoint a supervisor for each contract. There must always be a supervisor
for each contract, but the contract supervisor can change over the lifetime of the contract.

1. Draw an ER diagram that captures the preceding information. Identify any constraints
not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all pharma­
cies?

3. How would your design change if the design requirements change as follows: If a doctor
prescribes the same drug for the same patient more than once, several such prescriptions
may have to be stored.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an expert on
databases because you love to cook data and you somehow confused database with data baste.
Your old love is still there, however, so you set up a database company, ArtBase, that builds a
product for art galleries. The core of this product is a database with a schema that captures
all the information that galleries need to maintain. Galleries keep information about artists,
their names (which are unique), birthplaces, age, and style of art. For each piece of artwork,
the artist, the year it was made, its unique title, its type of art (e.g., painting, lithograph,
sculpture, photograph), and its price must be stored. Pieces of artwork are also classified into
groups of various kinds, for example, portraits, still lifes, works by Picasso, or works of the
19th century; a given piece may belong to more than one group. Each group is identified by
a name (like those just given) that describes the group. Finally, galleries keep information
about customers. For each customer, galleries keep that person's unique name, address, total
amount of dollars spent in the gallery (very important!), and the artists and groups of art
that the customer tends to like.

Draw the ER diagram for the database.

Exercise 2.9 Answer the following questions.

• Explain the following terms briefly: UML, use case diagrams, statechart diagrams, class
diagrams, database diagrams, component diagrams, and deployment diagrams.

• Explain the relationship between ER diagrams and UML.

BffiLIOGRAPHIC NOTES

Several books provide a good treatment of conceptual design; these include [63J (which also
contains a survey of commercial database design tools) and [730J.

The ER model wa..<; proposed by Chen [172], and extensions have been proposed in a number
of subsequent papers. Generalization and aggregation were introduced in [693]. [390, 589]
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contain good surveys of semantic data models. Dynamic and temporal aspects of semantic
data models are discussed in [749].

[731] discusses a design methodology based on developing an ER diagram and then translating
it to the relational model. Markowitz considers referential integrity in the context of ER to
relational mapping and discusses the support provided in some commercial systems (a..<; of
that date) in [513, 514].

The entity-relationship conference proceedings contain numerous papers on conceptual design,
with an emphasis on the ER model; for example, [698].

The OMG home page (www. omg. org) contains the specification for UML and related modeling
standards. Numerous good books discuss UML; for example [105, 278, 640] and there is a
yearly conference dedicated to the advancement of UML, the International Conference on the
Unified Modeling Language.

View integration is discussed in several papers, including [97, 139, 184, 244, 535, 551, 550,
685, 697, 748]. [64] is a survey of several integration approaches.
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THE RELATIONAL MODEL

.... How is data represented in the relational model?

.... What integrity constraints can be expressed?

.... How can data be created and modified?

.... How can data be manipulated and queried?

.... How can we create, modify, and query tables using SQL?

.... How do we obtain a relational database design from an ER diagram?

.... What are views and why are they used?

.. Key concepts: relation, schema, instance, tuple, field, domain,
degree, cardinality; SQL DDL, CREATE TABLE, INSERT, DELETE,
UPDATE; integrity constraints, domain constraints, key constraints,
PRIMARY KEY, UNIQUE, foreign key constraints, FOREIGN KEY; refer­
ential integrity maintenance, deferred and immediate constraints; re­
lational queries; logical database design, translating ER diagrams to
relations, expressing ER constraints using SQL; views, views and log:­
ical independence, security; creating views in SQL, updating views,
querying views, dropping views

TABLE: An arrangement of words, numbers, or signs, or combinations of them,
&s in parallel columns, to exhibit a set of facts or relations in a definite, compact,
and comprehensive form; a synopsis or scheme.

-----vVebster's Dictionary of the English Language

Codd proposed the relational data model in 1970. At that time, most databa,,'Se
systems were based on one of two older data models (the hierarchical model

57
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SQL. Originally developed as the query language of the pioneering
System-R relational DBl\1S at IBIYl, structured query language (SQL)
has become the most widely used language for creating, manipulating,
and querying relational DBMSs. Since many vendors offer SQL products,
there IS a need for a standard that defines \official SQL.' The existence of
a standard allows users to measure a given vendor's version of SQL for
completeness. It also allows users to distinguish SQLfeatures specific to
one product from those that are standard; an application that relies on
nonstandard features is less portable.

The first SQL standard was developed in 1986 by the American National
Standards Institute (ANSI) and was called SQL-86. There was a minor
revision in 1989 called SQL-89 and a major revision in 1992 called SQL­
92. The International Standards Organization (ISO) collaborated with
ANSI to develop SQL-92. Most commercial DBMSs currently support (the
core subset of) SQL-92 and are working to support the recently adopted
SQL:1999 version of the standard, a major extension of SQL-92. Our
coverage of SQL is based on SQL:1999, but is applicable to SQL-92 as
well; features unique to SQL:1999 are explicitly noted.

and the network model); the relational model revolutionized the database field
and largely supplanted these earlier models. Prototype relational databa.'3e
management systems were developed in pioneering research projects at IBM
and DC-Berkeley by the mid-197Gs, and several vendors were offering relational
database products shortly thereafter. Today, the relational model is by far
the dominant data model and the foundation for the leading DBMS products,
including IBM's DB2 family, Informix, Oracle, Sybase, Microsoft's Access and
SQLServer, FoxBase, and Paradox. Relational database systems are ubiquitous
in the marketplace and represent a multibillion dollar industry.

The relational model is very simple and elegant: a database is a collection of
one or more relations, where each relation is a table with rows and columns.
This simple tabular representation enables even novice users to understand the
contents of a database, and it permits the use of simple, high-level languages
to query the data. The major advantages of the relational model over the older
data models are its simple data representation and the ease with which even
complex queries can be expressed.

\Vhile we concentrate on the underlying concepts, we also introduce the Data
Definition Language (DDL) features of SQL, the standard language for
creating, manipulating, and querying data in a relational DBMS. This allows
us to ground the discussion firmly in terms of real databa.se systems.
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vVe discuss the concept of a relation in Section ~t1 and show how to create
relations using the SQL language. An important component of a data model is
the set of constructs it provides for specifying conditions that must be satisfied
by the data. Such conditions, called 'integrity constraints (lGs), enable the
DBIviS to reject operations that might corrupt the data. We present integrity
constraints in the relational model in Section 3.2, along with a discussion of
SQL support for les. \Ve discuss how a DBMS enforces integrity constraints
in Section 3.3.

In Section 3.4, we turn to the mechanism for accessing and retrieving data
from the database, query languages, and introduce the querying features of
SQL, which we examine in greater detail in a later chapter.

We then discuss converting an ER diagram into a relational database schema
in Section 3.5. We introduce views, or tables defined using queries, in Section
3.6. Views can be used to define the external schema for a database and thus
provide the support for logical data independence in the relational model. In
Section 3.7, we describe SQL commands to destroy and alter tables and views.

Finally, in Section 3.8 we extend our design case study, the Internet shop in­
troduced in Section 2.8, by showing how the ER diagram for its conceptual
schema can be mapped to the relational model, and how the use of views can
help in this design.

3.1 INTRODUCTION TO THE RELATIONAL MODEL

The main construct for representing data in the relational model is a relation.
A relation consists of a relation schema and a relation instance. The
relation instance is a table, and the relation schema describes the column heads
for the table. We first describe the relation schema and then the relation
instance. The schema specifies the relation's name, the name of each field (or
column, or attribute), and the domain of each field. A domain is referred to
in a relation schema by the domain name and has a set of associated values.

\Ve use the example of student information in a university database from Chap­
ter 1 to illustrate the parts of a relation schema:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

This says, for instance, that the field named sid has a domain named string.
The set of values associated with domain string is the set of all character
strings.
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We now turn to the instances of a relation. An instance of a relation is a set
of tuples, also called records, in which each tuple has the same number of
fields as the relation schema. A relation instance can be thought of as a table
in which each tuple is a row, and all rows have the same number of fields. (The
term relation instance is often abbreviated to just relation, when there is no
confusion with other aspects of a relation such as its schema.)

An instance of the Students relation appears in Figure 3.1. The instance 81

Field names

TUPLES

(RECORDS,

ROWS)

FIELDS (ATTRIBUTES, COLUMNS)

-~ name I---/o'-gz-'n--

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53650 Smith smith@math 19 3.8
"'\ 53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

Figure 3.1 An Instance 81 of the Students Relation

contains six tuples and has, as we expect from the schema, five fields. Note that
no two rows are identical. This is a requirement of the relational model-each
relation is defined to be a set of unique tuples or rows.

In practice, commercial systems allow tables to have duplicate rows, but we
assume that a relation is indeed a set of tuples unless otherwise noted. The
order in which the rows are listed is not important. Figure 3.2 shows the same
relation instance. If the fields are named, as in our schema definitions and

I s'id I name [.login

53831 Madayan madayan@music 11 1.8
53832 Guldu gllldll@music 12 2.0
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8
53666 JOI;es jones@cs 18 3.4
50000 Dave dave@cs 19 3.3

Figure 3.2 An Alternative Representation of Instance 81 of Students

figures depicting relation instances, the order of fields does not matter either.
However, an alternative convention is to list fields in a specific order and refer
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to a field by its position. Thus, s'id is field 1 of Students, login is field :~,

and so on. If this convention is used, the order of fields is significant. Most
database systems use a combination of these conventions. For example, in SQL,
the named fields convention is used in statements that retrieve tuples and the
ordered fields convention is commonly used when inserting tuples.

A relation schema specifies the domain of each field or column in the relation
instance. These domain constraints in the schema specify an important
condition that we want each instance of the relation to satisfy: The values
that appear in a column must be drawn from the domain associated with that
column. Thus, the domain of a field is essentially the type of that field, in
programming language terms, and restricts the values that can appear in the
field.

More formally, let R(fI:Dl, ... , In:Dn) be a relation schema, and for each Ii,
1 :::; i :::; n, let Dami be the set of values associated with the domain named Di.

.An instance of R that satisfies the domain constraints in the schema is a set of
tuples with n fields:

{ (fI : d l , ,In: dn) I d l E Daml' ... ,dn E Damn}

The angular brackets ( ) identify the fields of a tuple. Using this notation,
the first Students tuple shown in Figure 3.1 is written as (sid: 50000, name:
Dave, login: dave@cs, age: 19, gpa: 3.3). The curly brackets {... } denote a set
(of tuples, in this definition). The vertical bar I should be read 'such that,' the
symbol E should be read 'in,' and the expression to the right of the vertical
bar is a condition that must be satisfied by the field values of each tuple in the
set. Therefore, an instance of R is defined as a set of tuples. The fields of each
tuple must correspond to the fields in the relation schema.

Domain constraints are so fundamental in the relational model that we hence­
forth consider only relation instances that satisfy them; therefore, relation
instance means relation instance that satisfies the domain constraints in the
relation schema.

The degree, also called arity, of a relation is the number of fields. The car­
dinality of a relation instance is the number of tuples in it. In Figure 3.1, the
degree of the relation (the number of columns) is five, and the cardinality of
this instance is six.

A relational database is a collection of relations with distinct relation names.
The relational database schema is the collection of schemas for the relations
in the database. 'For example, in Chapter 1, we discllssed a university database
with relations called Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets~In. An instance of a relational databa..'3e is a collection of relation
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instances, one per relation schema in the database schema; of course, each
relation instance must satisfy the domain constraints in its schema.

3.1.1 Creating and Modifying Relations Using SQL

The SQL language standard uses the word table to denote relation, and we often
follow this convention when discussing SQL. The subset of SQL that supports
the creation, deletion, and modification of tables is called the Data Definition
Language (DDL). Further, while there is a command that lets users define new
domains, analogous to type definition commands in a programming language,
we postpone a discussion of domain definition until Section 5.7. For now, we
only consider domains that are built-in types, such as integer.

The CREATE TABLE statement is used to define a new table. 1 To create the
Students relation, we can use the following statement:

CREATE TABLE Students ( sid
name
login
age
gpa

CHAR(20) ,
CHAR(30) ,
CHAR(20) ,
INTEGER,
REAL)

Tuples are inserted ,using the INSERT command. We can insert a single tuple
into the Students table as follows:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, 'Smith', 'smith@ee', 18, 3.2)

We can optionally omit the list of column names in the INTO clause and list
the values in the appropriate order, but it is good style to be explicit about
column names.

We can delete tuples using the DELETE command. We can delete all Students
tuples with name equal to Smith using the command:

DELETE
FROM
WHERE

Students S
S.name = 'Smith'

1SQL also provides statements to destroy tables and to change the columns associated with a table;
we discuss these in Section 3.7.
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vVe can modify the column values in an existing row using the UPDATE com­
mand. For example, we can increment the age and decrement the gpa of the
student with sid 53688:

UPDATE Students S
SET S.age = S.age + 1, S.gpa = S.gpa - 1
WHERE S.sid = 53688

These examples illustrate some important points. The WHERE clause is applied
first and determines which rows are to be modified. The SET clause then
determines how these rows are to be modified. If the column being modified is
also used to determine the new value, the value used in the expression on the
right side of equals (=) is the old value, that is, before the modification. To
illustrate these points further, consider the following variation of the previous
query:

UPDATE Students S
SET S.gpa = S.gpa - 0.1
WHERE S.gpa >= 3.3

If this query is applied on the instance 81 of Students shown in Figure 3.1, we
obtain the instance shown in Figure 3.3.

I sid I name I login

50000 Dave dave@cs 19 3.2
53666 Jones jones@cs 18 3.3
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.7
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.3 Students Instance 81 after Update

3.2 INTEGRITY CONSTRAINTS OVER RELATIONS

A database is only as good as the information stored in it, and a DBMS must
therefore help prevent the entry of incorrect information. An integrity con­
straint (Ie) is a condition specified on a database schema and restricts the
data that can be stored in an instance of the databa'3e. If a database instance
satisfies all the integrity constraints specified on the database schema, it is a
legal instance. A DBMS enforces integrity constraints, in that it permits only
legal instances to be stored in the database.

Integrity constraints are specified and enforced at different times:
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1. \\Then the DBA or end user defines a database schema, he or she specifies
the rcs that must hold on any instance of this database.

2. "Vhen a database application is run, the DBMS checks for violations and
disallows changes to the data that violate the specified ICs. (In some
situations, rather than disallow the change, the DBMS might make some
compensating changes to the data to ensure that the database instance
satisfies all ICs. In any case, changes to the database are not allowed to
create an instance that violates any IC.) It is important to specify exactly
when integrity constraints are checked relative to the statement that causes
the change in the data and the transaction that it is part of. We discuss
this aspect in Chapter 16, after presenting the transaction concept, which
we introduced in Chapter 1, in more detail.

Many kinds of integrity constraints can be specified in the relational model.
We have already seen one example of an integrity constraint in the domain
constraints associated with a relation schema (Section 3.1). In general, other
kinds of constraints can be specified as well; for example, no two students
have the same sid value. In this section we discuss the integrity constraints,
other than domain constraints, that a DBA or user can specify in the relational
model.

3.2.1 Key Constraints

Consider the Students relation and the constraint that no two students have the
same student id. This IC is an example of a key constraint. A key constraint
is a statement that a certain minimal subset of the fields of a relation is a
unique identifier for a tuple. A set of fields that uniquely identifies a tuple
according to a key constraint is called a candidate key for the relation; we
often abbreviate this to just key. In the case of the Students relation, the (set
of fields containing just the) sid field is a candidate key.

Let us take a closer look at the above definition of a (candidate) key. There
are two parts to the definition: 2

1. Two distinct tuples in a legal instance (an instance that satisfies all Ies,
including the key constraint) cannot have identical values in all the fields
of a key.

2. No subset of the set of fields in a key is a unique identifier for a tuple.

2The term key is rather overworked. In the context of access methods, we speak of sear'ch keys.
which are quite different.
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The first part of the definition means that, in any legal instance, the values in
the key fields uniquely identify a tuple in the instance. \Vhen specifying a key
constraint, the DBA or user must be sure that this constraint will not prevent
them from storing a 'correct' set of tuples. (A similar comment applies to the
specification of other kinds of les as well.) The notion of •correctness' here
depends on the nature of the data being stored. For example, several students
may have the same name, although each student has a unique student id. If
the name field is declared to be a key, the DBMS will not allow the Students
relation to contain two tuples describing different students with the same name!

The second part of the definition means, for example, that the set of fields
{sid, name} is not a key for Students, because this set properly contains the
key {sid}. The set {sid, name} is an example of a superkey, which is a set of
fields that contains a key.

Look again at the instance of the Students relation in Figure 3.1. Observe that
two different rows always have different sid values; sid is a key and uniquely
identifies a tuple. However, this does not hold for nonkey fields. For example,
the relation contains two rows with Smith in the name field.

Note that every relation is guaranteed to have a key. Since a relation is a set of
tuples, the set of all fields is always a superkey. If other constraints hold, some
subset of the fields may form a key, but if not, the set of all fields is a key.

A relation may have several candidate keys. For example, the login and age
fields of the Students relation may, taken together, also identify students uniquely.
That is, {login, age} is also a key. It may seem that login is a key, since no
two rows in the example instance have the same login value. However, the key
must identify tuples uniquely in all possible legal instances of the relation. By
stating that {login, age} is a key, the user is declaring that two students may
have the same login or age, but not both.

Out of all the available candidate keys, a database designer can identify a
primary key. Intuitively, a tuple can be referred to from elsewhere in the
database by storing the values of its primary key fields. For example, we can
refer to a Students tuple by storing its sid value. As a consequence of referring
to student tuples in this manner, tuples are frequently accessed by specifying
their sid value. In principle, we can use any key, not just the primary key,
to refer to a tuple. However, using the primary key is preferable because it
is what the DBMS expects this is the significance of designating a particular
candidate key as a primary key and optimizes for. For example, the DBMS
may create an index with the primary key fields 8..'3 the search key, to make the
retrieval of a tuple given its primary key value efficient. The idea of referring
to a tuple is developed further in the next section.
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Specifying Key Constraints in SQL

CHAPTER,3

In SQL, we can declare that a subset of the columns of a table constitute a key
by using the UNIQUE constraint. At most one of these candidate keys can be
declared to be a primary key, using the PRIMARY KEY constraint. (SQL does
not require that such constraints be declared for a table.)

Let us revisit our example table definition and specify key information:

CREATE TABLE Students ( sid CHAR(20) ,
name CHAR (30) ,
login CHAR(20) ,
age INTEGER,
gpa REAL,
UNIQUE (name, age),
CONSTRAINT StudentsKey PRIMARY KEY (sid) )

This definition says that sid is the primary key and the combination of name
and age is also a key. The definition of the primary key also illustrates how
we can name a constraint by preceding it with CONSTRAINT constraint-name.
If the constraint is violated, the constraint name is returned and can be used
to identify the error.

3.2.2 Foreign Key Constraints

Sometimes the information stored in a relation is linked to the information
stored in another relation. If one of the relations is modified, the other must be
checked, and perhaps modified, to keep the data consistent. An IC involving
both relations must be specified if a DBMS is to make such checks. The most
common IC involving two relations is a foreign key constraint.

Suppose that, in addition to Students, we have a second relation:

Enrolled(studid: string, cid: string, gTade: string)

To ensure that only bona fide students can enroll in courses, any value that
appears in the studid field of an instance of the Enrolled relation should also
appear in the sid field of some tuple in the Students relation. The st'udid field
of Enrolled is called a foreign key and refers to Students. The foreign key in
t~l~referencil1grel~tio~~(Enrolled,inour. exalIlpl~)!nll~tl~latcht~le~)l:lirl~l~y~key:_:-- ­
()f -the JCferC11(;ed relation (Students); that jS,-jtIn~lstJUly(iU"lhe'-s<lnie-~l~~i;;~_

_.. ,'--" . ". ...•.. .... ........••..... ....-._--.... --~-----~-

of columns and cornpatible dCita types, altl1()u~h the column nanl(~S can bealffei'cii£.' - .---- '~'. _N~ ~_-~
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This constraint is illustrated in Figure 3.4. As the figure shows, there may well
be some Students tuples that are not referenced from Enrolled (e.g., the student
with sid=50000). However, every studid value that appears in the instance of
the Enrolled table appears in the primary key column of a row in the Students
table.

Foreign key
r---I

Primary key
~

cid grade studid~ -- sid name login age gpa
~===:====:==~ ~==i====*==========*====:::*~

Carnatic 101 C 53831, 50000 Dave dave@cs
I---~~~~~+-~--t

Reggae203 B 53832, '- ,-f 53666 Jones jones@cs
I---..::::::...~~~~+-~--t

Topology112 A 5365(}-~' ,\' 53688 Smith smith@ee
1---~-=~~~+-~---1 ,'\- ,

History105 B 53666" \'"",~ 53650 Smith smith@math

~~-=--~-'----~...L-~-J \"'\ 53831 Madayan madayan@music

"'\ 53832 Guldu gu1du@music

19

18

18

19

11

12

3.3

3.4

3.2

3.8

1.8

2.0

Enrolled (Referencing relation) Students (Referenced relation)

Figure 3.4 Referential Integrity

If we try to insert the tuple (55555, Artl04, A) into E1, the Ie is violated be­
cause there is no tuple in 51 with sid 55555; the database system should reject
such an insertion. Similarly, if we delete the tuple (53666, Jones, jones@cs, 18,
3.4) from 51, we violate the foreign key constraint because the tuple (53666,
Historyl05, B) in El contains studid value 53666, the sid of the deleted Stu­
dents tuple. The DBMS should disallow the deletion or, perhaps, also delete
the Enrolled tuple that refers to the deleted Students tuple. We discuss foreign
key constraints and their impact on updates in Section 3.3.

Finally, we note that a foreign key could refer to the same relation. For example,
we could extend the Students relation with a column called partner and declare
this column to be a foreign key referring to Students. Intuitively, every student
could then have a partner, and the partner field contains the partner's sid. The
observant reader will no doubt ask, "y\That if a student does not (yet) have
a partnerT' This situation is handled in SQL by using a special value called
null. The use of nun in a field of a tuple rneans that value in that field is either
unknown or not applicable (e.g., we do not know the partner yet or there is
no partner). The appearanC(~ of null in a foreign key field does not violate the
foreign key constraint. However, null values are not allowed to appear in a
primary key field (because the primary key fields are used to identify a tuple
uniquely). \Ve discuss null values further in Chapter 5.
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Specifying Foreign Key Constraints in SQL

CHAPTERp3

Let us define Enrolled(studid: string, cid: string, grade: string):

CREATE TABLE Enrolled ( studid CHAR(20) ,

cid CHAR(20),
grade CHAR(10),

PRIMARY KEY (studid, cid),
FOREIGN KEY (studid) REFERENCES Students)

The foreign key constraint states that every st'udid value in Enrolled must also
appear in Students, that is, studid in Enrolled is a foreign key referencing Stu­
dents. Specifically, every studid value in Enrolled must appear as the value in
the primary key field, sid, of Students. Incidentally, the primary key constraint
for Enrolled states that a student has exactly one grade for each course he or
she is enrolled in. If we want to record more than one grade per student per
course, we should change the primary key constraint.

3.2.3 General Constraints

Domain, primary key, and foreign key constraints are considered to be a fun­
damental part of the relational data model and are given special attention in
most commercial systems. Sometimes, however, it is necessary to specify more
general constraints.

For example, we may require that student ages be within a certain range of
values; given such an IC specification, the DBMS rejects inserts and updates
that violate the constraint. This is very useful in preventing data entry errors.
If we specify that all students must be at least 16 years old, the instance of
Students shown in Figure 3.1 is illegal because two students are underage. If
we disallow the insertion of these two tuples, we have a legal instance, as shown
in Figure 3.5.

s'id I na'me login I age I gpa I
53666 Jones jones@cs 18 3.4
53688 Smith smithCQ)ee 18 ~).2 I
53650 Smith smith@math 19 3.8 I

. -

Figure 3.5 An Instance 82 of the Students Relation

The IC that students must be older than 16 can be thought of as an extended
domain constraint, since we are essentially defining the set of permissible age
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values more stringently than is possible by simply using a standard domain
such :'1.S integer. In general, however, constraints that go well beyond domain,
key, or foreign key constraints can be specified. For example, we could require
that every student whose age is greater than 18 must have a gpa greater than
3.

Current relational database systems support such general constraints in the
form of table constraints and assertions. Table constraints are associated with a
single table and checked whenever that table is modified. In contrast, assertions
involve several tables and are checked whenever any of these tables is modified.
Both table constraints and assertions can use the full power of SQL queries to
specify the desired restriction. We discuss SQL support for table constraints
and assertions in Section 5.7 because a full appreciation of their power requires
a good grasp of SQL's query capabilities.

3.3 ENFORCING INTEGRITY CONSTRAINTS

As we observed earlier, ICs are specified when a relation is created and enforced
when a relation is modified. The impact of domain, PRIMARY KEY, and UNIQUE
constraints is straightforward: If an insert, delete, or update command causes
a violation, it is rejected. Every potential Ie violation is generally checked at
the end of each SQL statement execution, although it can be deferred until the
end of the transaction executing the statement, as we will see in Section 3.3.1.

Consider the instance 51 of Students shown in Figure 3.1. The following inser­
tion violates the primary key constraint because there is already a tuple with
the s'id 53688, and it will be rejected by the DBMS:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, 'Mike', 'mike@ee', 17,3.4)

The following insertion violates the constraint that the primary key cannot
contain null:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (null, 'Mike', 'mike@ee', 17,3.4)

Of course, a similar problem arises whenever we try to insert a tuple with a
value in a field that is not in the domain associated with that field, that is,
whenever we violate a domain constraint. Deletion does not cause a violation
of clornain, primary key or unique constraints. However, an update can cause
violations, sirnilar to an insertion:
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UPDATE Students S
SET S.sid = 50000
WHERE S.sid = 53688

CHAPTER, 3

This update violates the primary key constraint because there is already a tuple
with sid 50000.

The impact of foreign key constraints is more complex because SQL sometimes
tries to rectify a foreign key constraint violation instead of simply rejecting the
change. We discuss the referential integrity enforcement steps taken by
the DBMS in terms of our Enrolled and Students tables, with the foreign key
constraint that Enrolled.sid is a reference to (the primary key of) Students.

In addition to the instance 81 of Students, consider the instance of Enrolled
shown in Figure 3.4. Deletions of Enrolled tuples do not violate referential
integrity, but insertions of Enrolled tuples could. The following insertion is
illegal because there is no Students tuple with sid 51111:

INSERT
INTO Enrolled (cid, grade, studid)
VALUES ('Hindi101', 'B', 51111)

On the other hand, insertions of Students tuples do not violate referential
integrity, and deletions of Students tuples could cause violations. Further,
updates on either Enrolled or Students that change the studid (respectively,
sid) value could potentially violate referential integrity.

SQL provides several alternative ways to handle foreign key violations. We
must consider three basic questions:

1. What should we do if an Enrolled row is inserted, with a studid column
value that does not appear in any row of the Students table?

In this case, the INSERT command is simply rejected.

2. What should we do if a Students row is deleted?

The options are:

• Delete all Enrolled rows that refer to the deleted Students row.

• Disallow the deletion of the Students row if an Enrolled row refers to
it.

• Set the studid column to the sid of some (existing) 'default' student,
for every Enrolled row that refers to the deleted Students row.
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• For every Enrolled row that refers to it, set the studid column to null.
In our example, this option conflicts with the fact that stud'id is part
of the primary key of Enrolled and therefore cannot be set to mtll.
Therefore, we are limited to the first three options in our example,
although this fourth option (setting the foreign key to null) is available
in general.

3. What should we do if the primary key val'ue of a Students row is updated?

The options here are similar to the previous case.

SQL allows us to choose any of the four options on DELETE and UPDATE. For
example, we can specify that when a Students row is deleted, all Enrolled rows
that refer to it are to be deleted as well, but that when the sid column of a
Students row is modified, this update is to be rejected if an Enrolled row refers
to the modified Students row:

CREATE TABLE Enrolled ( studid CHAR(20) ,

cid CHAR(20) ,

grade CHAR(10),

PRIMARY KEY (studid, dd),
FOREIGN KEY (studid) REFERENCES Students

ON DELETE CASCADE

ON UPDATE NO ACTION)

The options are specified as part of the foreign key declaration. The default
option is NO ACTION, which means that the action (DELETE or UPDATE) is to be
rejected, Thus, the ON UPDATE clause in our example could be omitted, with
the same effect. The CASCADE keyword says that, if a Students row is deleted,
all Enrolled rows that refer to it are to be deleted as well. If the UPDATE clause
specified CASCADE, and the sid column of a Students row is updated, this update
is also carried out in each Enrolled row that refers to the updated Students row.

If a Students row is deleted, we can switch the enrollment to a 'default' student
by using ON DELETE SET DEFAULT. The default student is specified 3.'3 part of
the definition of the sid field in Enrolled; for example, sid CHAR(20) DEFAULT

'53666 '. Although the specification of a default value is appropriate in some
situations (e.g" a default parts supplier if a particular supplier goes out of
business), it is really not appropriate to switch enrollments to a default student.
The correct solution in this example is to also delete all enrollment tuples for
the deleted student (that is, CASCADE) or to reject the update.

SQL also allows the use of null as the default value by specifying ON DELETE

SET NULL.



72 CHAPTERf 3

3.3.1 Transactions and Constraints

As we saw in Chapter 1, a program that runs against a database is called a
transaction, and it can contain several statements (queries, inserts, updates,
etc.) that access the database. If (the execution of) a statement in a transac­
tion violates an integrity constraint, should the DBMS detect this right away
or should all constraints be checked together just before the transaction com­
pletes?

By default, a constraint is checked at the end of every SQL statement that
could lead to a violation, and if there is a violation, the statement is rejected.
Sometimes this approach is too inflexible. Consider the following variants of
the Students and Courses relations; every student is required to have an honors
course, and every course is required to have a grader, who is some student.

CREATE TABLE Students ( sid CHAR(20) ,
name CHAR(30),
login CHAR (20) ,
age INTEGER,
honorsCHAR(10) NOT NULL,
gpa REAL)
PRIMARY KEY (sid),
FOREIGN KEY (honors) REFERENCES Courses (cid))

CREATE TABLE Courses (cid CHAR(10),
cname CHAR ( 10) ,
credits INTEGER,
grader CHAR(20) NOT NULL,
PRIMARY KEY (dd)
FOREI GN KEY (grader) REFERENCES Students (sid))

vVhenever a Students tuple is inserted, a check is made to see if the"honors
course is in the Courses relation, and whenever a Courses tuple is inserted,
a check is made to see that the grader is in the Students relation. How are
we to insert the very first course or student tuple? One cannot be inseited
without the other. The only way to accomplish this insertion is to defer the
constraint che~king that would normally be carried out at the end of an INSERT
statement.

SQL allows a constraint to be in DEFERRED or IMMEDIATE mode.

SET CONSTRAINT ConstntintFoo DEFERRED
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A constraint in deferred mode is checked at commit time. In our example,
the foreign key constraints on Boats and Sailors can both be declared to be in
deferred mode. "VVe can then insert? boat with a nonexistent sailor as the cap­
tain (temporarily making the database inconsistent), insert the sailor (restoring
consistency), then commit and check that both constraints are satisfied.

3.4 QUERYING RELATIONAL DATA

A relational database query (query, for short) is a question about the data,
and the answer consists of a new relation containing the result. For example,
we might want to find all students younger than 18 or all students enrolled in
Reggae203. A query language is a specialized language for writing queries.

SQL is the most popular commercial query language for a relational DBMS.
We now present some SQL examples that illustrate how easily relations can be
queried. Consider the instance of the Students relation shown in Figure 3.1.
We can retrieve rows corresponding to students who are younger than 18 with
the following SQL query:

SELECT *
FROM Students S
WHERE S.age < 18

The symbol ,*, means that we retain all fields of selected tuples in the result.
Think of S as a variable that takes on the value of each tuple in Students, one
tuple after the other. The condition S. age < 18 in the WHERE clause specifies
that we want to select only tuples in which the age field has a value less than
18. This query evaluates to the relation shown in Figure 3.6.

I··sid j .. name I login

53831 Madayan madayan@music 11 I 1.8
53832 Guldu guldu@music 12 I 2.0

Figure 3.6 Students with age < 18 OIl Instance 51

This example illustrates that the domain of a field restricts the operations
that are permitted on field values, in addition to restricting the values that can
appear in the field. The condition S. age < 18 involves an arithmetic comparison
of an age value with an integer and is permissible because the domain of age

is the set of integers. On the other hand, a condition such as S.age = S."id
does not make sense because it compares an integer value with a string value,
and this comparison is defined to fail in SQL; a query containing this condition
produces no answer tuples.
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In addition to selecting a subset of tuples, a query can extract a subset of the
fields of each selected tuple. vVe can compute the names and logins of students
who are younger than 18 with the following query:

SELECT S.name, S.login
FROM Students S
WHERE S.age < 18

Figure 3.7 shows the answer to this query; it is obtained by applying the se­
lection to the instance 81 of Students (to get the relation shown in Figure
3.6), followed by removing unwanted fields. Note that the order in which we
perform these operations does matter-if we remove unwanted fields first, we
cannot check the condition S. age < 18, which involves one of those fields.

I name
Madayan
Guldu

madayan@music
guldu@music

Figure 3.7 Names and Logins of Students under 18

We can also combine information in the Students and Enrolled relations. If we
want to obtain the names of all students who obtained an A and the id of the
course in which they got an A, we could write the following query:

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid = E.studid AND E.grade = 'A'

This query can be understood as follows: "If there is a Students tuple Sand
an Enrolled tuple E such that S.sid = E.studid (so that S describes the student
who is enrolled in E) and E.grade = 'A', then print the student's name and
the course id." When evaluated on the instances of Students and Enrolled in
Figure 3.4, this query returns a single tuple, (Smith, Topology112).

We cover relational queries and SQL in more detail in subsequent chapters.

3.5 LOGICAL DATABASE DESIGN: ER TO
RELATIONAL

The ER model is convenient for representing an initial, high-level databi'lse
design. Given an ER diagram describing a databa'3e, a standard approach is
taken to generating a relational database schema that closely approximates
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the ER design. (The translation is approximate to the extent that we cannot
capture all the constraints implicit in the ER design using SQL, unless we use
certain SQL constraints that are costly to check.) We now describe how to
translate an ER diagram into a collection of tables with associated constraints,
that is, a relational database schema.

3.5.1 Entity Sets to Tables

An entity set is mapped to a relation in a straightforward way: Each attribute
of the entity set becomes an attribute of the table. Note that we know both
the domain of each attribute and the (primary) key of an entity set.

Consider the Employees entity set with attributes ssn, name, and lot shown in
Figure 3.8. A possible instance of the Employees entity set, containing three

Figure 3.8 The Employees Entity Set

Employees entities, is shown in Figure 3.9 in a tabular format.

I ssn I name I lot I
123-22-3666 Attishoo 48
231-31-5368 Smiley 22
131-24-3650 Smethurst 35

Figure 3.9 An Instance of the Employees Entity Set

The following SQL statement captures the preceding information, including the
domain constraints and key information:

CREATE TABLE Employees ( ssn CHAR(11),
name CHAR(30) ,
lot INTEGER,
PRIMARY KEY (ssn) )
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3.5.2 Relationship Sets (without Constraints) to Tables

A relationship set, like an entity set, is mapped to a relation in the relational
model. Vve begin by considering relationship sets without key and participa­
tion constraints, and we discuss how to handle such constraints in subsequent
sections. To represent a relationship, we must be able to identify each partic­
ipating entity and give values to the descriptive attributes of the relationship.
Thus, the attributes of the relation include:

• The primary key attributes of each participating entity set, as foreign key
fields.

• The descriptive attributes of the relationship set.

The set of nondescriptive attributes is a superkey for the relation. If there are
no key constraints (see Section 2.4.1), this set of attributes is a candidate key.

Consider the Works_In2 relationship set shown in Figure 3.10. Each department
has offices in several locations and we want to record the locations at which
each employee works.

C~~~T:~:~~Cf)(~~fT3~~
I Employees I WorksJn2 r Departments I

~ddress~ capacity

Figure 3.10 A Ternary Relationship Set

All the available information about the Works-ln2 table is captured by the
following SQL definition:

CREATE TABLE \iVorks_In2 ( ssn CHAR(11),
did INTEGER,
address CHAR(20) ,
since DATE,
PRIMARY KEY (8sn, did, address),
FOREIGN KEY (ssn) REFERENCES Employees,
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FOREIGN KEY (address) REFERENCES Locations,
FOREIGN KEY (did) REFERENCES Departments)

Note that the address, did. and ssn fields cannot take on n'ull values. Because
these fields are part of the primary key for \Vorks_In2, a NOT NULL constraint
is implicit for each of these fields. This constraint ensures that these fields
uniquely identify a department, an employee, and a location in each tuple
of WorksJn. vVe can also specify that a particular action is desired when a
referenced Employees, Departments, or Locations tuple is deleted, as explained
in the discussion of integrity constraints in Section 3.2. In this chapter, we
assume that the default action is appropriate except for situations in which the
semantics of the ER diagram require some other action.

Finally, consider the Reports_To relationship set shown in Figure 3.11. The

Figure 3.11 The Reports_To Relationship Set

role indicators supervisor and subordinate are used to create meaningful field
names in the CREATE statement for the Reports..To table:

CREATE TABLE Reports_To (
supervisor...ssn CHAR (11),

subordinate...ssn CHAR (11) ,

PRIMARY KEY (supervisor~'3sn, subordinate_",,:>sn),
FOREIGN KEY (supervisor...ssn) REFERENCES Employees(ssn),
FOREIGN KEY (subordinate...ssn) REFERENCES Employees(ssn) )

Observe that we need to explicitly name the referenced field of Employees
because the field name differs from the name(s) of the referring field(s).



78 CHAPTER~3

3.5.3 Translating Relationship Sets with Key Constraints

If a relationship set involves n entity sets and somem of them are linked via
arrows in the ER diagTam, the key for anyone of these m entity sets constitutes
a key for the relation to which the relationship set is mapped. Hence we have
m candidate keys, and one of these should be designated as the primary key.
The translation discussed in Section 2.3 from relationship sets to a relation can
be used in the presence of key constraints, taking into account this point about
keys.

Consider the relationship set Manages shown in Figure 3.12. The table cor-

Manages >4I"f--~~-

Figure 3.12 Key Constraint on Manages

responding to Manages has the attributes ssn, did, since. However, because
each department has at most one manager, no two tuples can have the same
did value but differ on the ssn value. A consequence of this observation is that
did is itself a key for Manages; indeed, the set did, ssn is not a key (because it
is not minimal). The Manages relation can be defined using the following SQL
statement:

CREATE TABLE Manages (ssn CHAR (11) ,
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did~REFERENCES Departments)

A second approach to translating a relationship set with key constraints is
often superior because it avoids creating a distinct table for the relationship
set. The idea is to include the information about the relationship set in the
table corresponding to the entity set with the key, taking adyantage of the
key constraint. In the Manages example, because a departmerl~ has at most
one manager, we can add the key fields of the Employees tuple denoting the
Inanager and the since attribute to the Departments tuple.
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This approach eliminates the need for a separate Manages relation, and queries
asking for a department's manager can be answered without combining infor­
mation from two relations. The only drawback to this approach is that space
could be wasted if several departments have no managers. In this case the
added fields would have to be filled with null values. The first translation (us­
ing a separate table for Manages) avoids this inefficiency, but some important
queries require us to combine information from two relations, which can be a
slow operation.

The following SQL statement, defining a DepLMgr relation that captures the
information in both Departments and Manages, illustrates the second approach
to translating relationship sets with key constraints:

CREATE TABLE DepLMgr ( did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR (11) ,

since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Note that ssn can take on null values.

This idea can be extended to deal with relationship sets involving more than
two entity sets. In general, if a relationship set involves n entity sets and some
Tn of them are linked via arrows in the ER diagram, the relation corresponding
to anyone of the m sets can be augmented to capture the relationship.

We discuss the relative merits of the two translation approaches further after
considering how to translate relationship sets with participation constraints
into tables.

3.5.4 Translating Relationship Sets with Participation
Constraints

Consider the ER diagram in Figure 3.13, which shows two relationship sets,
Manages and "Vorks_In.

Every department is required to have a manager, due to the participation
constraint, and at most one manager, due to the key constraint. The following
SQL statement reflects the second translation approach discussed in Section
3.5.3, and uses the key constraint:
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Figure 3.13 Manages and WorksJn

CREATE TABLE DepLMgr ( did INTEGER,
dname CHAR(20) ,
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE NO ACTION)

It also captures the participation constraint that every department must have
a manager: Because ssn cannot take on null values, each tuple of DepLMgr
identifies a tuple in Employees (who is the manager). The NO ACTION specifi­
cation, which is the default and need not be explicitly specified, ensures that
an Employees tuple cannot be deleted while it is pointed to by a Dept-Mgr
tuple. If we wish to delete such an Employees tuple, we must first change the
DepLMgr tuple to have a new employee &'3 manager. (vVe could have specified
CASCADE instead of NO ACTION, but deleting all information about a department
just because its manager has been fired seems a bit extreme!)

The constraint that every department must have a manager cannot be cap­
tured using the first translation approach discussed in Section 3.5.3. (Look
at the definition of lVIanages and think about what effect it would have if we
added NOT NULL constraints to the ssn and did fields. Hint: The constraint
would prevent the firing of a manager, but does not ensure that a manager is
initially appointed for each department!) This situation is a strong argument
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in favor of using the second approach for one-to-many relationships such as
Manages, especially when the entity set with the key constraint also has a total
participation constraint.

Unfortunately, there are many participation constraints that we cannot capture
using SQL, short of using table constraints or assertions. Table constraints and
assertions can be specified using the full power of the SQL query language
(as discussed in Section 5.7) and are very expressive but also very expensive to
check and enforce. For example, we cannot enforce the participation constraints
on the \iVorks_In relation without using these general constraints. To see why,
consider the Works-ln relation obtained by translating the ER diagram into·
relations. It contains fields ssn and did, which are foreign keys referring to
Employees and Departments. To ensure total participation of Departments in
Works_In, we have to guarantee that every did value in Departments appears
in a tuple of Works_In. We could try to guarantee this condition by declaring
that did in Departments is a foreign key referring to Works_In, but this is not
a valid foreign key constraint because did is not a candidate key for Works_In.

To ensure total participation of Departments in Works_In using SQL, we need
an assertion. We have to guarantee that every did value in Departments appears
in a tuple of Works_In; further, this tuple of Works_In must also have non-null
values in the fields that are foreign keys referencing other entity sets involved in
the relationship (in this example, the ssn field). We can ensure the second part
of this constraint by imposing the stronger requirement that ssn in Works-ln
cannot contain null values. (Ensuring that the participation of Employees in
Works_In is total is symmetric.)

Another constraint that requires assertions to express in SQL is the requirement
that each Employees entity (in the context of the Manages relationship set)
must manage at least one department.

In fact, the Manages relationship set exemplifies most of the participation con­
straints that we can capture using key and foreign key constraints. Manages is
a binary relationship set in which exactly one of the entity sets (Departments)
has a key constraint, and the total participation constraint is expressed on that
entity set.

\Ve can also capture participation constraints using key and foreign key con­
straints in one other special situation: a relationship set in which all participat­
ing entity sets have key constraints and total participation. The best translation
approach in this case is to map all the entities &'3 well as the relationship into
a single table; the details are straightforward.



82 CHAPTER~3

3.5.5 Translating Weak Entity Sets

A weak entity set always participates in a one-to-many binary relationship and
has a key constraint and total participation. The second translation approach
discussed in Section 3.5.3 is ideal in this case, but we must take into account
that the weak entity has only a partial key. Also, when an owner entity is
deleted, we want all owned weak entities to be deleted.

Consider the Dependents weak entity set shown in Figure 3.14, with partial
key pname. A Dependents entity can be identified uniquely only if we take the
key of the owning Employees entity and the pname of the Dependents entity,
and the Dependents entity must be deleted if the owning Employees entity is
deleted.

Employees

Figure 3.14 The Dependents Weak Entity Set

We can capture the desired semantics with the following definition of the
Dep_Policy relation:

CREATE TABLE Dep_Policy (pname CHAR(20) ,
age INTEGER,
cost REAL,
ssn CHAR (11) ,

PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE )

Observe that the primary key is (pna:me, ssn) , since Dependents is a weak
entity. This constraint is a change with respect to the translation discussed in
Section 3.5.3. \Ve have to ensure that every Dependents entity is associated
with an Employees entity (the owner), as per the total participation constraint
on Dependents. That is, ssn cannot be null. This is ensured because SST/, is
part of the primary key. The CASCADE option ensures that information about
an employee's policy and dependents is deleted if the corresponding Employees
tuple is deleted.
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3.5.6 Translating Class Hierarchies
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We present the two basic approaches to handling ISA hierarchies by applying
them to the ER diagram shown in Figure 3.15:

Figure 3.15 Class Hierarchy

1. We can map each of the entity sets Employees, Hourly_Emps, and Con­
tracLEmps to a distinct relation. The Employees relation is created as
in Section 2.2. We discuss Hourly~mps here; ContracLEmps is han­
dled similarly. The relation for Hourly_Emps includes the hourly_wages
and hours_worked attributes of Hourly_Emps. It also contains the key at­
tributes of the superclass (ssn, in this example), which serve as the primary
key for Hourly_Emps, a.', well as a foreign key referencing the superclass
(Employees). For each Hourly_Emps entity, the value of the name and
lot attributes are stored in the corresponding row of the supercla...,s (Em­
ployees). Note that if the superclass tuple is deleted, the delete must be
cascaded to Hourly~mps.

2. Alternatively, we can create just two relations, corresponding to Hourly_Emps
and ContracLEmps. The relation for Hourly~mps includes all the at­
tributes of Hourly_Emps as well as all the attributes of Employees (i.e.,
ssn, name, lot, hO'l.1,rly_wages, hours_worked:).

The first approach is general and always applicable. Queries in which we want
to (~xamine all employees and do not care about the attributes specific to the
subclasses are handled easily using the Employees relation. However, queries
in which we want to examine, say, hourly employees, may require us to com­
bine Hourly_Emps (or ContracLEmps, as the case may be) with Employees to
retrieve name and lot.
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The second approach is not applicable if we have employees who are neither
hourly employees nor contract employees, since there is no way to store such
employees. Also, if an employee is both an Hourly-.Emps and a ContracLEmps
entity, then the name and lot: values are stored twice. This duplication can lead
to some of the anomalies that we discuss in Chapter 19. A query that needs to
examine all employees must now examine two relations. On the other hand, a
query that needs to examine only hourly employees can now do so by examining
just one relation. The choice between these approaches clearly depends on the
semantics of the data and the frequency of common operations.

In general, overlap and covering constraints can be expressed in SQL only by
using assertions.

3.5.7 Translating ER Diagrams with Aggregation

Consider the ER diagram shown in Figure 3.16. The Employees, Projects,

Manilars

Departments

I

_______did~ fT:C~'~~)

Figure 3.16 Aggregation

and Departments entity sets and the Sponsors relationship set are mapped as
described in previous sections. For the Monitors relationship set, we create a
relation with the following attributes: the key attributes of Employees (88n), the
key attributes of Sponsors (d'id, p'id), and the descriptive attributes of Monitors
('/.tnt:'il). This translation is essentially the standard mapping for a relationship
set, as described in Section 3.5.2.
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There is a special case in which this translation can be refined by dropping the
Sponsors relation. Consicler the Sponsors relation. It has attributes pid, did,
and since; and in general we need it (in addition to l\rlonitors) for two reasons:

1. \Ve have to record the descriptive attributes (in our example, since) of the
Sponsors relationship.

2. Not every sponsorship has a monitor, and thus some (p'id, did) pairs in the
Sponsors relation may not appear in the Monitors relation.

However, if Sponsors has no descriptive attributes and has total participation
in Monitors, every possible instance of the Sponsors relation can be obtained
from the (pid, did) columns of Monitors; Sponsors can be dropped.

3.5.8 ER to Relational: Additional Examples

Consider the ER diagram shown in Figure 3.17. We can use the key constraints

Figure 3.17 Policy Revisited

to combine Purchaser information with Policies and Beneficiary information
with Dependents, and translate it into the relational model as follows:

CREATE TABLE Policies ( policyid INTEGER,
cost REAL,
ssn CHAR (11) NOT NULL,
PRIMARY KEY (policyid),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE )
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CREATE TABLE Dependents (pname CHAR(20) ,
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid),
FOREIGN KEY (policyid) REFERENCES Policies

ON DELETE CASCADE)

Notice how the deletion of an employee leads to the deletion of all policies
owned by the employee and all dependents who are beneficiaries of those poli­
cies. Further, each dependent is required to have a covering policy-because
policyid is part of the primary key of Dependents, there is an implicit NOT NULL
constraint. This model accurately reflects the participation constraints in the
ER diagram and the intended actions when an employee entity is deleted.

In general, there could be a chain of identifying relationships for weak entity
sets. For example, we assumed that policyid uniquely identifies a policy. Sup­
pose that policyid distinguishes only the policies owned by a given employee;
that is, policyid is only a partial key and Policies should be modeled as a weak
entity set. This new assumption about policyid does not cause much to change
in the preceding discussion. In fact, the only changes are that the primary
key of Policies becomes (policyid, ssn) , and as a consequence, the definition of
Dependents changes-a field called ssn is added and becomes part of both the
primary key of Dependents and the foreign key referencing Policies:

CREATE TABLE Dependents (pname CHAR(20) ,
ssn CHAR (11) ,

age INTEGER,
policyid INTEGER NOT NULL,
PRIMARY KEY (pname, policyid, ssn),
FOREIGN KEY (policyid, ssn) REFERENCES Policies

ON DELETE CASCADE )

3.6 INTRODUCTION TO VIEWS

A view is a table whose rows are not explicitly stored in the database but
are computed as needed from a view definition. Consider the Students and
Enrolled relations. Suppose we are often interested in finding the names and
student identifiers of students who got a grade of B in some course, together
with the course identifier. \Ne can define a view for this purpose. Using SQL
notation:

CREATE VIEW B-Students (name, sid, course)
AS SELECT S.sname, S.sid, E.cid
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FROM
WHERE

Students S, Enrolled E
S.sid = E.studid AND E.grade = 'B'

87
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The view B-Students has three fields called name, sid, and course with the
same domains as the fields sname and sid in Students and cid in Enrolled.
(If the optional arguments name, sid, and course are omitted from the CREATE
VIEW statement, the column names sname, sid, and cid are inherited.)

This view can be used just like a base table, or explicitly stored table, in
defining new queries or views. Given the instances of Enrolled and Students
shown in Figure 3.4, B-Students contains the tuples shown in Figure 3.18.
Conceptually, whenever B-Students is used in a query, the view definition is
first evaluated to obtain the corresponding instance of B-Students, then the rest
of the query is evaluated treating B-Students like any other relation referred
to in the query. (We discuss how queries on views are evaluated in practice in
Chapter 25.)

sid course

History105
Reggae203

Figure 3.18 An Instance of the B-Students View

3.6.1 Views, Data Independence, Security

Consider the levels of abstraction we discussed in Section 1.5.2. The physical
schema for a relational database describes how the relations in the conceptual
schema are stored, in terms of the file organizations and indexes used. The
conceptual schema is the collection of schemas of the relations stored in the
database. While some relations in the conceptual schema can also be exposed to
applications, that is, be part of the exte'mal schema of the database, additional
relations in the external schema can be defined using the view mechanism.
The view mechanism thus provides the support for logical data independence
in the relational model. That is, it can be used to define relations in the
external schema that mask changes in the conceptual schema of the database
from applications. For example, if the schema of a stored relation is changed,
we can define a view with the old schema and applications that expect to see
the old schema can now use this view.

Views are also valuable in the context of security: We can define views that
give a group of users access to just the information they are allowed to see. For
example, we can define a view that allows students to see the other students'
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name and age but not their gpa, and allows all students to access this view but
not the underlying Students table (see Chapter 21).

3.6.2 Updates on Views

The motivation behind the view mechanism is to tailor how users see the data.
Users should not have to worry about the view versus base table distinction.
This goal is indeed achieved in the case of queries on views; a view can be used
just like any other relation in defining a query. However, it is natural to want to
specify updates on views as well. Here, unfortunately, the distinction between
a view and a ba.se table must be kept in mind.

The SQL-92 standard allows updates to be specified only on views that are
defined on a single base table using just selection and projection, with no use of
aggregate operations. 3 Such views are called updatable views. This definition
is oversimplified, but it captures the spirit of the restrictions. An update on
such a restricted view can always be implemented by updating the underlying
base table in an unambiguous way. Consider the following view:

CREATE VIEW GoodStudents (sid, gpa)
AS SELECT S.sid, S.gpa

FROM Students S
WHERE S.gpa> 3.0

We can implement a command to modify the gpa of a GoodStudents row by
modifying the corresponding row in Students. We can delete a GoodStudents
row by deleting the corresponding row from Students. (In general, if the view
did not include a key for the underlying table, several rows in the table could
'correspond' to a single row in the view. This would be the case, for example,
if we used S.sname instead of S.sid in the definition of GoodStudents. A com­
mand that affects a row in the view then affects all corresponding rows in the
underlying table.)

We can insert a GoodStudents row by inserting a row into Students, using
null values in columns of Students that do not appear in GoodStudents (e.g.,
sname, login). Note that primary key columns are not allowed to contain null
values. Therefore, if we attempt to insert rows through a view that does not
contain the primary key of the underlying table, the insertions will be rejected.
For example, if GoodStudents contained snarne but not ,c;id, we could not insert
rows into Students through insertions to GooclStudents.

3There is also the restriction that the DISTINCT operator cannot be used in updatable vi(;w defi­
nitions. By default, SQL does not eliminate duplicate copies of rows from the result of it query; the
DISTINCT operator requires duplicate elimination. vVe discuss t.his point further in Chapt.er 5.
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Updatable Views in SQL:1999 The Hew SQL standard has expanded
the class of view definitions that are updatable~ taking primary . key
constraints into account. In contra..')t· to SQL-92~ a· view definition that
contains more than OIle table in the FROM clause may be updatable under
the new definition. Intuitively~ we can update afield of a. view if it is
obtained from exactly one of the underlying tables, and the primary key
of that table is included in the fields of the view.

SQL:1999 distinguishes between views whose rows can be modified (updat­
able views) and views into which new rows can be inserted (insertable­
into views): Views defined using the SQL constructs UNION, INTERSECT,
and EXCEPT (which we discuss in Chapter 5) cannot be inserted into, even
if they are updatable. Intuitively, updatability ensures that an updated
tuple in the view can be traced to exactly one tuple in one of the tables
used to define the view. The updatability property, however, may still not
enable us to decide into which table to insert a new tuple.

An important observation is that an INSERT or UPDATE may change the un­
derlying base table so that the resulting (i.e., inserted or modified) row is not
in the view! For example, if we try to insert a row (51234, 2.8) into the view,
this row can be (padded with null values in the other fields of Students and
then) added to the underlying Students table, but it will not appear in the
GoodStudents view because it does not satisfy the view condition gpa > 3.0.
The SQL default action is to allow this insertion, but we can disallow it by
adding the clause WITH CHECK OPTION to the definition of the view. In this
case, only rows that will actually appear in the view are permissible insertions.

We caution the reader, that when a view is defined in terms of another view,
the interaction between these view definitions with respect to updates and the
CHECK OPTION clause can be complex; we not go into the details.

Need to Restrict View Updates

vVhile the SQL rules on updatable views are more stringent than necessary,
there are some fundamental problems with updates specified on views and good
reason to limit the class of views that can be updated. Consider the Students
relation and a new relation called Clubs:

Clubs( cname: string, jyear: date, mnarne: string)
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Sailing 1996 Dave
Hiking 1997 Smith
Rowing 1998 Smith

Dave
Jones
Smith
Smith

dave(gcs
jones~~cs

smith@ee
smith@math

CHAPTER 8

Figure 3.19 An Instance C of Clubs

I name ,. login

Figure 3.20 An Instance 53 of Students

I dub since
Dave dave@cs Sailing 1996
Smith smith@ee Hiking 1997
Smith smith@ee Rowing 1998
Smith smith@math Hiking 1997
Smith smith@math Rowing 1998

Figure 3.21 Instance of ActiveStudents

A tuple in Clubs denotes that the student called mname has been a member of
the club cname since the date jyear. 4 Suppose that we are often interested in
finding the names and logins of students with a gpa greater than 3 who belong
to at least one club, along with the club name and the date they joined the
club. We can define a view for this purpose:

CREATE VIEW ActiveStudents (name, login, club, since)
AS SELECT S.sname, S.login, C.cname, C.jyear

FROM Students S, Clubs C
WHERE S.sname = C.mname AND S.gpa> 3

Consider the instances of Students and Clubs shown in Figures 3.19 and 3.20.
When evaluated using the instances C and S3, ActiveStudents contains the
rows shown in Figure 3.21.

Now suppose that we want to delete the row (Smith, smith@ee, Hiking, 1997)
from ActiveStudents. How are we to do this? ActiveStudents rows are not
stored explicitly but computed as needed from the Students and Clubs tables
using the view definition. So we must change either Students or Clubs (or
both) in such a way that evaluating the view definition on the modified instance
does not produce the row (Snrith, 8Tnith@ec, Hiking, 1997.) This ta.sk can be
ctccomplished in one of two ways: by either deleting the row (53688.. Sm'ith,
8Tn'ith(iJ)ee, 18, ,g.2) from Students or deleting the row (Hiking, 1.997, 8m/ith)

clvVe remark that Clubs has a poorly designed schema (chosen for the sake of our discussion of view
updates), since it identifies students by name, which is not a candidate key for Students.
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from Clubs. But neither solution is satisfactory. Removing the Students row
has the effect of also deleting the row (8m:ith, smith@ee, Rowing, 1998) from the
view ActiveStudents. Removing the Clubs row h&'3 the effect of also deleting the
row (Smith, smith@math, Hiking, 1991) from the view ActiveStudents. Neither
side effect is desirable. In fact, the only reasonable solution is to d'isallow such
updates on views.

Views involving more than one base table can, in principle, be safely updated.
The B-Students view we introduced at the beginning of this section is an ex­
ample of such a view. Consider the instance of B-Students shown in Figure
3.18 (with, of course, the corresponding instances of Students and Enrolled as
in Figure 3.4). To insert a tuple, say (Dave, 50000, Reggae203) B-Students, we
can simply insert a tuple (Reggae203, B, 50000) into Enrolled since there is al­
ready a tuple for sid 50000 in Students. To insert (John, 55000, Reggae203), on
the other hand, we have to insert (Reggae203, B, 55000) into Enrolled and also
insert (55000, John, null, null, null) into Students. Observe how null values
are used in fields of the inserted tuple whose value is not available. Fortunately,
the view schema contains the primary key fields of both underlying base tables;
otherwise, we would not be able to support insertions into this view. To delete
a tuple from the view B-Students, we can simply delete the corresponding tuple
from Enrolled.

Although this example illustrates that the SQL rules on updatable views are
unnecessarily restrictive, it also brings out the complexity of handling view
updates in the general case. For practical reasons, the SQL standard has chosen
to allow only updates on a very restricted class of views.

3.7 DESTROYING/ALTERING TABLES AND VIEWS

If we decide that we no longer need a base table and want to destroy it (i.e.,
delete all the rows and remove the table definition information), we can use
the DROP TABLE command. For example, DROP TABLE Students RESTRICT de­
stroys the Students table unless some view or integrity constraint refers to
Students; if so, the command fails. If the keyword RESTRICT is replaced by
CASCADE, Students is dropped and any referencing views or integrity constraints
are (recursively) dropped as well; one of these t\VO keyvlOrds must always be
specified. A vipw can be dropped using the DROP VIEW command, which is just
like DROP TABLE.

ALTER TABLE modifies the structure of an existing table. To add a column
called maiden-name to Students, for example, we would use the following com­
mand:
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ALTER TABLE Students
ADD COLUMN maiden-name CHAR(10)

CUAPTER·.'3

The definition of Students is modified to add this column, and all existing rows
are padded with null values in this column. ALTER TABLE can also be used
to delete columns and add or drop integrity constraints on a table; we do not
discuss these aspects of the command beyond remarking that dropping columns
is treated very similarly to dropping tables or views.

3.8 CASE STUDY: THE INTERNET STORE

The next design step in our running example, continued from Section 2.8, is
logical database design. Using the standard approach discussed in Chapter 3,
DBDudes maps the ER diagram shown in Figure 2.20 to the relational model,
generating the following tables:

CREATE TABLE Books ( isbn CHAR ( 10) ,
title CHAR(80) ,
author CHAR(80),
qty_in-stock INTEGER,
price REAL,
yeaLpublished INTEGER,
PRIMARY KEY (isbn))

CREATE TABLE Orders ( isbn CHAR (10) ,
ciel INTEGER,
carelnum CHAR (16) ,
qty INTEGER,
order_date DATE,
ship_date DATE,
PRIMARY KEY (isbn,cid),
FOREIGN KEY (isbn) REFERENCES Books,
FOREIGN KEY (cid) REFERENCES Customers)

CREATE TABLE Customers ( cid INTEGER,
cname CHAR(80),
address CHAR(200),
PRIMARY KEY (cid)

The design team leader, who is still brooding over the fact that the review
exposed a flaw in the design, now has an inspiration. The Orders table contains
the field order_date and the key for the table contains only the fields isbn and
c'id. Because of this, a customer cannot order the same book OIl different days,
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a re.striction that was not intended. vVhy not add the order-date attribute to
the key for the Orders table? This would eliminate the unwanted restrietion:

CREATE TABLE Orders ( isbn CHAR(10) ,

PRIMARY KEY (isbn,cid,ship_date),
... )

The reviewer, Dude 2, is not entirely happy with this solution, which he calls
a 'hack'. He points out that no natural ER diagram reflects this design and
stresses the importance of the ER diagram &<; a design do·cument. Dude 1
argues that, while Dude 2 has a point, it is important to present B&N with
a preliminary design and get feedback; everyone agrees with this, and they go
back to B&N.

The owner of B&N now brings up some additional requirements he did not
mention during the initial discussions: "Customers should be able to purchase
several different books in a single order. For example, if a customer wants to
purchase three copies of 'The English Teacher' and two copies of 'The Character
of Physical Law,' the customer should be able to place a single order for both
books."

The design team leader, Dude 1, asks how this affects the shippping policy.
Does B&N still want to ship all books in an order together? The owner of
B&N explains their shipping policy: "As soon as we have have enough copies
of an ordered book we ship it, even if an order contains several books. So it
could happen that the three copies of 'The English Teacher' are shipped today
because we have five copies in stock, but that 'The Character of Physical Law'
is shipped tomorrow, because we currently have only one copy in stock and
another copy arrives tomorrow. In addition, my customers could place more
than one order per day, and they want to be able to identify the orders they
placed."

The DBDudes team thinks this over and identifies two new requirements: First,
it must be possible to order several different books in a single order and sec­
ond, a customer must be able to distinguish between several orders placed the
same day. To accomodate these requirements, they introduce a new attribute
into the Orders table called ordernum, which uniquely identifies an order and
therefore the customer placing the order. However, since several books could be
purchased in a single order, onleTnum and isbn are both needed to determine
qt.y and ship_dat.e in the Orders table.

Orders are assign(~d order numbers sequentially and orders that are placed later
have higher order numbers. If several orders are placed by the same customer
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on a single day, these orders have different order numbers and can thus be
distinguished. The SQL DDL statement to create the modified Orders table
follows:

CREATE TABLE Orders ( ordernum INTEGER,
isbn CHAR(10),
dd INTEGER,
cardnum CHAR (16) ,
qty INTEGER,
ordeLdate DATE,
ship~date DATE,
PRIMARY KEY (ordernum, isbn),
FOREIGN KEY (isbn) REFERENCES Books
FOREIGN KEY (dd) REFERENCES Customers)

The owner of B&N is quite happy with this design for Orders, but has realized
something else. (DBDudes is not surprised; customers almost always come up
with several new requirements as the design progresses.) While he wants all
his employees to be able to look at the details of an order, so that they can
respond to customer enquiries, he wants customers' credit card information to
be secure. To address this concern, DBDudes creates the following view:

CREATE VIEW OrderInfo (isbn, cid, qty, order-date, ship_date)
AS SELECT O.cid, O.qty, O.ordeLdate, O.ship_date

FROM Orders 0

The plan is to allow employees to see this table, but not Orders; the latter is
restricted to B&N's Accounting division. We'll see how this is accomplished in
Section 21. 7.

3.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• What is a relation? Differentiate between a relation schema and a relation
instance. Define the terms arity and degree of a relation. What are domain
constraints? (Section 3.1)

• What SQL construct enables the definition of a relation? \Vhat constructs
allow modification of relation instances? (Section 3.1.1)

• \Vhat are integrity constraints? Define the terms primary key constTa'int
and foreign key constraint. How are these constraints expressed in SQL?
What other kinds of constraints can we express in SQL? (Section 3.2)
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• \Vhat does the DBMS do when constraints are violated? What is referen­
tial 'integr-ity? \Vhat options does SQL give application programmers for
dealing with violations of referential integrity? (Section 3.3)

• When are integrity constraints enforced by a DBMS? How can an appli­
cation programmer control the time that constraint violations are checked
during transaction execution? (Section 3.3.1)

• What is a relational database query? (Section 3.4)

• How can we translate an ER diagram into SQL statements to create ta­
bles? How are entity sets mapped into relations? How are relationship
sets mapped? How are constraints in the ER model, weak entity sets, class
hierarchies, and aggregation handled? (Section 3.5)

• What is a view? How do views support logical data independence? How
are views used for security? How are queries on views evaluated? Why
does SQL restrict the class of views that can be updated? (Section 3.6)

• What are the SQL constructs to modify the structure of tables and de-­
stray tables and views? Discuss what happens when we destroy a view.
(Section 3.7)

EXERCISES

Exercise 3.1 Define the following terms: relation schema, relational database schema, do­
main, relation instance, relation cardinality, and relation degree.

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 22?

Exercise 3.3 Does the relational model, as seen by an SQL query writer, provide physical
and logical data independence? Explain.

Exercise 3.4 \\That is the difference between a candidate key and the primary key for a given
relation? What is a superkey?

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.

1. Give an example of an attribute (or set of attributes) that you can deduce is not a
candidate key, based on this instance being legaL

2. Is there any example of an attribute (or set of attributes) that you can deduce is a
candidate key, based on this instance being legal?

Exercise 3.6 What is a foreign key constraint? Why are such constraints important? What
is referential integrity?

Exercise 3.7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
'Lnd Meets_In defined in Section 1.5.2.
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1. List all the foreign key constraints among these relations.

2. Give an example of a (plausible) constraint involving one or more of these relations that
is not a primary key or foreign key constraint.

Exercise 3.8 Answer each of the following questions briefly. The questions are b&'>ed OIl the
following relational schema:

Emp( eid: integer, ename: string, age: integer, sala1l1: real)
Works (eid: integer, did: integer, peLtime: integer)
Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What are
the options for enforcing this constraint when a user attempts to delete a Dept tuple?

2. Write the SQL statements required to create the preceding relations, including appro­
priate versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guaranteed to have a
manager.

4. Write an SQL statement to add John Doe as an employee with eid = 101, age = 32 and
salary = 15,000.

5. Write an SQL statement to give every employee a 10 percent raise.

6. Write an SQL statement to delete the Toy department. Given the referential integrity
constraints you chose for this schema, explain what happens when this statement is
executed.

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.6.

1. Modify this query so that only the login column is included in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of tuples
in the answer?

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL definition of
the Manages relation (in Section 3.5.3) would not enforce the constraint that each department
must have a manager. What, if anything, is achieved by requiring that the S8n field of Manages
be non-null?

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A, B,
and C such that A has a key constraint and total participation and B has a key constraint;
these are the only constraints. A has attributes al and a2, with al being the key; Band
C are similar. R has no descriptive attributes. Write SQL statements that create tables
corresponding to this information so &s to capture as many of the constraints as possible. If
you cannot capt,).ue some constraint, explain why.

Exercise 3.12 Consider the scenario from Exercise 2.2, where you designed an ER diagram
for a university database. \Vrite SQL staternents to create the corresponding relations and
capture as many of the constraints as possible. If you cannot: capture some constraints, explain
why.

Exercise 3.13 Consider the university database from Exercise 2.:3 and the ER diagram you
designed. Write SQL statements to create the corresponding relations and capture &'> many
of the constraints as possible. If you cannot capture some constraints, explain why.
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Exercise 3.14 Consider the scenario from Exercise 2.4, where you designed an ER diagram
for a company databa,c;e. \~Trite SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints,
explain why.

Exercise 3.15 Consider the Notown database from Exercise 2.5. You have decided to rec­
ommend that Notown use a relational database system to store company data. Show the
SQL statements for creating relations corresponding to the entity sets and relationship sets
in your design. Identify any constraints in the ER diagram that you are unable to capture in
the SQL statements and briefly explain why you could not express them.

Exercise 3.16 Thanslate your ER diagram from Exercise 2.6 into a relational schema, and
show the SQL statements needed to create the relations, using only key and null constraints.
If your translation cannot capture any constraints in the ER diagram, explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests on a
plane must be conducted by a technician who is an expert on that model. Can you modify
the SQL statements defining the relations obtained by mapping the ER diagram to check this
constraint?

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X chain of
pharmacies in Exercise 2.7. Define relations corresponding to the entity sets and relationship
sets in your design using SQL.

Exercise 3.18 Write SQL statements to create the corresponding relations to the ER dia­
gram you designed for Exercise 2.8. If your translation cannot capture any constraints in the
ER diagram, explain why.

Exercise 3.19 Briefly answer the following questions based on this schema:

Emp(e'id: integer, ename: string, age: integer, salary: real)
Works (eid: integer, did: integer, peLtime: integer)
Dept(did: integer, budget: real, managerid: integer)

1. Suppose you have a view SeniorEmp defined as follows:

CREATE VIEW SeniorEmp (sname, sage, salary)
AS SELECT E.ename, Kage, E.salary

FROM Emp E
WHERE Kage > 50

Explain what the system will do to process the following query:

SELECT S.sname
FROM SeniorEmp S
WHERE S.salary > 100,000

2. Give an example of a view on Emp that could be automatically updated by updating
Emp.

3. Give an example of a view on Emp that would be impossible to update (automatically)
and explain why your example presents the update problem that it does.

Exercise 3.20 C::onsider the following schema:
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Suppliers( sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

CHAPTER,. 3

The Catalog relation lists the prices charged for parts by Suppliers. Answer the following
questions:

• Give an example of an updatable view involving one relation.

• Give an example of an updatable view involving two relations.

• Give an example of an insertable-into view that is updatable.

• Give an example of an insertable-into view that is not updatable.

PROJECT-BASED EXERCISES

Exercise 3.21 Create the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets_In in Minibase.

Exercise 3.22 Insert the tuples shown in Figures 3.1 and 3.4 into the relations Students and
Enrolled. Create reasonable instances of the other relations.

Exercise 3.23 What integrity constraints are enforced by Minibase?

Exercise 3.24 Run the SQL queries presented in this chapter.
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materialized views.
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that date) in [513, 514].
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RELATIONAL ALGEBRA

AND CALCULUS

.. What is the foundation for relational query languages like SQL? What
is the difference between procedural and declarative languages?

... What is relational algebra, and why is it important?

... What are the basic algebra operators, and how are they combined to
write complex queries?

... What is relational calculus, and why is it important?

... What subset of mathematical logic is used in relational calculus, and
how is it used to write queries?

.. Key concepts: relational algebra, select, project, union, intersection,
cross-product, join, division; tuple relational calculus, domain rela­
tional calculus, formulas, universal and existential quantifiers, bound
and free variables

'--------------------

Stand finn in your refusal to remain conscious during algebra. In real life, I
assure you, there is no such thing as algebra.

~·-Fran Lebowitz, Social Studies

This chapter presents two formal query languages associated with the relational
model. Query 'languages are specialized languages for asking questions, or
queries, that involve the data in a database. After covering some preliminaries
in Section 4.1, we discuss rdafional algebra in Section 4.2. Queries in relational
algebra are composed using a collection of operators, and each query describes
a step-by-step procedure for computing the desired answer; that is, queries are
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specified in an operationa.l manner. In Section 4.3, we discuss Tela.l'ional calcu­
lus, in which a query describes the desired ans\ver without specifying how the
answer is to be computed; this nonprocedural style of querying is called declar­
at'i'Ve. \Ve usually refer to relational algebra and relational calculus as algebra
and calculus, respectively. vVe compare the expressive power of algebra and
calculus in Section 4.4. These formal query languages have greatly influenced
commercial query languages such as SQL, which we discuss in later chapters.

4.1 PRELIMINARIES

We begin by clarifying some important points about relational queries. The
inputs and outputs of a query are relations. A query is evaluated using instances
of each input relation and it produces an instance of the output relation. In
Section 3.4, we used field names to refer to fields because this notation makes
queries more readable. An alternative is to always list the fields of a given
relation in the same order and refer to fields by position rather than by field
name.

In defining relational algebra and calculus, the alternative of referring to fields
by position is more convenient than referring to fields by name: Queries often
involve the computation of intermediate results, which are themselves relation
instances; and if we use field names to refer to fields, the definition of query
language constructs must specify the names of fields for all intermediate relation
instances. This can be tedious and is really a secondary issue, because we can
refer to fields by position anyway. On the other hand, field names make queries
more readable.

Due to these considerations, we use the positional notation to formally define
relational algebra and calculus. We also introduce simple conventions that
allow intermediate relations to 'inherit' field names, for convenience.

vVe present a number of sample queries using the following schema:

Sailors(sid: integer, snarne: string, rating: integer, age: real)
Boats( bid: integer, bnarne: string, coloT: string)
Reserves (sid: integer, bid: _~_r:teger, day: date)

The key fields are underlined, and the doma,in of each field is listed after the
field name. Thus, .sid is the key for Sailors, bid is the key for Boats, and all
three fields together form the key for Reserves. Fields in an instance of one
of these relations are referred to by name, or positionally, using the order in
which they were just listed.
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In several examples illustrating the relational algebra operators, we use the
instances 81 and 82 (of Sailors) and R1 (of Reserves) shown in Figures 4.1,
4.2, and 4.3, respectively.

1",';-1 J
I yv'l' 1

22 Dustin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0

Figure 4.1 Instance Sl of Sailors

t'Cc'Jdl l'l"n1mn1Jlnl:JlPj

28 yuppy 9 35.0
31 Lubber 8 55.5
44 guppy 5 35.0
58 Rusty 10 35.0

Figure 4.2 Instance S2 of Sailors

Figure 4.3 Instance Rl of Reserves

4.2 RELATIONAL ALGEBRA

Relational algebra is one of the two formal query languages associated with the
relational model. Queries in algebra are composed using a collection of oper­
ators. A fundamental property is that every operator in the algebra accepts
(one or two) relation instances as arguments and returns a relation instance
as the result. This property makes it easy to compose operators to form a
complex query-a relational algebra expression is recursively defined to be
a relation, a unary algebra operator applied to a single expression, or a binary
algebra operator applied to two expressions. We describe the basic operators of
the algebra (selection, projection, union, cross-product, and difference), as well
as some additional operators that can be defined in terms of the basic opera­
tors but arise frequently enough to warrant special attention, in the following
sections.

Each relational query describes a step-by-step procedure for computing the
desired answer, based on the order in which operators are applied in the query.
The procedural nature of the algebra allows us to think of an algebra expression
as a recipe, or a plan, for evaluating a query, and relational systems in fact use
algebra expressions to represent query evaluation plans.
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4.2.1 Selection and Projection

Relational algebra includes operators to select rows from a relation (a) and to
project columns (7r). These operations allow us to manipulate data in a single
relation. Consider the instance of the Sailors relation shown in Figure 4.2,
denoted as 52. We can retrieve rows corresponding to expert sailors by using
the a operator. The expression

arating>8 (52)

evaluates to the relation shown in Figure 4.4. The subscript rating> 8 specifies
the selection criterion to be applied while retrieving tuples.

sname I rating I
yuppy 9
Rusty 10

Figure 4.4 O"r(lting>s(S2)

yuppy 9
Lubber 8
guppy 5
Rusty 10

Figure 4.5 7r,m(lT1lc,Tating(S2)

The selection operator a specifies the tuples to retain through a selection con­
dition. In general, the selection condition is a Boolean combination (i.e., an
expression using the logical connectives /\ and V) of terms that have the form
attribute op constant or attributel op attribute2, where op is one of the com­
parison operators <, <=, =, ,#, >=, or >. The reference to an attribute can be
by position (of the form .i or i) or by name (of the form .name or name). The
schema of the result of a selection is the schema of the input relation instance.

The projection operator 7r allows us to extract columns from a relation; for
example, we can find out all sailor names and ratings by using 1f. The expression

7rsname,rafing(52)

evaluates to the relation shown in Figure 4.5. The subscript 8na:me)rating
specifies the fields to be retained; the other fields are 'projected out.' The
schema of the result of a projection is determined by the fields that are projected
in the obvious way.

Suppose that we wanted to find out only the ages of sailors. The expression

evaluates to the relation shown in Figure /1.6. The irnportant point to note is
that, although three sailors are aged 35, a single tuple with age=:J5.0 appears in



104 CHAPTER+!

the result of the projection. This follm\'8 from the definition of a relation as a set
of tuples. In practice, real systems often omit the expensive step of eliminating
duplicate tuples, leading to relations that are multisets. However, our discussion
of relational algebra and calculus a..-;sumes that duplicate elimination is always
done so that relations are always sets of tuples.

Since the result of a relational algebra expression is always a relation, we can
substitute an expression wherever a relation is expected. For example, we can
compute the names and ratings of highly rated sailors by combining two of the
preceding queries. The expression

7rsname,rating ( (Jrati.ng>8 (82) )

produces the result shown in Figure 4.7. It is obtained by applying the selection
to 82 (to get the relation shown in Figure 4.4) and then applying the projection.

I age ·.1

QBO
~

Figure 4.6 1rage (82)

4.2.2 Set Operations

Figure 4.7 1rsname,rating(Urating>s(S2))

The following standard operations on sets are also available in relational al­
gebra: un'ion (U), intersection (n), set-difference (-), and cmss-product (x).

II Union: R U 8 returns a relation instance containing aU tuples that occur
in either relation instance R or relation instance 8 (or both). Rand 8
must be union-compatible, and the schema of the result is defined to be
identical to the schema of R.

Two relation instances are said to be union-compatible if the following
conditions hold:
~ they have the same number of the fields, and

- corresponding fields, taken in order from left to right, have the same
domains.

Note that ~eld names are not used in defining union-compatibility. for
convenience, we will assume that the fields of R U 5' inherit names from R,
if the fields of R have names. (This assumption is implicit in defining the
schema of R U 5' to be identical to the schema of R, as stated earlier.)

III Intersection: R n 5' returns a relation instance containing all tuples that
occur in both Rand S. The relations Rand S must be union-compatible,
and the schema of the result is defined to be identical to the schema of R.
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• Set-difference: R- 8 returns a relation instance containing all tuples that
occur in R but not in 8. The relations Rand 8 must be union-compatible,
and the schema of the result is defined to be identical to the schema of R.

• Cross-product: R x 8 returns a relation instance whose schema contains
all the fields of R (in the same order as they appear in R) followed by all
the fields of 8 (in the same order as they appear in 8). The result of R x 8
contains OIle tuple (1', s) (the concatenation of tuples rand s) for each pair
of tuples l' E R, S E 8. The cross-product opertion is sometimes called
Cartesian product.

\\Te use the convention that the fields of R x 8 inherit names from the
corresponding fields of Rand 8. It is possible for both Rand 8 to contain
one or more fields having the same name; this situation creates a naming
confi'ict. The corresponding fields in R x 8 are unnamed and are referred
to solely by position.

In the preceding definitions, note that each operator can be applied to relation
instances that are computed using a relational algebra (sub)expression.

We now illustrate these definitions through several examples. The union of 81
and 82 is shown in Figure 4.8. Fields are listed in order; field names are also
inherited from 81. 82 has the same field names, of course, since it is also an
instance of Sailors. In general, fields of 82 may have different names; recall that
we require only domains to match. Note that the result is a set of tuples. TUples
that appear in both 81 and 82 appear only once in 81 U 82. Also, 81 uRI is
not a valid operation because the two relations are not union-compatible. The
intersection of 81 and 82 is shown in Figure 4.9, and the set-difference 81- 82
is shown in Figure 4.10.

22 Dustin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0
28 yuppy 9 35.0
44 guppy 5 35.0

Figure 4.8 31 u 52

The result of the cross-product 81 x Rl is shown in Figure 4.11. Because Rl
and 81 both have a field named sid, by our convention on field names, the
corresponding two fields in 81 x Rl are unnamed, and referred to solely by the
position in which they appear in Figure 4.11. The fields in 81 x Rl have the
same domains as the corresponding fields in Rl and 5'1. In Figure 4.11, sid is
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31 Lubber 8 55.5
58 Rusty 10 35.0

Figure 4.9 81 n 82

GHAPTER f4

li~·iiJB1ff/fj,me It,{4t~rf1l1f:4f1ei I
I 22 I Dustin I 7 [3fOJ

Figure 4.10 81 - 82

listed in parentheses to emphasize that it is not an inherited field name; only
the corresponding domain is inherited.

(sid!) bid aay

22 Dustin 7 45.0 22 101 10/10/96
22 Dustin 7 45.0 58 103 11/12/96
31 Lubber 8 55.5 22 101 10/10/96
31 Lubber 8 55.5 58 103 11/12/96
58 Rusty 10 35.0 22 101 10/10/96
58 Rusty 10 35.0 58 103 11/12/96

Figure 4.11 81 x R1

4.2.3 Renaming

We have been careful to adopt field name conventions that ensure that the result
of a relational algebra expression inherits field names from its argument (input)
relation instances in a natural way whenever possible. However, name conflicts
can arise in some cases; for example, in 81 x Rl. It is therefore convenient
to be able to give names explicitly to the fields of a relation instance that is
defined by a relational algebra expression. In fact, it is often convenient to give
the instance itself a name so that we can break a large algebra expression into
smaller pieces by giving names to the results of subexpressions.

vVe introduce a renaming operator p for this purpose. The expression p(R(F), E)
takes an arbitrary relational algebra expression E and returns an instance of
a (new) relation called R. R contains the same tuples as the result of E and
has the same schema as E, but some fields are renamed. The field names in
relation R are the sarne as in E, except for fields renamed in the Tenaming list
F, which is a list of terms having the form oldname ~, newnarne or position ~
rW1llTlJLrne. For p to be well-defined, references to fields (in the form of oldnarnes
or posit.ions in the renaming list) may be unarnbiguous and no two fields in the
result may have the same name. Sometimes we want to only renarne fields or
(re)name the relation; we therefore treat both Rand F as optional in the use
of p. (Of course, it is meaningless to omit both.)
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For example, the expression p(C(l ----7 s'id1,5 ----7 sid2), 81 x R1) returns a
relation that contains the tuples shown in Figure 4.11 and has the following
schema: C(sidl: integer, ,marrw: string, mt'ing: integer, age: real, sid2:
integer, bid: integer, day: dates).

It is customary to include some additional operators in the algebra, but all of
them can be defined in terms of the operators we have defined thus far. (In
fact, the renaming operator is needed only for syntactic convenience, and even
the n operator is redundant; R n 8 can be defined as R - (R - 8).) We consider
these additional operators and their definition in terms of the basic operators
in the next two subsections.

4.2.4 Joins

The join operation is one of the most useful operations in relational algebra
and the most commonly used way to combine information from two or more
relations. Although a join can be defined as a cross-product followed by selec­
tions and projections, joins arise much more frequently in practice than plain
cross-products. Further, the result of a cross-product is typically much larger
than the result of a join, and it is very important to recognize joins and imple­
ment them without materializing the underlying cross-product (by applying the
selections and projections 'on-the-fly'). For these reasons, joins have received
a lot of attention, and there are several variants of the join operation. 1

Condition Joins

The most general version of the join operation accepts a join condition c and
a pair of relation instances as arguments and returns a relation instance. The
join cond'it-ion is identical to a selection condition in form. The operation is
defined as follows:

R [:X)e S = O"e(R X S)

Thus [:X) is defined to be a cross-product followed by a selection. Note that the
condition c can (and typically does) refer to attributes of both Rand S. The
reference to an attribute of a relation, say, R, can be by positioll (of the form
R.i) or by Ilame (of the form R.name).

As an example, the result of Sl [><JS1.8id<Rl.sid R1 is shown in Figure 4.12.
Because sid appears in both 81 and R1, the corresponding fields in the result
of the cross-product 81 x R1 (and therefore in the result of 81 [:X)S1.sid<Rl.sid R1)

1 Several variants of joins are not discussed in this chapter. An important c.la..'iS of joins, called
01lter joins, is discussed in Chapter 5.
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are unnamed. Domains are inherited from the corresponding fields of 81 and
Rl.

I (sid) I snarne I rating I age I··· {si41:l bid da/lj

I 22 I Dustin 7 45.0 58 I 103 I 11/12/96
I 31 I Lubber 8

.-
55.5 58 I 103 I 11/12/96

Figure 4.12 51 NSl. s id<R1.sid R1

Equijoin

A common special case of the join operation R [>(] 8 is when the join condition
consists solely of equalities (connected by 1\) of the form R.name1 = 8.name2,
that is, equalities between two fields in Rand S. In this case, obviously, there is
some redundancy in retaining both attributes in the result. For join conditions
that contain only such equalities, the join operation is refined by doing an
additional projection in which 8.name2 is dropped. The join operation with
this refinement is called equijoin.

The schema of the result of an equijoin contains the fields of R (with the same
names and domains as in R) followed by the fields of 8 that do not appear
in the join conditions. If this set of fields in the result relation includes two
fields that inherit the same name from Rand 8, they are unnamed in the result
relation.

We illustrate 81l:<JR.sid=5.sid Rl in Figure 4.13. Note that only one field called
sid appears in the result.

~ ,marne I rating I age I· bid·1 day =tJ
I 22 DustIn I 7 I 45.0 101 I 10/10/96 I
I 58 Rust}~ I 10 I ~5.0 103 I 11/12/96 I

Figure 4.13 81 MR ..,H1=S'."id HI

Natural Join

A further special ca.'3e of the join operation R [>(] S is an eqUlJom in which
equalities arc specified on all fields having the same name in Rand S. In
this case, we can simply omit the join condition; the default is that the join
condition is a collection of equalities on all common fields. We call this special
case a natumJ jo'in, and it has the nice property that the result is guaranteed
not to have two fields with the saIne name.
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The equijoin expression 81 D<m..sid=s.sid R1 is actually a natural join al1d can
simply be denoted as 81 [Xl R1, since the only common field is sid. If the two
relations have no attributes in common, 81 [Xl Rl is simply the cross-product.

4.2.5 Division

The division operator is useful for expressing certain kinds of queries for exam­
ple, "Find the names of sailors who have reserved all boats." Understanding
how to use the basic operators of the algebra to define division is a useful exer­
cise. However, the division operator does not have the same importance as the
other operators-it is not needed as often, and database systems do not try to
exploit the semantics of division by implementing it as a distinct operator (as,
for example, is done with the join operator).

We discuss division through an example. Consider two relation instances A
and B in which A has (exactly) two fields x and y and B has just one field y,
with the same domain as in A. We define the division operation AlB as the
set of all x values (in the form of unary tuples) such that for every y value in
(a tuple of) B, there is a tuple (x,y) in A.

Another way to understand division is as follows. For each x value in (the first
column of) A, consider the set of y values that appear in (the second field of)
tuples of A with that x value. If this set contains (all y values in) B, the x
value is in the result of AlB.

An analogy with integer division may also help to understand division. For
integers A and B, AlB is the largest integer Q such that Q * B ::::; A. :For
relation instances A and B, AlB is the largest relation instance Q such that
Q x B S:::A.

Division is illustrated in Figure 4.14. It helps to think of A as a relation listing
the parts supplied by suppliers and of the B relations as listing parts. AIB'i
computes suppliers who supply all parts listed in rdation instance Bi.

Expressing AlBin terms of the ba...sic algebra operators is an interesting ex­
ercise, and the reader should try to do this before reading further. The basic
idea is to compute all :r values in A that are not disqualified. An x value is
disqualified if lJy attaching a y value from B, we obtain a tuple (x,y) that is not
in A. We can compute disqualified tuples using the algebra expression

Thus, we can define AlBa.....,
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A I sno i pno I
81 \ pI I
sl p2

~._~~
81 i p4
82 \ pI

~_P2-~
83 ' p2
84 p2
s4 p4

CHAPTER$4

Bl [P.!!~J AlBl ~;~J
,....---,

~LEU
I 82 I

B2 I pno ] 83

BE 0
p4

~AlB2

B3 ~ BE
B1J

84

p2
~p4 AlB3

[ill

Figure 4.14 Examples Illustrating Division

To understand the division operation in full generality, we have to consider the
case when both x and yare replaced by a set of attributes. The generalization is
straightforward and left as an exercise for the reader. We discuss two additional
examples illustrating division (Queries Q9 and Q10) later in this section.

4.2.6 More Examples of Algebra Queries

We now present several examples to illustrate how to write queries in relational
algebra. We use the Sailors, Reserves, and Boats schema for all our examples
in this section. We use parentheses as needed to make our algebra expressions
unambiguous. Note that all the example queries in this chapter are given
a unique query number. The query numbers are kept unique across both this
chapter and the SQL query chapter (Chapter 5). This numbering makes it easy
to identify a query when it is revisited in the context of relational calculus and
SQL and to compare different ways of writing the same query. (All references
to a query can be found in the subject index.)

In the rest of this chapter (and in Chapter 5), we illustrate queries using the
instances 83 of Sailors, R2 of Reserves, and B1 of Boats, shown in Figures
4.15, 4.16, and 4.17, respectively.

(Q1) Find the names of sailors who have rcscT'ucd boat lOS.

This query can be written as follows:

".marne (((Jbid=1O:~Re.5erve8)[XJ 8ailoT.5)
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~l »> ....."""'.+A.".,'" hAh

22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Figure 4.15 An Instance 83 of Sailors

111,

22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Figure 4.16 An Instance R2 of Reserves

We first compute the set of tuples in Reserves with bid = 103 and then take the
natural join of this set with Sailors. This expression can be evaluated on in­
stances of Reserves and Sailors. Evaluated on the instances R2 and S3, it yields
a relation that contains just one field, called sname, and three tuples (Dustin),
(Horatio), and (Lubber). (Observe that two sailors are called Horatio and only
one of them has reserved a red boat.)

[~]bname I color· I
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Figure 4.17 An Instance HI of Boats

We can break this query into smaller pieces llsing the renaming operator p:

p(Temp1, IJbir1=103 ReseTves)

p(Temp2, Temp11XJ Sailor's)

1Tsname(Temp2)

Notice that because we are only llsing p to give names to intermediate relations,
the renaming list is optional and is omitted. TempI denotes an intermediate
relation that identifies reservations of boat 103. Temp2 is another intermediate
relation, and it denotes sailors who have mad(~ a reservation in the set Templ.
The instances of these relations when evaluating this query on the instances R2
and S3 are illustrated in Figures 4.18 and 4.19. Finally, we extract the sname
column from Temp2.
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22 10~~ 10/8/98
31 103 11/6/98
74 103 9/8/98

Dustin
31 Lubber 8
74 Horatio 9

CHAPTER;l

10/8/98
11/6/98--

9/8/98

Figure 4.18 Instance of TempI Figure 4.19 Instance of Temp2

The version of the query using p is essentially the same as the original query;
the use of p is just syntactic sugar. However, there are indeed several distinct
ways to write a query in relational algebra. Here is another way to write this
query:

Jrsname(CJbid=103(Reserves IX! Sailors))

In this version we first compute the natural join of Reserves and Sailors and
then apply the selection and the projection.

This example offers a glimpse of the role played by algebra in a relational
DBMS. Queries are expressed by users in a language such as SQL. The DBMS
translates an SQL query into (an extended form of) relational algebra and
then looks for other algebra expressions that produce the same answers but are
cheaper to evaluate. If the user's query is first translated into the expression

7fsname (CJbid=103 (Reserves IX! Sailors))

a good query optimizer will find the equivalent expression

7rsname ((CJb·id=103Reserves) IX! Sailors)

Further, the optimizer will recognize that the second expression is likely to
be less expensive to compute because the sizes of intermediate relations are
smaller, thanks to the early use of selection.

(Q2) Find the names of sailors who ha've reserved a red boat.

7f.marne ((CJcolor='red' Boats) IX! Reserves !><J S ailoI's)

This query involves a series of two joins. First, we choose (tuples describing)
red boats. Then, we join this set with Reserves (natural join, with equality
specified on thE) bid column) to identify reservations of red boats. Next, we
join the resulting intermediate relation with Sailors (natural join, with equality
specified on the sid column) to retrieve the names of sailors who have rnade
reservations for red boats. Finally, we project the sailors' names. The answer,
when evaluated on the instances B1, R2, and S3, contains the names Dustin,
Horatio, and Lubber.
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An equivalent expression is:

B.3

The reader is invited to rewrite both of these queries by using p to make the
intermediate relations explicit and compare the schema.<=; of the intermediate
relations. The second expression generates intermediate relations with fewer
fields (and is therefore likely to result in intermediate relation instances with
fewer tuples as well). A relational query optimizer would try to arrive at the
second expression if it is given the first.

(Q3) Find the colors of boats reserved by Lubber.

Jrcolor((asname='Lubber,Sa'ilors) [XJ Reserves [XJ Boats)

This query is very similar to the query we used to compute sailors who reserved
red boats. On instances Bl, R2, and S3, the query returns the colors green
and red.

(Q4) Find the names of sailors who have reserved at least one boat.

Jrsname(Sailors [XJ Reserves)

The join of Sailors and Reserves creates an intermediate relation in which tuples
consist of a Sailors tuple 'attached to' a Reserves tuple. A Sailors tuple appears
in (some tuple of) this intermediate relation only if at least one Reserves tuple
has the same sid value, that is, the sailor has made some reservation. The
answer, when evaluated on the instances Bl, R2 and S3, contains the three
tuples (Dustin), (HoTatio) , and (LubbeT). Even though two sailors called
Horatio have reserved a boat, the answer contains only one copy of the tuple
(HoTatio) , because the answer is a relation, that is, a set of tuples, with no
duplicates.

At this point it is worth remarking on how frequently the natural join operation
is used in our examples. This frequency is more than just a coincidence based
on the set of queries we have chosen to discuss; the natural join is a very
natural, widely used operation. In particular, natural join is frequently used
when joining two tables on a foreign key field. In Query Q4, for exalnple, the
join equates the sid fields of Sailors and Reserves, and the sid field of Reserves
is a foreign key that refers to the sid field of Sailors.

(Q5) Find the narnes of sailors who have reserved a Ted OT a gTeen boat.

p(Tempboats, (acoloT='rcd' Boats) U (acolor='green' Boats))

Jrsna·rne(Tempboats [XJ ReseTves [XJ Sailors)
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vVe identify the set of all boats that are either red or green (Tempboats, which
contains boats \vith the bids 102, 103, and 104 on instances E1, R2, and S3).
Then we join with Reserves to identify sid.., of sailors who have reserved OIle of
these boats; this gives us sids 22, 31, 64, and 74 over our example instances.
Finally, we join (an intermediate relation containing this set of sids) with Sailors
to find the names of Sailors with these sids. This gives us the names Dustin,
Horatio, and Lubber on the instances E1, R2, and S3. Another equivalent
definition is the following:

p(Tempboats, (acolor='red'Vcolor='green' Boats))
7fsname(Tempboats [><] Reserves [><] Sailors)

Let us now consider a very similar query.

(Q6) Find the names of sailors who have reserved a red and a green boat. It
is tempting to try to do this by simply replacing U by n in the definition of
Tempboats:

p(Tempboats2, (acolor='red,Eoats) n (O"color='green,Boats))

'7fsname(Tempboats2 [><] Reserves [><] Sailors)

However, this solution is incorrect-it instead tries to compute sailors who have
reserved a boat that is both red and green. (Since bid is a key for Boats, a boat
can be only one color; this query will always return an empty answer set.) The
correct approach is to find sailors who have reserved a red boat, then sailors
who have reserved a green boat, and then take the intersection of these two
sets:

p(Tempred, '7fsid ((acolor='red' Eoats) [><] Reserves))

p(Tempgreen, '7fsid((O"color='green,Boats) [><] Reserves))

'7f,marne((Ternpred n Tempgreen) [><] Sailors)

The two temporary relations compute the sids of sailors, and their intersection
identifies sailors who have reserved both red and green boats. On instances
BI, R2, and 53, the sids of sailors who have reserved a red boat are 22, 31,
and 64. The s'icLs of sailors who have reserved a green boat are 22, 31, and 74.
Thus, sailors 22 and 31 have reserved both a red boat and a green boat; their
names are Dustin and Lubber.

This formulation of Query Q6 can easily be adapted to find sailors \vho have
reserved red or green boats (Query Q5); just replace n by U:

p(TempTed, '7fsid( (O"color=lrcd' Boats) [)<] Reserves))

p(Tempgreen, '7fsid( (O"color='green' Boats) [)<] Reserves))

'7fsTwme((Tempred U Tempgreen) [)<] Sailors)
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In the formulations of Queries Q5 and Q6, the fact that sid (the field over
which we compute union or intersection) is a key for Sailors is very important.
Consider the following attempt to answer Query Q6:

p(Tempred, Jrsname((CJcolor='red,Boats) [><] Reserves [><] Sailors))

p(Tempgreen,Jrsname((CJcoloT='gTeenlBoats) [><] Reserves [><] Sailors))

Tempred n Tempgreen

This attempt is incorrect for a rather subtle reason. Two distinct sailors with
the same name, such as Horatio in our example instances, may have reserved
red and green boats, respectively. In this case, the name Horatio (incorrectly)
is included in the answer even though no one individual called Horatio has
reserved a red boat and a green boat. The cause of this error is that sname
is used to identify sailors (while doing the intersection) in this version of the
query, but sname is not a key.

(Q7) Find the names of sailors who have reser-ved at least two boats.

p(Reser-vations, Jrsid,sname,bid (Sailor s [><] Reserves))

p(Reservationpairs(l ---'? sid1, 2 ---'? sname1, 3 ---'? bid1, 4 ---'? sid2,

5 ---'? sname2, 6 ---'? bid2), Reservations x Reservations)

Jrsname1 CJ(sidl=sid2)I\(bidl=1-bid2) Reservationpair-s

First, we compute tuples of the form (sid,sname, bid) , where sailor sid has made
a reservation for boat bid; this set of tuples is the temporary relation Reserva­
tions. Next we find all pairs of Reservations tuples where the same sailor has
made both reservations and the boats involved are distinct. Here is the central
idea: To show that a sailor has reserved two boats, we must find two Reserva­
tions tuples involving the same sailor but distinct boats. Over instances El,
R2, and S3, each of the sailors with sids 22, 31, and 64 have reserved at least
two boats. Finally, we project the names of such sailors to obtain the answer,
containing the names Dustin, Horatio, and Lubber.

Notice that we included sid in Reservations because it is the key field identifying
sailors, and we need it to check that two Reservations tuples involve the same
sailor. As noted in the previous example, we cannot use sname for this purpose.

(Q8) Find the sids of sailors w'ith age over 20 who have not TeseTved a Ted boat.

Jrsid(CJage>20Sa'ilors) -

7rsid((CJco[oT='red,Boats) [><] Reserves [><] Sa'ilors)

This query illustrates the use of the set-difference operator. Again, we use the
fact that sid is the key for Sailors. vVe first identify sailors aged over 20 (over
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instances B1, R2, and S3, .'!'ids 22, 29, 31, 32, 58, 64, 74, 85, and 95) and then
discard those who have reserved a red boat (sid.c; 22, 31, and 64), to obtain the
answer (sids 29, 32, 58, 74, 85, and 95). If we want to compute the names of
such sailors, \ve must first compute their sids (as shown earlier) and then join
with Sailors and project the sname values.

(Q9) Find the names of sailors 'Who have rese'rved all boats.

The use of the word all (or every) is a good indication that the division operation
might be applicable:

p(Tempsids, (7l"sid,bidReserves) / (7l"bidBoats))

7l"sname(Tempsids N Sailors)

The intermediate relation Tempsids is defined using division and computes the
set of sids of sailors who have reserved every boat (over instances Bl, R2, and
S3, this is just sid 22). Note how we define the two relations that the division
operator (/) is applied to·-·--the first relation has the schema (sid,bid) and the
second has the schema (b'id). Division then returns all sids such that there is a
tuple (sid,bid) in the first relation for each bid in the second. Joining Tempsids
with Sailors is necessary to associate names with the selected sids; for sailor
22, the name is Dustin.

(Q 10) Find the names of sailors 'Who have reserved all boats called Interlake.

p(Tempsids, (7l".5'id,bidReserves) / (7l"bid( (Jbname='Interlake' Boats)))

7l"sname(Tempsids [Xl Sailors)

The only difference with respect to the previous query is that now we apply a
selection to Boats, to ensure that we compute bids only of boats named Interlake
in defining the second argument to the division operator. Over instances El,
R2, and S3, Tempsids evaluates to sids 22 and 64, and the answer contains
their names, Dustin and Horatio.

403 RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contra.':;t to the
algebra, which is procedural, the calculus is nonprocedural, or declarative, in
that it allows us to describe the set of answers without being explicit about
how they should be computed. Relational calculus has had a big influence on
the design of commercial query languages such a,s SQL and, especially, Query­
by-Example (QBE).

The variant of the calculus we present in detail is called the tuple relational
calculus (TRC). Variables in TRC take on tuples as values. In another vari-
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ant, called the domain relational calculus (DRC), the variables range over
field values. TRC has had more of an influence on SQL, \vhile DRC has strongly
influenced QBE. vVe discuss DRC in Section 4.3.2.2

4$3.1 Tuple Relational Calculus

A tuple variable is a variable that takes on tuples of a particular relation
schema as values. That is, every value assigned to a given tuple variable has
the same number and type of fields. A tuple relational calculus query has the
form { T I p(T) }, where T is a tuple variable and p(T) denotes a formula that
describes T; we will shortly define formulas and queries rigorously. The result
of this query is the set of all tuples t for which the formula p(T) evaluates to
true with T = t. The language for writing formulas p(T) is thus at the heart of
TRC and essentially a simple subset of first-order logic. As a simple example,
consider the following query.

(Q11) Find all sailors with a rating above 7.

{S I S E Sailors 1\ S.rating > 7}

When this query is evaluated on an instance of the Sailors relation, the tuple
variable S is instantiated successively with each tuple, and the test S. rat'ing> 7
is applied. The answer contains those instances of S that pass this test. On
instance S3 of Sailors, the answer contains Sailors tuples with sid 31, 32, 58,
71, and 74.

Syntax of TRC Queries

We now define these concepts formally, beginning with the notion of a formula.
Let Rel be a relation name, Rand S be tuple variables, a be an attribute of
R, and b be an attribute of S. Let op denote an operator in the set {<, >, =
, :S;, 2:, =I- }. An atomic formula is one of the following:

III R E Ref

lIII R.a op S.b

IIlI R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and q
are themselves formula.s and p(R) denotes a formula in which the variable R
appears:

.~-----------

2The material on DRC is referred to in the (online) chapter OIl QBE; with the exception of this
chapter, the material on DRC and TRe can be omitted without loss of continuity.
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• any atomic formula

• -'p, P /\ q, P V q, or p :::} q

• 3R(p(R)), where R is a tuple variable

• 'ifR(p(R)) , where R is a tuple variable

In the last two clauses, the quantifiers :3 and 'if are said to bind the variable R.
A variable is said to be free in a formula or subformuia (a formula contained
in a larger formula) if the (sub)formula does not contain an occurrence of a
quantifier that binds it.3

We observe that every variable in a TRC formula appears in a subformula
that is atomic, and every relation schema specifies a domain for each field; this
observation ensures that each variable in a TRC formula has a well-defined
domain from which values for the variable are drawn. That is, each variable
has a well-defined type, in the programming language sense. Informally, an
atomic formula R E Rei gives R the type of tuples in ReI, and comparisons
such as R.a op S.b and R.a op constant induce type restrictions on the field
R.a. If a variable R does not appear in an atomic formula of the form R E Rei
(Le., it appears only in atomic formulas that are comparisons), we follow the
convention that the type of R is a tuple whose fields include all (and only) fields
of R that appear in the formula.

We do not define types of variables formally, but the type of a variable should
be clear in most cases, and the important point to note is that comparisons of
values having different types should always fail. (In discussions of relational
calculus, the simplifying assumption is often made that there is a single domain
of constants and this is the domain associated with each field of each relation.)

A TRC query is defined to be expression of the form {T I p(T)}, where T is
the only free variable in the formula p.

Semantics of TRC Queries

What does a TRC query mean? More precisely, what is the set of answer tuples
for a given TRC query? The answer to a TRC query {T I p(T)}, as noted
earlier, is the set of all tuples t for which the formula peT) evaluates to true
with variable T &'3signed the tuple value t:. To complete this definition, we must
state which assignments of tuple values to the free variables in a formula make
the formula evaluate to true.

3vVe make the assumption that each variable in a formula is either free or bound by exactly one
occurrence of a quantifier, to avoid worrying about details such a.'l nested occurrences of quantifiers
that bind some, but not all, occurrences of variables.
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A query is evaluated on a given instance of the database. Let each free variable
in a formula F be bound to a tuple value. For the given assignment of tuples
to variables, with respect to the given database instance, F evaluates to (or
simply 'is') true if one of the following holds:

• F is an atomic formula R E Rel, and R is assigned a tuple in the instance
of relation Rel.

• F is a comparison R.a op S.b, R.a op constant, or constant op R.a, and
the tuples assigned to Rand S have field values R.a and S.b that make the
comparison true.

• F is of the form ---,p and p is not true, or of the form p 1\ q, and both p and
q are true, or of the form p V q and one of them is true, or of the form
p =} q and q is true whenever4 p is true.

• F is of the form 3R(p(R)), and there is some assignment of tuples to the
free variables in p(R), including the variable R,5 that makes the formula
p(R) true.

• F is of the form VR(p(R)), and there is some assignment of tuples to the
free variables in p(R) that makes the formula p(R) true no matter what
tuple is assigned to R.

Examples of TRC Queries

We now illustrate the calculus through several examples, using the instances
B1 of Boats, R2 of Reserves, and S3 of Sailors shown in Figures 4.15, 4.16,
and 4.17. We use parentheses as needed to make our formulas unambiguous.
Often, a formula p(R) includes a condition R E Rel, and the meaning of the
phrases some tuple R and for all tuples R is intuitive. We use the notation
3R E Rel(p(R)) for 3R(R E Rel 1\ p(R)). Similarly, we use the notation
VR E Rel(p(R)) for VR(R E Rel =} p(R)).

(Q12) Find the names and ages of sailors with a rating above 7.

{P I 3S E Sailors(S.rating > 7 1\ Pname = S.sname 1\ Page = S.age)}

This query illustrates a useful convention: P is considered to be a tuple variable
with exactly two fields, which are called name and age, because these are the
only fields of P mentioned and P does not range over any of the relations in
the query; that is, there is no subformula of the form P E Relname. The
result of this query is a relation with two fields, name and age. The atomic

4 WheneveT should be read more precisely as 'for all assignments of tuples to the free variables.'
5Note that some of the free variables in p(R) (e.g., the variable R itself) IIlay be bound in P.
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formulas P.name = S.sname and Page = S.age give values to the fields of an
answer tuple P. On instances E1, R2, and S3, the answer is the set of tuples
(Lubber,55.5), (Andy, 25.5), (Rusty, ~~5.0), (Zorba, 16.0), ::lnd (Horatio, 35.0).

(Q1S) Find the so;ilor name, boat'id, and reseT1}Q.tion date for each reservation.

{P I 3R E ReseT"ues 3S E Sailors

(R.sid = 8.sid!\ P.bid = R.bid!\ P.day = R.day !\ P.sname = S.sname)}

For each Reserves tuple, we look for a tuple in Sailors with the same sid. Given
a pair of such tuples, we construct an answer tuple P with fields sname, bid,
and day by copying the corresponding fields from these two tuples. This query
illustrates how we can combine values from different relations in each answer
tuple. The answer to this query on instances E1, R2, and 83 is shown in Figure
4.20.

Isname ~ ..... day

Dustin 101 10/10/98
Dustin 102 10/10/98
Dustin 103 10/8/98
Dustin 104 10/7/98
Lubber 102 11/10/98
Lubber 103 11/6/98
Lubber 104 11/12/98
Horatio 101 9/5/98
Horatio 102 9/8/98
Horatio 103 9/8/98

Figure 4.20 Answer to Query Q13

(Q1) Find the names of sailors who have reserved boat lOS.

{P I 35 E Sailors 3R E Reserves(R.s'id = S.sid!\ R.b'id = 103
!\Psname = 8.snarne)}

This query can be read as follows: "Retrieve all sailor tuples for which there
exists a tuple ,in Reserves having the same value in the s,id field and with
b'id = 103." That is, for each sailor tuple, we look for a tuple in Reserves that
shows that this sailor ha" reserved boat 10~~. The answer tuple P contains just
one field, sname.

((22) Find the narnes of sailors who have reserved a n:.d boat.

{P I :38 E Sailors :3R E Reserves(R.sid = 5.sid !\ P.sname = S.8name



Relational Algebra (nul Calculus 121
)

1\3B E Boats(B.llid = R.md 1\ B.color ='red'))}

This query can be read as follows: "Retrieve all sailor tuples S for which
there exist tuples R in Reserves and B in Boats such that S.sid = R.sid,
R.bid = B.b'id, and B.coior ='red'." Another way to write this query, which
corresponds more closely to this reading, is as follows:

{P I 3S E SailoTs 3R E Reserves 3B E Boats

(Rsid = S.sid 1\ B.bid = R.bid 1\ B.color ='red' 1\ Psname = S.sname)}

(Q7) Find the names of sailors who have reserved at least two boats.

{P I 3S E Sailors 3Rl E Reserves 3R2 E Reserves

(S.sid = R1.sid 1\ R1.sid = R2.sid 1\ R1.bid =I- R2.bid

I\Psname = S.sname)}

Contrast this query with the algebra version and see how much simpler the
calculus version is. In part, this difference is due to the cumbersome renaming
of fields in the algebra version, but the calculus version really is simpler.

(Q9) Find the narnes of sailors who have reserved all boats.

{P I 3S E Sailors VB E Boats

(3R E Reserves(S.sid = R.sid 1\ R.bid = B.bid 1\ Psname = S.sname))}

This query was expressed using the division operator in relational algebra. Note
how easily it is expressed in the calculus. The calculus query directly reflects
how we might express the query in English: "Find sailors S such that for all
boats B there is a Reserves tuple showing that sailor S has reserved boat B."

(Q14) Find sailors who have reserved all red boats.

{S I S E Sailor's 1\ VB E Boats

(B.color ='red' :::} (3R E Reserves(S.sid = R.sid 1\ R.bid = B.bid)))}

This query can be read as follows: For each candidate (sailor), if a boat is red,
the sailor must have reserved it. That is, for a candidate sailor, a boat being
red must imply that the sailor has reserved it. Observe that since we can return
an entire sailor tuple as the ans\ver instead of just the sailor's name, we avoided
introducing a new free variable (e.g., the variable P in the previous example)
to hold the answer values. On instances Bl. R2, and S3, the answer contains
the Sailors tuples with sids 22 and 31.

We can write this query without using implication, by observing that an ex­
pression of the form p :::} q is logically equivalent to -'p V q:

{S ! S E Sailors 1\ VB E Boats
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(B.coioT i-'Ted' V (3R E ReSeTVeS(S.sid = R..':tid/\ R.b'id = B.lJid)))}

This query should be read a.s follows: "Find sailors S such that, for all boats B,
either the boat is not red or a Reserves tuple shows that sailor S has reserved
boat B."

4.3.2 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain
of some attribute (e.g., the variable can be assigned an integer if it appears
in an attribute whose domain is the set of integers). A DRC query has the
form {(XI,X2, ... ,Xn ) I P((XI,X2, ... ,Xn ))}, where each Xi is either a domain
variable or a constant and p( (Xl, X2, ... ,xn )) denotes a DRC formula whose
only free variables are the variables among the Xi, 1 Sis n. The result of this
query is the set of all tuples (Xl, X2, ... , x n ) for which the formula evaluates to
true.

A DRC formula is defined in a manner very similar to the definition of a TRC
formula. The main difference is that the variables are now domain variables.
Let op denote an operator in the set {<, >, =, S,~, i-} and let X and Y be
domain variables. An atomic formula in DRC is one of the following:

II (Xl, X2, ... , X n ) E Rel, where Rei is a relation with n attributes; each
Xi, 1 SiS n is either a variable or a constant

II X op Y

II X op constant, or constant op X

A formula is recursively defined to be one of the following, where P and q
are themselves formulas and p(X) denotes a formula in which the variable X
appears:

II any atomic formula

II --.p, P /\ q, P V q, or p =} q

II 3X(p(X)), where X is a domain variable

II \/X(p(X)), where X is a domain variable

The reader is invited to compare this definition with the definition of TRC
forrnulch'3 and see how closely these two definitions correspond. \Ve will not
define the semantics of DRC formula.s formally; this is left as an exercise for
the reader.
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Examples of DRC Queries

vVe now illustrate DRC through several examples. The reader is invited to
compare these with the TRC versions.

(Q11) Find all sa'ilors with a rating above 7.

{(1, N, T, A) I (I, N, T, A) E Sa'ilors /\ T > 7}

This differs from the TRC version in giving each attribute a (variable) name.
The condition (1, N, T, A) E Sailors ensures that the domain variables I, N,
T, and A are restricted to be fields of the same tuple. In comparison with the
TRC query, we can say T > 7 instead of S.rating > 7, but we must specify the
tuple (I, N, T, A) in the result, rather than just S.

(Q1) Find the names of sailors who have reserved boat 103.

{(N) I 31, T, A( (1, N, T, A) E Sa'ilors

/\311', Br, D( (11', Br, D) E Reserves /\ 11' = I /\ Br = 103))}

Note that only the sname field is retained in the answer and that only N
is a free variable. We use the notation 3Ir,Br,D( ... ) as a shorthand for
3Ir(3Br(?JD( .. .))). Very often, all the quantified variables appear in a sin­
gle relation, as in this example. An even more compact notation in this case
is 3(11', Br, D) E Reserves. With this notation, which we use henceforth, the
query would be as follows:

{(N) I 31, T, A( (I, N, T, A) E Sailors

/\3(11', Br, D) E Reserves(Ir = I /\ Br = 103))}

The comparison with the corresponding TRC formula should now be straight­
forward. This query can also be written as follows; note the repetition of
variable I and the use of the constant 103:

{(N) I 31, T, A( (1, N, T, A) E Sailors

/\3D( (1,103, D) E Reserves))}

(Q2) Find the names of sailors who have Teserved a red boat.

{(N) I 31, T, A( (1, N, T, A) E Sailors

/\3(1, Br, D) E ReseTves /\ 3(Br, BN,'Ted') E Boats)}

(Q7) Find the names of sailoT.'! who have TeseTved at least two boat.s.

{(N) I 31, T, A( (1, N, T, A) E Sailors /\

?JBrl, BT2, Dl, D2( (1, Brl, DI) E Reserves

/\(1, Br2, D2) E Reserves /\ Brl # Br2))}
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Note how the repeated use of variable I ensures that the same sailor has reserved
both the boats in question.

(Q9) Find the names of sailors who have Teserved all boat8.

{(N) I ~I, T, A( (I, N, T, A) E Sailors!\

VB, BN,C(-,((B, BN,C) E Boats) V

(::J(Ir, Br, D) E Reserves(I = IT!\ BT = B))))}

This query can be read as follows: "Find all values of N such that some tuple
(I, N, T, A) in Sailors satisfies the following condition: For every (B, BN, C),
either this is not a tuple in Boats or there is some tuple (IT, BT, D) in Reserves
that proves that Sailor I has reserved boat B." The V quantifier allows the
domain variables B, BN, and C to range over all values in their respective
attribute domains, and the pattern '-,( (B, BN, C) E Boats )V' is necessary to
restrict attention to those values that appear in tuples of Boats. This pattern
is common in DRC formulas, and the notation V(B, BN, C) E Boats can be
used as a shortcut instead. This is similar to the notation introduced earlier
for 3. With this notation, the query would be written as follows:

{(N) I 31, T, A( (I, N, T, A) E Sa'iloTs !\ V(B, BN, C) E Boats

(3(1'1', BT, D) E ReseTves(I = IT!\ BT = B)))}

(Q14) Find sailoTs who have TeseTved all Ted boats.

{(I, N, T, A) I (I, N, T, A) E SailoTs!\ V(B, BN, C) E Boats

(C ='red' =? ?J(Ir, BT, D) E Reserves(I = IT!\ Br = B))}

Here, we find all sailors such that, for every red boat, there is a tuple in Reserves
that shows the sailor has reserved it.

4.4 EXPRESSIVE POWER OF ALGEBRA AND
CALCULUS

\Ve presented two formal query languages for the relational model. Are they
equivalent in power? Can every query that can be expressed in relational
algebra also be expressed in relational calculus? The answer is yes, it can.
Can every query that can be expressed in relational calculus also be expressed
in relational algebra? Before we answer this question, we consider a major
problem with the calculus as we presented it.

Consider the query {S I -,(S E Sailors)}. This query is syntactically correct.
However, it asks for all tuples S such that S is not in (the given instance of)
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Sailors. The set of such S tuples is obviously infinite, in the context of infinite
domains such as the set of all integers. This simple example illustrates an
unsafe query. It is desirable to restrict relational calculus to disallow unsafe
queries.

vVe now sketch how calculus queries are restricted to be safe. Consider a set I
of relation instances, with one instance per relation that appears in the query
Q. Let Dom(Q, 1) be the set of all constants that appear in these relation
instances I or in the formulation of the query Q itself. Since we allow only
finite instances I, Dom(Q, 1) is also finite.

For a calculus formula Q to be considered safe, at a minimum we want to
ensure that, for any given I, the set of answers for Q contains only values in
Dom(Q, 1). While this restriction is obviously required, it is not enough. Not
only do we want the set of answers to be composed of constants in Dom(Q, 1),
we wish to compnte the set of answers by examining only tuples that contain
constants in Dom(Q, 1)! This wish leads to a subtle point associated with the
use of quantifiers V and :::J: Given a TRC formula of the form :::JR(p(R)), we want
to find all values for variable R that make this formula true by checking only
tuples that contain constants in Dom(Q, 1). Similarly, given a TRC formula of
the form VR(p(R)), we want to find any values for variable R that make this
formula false by checking only tuples that contain constants in Dom(Q, 1).

We therefore define a safe TRC formula Q to be a formula such that:

1. For any given I, the set of answers for Q contains only values that are in
Dom(Q, 1).

2. For each subexpression of the form :::JR(p(R)) in Q, if a tuple r (assigned
to variable R) makes the formula true, then r contains only constants in
Dorn(Q,I).

3. For each subexpression of the form VR(p(R)) in Q, if a tuple r (assigned
to variable R) contains a constant that is not in Dom(Q, 1), then r must
make the formula true.

Note that this definition is not constructive, that is, it does not tell us hmv to
check if a query is safe.

The query Q = {S I -.(S E Sailors)} is unsafe by this definition. Dom(Q,1)
is the set of all values that appear in (an instance I of) Sailors. Consider the
instance Sl shown in Figure 4.1. The answer to this query obviously includes
values that do not appear in Dorn(Q,81).
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Returning to the question of expressiveness, we can show that every query that
can be expressed using a safe relational calculus query can also be expressed as
a relational algebra query. The expressive power of relational algebra is often
used as a metric of how powerful a relational database query language is. If
a query language can express all the queries that we can express in relational
algebra, it is said to be relationally complete. A practical query language is
expected to be relationally complete; in addition, commercial query languages
typically support features that allow us to express some queries that cannot be
expressed in relational algebra.

4.5 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• What is the input to a relational query? What is the result of evaluating
a query? (Section 4.1)

• Database systems use some variant of relational algebra to represent query
evaluation plans. Explain why algebra is suitable for this purpose. (Sec­
tion 4.2)

• Describe the selection operator. What can you say about the cardinality
of the input and output tables for this operator? (That is, if the input has
k tuples, what can you say about the output?) Describe the projection
operator. What can you say about the cardinality of the input and output
tables for this operator? (Section 4.2.1)

• Describe the set operations of relational algebra, including union (U), in­
tersection (n), set-difference (-), and cross-product (x). For each, what
can you say about the cardinality of their input and output tables? (Sec­
tion 4.2.2)

• Explain how the renaming operator is used. Is it required? That is, if this
operator is not allowed, is there any query that can no longer be expressed
in algebra? (Section 4.2.3)

• Define all the variations of the join operation. vVhy is the join operation
given special attention? Cannot we express every join operation in terms
of cross-product, selection, and projection? (Section 4.2.4)

• Define the division operation in terms of the ba--sic relational algebra op­
erations. Describe a typical query that calls for division. Unlike join, the
division operator is not given special treatment in database systems. Ex­
plain why. (Section 4.2.5)
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• Relational calculus is said to be a declarati've language, in contrast to alge­
bra, which is a procedural language. Explain the distinction. (Section 4.3)

• How does a relational calculus query 'describe' result tuples? Discuss the
subset of first-order predicate logic used in tuple relational calculus, with
particular attention to universal and existential quantifiers, bound and free
variables, and restrictions on the query formula. (Section 4.3.1).

• vVhat is the difference between tuple relational calculus and domain rela­
tional calculus? (Section 4.3.2).

• What is an unsafe calculus query? Why is it important to avoid such
queries? (Section 4.4)

• Relational algebra and relational calculus are said to be equivalent in ex­
pressive power. Explain what this means, and how it is related to the
notion of relational completeness. (Section 4.4)

EXERCISES

Exercise 4.1 Explain the statement that relational algebra operators can be composed. Why
is the ability to compose operators important?

Exercise 4.2 Given two relations R1 and R2, where R1 contains N1 tuples, R2 contains N2
tuples, and N2 > N1 > 0, give the minimum and maximum possible sizes (in tuples) for the
resulting relation produced by each of the following relational algebra expressions. In each
case, state any assumptions about the schemas for R1 and R2 needed to make the expression
meaningful:

(1) R1 U R2, (2) R1 n R2, (3) R1 ~ R2, (4) R1 x R2, (5) (Ta=5(R1), (6) 7Ta(R1), and
(7) R1/R2

Exercise 4.3 Consider the following schema:

Suppliers( sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)
Catalog( sid: integer, pid: integer, cost: real)

The key fields are underlined, and the domain of each field is listed after the field name.
Therefore sid is the key for Suppliers, pid is the key for Parts, and sid and pid together form
the key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write
the following queries in relational algebra, tuple relational calculus, and domain relational
calculus:

1. Find the narnes of suppliers who supply some red part.

2. Find the sids of suppliers who supply some red or green part.

:3. Find the sids of suppliers who supply some red part or are at 221 Packer Ave.

4. Find the sids of suppliers who supply some rcd part and some green part.
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5. Find the sids of suppliers who supply every part.

6. Find the sids of suppliers who supply every red part.

7. Find the sids of suppliers who supply every red or green part.

8. Find the sids of suppliers who supply every red part or supply every green part.

9. Find pairs of sids such that the supplier with the first sid charges more for some part
than the supplier with the second sid.

10. Find the pids of parts supplied by at least two different suppliers.

11. Find the pids of the most expensive parts supplied by suppliers named Yosemite Sham.

12. Find the pids of parts supplied by every supplier at less than $200. (If any supplier either
does not supply the part or charges more than $200 for it, the part is not selected.)

Exercise 4.4 Consider the Supplier-Parts-Catalog schema from the previous question. State
what the following queries compute:

1. 1fsname('rrsid(CTcolor='red' Parts) !Xl (O'cost<lOoCatalog) !Xl Suppliers)

2. 1fsname (1f S id ((0'color='red' Parts) !Xl (O'cost< looCatalog) !Xl Suppliers))

3. (1fsname ((O'color'='red' Parts) [X] (crcost<looCatalog) !Xl Suppl'iers)) n

4. (1fsid((crcolor='red,Parts) !Xl (crcost<10oCatalog) [X] Suppliers)) n

(1fsid((CTcolor='green' Parts) [X] (crcost<lOoCatalog) !Xl Suppliers))

(1f.sid,sname (( CTCO!07'='green' Parts) !Xl (CTcost< lOoCatalog) [X] Suppliers)))

Exercise 4.5 Consider the following relations containing airline flight information:

Flights(fino: integer, from: string, to: string,

d·istance: integer, depaTts: time, arrives: time)
Aircraft( aid: integer, aname: string, cTuisingrange: integer)

Certified( eid: integer, aid: integer)

Employees( eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees cLS well; every
pilot is certified for some aircraft (otherwise, he or she would not qualify as a pilot), and only
pilots are certified to fly.

Write the following queries in relational algebra, tuple relational calculus, and domain rela­
tional calculus. Note that some of these queries may not be expressible in relational algebra
(and, therefore, also not expressible in tuple and domain relational calculus)! For such queries,
informally explain why they cannot be expressed. (See the exercises at the end of Chapter 5
for additional queries over the airline schenla.)

1. Finel the eids of pilots certified for some Boeing aircraft.

2. Find the names of pilots certified for some Boeing aircraft.

~). Find the aids of all aircraft that. can be used on non-stop flights from Bonn to Madras.
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4. Identi(y the flights that can be piloted by every pilot whose salary is more than $100,000.

5. Find the names of pilots who can operate planes with a range greater than 3,000 miles
but are not certified on any Boeing aircraft.

6. Find the eids of employees who make the highest salary.

7. Find the eids of employees who make the second highest salary.

8. Find the eids of employees who are certified for the largest number of aircraft.

9. Find the eids of employees who are certified for exactly three aircraft.

10. Find the total amount paid to employees as salaries.

11. Is there a sequence of flights from Madison to Timbuktu? Each flight in the sequence is
required to depart from the city that is the destination of the previous flight; the first
flight must leave Madison, the last flight must reach Timbuktu, and there is no restriction
on the number of intermediate flights. Your query must determine whether a sequence
of flights from Madison to Timbuktu exists for any input Flights relation instance.

Exercise 4.6 What is relational completeness? If a query language is relationally complete,
can you write any desired query in that language?

Exercise 4.7 What is an unsafe query? Give an example and explain why it is important
to disallow such queries.

BIBLIOGRAPHIC NOTES

Relational algebra was proposed by Codd in [187], and he showed the equivalence of relational
algebra and TRC in [189]. Earlier, Kuhns [454] considered the use of logic to pose queries.
LaCroix and Pirotte discussed DRC in [459]. Klug generalized the algebra and calculus to
include aggregate operations in [439]. Extensions of the algebra and calculus to deal with
aggregate functions are also discussed in [578]. Merrett proposed an extended relational
algebra with quantifiers such as the number of that go beyond just universal and existential
quantification [530]. Such generalized quantifiers are discussed at length in [52].
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SQL: QUERIES,

CONSTRNNTS, TRIGGERS

.. What is included in the SQL language? What is SQL:1999?

.. How are queries expressed in SQL? How is the meaning of a query
specified in the SQL standard?

,..- How does SQL build on and extend relational algebra and calculus?

l"- \Vhat is grouping? How is it used with aggregate operations?

... What are nested queries?

.. What are null values?

... How can we use queries in writing complex integrity constraints?

... What are triggers, and why are they useful? How are they related to
integrity constraints?

Itt Key concepts: SQL queries, connection to relational algebra and
calculus; features beyond algebra, DISTINCT clause and multiset se­
mantics, grouping and aggregation; nested queries, correlation; set­
comparison operators; null values, outer joins; integrity constraints
specified using queries; triggers and active databases, event-condition­
action rules.

-------_.__._---_._------------_..__._---------------_ _ _----_.._ .._---

\Vhat men or gods are these? \\1hat Inaiclens loth?
\Vhat mad pursuit? \1\7hat struggle to escape?
\Vhat pipes and tilubrels? \Vhat wild ecstasy?

.... John Keats, Odc on (L Gr'ccian Urn

Structured Query Language (SQL) is the most widely used conunercial rela­
tional database language. It wa.", originally developed at IBlVI in the SEQUEL-

130
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SQL Standards Conformance: SQL:1999 ha.,;; a collection of features
called Core SQL that a vendor must implement to claim conformance with
the SQL:1999 standard. It is estimated that all the major vendors can
comply with Core SQL with little effort. l\IIany of the remaining features
are organized into packages.

For example, packages address each of the following (with relevant chapters
in parentheses): enhanced date and time, enhanced integrity management

I and active databases (this chapter), external language 'interfaces (Chapter

l
:6), OLAP (Chapter 25), and object features (Chapter 23). The SQL/Ml\JI

standard complements SQL:1999 by defining additional packages that sup­
port data mining (Chapter 26), spatial data (Chapter 28) and text docu­
ments (Chapter 27). Support for XML data and queries is forthcoming.

XRM and System-R projects (1974-1977). Almost immediately, other vendors
introduced DBMS products based on SQL, and it is now a de facto standard.
SQL continues to evolve in response to changing needs in the database area.
The current ANSI/ISO standard for SQL is called SQL:1999. While not all
DBMS products support the full SQL:1999 standard yet, vendors are working
toward this goal and most products already support the core features. The
SQL:1999 standard is very close to the previous standard, SQL-92, with re­
spect to the features discussed in this chapter. Our presentation is consistent
with both SQL-92 and SQL:1999, and we explicitly note any aspects that differ
in the two versions of the standard.

5.1 OVERVIEW

The SQL language has several aspects to it.

.. The Data Manipulation Language (DML): This subset of SQL allows
users to pose queries and to insert, delete, and modify rows. Queries are
the main focus of this chapter. We covered DML commands to insert,
delete, and modify rows in Chapter 3.

.. The Data Definition Language (DDL): This subset of SQL supports
the creation, deletion, and modification of definitions for tables and views.
Integrity constraints can be defined on tables, either when the table is
created or later. \Ve cocvered the DDL features of SQL in Chapter 3. Al­
though the standard does not discuss indexes, commercial implementations
also provide commands for creating and deleting indexes.

.. Triggers and Advanced Integrity Constraints: The new SQL:1999
standard includes support for triggers, which are actions executed by the
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DBMS whenever changes to the databa..'3e meet conditions specified in the
trigger. vVe cover triggers in this chapter. SQL allows the use of queries
to specify complex integrity constraint specifications. vVe also discuss such
constraints in this chapter.

• Embedded and Dynamic SQL: Embedded SQL features allow SQL
code to be called from a host language such as C or COBOL. Dynamic
SQL features allow a query to be constructed (and executed) at run-time.
\Ve cover these features in Chapter 6.

• Client-Server Execution and Remote Database Access: These com­
mands control how a client application program can connect to an SQL
database server, or access data from a database over a network. We cover
these commands in Chapter 7.

• Transaction Management: Various commands allow a user to explicitly
control aspects of how a tnmsaction is to be executed. We cover these
commands in Chapter 21.

• Security: SQL provides mechanisms to control users' access to data ob­
jects such as tables and views. We cover these in Chapter 2l.

• Advanced features: The SQL:1999 standard includes object-oriented
features (Chapter 23), recursive queries (Chapter 24), decision support
queries (Chapter 25), and also addresses emerging areas such as data min­
ing (Chapter 26), spatial data (Chapter 28), and text and XML data man­
agement (Chapter 27).

5.1.1 Chapter Organization

The rest of this chapter is organized as follows. We present basic SQL queries
in Section 5.2 and introduce SQL's set operators in Section 5.3. We discuss
nested queries, in which a relation referred to in the query is itself defined
within the query, in Section 5.4. vVe cover aggregate operators, which allow us
to write SQL queries that are not expressible in relational algebra, in Section
5.5. \Ve discuss null values, which are special values used to indicate unknown
or nonexistent field values, in Section 5.6. We discuss complex integrity con­
straints that can be specified using the SQL DDL in Section 5.7, extending the
SQL DDL discussion from Chapter 3; the new constraint specifications allow
us to fully utilize the query language capabilities of SQL.

Finally, we discuss the concept of an active databa8e in Sections 5.8 and 5.9.
An active database h&'3 a collection of triggers, which are specified by the
DBA. A trigger describes actions to be taken when certain situations arise. The
DBMS lllonitors the database, detects these situations, and invokes the trigger.



SqL: QueT'ies. ConstTairLts, Triggf::T"s

The SQL:1999 standard requires support for triggers, and several relational
DB.rvIS products already support some form of triggers.

About the Examples

~Te will present a number of sample queries using the following table definitions:

Sailors( sid: integer, sname: string, rating: integer, age: real)
Boats( bid: integer, bname: string, color: string)
Reserves (sid: integer, bid: integer, day: date)

We give each query a unique number, continuing with the numbering scheme
used in Chapter 4. The first new query in this chapter has number Q15. Queries
Q1 through Q14 were introduced in Chapter 4.1 We illustrate queries using the
instances 83 of Sailors, R2 of Reserves, and B1 of Boats introduced in Chapter
4, which we reproduce in Figures 5.1, 5.2, and 5.3, respectively.

All the example tables and queries that appear in this chapter are available
online on the book's webpage at

http://www.cs.wisc.edu/-dbbook

The online material includes instructions on how to set up Orade, IBM DB2,
Microsoft SQL Server, and MySQL, and scripts for creating the example tables
and queries.

5.2 THE FORM OF A BASIC SQL QUERY

This section presents the syntax of a simple SQL query and explains its meaning
through a conceptual Evaluation strategy. A conceptual evaluation strategy is
a way to evaluate the query that is intended to be easy to understand rather
than efficient. A DBMS would typically execute a query in a different and more
efficient way.

The basic form of an SQL query is &'3 follows:

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification

1 All references to a query can be found in the subject index for the book.
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I sid I sname·1 rating I age I

CHAPTER 9

22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Figure 5.1 An Instance 53 of Sailors

22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Figure 5.2 An Instance R2 of Reserves

~ bname I color ··1

101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Figure 5.3 An Instance Bl of Boats

Every query must have a SELECT clause, which specifies columns to be retained
in the result, and a FROM clause, which specifies a cross-product of tables. The
optional WHERE clause specifies selection conditions on the tables mentioned in
the FROM clause.

Such a query intuitively corresponds to a relational algebra expression involving
selections, projections, and cross-products. The close relationship between SQL
and relational algebra is the basis for query optimization in a relational DBMS,
as we will see in Chapters 12 and 15. Indeed, execution plans for SQL queries
are represented using a variation of relational algebra expressions (Section 15.1).

Let us consider a simple example.

(Q15) Find the' names and ages of all sailors.

SELECT DISTINCT S.sname, S.age
FROM Sailors S

The answer is a set of rows, each of which is a pair (sname, age). If two or
more sailors have the same name and age, the answer still contains just one pair
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with that name and age. This query is equivalent to applying the projection
operator of relational algebra.

If we omit the keyword DISTINCT, we would get a copy of the row (s,a) for
each sailor with name s and age a; the answer would be a rnultiset of rows. A
multiset is similar to a set in that it is an unordered collection of elements,
but there could be several copies of each element, and the number of copies is
significant-two multisets could have the same elements and yet be different
because the number of copies is different for some elements. For example, {a,
b, b} and {b, a, b} denote the same multiset, and differ from the multiset {a,
a, b}.

The answer to this query with and without the keyword DISTINCT on instance
53 of Sailors is shown in Figures 5.4 and 5.5. The only difference is that the
tuple for Horatio appears twice if DISTINCT is omitted; this is because there
are two sailors called Horatio and age 35.

Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0
Horatio 35.0
Zorba 16.0
Horatio 35.0
Art 25.5
Bob 63.5

I sname I age I
'-----"--

Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0
Horatio 35.0
Zorba 16.0
Art 25.5
Bob 63.5

I.snarne I age I

Figure 5.4 Answer to Q15 Figure 5.5 Answer to Q15 without DISTINCT

Our next query is equivalent to an application of the selection operator of
relational algebra.

(Q 11) Find all sailors with a rating above 7.

SELECT S.sid, S.sname, S.rating, S.age
FROM Sailors AS S
WHERE S.rating > 7

This query uses the optional keyword AS to introduce a range variable. Inci­
dentally, when we want to retrieve all columns, as in this query, SQL provides a
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convenient shorthand: \eVe can simply write SELECT *. This notation is useful
for interactive querying, but it is poor style for queries that are intended to be
reused and maintained because the schema of the result is not clear from the
query itself; we have to refer to the schema of the underlying Sailors ta.ble.

As these two examples illustrate, the SELECT clause is actually used to do pm­
jection, whereas selections in the relational algebra sense are expressed using
the WHERE clause! This mismatch between the naming of the selection and pro­
jection operators in relational algebra and the syntax of SQL is an unfortunate
historical accident.

We now consider the syntax of a basic SQL query in more detail.

• The from-list in the FROM clause is a list of table names. A table name
can be followed by a range variable; a range variable is particularly useful
when the same table name appears more than once in the from-list.

• The select-list is a list of (expressions involving) column names of tables
named in the from-list. Column names can be prefixed by a range variable.

• The qualification in the WHERE clause is a boolean combination (i.e., an
expression using the logical connectives AND, OR, and NOT) of conditions
of the form expression op expression, where op is one of the comparison
operators {<, <=, =, <>, >=, >}.2 An expression is a column name, a
constant, or an (arithmetic or string) expression.

• The DISTINCT keyword is optional. It indicates that the table computed
as an answer to this query should not contain duplicates, that is, two copies
of the same row. The default is that duplicates are not eliminated.

Although the preceding rules describe (informally) the syntax of a basic SQL
query, they do not tell us the meaning of a query. The answer to a query is
itself a relation which is a rnultisef of rows in SQL!--whose contents can be
understood by considering the following conceptual evaluation strategy:

1. Cmnpute the cross-product of the tables in the from-list.

2. Delete rows in the cross-product that fail the qualification conditions.

3. Delete all columns that do not appear in the select-list.

4. If DISTINCT is specified, eliminate duplicate rows.

2ExpressiollS with NOT can always be replaced by equivalent expressions without NOT given the set
of comparison operators just listed.
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This straightforward conceptual evaluation strategy makes explicit the rows
that must be present in the answer to the query. However, it is likely to be
quite inefficient. We will consider how a DB:MS actually evaluates queries in
later chapters; for now, our purpose is simply to explain the meaning of a query.
\Ve illustrate the conceptual evaluation strategy using the following query':

(Q1) Find the names of sailors 'Who have reseTved boat number 103.

It can be expressed in SQL as follows.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid=103

Let us compute the answer to this query on the instances R3 of Reserves and
84 of Sailors shown in Figures 5.6 and 5.7, since the computation on our usual
example instances (R2 and 83) would be unnecessarily tedious.

~day

I 22 I 101 10/10/96
I 58 I 103 11/12/96

Figure 5.6 Instance R3 of Reserves

~ sname I Tating I age I
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

Figure 5.7 Instance 54 of Sailors

The first step is to construct the cross-product 84 x R3, which is shown in
Figure 5.8.

~ sname·j Tating·I···age~day

22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8

---
55.5 58 103 11/12/96

58 rusty 10 3.5.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Figure 5.8 84 x RS

The second step is to apply the qualification S./rid = R.sid AND R.bid=103.
(Note that the first part of this qualification requires a join operation.) This
step eliminates all but the last row from the instance shown in Figure 5.8. The
third step is to eliminate unwanted columns; only sname appears in the SELECT
clause. This step leaves us with the result shown in Figure .5.9, which is a table
with a single column and, a.c; it happens, just one row.
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! sna'me!

[I1lStL]

Figure 5.9 Answer to Query Ql 011 R:l and 84

5.2.1 Examples of Basic SQL Queries

CHAPTER 15

vVe now present several example queries, many of which were expressed earlier
in relational algebra and calculus (Chapter 4). Our first example illustrates
that the use of range variables is optional, unless they are needed to resolve an
ambiguity. Query Ql, which we discussed in the previous section, can also be
expressed as follows:

SELECT sname
FROM Sailors 5, Reserves R
WHERE S.sid = R.sid AND bid=103

Only the occurrences of sid have to be qualified, since this column appears in
both the Sailors and Reserves tables. An equivalent way to write this query is:

SELECT SHame
FROM Sailors, Reserves
WHERE Sailors.sid = Reserves.sid AND bid=103

This query shows that table names can be used implicitly as row variables.
Range variables need to be introduced explicitly only when the FROM clause
contains more than one occurrence of a relation. 3 However, we recommend
the explicit use of range variables and full qualification of all occurrences of
columns with a range variable to improve the readability of your queries. We
will follow this convention in all our examples.

(Q16) Find the sids of sa'iloTs who have TeseTved a Ted boat.

SELECT
FROM
WHERE

R.sid
Boats B, Reserves R
B.bid = R.bid AND 8.color = 'red'

This query contains a join of two tables, followed by a selection on the color
of boats. vVe can think of 13 and R &<; rows in the corresponding tables that

:~The table name cannot be used aii an implicit. range variable once a range variable is introduced
for t.he relation.
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:prove' that a sailor with sid R.sid reserved a reel boat B.bid. On our example
instances R2 and 83 (Figures 5.1 and 5.2), the answer consists of the Bids 22,
31, and 64. If we want the names of sailors in the result, we must also consider
the Sailors relation, since Reserves does not contain this information, as the
next example illustrates.

(Q2) Find the names of sailors 'Who have TeseTved a Ted boat.

SELECT
FROM
WHERE

S.sname
Sailors S, Reserves R, Boats 13
S.sid = R.sid AND R.bid = 13.bid AND B.color = 'red'

This query contains a join of three tables followed by a selection on the color
of boats. The join with Sailors allows us to find the name of the sailor who,
according to Reserves tuple R, has reserved a red boat described by tuple 13.

(QS) Find the coloTS of boats reseTved by LubbeT.

SELECT 13.color
FROM Sailors S, Reserves R, Boats 13
WHERE S.sid = R.sid AND R.bid = B.bid AND S.sname = 'Lubber'

This query is very similar to the previous one. Note that in general there may
be more than one sailor called Lubber (since sname is not a key for Sailors);
this query is still correct in that it will return the colors of boats reserved by
some Lubber, if there are several sailors called Lubber.

(Q4) Find the names of sa'iloTs who have Teserved at least one boat.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid

The join of Sailors and Reserves ensures that for each selected sname, the
sailor has made some reservation. (If a sailor has not made a reservation, the
second step in the conceptual evaluation strategy would eliminate all rows in
the cross-product that involve this sailor.)

5.2.2 Expressions and Strings in the SELECT Command

SQL supports a more general version of the select-list than just a list of
colu1nn8. Each item in a select-list can be of the form e:l:pTcssion AS col­
'wnrLno:rne, where c:rprcs.sion is any arithmetic or string expression over column
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names (possibly prefixed by range variables) and constants, and colurnnswrne
is a ne"v name for this column in the output of the query. It can also contain
aggregates such as smn and count, which we will discuss in Section 5.5. The
SQL standard also includes expressions over date and time values, which we will
not discuss. Although not part of the SQL standard, many implementations
also support the use of built-in functions such as sqrt, sin, and rnod.

(Q17) Compute increments for the mtings of peTsons who have sailed two dif­
ferent boats on the same day.

SELECT
FROM
WHERE

S.sname, S.rating+1 AS rating
Sailors S, Reserves R1, Reserves R2
S.sid = R1.sid AND S.sid = R2.sid
AND R1.day = R2.day AND R1.bid <> R2.bid

Also, each item in a qualification can be as general as expTession1 = expression2.

SELECT S1.sname AS name1, S2.sname AS name2
FROM Sailors Sl, Sailors S2
WHERE 2*S1.rating = S2.rating-1

For string comparisons, we can use the comparison operators (=, <, >, etc.)
with the ordering of strings determined alphabetically as usual. If we need
to sort strings by an order other than alphabetical (e.g., sort strings denoting
month names in the calendar order January, February, March, etc.), SQL sup­
ports a general concept of a collation, or sort order, for a character set. A
collation allows the user to specify which characters are 'less than' which others
and provides great flexibility in string manipulation.

In addition, SQL provides support for pattern matching through the LIKE op­
erator, along with the use of the wild-card symbols % (which stands for zero
or more arbitrary characters) and ~ (which stands for exactly one, arbitrary,
character). Thus, '_AB%' denotes a pattern matching every string that con­
tains at lea.'3t three characters, with the second and third characters being A
and B respectively. Note that unlike the other comparison operators, blanks
can be significant for the LIKE operator (depending on the collation for the
underlying character set). Thus, 'Jeff' = 'Jeff' is true while 'Jeff'LIKE 'Jeff
, is false. An example of the use of LIKE in a query is given below.

(Q18) Find the ages of sailors wh08e name begins and ends with B and has at
least three chamcters.

SELECT S.age
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r---'-~~-~:~;- Expre~~~'~-:~'-'~:' '~Q'~'~""~,~flecting the incr~~~~~~~mpo~~:l~ceof I
I text data, SQL:1999 includes a more powerful version of theLIKE operator i

i called SIMILAR. This operator allows a rich set of regular expressions to be I

I
used as patterns while searching text. The regular expressions are similart~

I those sUPPo.rted by the Unix operating systenifor string searches, although'
the syntax is a little different.

-- - . ••••._m. .-.-.-.-.-....•-- ..-----........ .-••••••••••••.•.•••••••....-- ..- ----.-- -----..-- ..- ------------ ---------- -.••..•.---•••••.••.•.•••••••••..•.•.••••••.••- ••••.....•- ••••.'.-""-'-.J'.

Relational Algebra and SQL: The set operations of SQL are available in
relational algebra. The main difference, of course, is that they are multiset
operations in SQL, since tables are multisets of tuples.

FROM
WHERE

Sailors S
S.sname LIKE 'B.%B'

The only such sailor is Bob, and his age is 63.5.

5.3 UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic query
form presented earlier. Since the answer to a query is a multiset of rows, it is
natural to consider the use of operations such as union, intersection, and differ­
ence. SQL supports these operations under the names UNION, INTERSECT, and
EXCEPT. 4 SQL also provides other set operations: IN (to check if an element
is in a given set), op ANY, op ALL (to compare a value with the elements in
a given set, using comparison operator op), and EXISTS (to check if a set is
empty). IN and EXISTS can be prefixed by NOT, with the obvious modification
to their meaning. We cover UNION, INTERSECT, and EXCEPT in this section,
and the other operations in Section 5.4.

Consider the following query:

(Q5) Find the names of sailors who have reserved a red 01' a green boat.

SELECT
FROM
WHERE

S.sname
Sailors S, Reserves R, Boats B
S.sid = R.sid AND R.bid = B.bid
AND (B.color = 'red' OR B.color = 'green')

.. _----
4Note that although the SQL standard includes these operations, many systems currently support

only UNION. Also. many systems recognize the keyword MINUS for EXCEPT.
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This query is easily expressed using the OR connective in the WHERE clause.
Hovvever, the following query, which is identical except for the use of 'and'
rather than 'or' in the English version, turns out to be much more difficult:

(Q6) Find the names of sailor's who have rescr'ved both a red and a green boat.

If we were to just replace the use of OR in the previous query by AND, in analogy
to the English statements of the two queries, we would retrieve the names of
sailors who have reserved a boat that is both red and green. The integrity
constraint that bid is a key for Boats tells us that the same boat cannot have
two colors, and so the variant of the previous query with AND in place of OR will
always return an empty answer set. A correct statement of Query Q6 using
AND is the following:

SELECT
FROM
WHERE

S.sname
Sailors S, Reserves RI, Boats BI, Reserves R2, Boats B2
S.sid = Rl.sid AND R1.bid = Bl.bid
AND S.sid = R2.sid AND R2.bid = B2.bid
AND B1.color='red' AND B2.color = 'green'

We can think of RI and BI as rows that prove that sailor S.sid has reserved a
red boat. R2 and B2 similarly prove that the same sailor has reserved a green
boat. S.sname is not included in the result unless five such rows S, RI, BI, R2,
and B2 are found.

The previous query is difficult to understand (and also quite inefficient to ex­
ecute, as it turns out). In particular, the similarity to the previous OR query
(Query Q5) is completely lost. A better solution for these two queries is to use
UNION and INTERSECT.

The OR query (Query Q5) can be rewritten as follows:

SELECT

FROM
WHERE
UNION
SELECT
FROM
WHERE

S.sname
Sailors S, Reserves R, Boats B
S.sicl = R.sid AND R.bid = B.bid AND B.color = 'red'

S2.sname
Sailors S2, Boats B2, Reserves H2
S2.sid = H2.sid AND R2.bid = B2.bicl AND B2.color = 'green'

This query sa,)'s that we want the union of the set of sailors who have reserved
red boats and the set of sailors who have reserved green boats. In complete
symmetry, the AND query (Query Q6) can be rewritten a.s follovvs:

SELECT S.snarne
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FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = 'red'
INTERSECT
SELECT S2.sname
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = 'green'
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This query actually contains a subtle bug-if there are two sailors such as
Horatio in our example instances B1, R2, and 83, one of whom has reserved a
red boat and the other has reserved a green boat, the name Horatio is returned
even though no one individual called Horatio has reserved both a red and a
green boat. Thus, the query actually computes sailor names such that some
sailor with this name has reserved a red boat and some sailor with the same
name (perhaps a different sailor) has reserved a green boat.

As we observed in Chapter 4, the problem arises because we are using sname
to identify sailors, and sname is not a key for Sailors! If we select sid instead of
sname in the previous query, we would compute the set of sids of sailors who
have reserved both red and green boats. (To compute the names of such sailors
requires a nested query; we will return to this example in Section 5.4.4.)

Our next query illustrates the set-difference operation in SQL.

(Q 19) Find the sids of all sailor's who have reserved red boats but not green
boats.

SELECT
FROM
WHERE
EXCEPT
SELECT
FROM
WHERE

S.sid
Sailors S, Reserves R, Boats B
S.sid = R.sid AND R.bid = B.bid AND B.color = 'red'

S2.sid
Sailors S2, Reserves R2, Boats B2
S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = 'green'

Sailors 22, 64, and 31 have reserved red boats. Sailors 22, 74, and 31 have
reserved green boats. Hence, the answer contains just the sid 64.

Indeed, since the Reserves relation contains sid information, there is no need
to look at the Sailors relation, and we can use the following simpler query:

SELECT
FROM
WHERE
EXCEPT

H.. sid
Boats B, Reserves R
R.bicl = B.bid AND B.color = 'red'
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SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bicl = B2.bid AND B2.color = :green'

CHAPTER~5

Observe that this query relies on referential integrity; that is, there are no
reservations for nonexisting sailors. Note that UNION, INTERSECT, and EXCEPT
can be used on any two tables that are union-compatible, that is, have the same
number of columns and the columns, taken in order, have the same types. For
example, we can write the following query:

(Q20) Find all sids of sailors who have a rating of 10 or reserved boat 104.

SELECT
FROM
WHERE
UNION
SELECT
FROM
WHERE

S.sid
Sailors S
S.rating = 10

R.sid
Reserves R
R.bid = 104

The first part of the union returns the sids 58 and 71. The second part returns
22 and 31. The answer is, therefore, the set of sids 22, 31, 58, and 71. A
final point to note about UNION, INTERSECT, and EXCEPT follows. In contrast
to the default that duplicates are not eliminated unless DISTINCT is specified
in the basic query form, the default for UNION queries is that duplicates are
eliminated! To retain duplicates, UNION ALL must be used; if so, the number
of copies of a row in the result is always m + n, where m and n are the num­
bers of times that the row appears in the two parts of the union. Similarly,
INTERSECT ALL retains cluplicates--the number of copies of a row in the result
is min(m, n )-~ancl EXCEPT ALL also retains duplicates~thenumber of copies
of a row in the result is m - n, where 'm corresponds to the first relation.

5.4 NESTED QUERIES

One of the most powerful features of SQL is nested queries. A nested query
is a query that has another query embedded within it; the embedded query
is called a suhquery. The embedded query can of course be a nested query
itself; thus queries that have very deeply nested structures are possible. When
writing a query, we sornetimes need to express a condition that refers to a table
that must itself be computed. The query used to compute this subsidiary table
is a subquery and appears as part of the main query. A subquery typically
appears within the WHERE clause of a query. Subqueries can sometimes appear
in the FROM clause or the HAVING clause (which we present in Section 5.5).
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I Relational Algebra and SQL: Nesting of queries is a feature that is not
I available in relational algebra, but nested queries can be translated into
i algebra, as we will see in Chapter 15. Nesting in SQL is inspired more by
, relational calculus than algebra. In conjunction with some of SQL's other

features, such as (multi)set operators and aggregation, nesting is a very
expressive construct.

This section discusses only subqueries that appear in the WHERE clause. The
treatment of subqueries appearing elsewhere is quite similar. Some examples of
subqueries that appear in the FROM clause are discussed later in Section 5.5.1.

5.4.1 Introduction to Nested Queries

As an example, let us rewrite the following query, which we discussed earlier,
using a nested subquery:

(Ql) Find the names of sailors who have reserved boat 103.

SELECT
FROM
WHERE

S.sname
Sailors S
S.sid IN ( SELECT

FROM
WHERE

R.sid
Reserves R
R.bid = 103 )

The nested subquery computes the (multi)set of sids for sailors who have re­
served boat 103 (the set contains 22,31, and 74 on instances R2 and 83), and
the top-level query retrieves the names of sailors whose sid is in this set. The
IN operator allows us to test whether a value is in a given set of elements; an
SQL query is used to generate the set to be tested. Note that it is very easy to
modify this query to find all sailors who have not reserved boat 103-we can
just replace IN by NOT IN!

The best way to understand a nested query is to think of it in terms of a con­
ceptual evaluation strategy. In our example, the strategy consists of examining
rows in Sailors and, for each such row, evaluating the subquery over Reserves.
In general, the conceptual evaluation strategy that we presented for defining
the semantics of a query can be extended to cover nested queries as follows:
Construct the cross-product of the tables in the FROM clause of the top-level
query as hefore. For each row in the cross-product, while testing the qllalifica-
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tion in the WHERE clause, (re)compute the subquery.5 Of course, the subquery
might itself contain another nested subquery, in which case we apply the same
idea one more time, leading to an evaluation strategy \vith several levels of
nested loops.

As an example of a multiply nested query, let us rewrite the following query.

(Q2) Find the names of sailors 'who ha'ue reserved a red boat.

SELECT
FROM
WHERE

S.sname
Sailors S
S.sid IN ( SELECT R.sid

FROM Reserves R
WHERE R. bid IN (SELECT B.bid

FROM Boats B
WHERE B.color = 'red'

The innermost subquery finds the set of bids of red boats (102 and 104 on
instance E1). The subquery one level above finds the set of sids of sailors who
have reserved one of these boats. On instances E1, R2, and 83, this set of sids
contains 22, 31, and 64. The top-level query finds the names of sailors whose
sid is in this set of sids; we get Dustin, Lubber, and Horatio.

To find the names of sailors who have not reserved a red boat, wc replace the
outermost occurrence of IN by NOT IN, as illustrated in the next query.

(Q21) Find the names of sailors who have not reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN ( SELECT

FROM
WHERE

R.sid
Reserves R
R.bid IN ( SELECT B.bid

FROM Boats B
WHERE B.color = 'red' )

This qucry computes the names of sailors whose sid is not in the set 22, 31,
and 64.

In contrast to Query Q21, we can modify the previous query (the nested version
of Q2) by replacing the inner occurrence (rather than the outer occurence) of

5Since the inner subquery in our example does not depend on the 'current' row from the outer
query ill any way, you rnight wonder why we have to recompute the subquery for each outer row. For
an answer, see Section 5.4.2.
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IN with NOT IN. This modified query would compute the naU1eS of sailors who
have reserved a boat that is not red, that is, if they have a reservation, it is not
for a red boat. Let us consider how. In the inner query, we check that R.bid
is not either 102 or 104 (the bids of red boats). The outer query then finds the
sids in Reserves tuples \vhere the bid is not 102 or 104. On instances E1, R2,
and 53, the outer query computes the set of sids 22, 31, 64, and 74. Finally,
we find the names of sailors whose sid is in this set.

\Ve can also modify the nested query Q2 by replacing both occurrences of IN
with NOT IN. This variant finds the names of sailors who have not reserved a
boat that is not red, that is, who have reserved only red boats (if they've re­
served any boats at all). Proceeding as in the previous paragraph, on instances
E1, R2, and 53, the outer query computes the set of sids (in Sailors) other
than 22, 31, 64, and 74. This is the set 29, 32, 58, 71, 85, and 95. We then find
the names of sailors whose sid is in this set.

5.4.2 Correlated Nested Queries

In the nested queries seen thus far, the inner subquery has been completely
independent of the outer query. In general, the inner subquery could depend on
the row currently being examined in the outer query (in terms of our conceptual
evaluation strategy). Let us rewrite the following query once more.

(Q1) Pind the names of sailors who have reserved boat nv,mber 103.

SELECT
FROM
WHERE

S.sname
Sailors S
EXISTS ( SELECT *

FROM Reserves R
WHERE R.bid = 103

AND R.sid = S.sid )

The EXISTS operator is another set comparison operator, such as IN. It allows
us to test whether a set is nonempty, an implicit comparison with the empty
set. Thus, for each Sailor row 5, we test whether the set of Reserves rows
R such that R.bid = 103 AND S.sid = R.sid is nonempty. If so, sailor 5 has
reserved boat t03, and we retrieve the name. '1'he subquery clearly depends
on the current row Sand IIlUSt be re-evaluated for each row in Sailors. The
occurrence of S in the subquery (in the form of the literal S.sid) is called a
cOTTelation, and such queries are called con-elated queries.

This query also illustrates the use of the special symbol * in situations where
all we want to do is to check that a qualifying row exists, and do Hot really
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want to retrieve any columns from the row. This is one of the two uses of * in
the SELECT clause that is good programming style; the other is &':1 an argument
of the COUNT aggregate operation, which we describe shortly.

As a further example, by using NOT EXISTS instead of EXISTS, we can compute
the names of sailors who have not reserved a red boat. Closely related to
EXISTS is the UNIQUE predicate. \Vhen we apply UNIQUE to a subquery, the
resulting condition returns true if no row appears twice in the answer to the
subquery, that is, there are no duplicates; in particular, it returns true if the
answer is empty. (And there is also a NOT UNI QUE version.)

5.4.3 Set-Comparison Operators

We have already seen the set-comparison operators EXISTS, IN, and UNIQUE,
along with their negated versions. SQL also supports op ANY and op ALL, where
op is one of the arithmetic comparison operators {<, <=, =, <>, >=, >}. (SOME
is also available, but it is just a synonym for ANY.)

(Q22) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid
FROM Sailors S
WHERE S.rating > ANY ( SELECT

FROM
WHERE

S2.rating
Sailors S2
S2.sname = 'Horatio' )

If there are several sailors called Horatio, this query finds all sailors whose rating
is better than that of some sailor called Horatio. On instance 83, this computes
the sids 31, 32, 58, 71, and 74. \\That if there were no sailor called Horatio? In
this case the comparison S.rating > ANY ... is defined to return false, and the
query returns an elnpty answer set. To understand comparisons involving ANY,
it is useful to think of the comparison being carried out repeatedly. In this
example, S. rating is successively compared with each rating value that is an
answer to the nested query. Intuitively, the subquery must return a row that
makes the comparison true, in order for S. rat'ing > ANY ... to return true.

(Q23) Find sailors whose rating is better than every sailor' called Horat·to.

vVe can obtain all such queries with a simple modification to Query Q22: Just
replace ANY with ALL in the WHERE clause of the outer query. On instance 8~~,

we would get the sid", 58 and 71. If there were no sailor called Horatio, the
comparison S.rating > ALL ... is defined to return true! The query would then
return the names of all sailors. Again, it is useful to think of the comparison
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being carried out repeatedly. Intuitively, the comparison must be true for every
returned row for S. rating> ALL ... to return true.

As another illustration of ALL, consider the following query.

(Q24J Find the 8ailor's with the highest rating.

SELECT S.sid
FROM Sailors S
WHERE S.rating >= ALL ( SELECT S2.rating

FROM Sailors S2 )

The subquery computes the set of all rating values in Sailors. The outer WHERE
condition is satisfied only when S.rating is greater than or equal to each of
these rating values, that is, when it is the largest rating value. In the instance
53, the condition is satisfied only for rating 10, and the answer includes the
sid." of sailors with this rating, Le., 58 and 71.

Note that IN and NOT IN are equivalent to = ANY and <> ALL, respectively.

5.4.4 More Examples of Nested Queries

Let us revisit a query that we considered earlier using the INTERSECT operator.

(Q6) Find the names of sailors who have reserved both a red and a green boat.

SELECT
FROM
WHERE

S.sname
Sailors S, Reserves R, Boats B
S.sid = R.sid AND R.bid = B.bid AND B.color = 'red'
AND S.sid IN ( SELECT S2.sid

FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid

AND B2.color = 'green' )

This query can be understood as follows: "Find all sailors who have reserved
a red boat and, further, have sids that are included in the set of sids of sailors
who have reserved a green boat." This formulation of the query illustrates
how queries involving INTERSECT can be rewritten using IN, which is useful to
know if your system does not support INTERSECT. Queries using EXCEPT can
be similarly rewritten by using NOT IN. To find the side:, of sailors who have
reserved red boats but not green boats, we can simply replace the keyword IN
in the previous query by NOT IN.
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As it turns out, writing this query (Q6) using INTERSECT is more complicated
because we have to use sids to identify sailors (while intersecting) and have to
return sailor names:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (( SELECT R.sid

FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = 'red' )
INTERSECT
(SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid = B2.bid AND B2.color = 'green' ))

Our next example illustrates how the division operation in relational algebra
can be expressed in SQL.

(Q9) Find the names of sailors who have TeseTved all boats.

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (( SELECT B.bid

FROM Boats B )
EXCEPT
(SELECT R. bid
FROM Reserves R
WHERE R.sid = S.sid ))

Note that this query is correlated--for each sailor S, we check to see that the
set of boats reserved by S includes every boat. An alternative way to do this
query without using EXCEPT follows:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ( SELECT

FROM
WHERE

B.bid
Boats B
NOT EXISTS ( SELECT R. bid

FROM Reserves R
WHERE R.bid = B.bid

AND R.sid = S.sid ))

Intuitively, for each sailor we check that there is no boat that has not been
reserved by this sailor.
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SQL:1999 Aggregate Functions: The collection of aggregate functions
is greatly expanded in the new standard, including several statistical
tions such as standard deviation, covariance, and percentiles. However,
new aggregate functions are in the SQLjOLAP package and may not
supported by all vendors.

5.5 AGGREGATE OPERATORS

In addition to simply retrieving data, we often want to perform some compu­
tation or summarization. As we noted earlier in this chapter, SQL allows the
use of arithmetic expressions. We now consider a powerful class of constructs
for computing aggregate values such as MIN and SUM. These features represent
a significant extension of relational algebra. SQL supports five aggregate oper­
ations, which can be applied on any column, say A, of a relation:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Note that it does not make sense to specify DISTINCT in conjunction with MIN
or MAX (although SQL does not preclude this).

(Q25) Find the average age of all sailors.

SELECT AVG (S.age)
FROM Sailors S

On instance 53, the average age is 37.4. Of course, the WHERE clause can be
used to restrict the sailors considered in computing the average age.

(Q26) Find the average age of sailors with a rating of 10.

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating = 10

There are two such sailors, and their average age is 25.5. MIN (or MAX) can be
used instead of AVG in the above queries to find the age of the youngest (oldest)
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sailor. However) finding both the name and the age of the oldest sailor is more
tricky, as the next query illustrates.

(Q,"21) Find the name and age of the oldest sailor.

Consider the following attempt to answer this query:

SELECT S.sname, MAX (S.age)
FROM Sailors S

The intent is for this query to return not only the maximum age but also the
name of the sailors having that age. However, this query is illegal in SQL-if
the SELECT clause uses an aggregate operation, then it must use only aggregate
operations unless the query contains a GROUP BY clause! (The intuition behind
this restriction should become clear when we discuss the GROUP BY clause in
Section 5.5.1.) Therefore, we cannot use MAX (S.age) as well as S.sname in the
SELECT clause. We have to use a nested query to compute the desired answer
to Q27:

SELECT

FROM
WHERE

S.sname, S.age
Sailors S
S.age = ( SELECT MAX (S2.age)

FROM Sailors S2 )

Observe that we have used the result of an aggregate operation in the subquery
as an argument to a comparison operation. Strictly speaking, we are comparing
an age value with the result of the subquery, which is a relation. However,
because of the use of the aggregate operation, the subquery is guaranteed to
return a single tuple with a single field, and SQL Gonverts such a relation to a
field value for the sake of the comparison. The following equivalent query for
Q27 is legal in the SQL standard but, unfortunately, is not supported in many
systems:

SELECT

FROM
WHERE

S.sname, S.age
Sailors S
( SELECT MAX (S2.age)

FROM Sailors S2 ) = S.age

\Vc can count the number of sailors using COUNT. This exarnple illustrates the
use of * as an argument to COUNT, which is useful when \ve want to count all
rows.

(Q28) Count the n:umbCT of sa:iloTs.

SELECT COUNT (*)



FROM Sailors S

vVe can think of * as shorthand for all the columns (in the cross-product of the
from-list in the FROM clause). Contrast this query with the following query,
which computes the number of distinct sailor names. (Remember that ,'mame
is not a key!)

(Q29) Count the nmnber of d'i.fferent sailor names.

SELECT COUNT ( DISTINCT S.sname )
FROM Sailors S

On instance 83, the answer to Q28 is 10, whereas the answer to Q29 is 9
(because two sailors have the same name, Horatio). If DISTINCT is omitted,
the answer to Q29 is 10, because the name Horatio is counted twice. If COUNT
does not include DISTINCT, then COUNT (*) gives the same answer as COUNT (x) ,

where x is any set of attributes. In our example, without DISTINCT Q29 is
equivalent to Q28. However, the use of COUNT (*) is better querying style,
since it is immediately clear that all records contribute to the total count.

Aggregate operations offer an alternative to the ANY and ALL constructs. For
example, consider the following query:

(Q30) Find the names of sailors who are older than the oldest sailor with a
rating of 10.

SELECT
FROM
WHERE

S.sname
Sailors S
S.age > ( SELECT MAX ( S2.age )

FROM Sailors S2
WHERE S2.rating = 10 )

On instance 83, the oldest sailor with rating 10 is sailor 58, whose age is ~j5.

The names of older sailors are Bob, Dustin, Horatio, and Lubber. Using ALL,
this query could alternatively be written as follows:

SELECT S.sname
FROM Sailors S
WHERE S.age > ALL ( SELECT

FROM
WHERE

S2.age
Sailors S2
S2.rating = 10 )

However, the ALL query is more error proncone could easily (and incorrectly!)
use ANY instead of ALL, and retrieve sailors who are older than some sailor with
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Relationa~ Algebra and SQL: ~~~~:egation is a fUIl~~~:·mental operati(~:l-'-l
that canIlot be expressed in relational algebra. Similarly, SQL'8 grouping I
construct cannot be expressed in algebra. I

L..- ._. .....__ . I

a rating of 10. The use of ANY intuitively corresponds to the use of MIN, instead
of MAX, in the previous query.

5.5.1 The GROUP BY and HAVING Clauses

Thus far, we have applied aggregate operations to all (qualifying) rows in a
relation. Often we want to apply aggregate operations to each of a number
of groups of rows in a relation, where the number of groups depends on the
relation instance (i.e., is not known in advance). For example, consider the
following query.

(Q31) Find the age of the youngest sailor for each rating level.

If we know that ratings are integers in the range 1 to la, we could write 10
queries of the form:

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

where i = 1,2, ... ,10. vVriting 10 such queries is tedious. More important,
we may not know what rating levels exist in advance.

To write such queries, we need a major extension to the basic SQL query
form, namely, the GROUP BY clause. In fact, the extension also includes an
optional HAVING clause that can be used to specify qualificatioIls over groups
(for example, we may be interested only in rating levels> 6. The general form
of an SQL query with these extensions is:

SELECT [ DISTINCT] select-list
FROM from-list
WHERE 'qualification
GROUP BY grouping-list
HAVING group-qualification

Using the GROUP BY clause, we can write Q:n a.s follows:

SELECT S.rating, MIN (S.age)
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FROM Sailors S
GROUP BY S.rating

Let us consider some important points concerning the new clauses:

II The select-list in the SELECT clause consists of (1) a list of column names
and (2) a list of terms having the form aggop ( column-name) AS new­
name. vVe already saw AS used to rename output columns. Columns that
are the result of aggregate operators do not already have a column name,
and therefore giving the column a name with AS is especially useful.

Every column that appears in (1) must also appear in grouping-list. The
reason is that each row in the result of the query corresponds to one gmup,
which is a collection of rows that agree on the values of columns in grouping­
list. In general, if a column appears in list (1), but not in grouping-list,
there can be multiple rows within a group that have different values in this
column, and it is not clear what value should be assigned to this column
in an answer row.

We can sometimes use primary key information to verify that a column
has a unique value in all rows within each group. For example, if the
grouping-list contains the primary key of a table in the from-list, every
column of that table has a unique value within each group. In SQL:1999,
such columns are also allowed to appear in part (1) of the select-list.

II The expressions appearing in the group-qualification in the HAVING clause
must have a single value per group. The intuition is that the HAVING clause
determines whether an answer row is to be generated for a given group.
To satisfy this requirement in SQL-92, a column appearing in the group­
qualification must appear a'3 the argument to an aggregation operator, or
it must also appear in grouping-list. In SQL:1999, two new set functions
have been introduced that allow us to check whether every or any row in a
group satisfies a condition; this allows us to use conditions similar to those
in a WHERE clause.

III If GROUP BY is omitted, the entire table is regarded as a single group.

vVe explain the semantics of such a query through an example.

(QS2) Find the age of the youngest sa'ilor who is eligible to vote (i.e., is at least
18 years old) for each rating level with at least h.uo such sailors.

SELECT
FROM
WHERE
GROUP BY
HAVING

S.rating, MIN (S.age) AS minage
Sailors S
S.age >= 18
S.rating
COUNT (*) > 1
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vVe will evaluate this query on instance 83 of Sailors, reproduced in Figure 5.10
for convenience. The instance of Sailors on which this query is to be evaluated is
shown in Figure 5.10. Extending the conceptual evaluation strategy presented
in Section 5.2, we proceed as follows. The first step is to construct the cross­
product of tables in the from-list. Because the only relation in the from-list
in Query Q32 is Sailors, the result is just the instance shown in Figure 5.10.

22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5
96 Frodo 3 25.5

Figure 5.10 Instance 53 of Sailors

The second step is to apply the qualification in the WHERE clause, S. age >= 18.
This step eliminates the row (71, zorba, 10, 16). The third step is to eliminate
unwanted columns. Only columns mentioned in the SELECT clause, the GROUP
BY clause, or the HAVING clause are necessary, which means we can eliminate
sid and sname in our example. The result is shown in Figure 5.11. Observe
that there are two identical rows with rating 3 and age 25.5-SQL does not
eliminate duplicates except when required to do so by use of the DISTINCT
keyword! The number of copies of a row in the intermediate table of Figure
5.11 is determined by the number of rows in the original table that had these
values in the projected columns.

The fourth step is to sort the table according to the GROUP BY clause to identify
the groups. The result of this step is shown in Figure 5.12.

The fifth step ,-is to apply the group-qualification in the HAVING clause, that
is, the condition COUNT (*) > 1. This step eliminates the groups with rating
equal to 1, 9, and 10. Observe that the order in which the WHERE and GROUP
BY clauses are considered is significant: If the WHERE clause were not consid­
ered first, the group with rating=10 would have met the group-qualification
in the HAVING clause. The sixth step is to generate one answer row for each
remaining group. The answer row corresponding to a group consists of a subset
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3 25.5
3 25.5
3 63.5

55.5
25.5

35.0

35.0I 10

~~tl?l (J;fJ6;

11 I 33.0.f'(Lf'tTbf} iigge·····
.. . ....

7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
9 35.0
3 25.5
3 63.5
3 25.5

Figure 5.11 After Evaluation Step 3 Figure 5.12 After Evaluation Step 4

of the grouping columns, plus one or more columns generated by applying an
aggregation operator. In our example, each answer row has a rating column
and a minage column, which is computed by applying MIN to the values in the
age column of the corresponding group. The result of this step is shown in
Figure 5.13.

I rating I minage I
3 25.5
7 35.0
8 25.5

Figure 5.13 Final Result in Sample Evaluation

If the query contains DISTINCT in the SELECT clause, duplicates are eliminated
in an additional, and final, step.

SQL:1999 ha.s introduced two new set functions, EVERY and ANY. To illustrate
these functions, we can replace the HAVING clause in our example by

HAVING COUNT (*) > 1 AND EVERY ( S.age <= 60 )

The fifth step of the conceptual evaluation is the one affected by the change
in the HAVING clause. Consider the result of the fourth step, shown in Figure
5.12. The EVERY keyword requires that every row in a group must satisfy the
attached condition to meet the group-qualification. The group for rat'ing 3 does
meet this criterion and is dropped; the result is shown in Figure 5.14.
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SQL:1999 Extensions: Two new set functions, EVERY and ANY, have
been added. vVhen they are used in the HAVING clause, the basic intuition
that the clause specifies a condition to be satisfied by each group, taken as
a whole, remains unchanged. However, the condition can now involve tests
on individual tuples in the group, whereas it previously relied exclusively
on aggregate functions over the group of tuples.

It is worth contrasting the preceding query with the following query, in which
the condition on age is in the WHERE clause instead of the HAVING clause:

SELECT
FROM
WHERE
GROUP BY
HAVING

S.rating, MIN (S.age) AS minage
Sailors S
S.age >= 18 AND S.age <= 60
S.rating
COUNT (*) > 1

Now, the result after the third step of conceptual evaluation no longer contains
the row with age 63.5. Nonetheless, the group for rating 3 satisfies the condition
COUNT (*) > 1, since it still has two rows, and meets the group-qualification
applied in the fifth step. The final result for this query is shown in Figure 5.15.

3 25.5
7 45.0
8 55.5

I rating I minage I

55.5

rating I minage

~ 1
45

.
0

Figure 5.14 Final Result of EVERY Query Figure 5.15 Result of Alternative Query

5.5.2 More Examples of Aggregate Queries

(Q33) FOT each red boat; find the number of reservations for this boat.

SELECT B.bid, COUNT (*) AS reservationcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = 'red'
GROUP BY B.bid

On instances B1 and R2, the answer to this query contains the two tuples (102,
3) and (104, 2).

Observe that this version of the preceding query is illegal:
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SELECT B.bicl, COUNT (*) AS reservationcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid
GROUP BY B.bid
HAVING B.color = 'red'

lijj9

Even though the gToup-qualification B.coloT = 'Ted'is single-valued per group,
since the grouping attribute bid is a key for Boats (and therefore determines
coloT) , SQL disallows this query.6 Only columns that appear in the GROUP BY
clause can appear in the HAVING clause, unless they appear as arguments to
an aggregate operator in the HAVING clause.

(Q34) Find the avemge age of sailoTs fOT each mting level that has at least two
sailoTs.

SELECT
FROM
GROUP BY
HAVING

S.rating, AVG (S.age) AS avgage
Sailors S
S.rating
COUNT (*) > 1

After identifying groups based on mting, we retain only groups with at least
two sailors. The answer to this query on instance 83 is shown in Figure 5.16.

I mting I avgage I
3 44.5
7 40.0
8 40.5
10 25.5

Figure 5.16 Q34 Answer

I mting I avgage I
3 45.5
7 40.0
8 40.5
10 35.0

Figure 5.17 Q35 Answer

I··rating I av.qage]

3 45.5
7 40.0
8 40.5

Figure 5.18 Q:36 Answer

The following alternative formulation of Query Q34 illustrates that the HAVING
clause can have a nested subquery, just like the WHERE clause. Note that we
can use S. mtiTLg inside the nested subquery in the HAVING clause because it
has a single value for the current group of sailors:

SELECT
FROM
GROUP BY
HAVING

S.rating, AVG ( S.age ) AS avgage
Sailors S
S.rating
1 < ( SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.Hl,ting )

6This query can be ea..'iily rewritten to be legal in SQL: 1999 using EVERY in the HAVING clause.
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(Q35) Find the average age of sailors 'Who aTe of voting age (i.e.~ at least 18
year8 old) for each 'rating level that has at least two sailors.

SELECT
FROM
WHERE
GROUP BY
HAVING

S.rating, AVG ( S.age ) AS avgage
Sailors S
S. age >= 18
S.rating
1 < ( SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating )

In this variant of Query Q34, we first remove tuples with age <= 18 and group
the remaining tuples by rating. For each group, the subquery in the HAVING
clause computes the number of tuples in Sailors (without applying the selection
age <= 18) with the same rating value as the current group. If a group has
less than two sailors, it is discarded. For each remaining group, we output
the average age. The answer to this query on instance 53 is shown in Figure
5.17. Note that the answer is very similar to the answer for Q34, with the only
difference being that for the group with rating 10, we now ignore the sailor
with age 16 while computing the average.

(Q36) Find the average age oj sailors who aTe of voting age (i.e., at least 18
yeaTs old) JOT each rating level that has at least two such sailors.

SELECT
FROM
WHERE
GROUP BY
HAVING

S.rating, AVG ( S.age ) AS avgage
Sailors S
S. age> 18
S.rating
1 < ( SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating AND S2.age >= 18 )

This formulation of the query reflects its similarity to Q35. The answer to Q36
on instance 53 is shown in Figure 5.18. It differs from the answer to Q35 in
that there is no tuple for rating 10, since there is only one tuple with rating 10
and age 2 18.

Query Q36 is actually very similar to Q32, as the following simpler formulation
shows:

SELECT
FROM
WHERE
GROUP BY

S.rating, AVG
Sailors S
S. age> 18
S.rating

( S.age ) AS avgage
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HAVING COUNT (*) > 1

This formulation of Q36 takes advantage of the fact that the WHERE clause is
applied before grouping is done; thus, only sailors with age> 18 are left when
grouping is done. It is instructive to consider yet another way of writing this
query:

SELECT
FROM

WHERE

Temp.rating, Temp.avgage
( SELECT S.rating, AVG ( S.age ) AS

COUNT (*) AS ratingcount
FROM Sailors S
WHERE S. age> 18
GROUP BY S.rating) AS Temp

Temp.ratingcount > 1

avgage,

This alternative brings out several interesting points. First, the FROM clause
can also contain a nested subquery according to the SQL standard. 7 Second,
the HAVING clause is not needed at all. Any query with a HAVING clause can
be rewritten without one, but many queries are simpler to express with the
HAVING clause. Finally, when a subquery appears in the FROM clause, using
the AS keyword to give it a name is necessary (since otherwise we could not
express, for instance, the condition Temp. ratingcount > 1).

(Q37) Find those ratings fOT which the average age of sailoTS is the m'inirnum
over all ratings.

We use this query to illustrate that aggregate operations cannot be nested. One
might consider writing it as follows:

SELECT
FROM
WHERE

S.rating
Sailors S
AVG (S.age) = ( SELECT MIN (AVG (S2.age))

FROM Sailors S2
GROUP BY S2.rating )

A little thought shows that this query will not work even if the expression MIN
(AVG (S2.age)), which is illegal, were allowed. In the nested query, Sailors is
partitioned int,o groups by rating, and the average age is computed for each
rating value. for each group, applying MIN to this average age value for the
group will return the same value! A correct version of this query follows. It
essentially computes a temporary table containing the average age for each
rating value and then finds the rating(s) for which this average age is the
minimum.

7Not all commercial database systems currently support nested queries in the FROM clause.
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SELECT
FROM

WHERE

Temp.rating, Temp.avgage
( SELECT S.rating, AVG (S.age) AS avgage,

FROM Sailors S
GROUP BY S.rating) AS Temp

Temp.avgage = ( SELECT MIN (Temp.avgage) FROM Temp)

The answer to this query on instance 53 is (10, 25.5).

As an exercise, consider whether the following query computes the same answer.

SELECT
FROM

GROUP BY

Temp.rating, MIN (Temp.avgage )
( SELECT S.rating, AVG (S.age) AS

FROM Sailors S
GROUP BY S.rating) AS Temp

Temp.rating

avgage,

5.6 NULL VALUES

Thus far, we have assumed that column values in a row are always known. In
practice column values can be unknown. For example, when a sailor, say Dan,
joins a yacht club, he may not yet have a rating assigned. Since the definition
for the Sailors table has a rating column, what row should we insert for Dan?
\\That is needed here is a special value that denotes unknown. Suppose the Sailor
table definition was modified to include a rnaiden-name column. However, only
married women who take their husband's last name have a maiden name. For
women who do not take their husband's name and for men, the nw'idcn-nmnc
column is inapphcable. Again, what value do we include in this column for the
row representing Dan?

SQL provides H special column value called null to use in such situations. "Ve
use null when the column value is either 'lJ,nknown or inapplicable. Using our
Sailor table definition, we might enter the row (98. Dan, null, 39) to represent
Dan. The presence of null values complicates rnany issues, and we consider the
impact of null values on SQL in this section.
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5.6.1 Comparisons Using Null Values

Consider a comparison such as rat'in,g = 8. If this is applied to the row for Dan,
is this condition true or false'? Since Dan's rating is unknown, it is reasonable
to say that this comparison should evaluate to the value unknown. In fact, this
is the C::lse for the comparisons rating> 8 and rating < 8 &'3 well. Perhaps less
obviously, if we compare two null values using <, >, =, and so on, the result is
always unknown. For example, if we have null in two distinct rows of the sailor
relation, any comparison returns unknown.

SQL also provides a special comparison operator IS NULL to test whether a
column value is null; for example, we can say rating IS NULL, which would
evaluate to true on the row representing Dan. We can also say rat'ing IS NOT
NULL, which would evaluate to false on the row for Dan.

5.6.2 Logical Connectives AND, OR, and NOT

Now, what about boolean expressions such as mting = 8 OR age < 40 and
mting = 8 AND age < 40? Considering the row for Dan again, because age
< 40, the first expression evaluates to true regardless of the value of rating, but
what about the second? We can only say unknown.

But this example raises an important point~once we have null values, we
must define the logical operators AND, OR, and NOT using a three-val1LCd logic in
which expressions evaluate to true, false, or unknown. We extend the usu1'11
interpretations of AND, OR, and NOT to cover the case when one of the arguments
is unknown &., follows. The expression NOT unknown is defined to be unknown.
OR of two arguments evaluates to true if either argument evaluates to true,
and to unknown if one argument evaluates to false and the other evaluates to
unknown. (If both arguments are false, of course, OR evaluates to false.) AND
of two arguments evaluates to false if either argument evaluates to false, and
to unknown if one argument evaluates to unknown and the other evaluates to
true or unknown. (If both arguments are true, AND evaluates to true.)

5.6.3 Impact on SQL Constructs

Boolean expressions arise in many contexts in SQI", and the impact of nv,ll
values must be recognized. H)r example, the qualification in the WHERE clause
eliminates rows (in the cross-product of tables named in the FROM clause) for
which the qualification does not evaluate to true. Therefore, in the presence
of null values, any row that evaluates to false or unknown is eliminated. Elim­
inating rows that evaluate to unknown h&') a subtle but signifieant impaet on
queries, especially nested queries involving EXISTS or UNIQUE.
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Another issue in the presence of 'null values is the definition of when two rows
in a relation instance are regarded a.'3 duplicates. The SQL definition is that two
rows are duplicates if corresponding columns are either equal, or both contain
Trull. Contra..9t this definition with the fact that if we compare two null values
using =, the result is unknown! In the context of duplicates, this comparison is
implicitly treated as true, which is an anomaly.

As expected, the arithmetic operations +, -, *, and / all return Tmll if one of
their arguments is null. However, nulls can cause some unexpected behavior
with aggregate operations. COUNT(*) handles 'null values just like other values;
that is, they get counted. All the other aggregate operations (COUNT, SUM, AVG,
MIN, MAX, and variations using DISTINCT) simply discard null values--thus SUM
cannot be understood as just the addition of all values in the (multi)set of
values that it is applied to; a preliminary step of discarding all null values must
also be accounted for. As a special case, if one of these operators-other than
COUNT-is applied to only null values, the result is again null.

5.6.4 Outer Joins

Some interesting variants of the join operation that rely on null values, called
outer joins, are supported in SQL. Consider the join of two tables, say Sailors
Me Reserves. Tuples of Sailors that do not match some row in Reserves accord­
ing to the join condition c do not appear in the result. In an outer join, on
the other hanel, Sailor rows without a matching Reserves row appear exactly
once in the result, with the result columns inherited from Reserves assigned
null values.

In fact, there are several variants of the outer join idea. In a left outer join,
Sailor rows without a matching Reserves row appear in the result, but not vice
versa. In a right outer join, Reserves rows without a matching Sailors row
appear in the result, but not vice versa. In a full outer join, both Sailors
and Reserves rows without a match appear in the result. (Of course, rows with
a match always appear in the result, for all these variants, just like the usual
joins, sometimes called inner joins, presented in Chapter 4.)

SQL allows the desired type of join to be specified in the FROM clause. For
example, the following query lists (sid, b'id) pairs corresponding to sailors and
boats they ha~e reserved:

SELECT S.sid, R.bid
FROM Sailors S NATURAL LEFT OUTER JOIN Reserves R

The NATURAL keyword specifies that the join condition is equality on all common
attributes (in this example, sid), and the WHERE clause is not required (unless
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we want to specify additional, non-join conditions). On the instances of Sailors
and Reserves shown in Figure 5.6, this query computes the result shown in
Figure 5.19.

I sid I bid I
22 101
31 null
58 103

Figure 5.19 Left Outer Join of Sailo7"1 and Rese1<Jesl

5.6.5 Disallowing Null Values

We can disallow null values by specifying NOT NULL as part of the field def­
inition; for example, sname CHAR(20) NOT NULL. In addition, the fields in a
primary key are not allowed to take on null values. Thus, there is an implicit
NOT NULL constraint for every field listed in a PRIMARY KEY constraint.

Our coverage of null values is far from complete. The interested reader should
consult one of the many books devoted to SQL for a more detailed treatment
of the topic.

5.7 COMPLEX INTEGRITY CONSTRAINTS IN SQL

In this section we discuss the specification of complex integrity constraints that
utilize the full power of SQL queries. The features discussed in this section
complement the integrity constraint features of SQL presented in Chapter 3.

5.7.1 Constraints over a Single Table

We can specify complex constraints over a single table using table constraints,
which have the form CHECK conditional-expression. For example, to ensure that
rating must be an integer in the range 1 to 10, we could use:

CREATE TABLE Sailors ( sid INTEGER,
sname CHAR(10),

rating INTEGER,

age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10 ))
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To enforce the constraint that Interlake boats cannot be reserved, we could use:

CREATE TABLE Reserves (sid INTEGER,
bid INTEGER,
day DATE,
FOREIGN KEY (sid) REFERENCES Sailors
FOREIGN KEY (bid) REFERENCES Boats
CONSTRAINT noInterlakeRes
CHECK ( 'Interlake' <>

( SELECT B.bname
FROM Boats B
WHERE B.bid = Reserves.bid )))

When a row is inserted into Reserves or an existing row is modified, the condi­
tional expression in the CHECK constraint is evaluated. If it evaluates to false,
the command is rejected.

5.7.2 Domain Constraints and Distinct Types

A user can define a new domain using the CREATE DOMAIN statement, which
uses CHECK constraints.

CREATE DOMAIN ratingval INTEGER DEFAULT 1
CHECK ( VALUE >= 1 AND VALUE <= 10 )

INTEGER is the underlying, or source, type for the domain ratingval, and
every ratingval value must be of this type. Values in ratingval are further
restricted by using a CHECK constraint; in defining this constraint, we use the
keyword VALUE to refer to a value in the domain. By using this facility, we
can constrain the values that belong to a domain using the full power of SQL
queries. Once a domain is defined, the name of the domain can be used to
restrict column values in a table; we can use the following line in a schema
declaration, for example:

rating ratingval

The optional DEFAULT keyword is used to associate a default value with a do­
main. If the domain ratingval is used for a column in some relation and
no value is entered for this column in an inserted tuple, the default value 1
associated with ratingval is used.

SQL's support for the concept of a domain is limited in an important respect.
For example, we can define two domains called SailorId and BoatId, each
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SQL:1999 Distinct Types: :Many systems, e.g., Informix UDS and IBM
DB2, already support this feature. With its introduction, we expect that
the support for domains will be deprecated, and eventually eliminated, in
future versions of the SqL standard. It is really just one part of a broad
set of object-oriented features in SQL:1999, which we discuss in Chapter
23.

using INTEGER as the underlying type. The intent is to force a comparison of a
SailorId value with a BoatId value to always fail (since they are drawn from
different domains); however, since they both have the same base type, INTEGER,
the comparison will succeed in SqL. This problem is addressed through the
introduction of distinct types in SqL:1999:

CREATE TYPE ratingtype AS INTEGER

This statement defines a new distinct type called ratingtype, with INTEGER
as its source type. Values of type ratingtype can be compared with each
other, but they cannot be compared with values of other types. In particular,
ratingtype values are treated as being distinct from values of the source type,
INTEGER--····we cannot compare them to integers or combine them with integers
(e.g., add an integer to a ratingtype value). If we want to define operations
on the new type, for example, an average function, we must do so explicitly;
none of the existing operations on the source type carryover. We discuss how
such functions can be defined in Section 23.4.1.

5.7.3 Assertions: ICs over Several Tables

Table constraints are associated with a single table, although the conditional
expression in the CHECK clause can refer to other tables. Table constraints
are required to hold only if the a,ssociated table is nonempty. Thus, when
a constraint involves two or more tables, the table constraint mechanism is
sometimes cumbersome and not quite what is desired. To cover such situations,
SqL supports the creation of assertions, which are constraints not associated
with anyone table.

As an example, suppose that we wish to enforce the constraint that the number
of boats plus the number of sailors should be less than 100. (This condition
Illight be required, say, to qualify as a 'smaIl' sailing club.) We could try the
following table constraint:

CREATE TABLE Sailors ( sid INTEGER,
sname CHAR ( 10) ,
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rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK ( rating >= 1 AND rating <= 10)
CHECK ( ( SELECT COUNT (S.sid) FROM Sailors S )

+ ( SELECT COUNT (B. bid) FROM Boats B )
< 100 ))

This solution suffers from two drawbacks. It is associated with Sailors, al­
though it involves Boats in a completely symmetric way. More important,
if the Sailors table is empty, this constraint is defined (as per the semantics
of table constraints) to always hold, even if we have more than 100 rows in
Boats! vVe could extend this constraint specification to check that Sailors is
nonempty, but this approach becomes cumbersome. The best solution is to
create an assertion, as follows:

CREATE ASSERTION smallClub
CHECK (( SELECT COUNT (S.sid) FROM Sailors S )

+ ( SELECT COUNT (B. bid) FROM Boats B)
< 100 )

5.8 TRIGGERS AND ACTIVE DATABASES

A trigger is a procedure that is automatically invoked by the DBMS in re­
sponse to specified changes to the database, and is typically specified by the
DBA. A database that has a set of associated triggers is called an active
database. A trigger description contains three parts:

• Event: A change to the database that activates the trigger.

.. Condition: A query or test that is run when the trigger is activated.

.. Action: A procedure that is executed when the trigger is activated and
its condition is true.

A trigger can be thought of as a 'daemon' that monitors a databa.se, and is exe­
cuted when the database is modified in a way that matches the event specifica­
tion. An insert, delete, or update statement could activate a trigger, regardless
of which user or application invoked the activating statement; users may not
even be aware that a trigger wa.'3 executed as a side effect of their program.

A condition in a trigger can be a true/false statement (e.g., all employee salaries
are less than $100,000) or a query. A query is interpreted as true if the answer
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set is nonempty and false if the query ha.') no answers. If the condition part
evaluates to true, the action a.,sociated with the trigger is executed.

A trigger action can examine the answers to th(~ query in the condition part
of the trigger, refer to old and new values of tuples modified by the statement
activating the trigger, execute Hew queries, and make changes to the database.
In fact, an action can even execute a series of data-definition commands (e.g.,
create new tables, change authorizations) and transaction-oriented commands
(e.g., commit) or call host-language procedures.

An important issue is when the action part of a trigger executes in relation to
the statement that activated the trigger. For example, a statement that inserts
records into the Students table may activate a trigger that is used to maintain
statistics on how many studen~s younger than 18 are inserted at a time by a
typical insert statement. Depending on exactly what the trigger does, we may
want its action to execute before changes are made to the Students table or
afterwards: A trigger that initializes a variable used to count the nurnber of
qualifying insertions should be executed before, and a trigger that executes once
per qualifying inserted record and increments the variable should be executed
after each record is inserted (because we may want to examine the values in
the new record to determine the action).

5.8.1 Examples of Triggers in SQL

The examples shown in Figure 5.20, written using Oracle Server syntax for
defining triggers, illustrate the basic concepts behind triggers. (The SQL:1999
syntax for these triggers is similar; we will see an example using SQL:1999
syntax shortly.) The trigger called iniLcount initializes a counter variable be­
fore every execution of an INSERT statement that adds tuples to the Students
relation. The trigger called incr_count increments the counter for each inserted
tuple that satisfies the condition age < 18.

One of the example triggers in Figure 5.20 executes before the aetivating state­
ment, and the other example executes after it. A trigger can also be scheduled
to execute instead of the activating statement; or in deferred fashion, at the
end of the transaction containing the activating statement; or in asynchronous
fashion, as part of a separate transaction.

The example in Figure 5.20 illustrates another point about trigger execution:
A user must be able to specify whether a trigger is to be executed once per
modified record or once per activating statement. If the action depends on in­
dividual changed records, for example, we have to examine the age field of the
inserted Students record to decide whether to increment the count, the trigger-
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CREATE TRIGGER iniLeount BEFORE INSERT ON Students 1* Event *1
DECLARE

count INTEGER:

BEGIN 1* Action *I
count := 0:

END

CREATE TRIGGER incLcount AFTER INSERT ON Students 1* Event *1
WHEN (new.age < 18) 1* Condition; 'new' is just-inserted tuple *1
FOR EACH ROW

BEGIN 1* Action; a procedure in Oracle's PL/SQL syntax *1
count := count + 1;

END

Figure 5.20 Examples Illustrating Triggers

ing event should be defined to occur for each modified record; the FOR EACH

ROW clause is used to do this. Such a trigger is called a row-level trigger. On
the other hand, the iniLcount trigger is executed just once per INSERT state­
ment, regardless of the number of records inserted, because we have omitted
the FOR EACH ROW phrase. Such a trigger is called a statement-level trigger.

In Figure 5.20, the keyword new refers to the newly inserted tuple. If an existing
tuple were modified, the keywords old and new could be used to refer to the
values before and after the modification. SQL:1999 also allows the action part
of a trigger to refer to the set of changed records, rather than just one changed
record at a time. For example, it would be useful to be able to refer to the set
of inserted Students records in a trigger that executes once after the INSERT

statement; we could count the number of inserted records with age < 18 through
an SQL query over this set. Such a trigger is shown in Figure 5.21 and is an
aJternative to the triggers shown in Figure 5.20.

The definition in Figure 5.21 uses the syntax of SQL: 1999, in order to illustrate
the similarities and differences with respect to the syntax used in a typical
current DBMS. The keyword clause NEW TABLE enables us to give a table name
(InsertedTuples) to the set of newly inserted tuples. The FOR EACH STATEMENT

clause specifies a statement-level trigger and can be omitted because it is the
default. This definition does not have a WHEN clause; if such a clause is included,
it follows the FOR EACH STATEMENT clause, just before the action specification.

The trigger is evaluated once for each SQL statement that inserts tuples into
Students, and inserts a single tuple into a table that contains statistics on mod-
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ifications to database tables. The first two fields of the tuple contain constants
(identifying the modified table, Students, and the kind of modifying statement,
an INSERT), and the third field is the number of inserted Students tuples with
age < 18. (The trigger in Figure 5.20 only computes the count; an additional
trigger is required to insert the appropriate tuple into the statistics table.)

CREATE TRIGGER seLcount AFTER INSERT ON Students j* Event *j
REFERENCING NEW TABLE AS InsertedTuples
FOR EACH STATEMENT

INSERT j* Action * j
INTO StatisticsTable(ModifiedTable, ModificationType, Count)
SELECT 'Students', 'Insert', COUNT *
FROM InsertedTuples I
WHERE 1.age < 18

Figure 5.21 Set-Oriented Trigger

5.9 DESIGNING ACTIVE DATABASES

Triggers offer a powerful mechanism for dealing with changes to a database,
but they must be used with caution. The effect of a collection of triggers can
be very complex, and maintaining an active database can become very difficult.
Often, a judicious use of integrity constraints can replace the use of triggers.

5.9.1 Why Triggers Can Be Hard to Understand

In an active database system, when the DBMS is about to execute a statement
that modifies the databa.se, it checks whether some trigger is activated by the
statement. If so, the DBMS processes the trigger by evaluating its condition
part, and then (if the condition evaluates to true) executing its action part.

If a statement activates more than one trigger, the DBMS typically processes
all of them, in senne arbitrary order. An important point is that the execution
of the action part of a trigger could in turn activate another trigger. In par­
ticular, the execution of the action part of a trigger could a,gain activate the
sarne trigger; such triggers "u'e called recursive triggers. The potential for
such chain activations and the unpredictable order in which a DBMS processes
activated triggers can make it difficult to understand the effect of a collection
of triggers.



172 CHAPTER'5

5.9.2 Constraints versus Triggers

A common use of triggers is to maintain databa..'3e consistency, and in such
cases, we should always consider whether using an integrity constraint (e.g., a
foreign key constraint) achieves the same goals. The meaning of a constraint is
not defined operationally, unlike the effect of a trigger. This property makes a
constraint easier to understand, and also gives the DBMS more opportunities
to optimize execution. A constraint also prevents the data from being made
inconsistent by any kind of statement, whereas a trigger is activated by a specific
kind of statement (INSERT, DELETE, or UPDATE). Again, this restriction makes
a constraint easier to understand.

On the other hand, triggers allow us to maintain database integrity in more
flexible ways, as the following examples illustrate.

• Suppose that we have a table called Orders with fields iternid, quantity,
custornerid, and unitprice. When a customer places an order, the first
three field values are filled in by the user (in this example, a sales clerk).
The fourth field's value can be obtained from a table called Items, but it
is important to include it in the Orders table to have a complete record of
the order, in case the price of the item is subsequently changed. We can
define a trigger to look up this value and include it in the fourth field of
a newly inserted record. In addition to reducing the number of fields that
the clerk h&'3 to type in, this trigger eliminates the possibility of an entry
error leading to an inconsistent price in the Orders table.

• Continuing with this example, we may want to perform some additional
actions when an order is received. For example, if the purchase is being
charged to a credit line issued by the company, we may want to check
whether the total cost of the purch&'3e is within the current credit limit.
We can use a trigger to do the check; indeed, we can even use a CHECK
constraint. Using a trigger, however, allows us to implement more sophis­
ticated policies for dealing with purchases that exceed a credit limit. For
instance, we may allow purchases that exceed the limit by no more than
10% if the customer has dealt with the company for at least a year, and
add the customer to a table of candidates for credit limit increases.

5.9.3 Other Uses of Triggers

.l\'Iany potential uses of triggers go beyond integrity maintenance. Triggers can
alert users to unusual events (&'3 reflected in updates to the databa..<;e). For
example, we may want to check whether a customer placing an order h&s made
enough purchases in the past month to qualify for an additional discount; if
so, the sales clerk must be informed so that he (or she) can tell the customer
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and possibly generate additional sales! \Ve can rela;y this information by using
a trigger that checks recent purcha.ses and prints a message if the customer
qualifies for the discount.

Triggers can generate a log of events to support auditing and security checks.
For example, each time a customer places an order, we can create a record with
the customer's ID and current credit limit and insert this record in a customer
history table. Subsequent analysis of this table might suggest candidates for
an increased credit limit (e.g., customers who have never failed to pay a bill on
time and who have come within 10% of their credit limit at least three times
in the last month).

As the examples in Section 5.8 illustrate, we can use triggers to gather statistics
on table accesses and modifications. Some database systems even use triggers
internally as the basis for managing replicas of relations (Section 22.11.1). Our
list of potential uses of triggers is not exhaustive; for example, triggers have
also been considered for workflow management and enforcing business rules.

5.10 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• What are the parts of a basic SQL query? Are the input and result tables
of an SQL query sets or multisets? How can you obtain a set of tuples as
the result of a query? (Section 5.2)

• What are range variables in SQL? How can you give names to output
columns in a query that are defined by arithmetic or string expressions?
What support does SQL offer for string pattern matching? (Section 5.2)

• What operations does SQL provide over (multi)sets of tuples, and how
would you use these in writing queries? (Section 5.3)

• vVhat are nested queries? What is correlation in nested queries? How
would you use the operators IN, EXISTS, UNIQUE, ANY, and ALL in writing
nested queries? Why are they useful? Illustrate your answer by showing
how to write the division operator in SQL. (Section 5.4)

• \Vhat aggregate operators does SQL support? (Section 5.5)

• \i\That is gmvping? Is there a counterpart in relational algebra? Explain
this feature, and discllss the interaction of the HAVING and WHERE clauses.
Mention any restrictions that mllst be satisfied by the fields that appear in
the GROUP BY clause. (Section 5.5.1)
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• \Vhat are null values? Are they supported in the relational model, &'3

described in Chapter 3'1 Hc)\v do they affect the meaning of queries? Can
primary key fields of a table contain null values? (Section 5.6)

• vVhat types of SQL constraints can be specified using the query language?
Can you express primary key constraints using one of these new kinds
of constraints? If so, why does SQL provide for a separate primary key
constraint syntax? (Section 5.7)

• What is a trigger, and what are its three parts? vVhat are the differences
between row-level and statement-level triggers? (Section 5.8)

• \Vhy can triggers be hard to understand? Explain the differences between
triggers and integrity constraints, and describe when you would use trig­
gers over integrity constrains and vice versa. What are triggers used for?
(Section 5.9)

EXERCISES

Online material is available for all exercises in this chapter on the book's webpage at

http://www.cs.wisc.edu/-dbbOok

This includes scripts to create tables for each exercise for use with Oracle, IBM DB2, Microsoft
SQL Server, and MySQL.

Exercise 5.1 Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)
Class( name: string, meets_at: time, room: string, fid: integer)
Enrolled(snum: integer, cname: string)
Faculty (fid: integer, fnarne: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

Write the following queries in SQL. No duplicates should be printed in any of the ans\vers.

1. Find the nari1es of all Juniors (level = JR) who are enrolled in a class taught by 1. Teach.

2. Find the age of the oldest student who is either a History major or enrolled in a course
taught by I. Teach.

:3. Find the names of all classes that either meet in room R128 or have five or more students
enrolled.

4. Find the Ilames of all students who are enrolled in two classes that meet at the same
time.
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5. Find the names of faculty members \vho teach in every room in which some class is
taught.

6. Find the names of faculty members for \vhorn the combined enrollment of the courses
that they teach is less than five.

7. Print the level and the average age of students for that level, for each level.

8. Print the level and the average age of students for that level, for all levels except JR.

9. For each faculty member that has taught classes only in room R128, print the faculty
member's name and the total number of classes she or he has taught.

10. Find the names of students enrolled in the maximum number of classes.

11. Find the names of students not enrolled in any class.

12. For each age value that appears in Students, find the level value that appears most often.
For example, if there are more FR level students aged 18 than SR, JR, or SO students
aged 18, you should print the pair (18, FR).

Exercise 5.2 Consider the following schema:

Suppliers( sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog( sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Write the following
queries in SQL:

1. Find the pnames of parts for which there is some supplier.

2. Find the snames of suppliers who supply every part.

3. Find the snames of suppliers who supply every red part.

4. Find the pnamcs of parts supplied by Acme Widget Suppliers and no one else.

5. Find the sids of suppliers who charge more for some part than the average cost of that
part (averaged over all the suppliers who supply that part).

6. For each part, find the sname of the supplier who charges the most for that part.

7. Find the sids of suppliers who supply only red parts.

8. Find the sids of suppliers who supply a red part anel a green part.

9. Find the sirl'i of suppliers who supply a red part or a green part.

10. For every supplier that only supplies green parts, print the name of the supplier and the
total number of parts that she supplies.

11. For every supplier that supplies a green part and a reel part, print the name and price
of the most expensive part that she supplies.

Exercise 5.3 The following relations keep track of airline flight information:

Flights(.flno: integer, from: string, to: string, di8tance: integer,

rlepa7'i:s: time, a'T'l~ivcs: time, Tn~ice: integer)
Aircraft( aid: integer, aname: string, cTllisingT'ange: integer)

Certified( eid: integer, aid: integer)

Employees( eid: integer I ename: string, salary: integer)
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Note that the Employees relation describes pilots and other kinds of employees as well; every
pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the
follO\ving queries in SQL. (Additional queries using the same schema are listed in the exereises
foT' Chapter 4·)

1. Find the names of aircraft such that all pilots certified to operate them earn more than
$80,000.

2. For each pilot who is certified for more than three aircraft, find the eid and the maximum
cruisingmnge of the aircraft for which she or he is certified.

3. Find the names of pilots whose salary is less than the price of the cheapest route from
Los Angeles to Honolulu.

4. For all aircraft with cmisingmnge over 1000 miles, find the name of the aircraft and the
average salary of all pilots certified for this aircraft.

5. Find the names of pilots certified for some Boeing aircraft.

6. Find the aids of all aircraft that can be used on routes from Los Angeles to Chicago.

7. Identify the routes that can be piloted by every pilot who makes more than $100,000.

8. Print the enames of pilots who can operate planes with cruisingmnge greater than 3000
miles but are not certified on any Boeing aircraft.

9. A customer wants to travel from Madison to New York with no more than two changes
of flight. List the choice of departure times from Madison if the customer wants to arrive
in New York by 6 p.m.

10. Compute the difference between the average salary of a pilot and the average salary of
all employees (including pilots).

11. Print the name and salary of every nonpilot whose salary is more than the average salary
for pilots.

12. Print the names of employees who are certified only on aircrafts with cruising range
longer than 1000 miles.

13. Print the names of employees who are certified only on aircrafts with cruising range
longer than 1000 miles, but on at least two such aircrafts.

14. Print the names of employees who are certified only on aircrafts with cruising range
longer than 1000 miles and who are certified on some Boeing aircraft.

Exercise 5.4 Consider the following relational schema. An employee can work in more than
one department; the pcLtime field of the Works relation shows the percentage of time that a
given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pet_time: integer)

Dept(did.· integer, budget: real, managerid: integer)

Write the following queries in SQL:

1. Print the names and ages of each employee who works in both the Hardware department
and the Software department.

2. For each department with more than 20 full-time-equivalent employees (i.e., where the
part~time and full-time employees add up to at least that many full-time employees),
print the did together with the number of employees that work in that department.
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18 jones 3 30.0
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jonah 6 56.041
22 ahab 7 44.0
63 moby 'mdl 15.0
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Figure 5.22 An Instance of Sailors

3. Print the name of each employee whose salary exceeds the budget of all of the depart­
ments that he or she works in.

4. Find the managerids of managers who manage only departments with budgets greater
than $1 million.

5. Find the enames of managers who manage the departments with the largest budgets.

6. If a manager manages more than one department, he or she controls the sum of all the
budgets for those departments. Find the managerids of managers who control more than
$5 million.

7. Find the managerids of managers who control the largest amounts.

8. Find the enames of managers who manage only departments with budgets larger than
$1 million, but at least one department with budget less than $5 million.

Exercise 5.5 Consider the instance of the Sailors relation shown in Figure 5.22.

1. Write SQL queries to compute the average rating, using AVGj the sum of the ratings,
using SUM; and the number of ratings, using COUNT.

2. If you divide the sum just computed by the count, would the result be the same as the
average? How would your answer change if these steps were carried out with respect to
the age field instead of mting?

~3. Consider the following query: Find the names of sailors with a higher rating than all
sailors with age < 21. The following two SQL queries attempt to obtain the answer
to this question. Do they both compute the result? If not, explain why. Under what
conditions would they compute the same result?

S2.rating
Sailors S2
S2.age < 21

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT

FROM
\-/HERE

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ( SELECT *

FROM Sailors S2
WHERE S2.age < 21

AND S.rating <= S2.rating )

4. Consider the instance of Sailors shown in Figure 5.22. Let us define instance Sl of Sailors
to consist of the first two tuples, instance S2 to be the last two tuples, and S to be the
given instance.
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Show the left outer join of S with itself, with the join condition being 8'id=sid.

(b) Show the right outer join of S ,vith itself, with the join condition being s'id=sid.

(c) Show the full outer join of S with itself, with the join condition being S'id=sid.

(d) Show the left outer join of Sl with S2, with the join condition being sid=sid.

(e) Show the right outer join of Sl with S2, with the join condition being sid=sid.

(f) Show the full outer join of 81 with S2, with the join condition being sid=sid.

Exercise 5.6 Answer the following questions:

1. Explain the term 'impedance mismatch in the context of embedding SQL commands in a
host language such as C.

2. How can the value of a host language variable be passed to an embedded SQL command?

3. Explain the WHENEVER command's use in error and exception handling.

4. Explain the need for cursors.

5. Give an example of a situation that calls for the use of embedded SQL; that is, interactive
use of SQL commands is not enough, and some host lang;uage capabilities are needed.

6. Write a C program with embedded SQL commands to address your example in the
previous answer.

7. Write a C program with embedded SQL commands to find the standard deviation of
sailors' ages.

8. Extend the previous program to find all sailors whose age is within one standard deviation
of the average age of all sailors.

9. Explain how you would write a C program to compute the transitive closure of a graph,
represented as an 8QL relation Edges(jrom, to), using embedded SQL commands. (You
need not write the program, just explain the main points to be dealt with.)

10. Explain the following terms with respect to cursors: 'tlpdatability, sens,itivity, and scml­
lability.

11. Define a cursor on the Sailors relation that is updatable, scrollable, and returns answers
sorted by age. Which fields of Sailors can such a cursor not update? Why?

12. Give an example of a situation that calls for dynamic 8QL; that is, even embedded SQL
is not sufficient.

Exercise 5.7 Consider the following relational schema and briefly answer the questions that
follow:

Emp( eid: integer, cname: string, age: integer, salary: real)
\Vorks( eid: integer, did: integer, pet-time: integer)
Dept( did.' integer, budget: re~l, managerid: integer)

1. Define a table constraint on Emp that will ensure that ever)' employee makes at leELst
$10,000.

2. Define a table constraint on Dept that will ensure that all managers have age> ;'W.

:3. Define an assertion on Dept that will ensure that all managers have age> 30. Compare
this assertion with the equivalent table constraint. Explain which is better.
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4. vVrite SQL statements to delete all information about employees whose salaries exceed
that of the manager of one or more departments that they work in. Be sure to ensure
that all the relevant integrity constraints are satisfied after your updates.

Exercise 5.8 Consider the following relations:

Student (sn'llrn: integer, sname: string, rnajor: string,

level: string, age: integer)
Class(narne: string, rneets_at: time, roorn: string, fid: integer)

Enrolled (snurn: integer, cnarne: string)

Faculty (fid: integer, fnarne: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

1. Write the SQL statements required to create these relations, including appropriate ver­
sions of all primary and foreign key integrity constraints.

2. Express each of the following integrity constraints in SQL unless it is implied by the
primary and foreign key constraint; if so, explain how it is implied. If the constraint
cannot be expressed in SQL, say so. For each constraint, state what operations (inserts,
deletes, and updates on specific relations) must be monitored to enforce the constraint.

(a) Every class has a minimum enrollment of 5 students and a maximum enrollment
of 30 students.

(b) At least one dass meets in each room.

(c) Every faculty member must teach at least two courses.

(d) Only faculty in the department with deptid=33 teach more than three courses.

(e) Every student must be enrolled in the course called lVlathlOl.

(f) The room in which the earliest scheduled class (i.e., the class with the smallest
nucets_at value) meets should not be the same as the room in which the latest
scheduled class meets.

(g) Two classes cannot meet in the same room at the same time.

(h) The department with the most faculty members must have fewer than twice the
number of faculty members in the department with the fewest faculty members.

(i) No department can have more than 10 faculty members.

(j) A student cannot add more than two courses at a time (i.e., in a single update).

(k) The number of CS majors must be more than the number of Math majors.

(I) The number of distinct courses in which CS majors are enrolled is greater than the
number of distinct courses in which Math majors are enrolled.

(rn) The total enrollment in courses taught by faculty in the department with deptid=SS
is greater than the number of ivlath majors.

(n) There lIlUst be at least one CS major if there are any students whatsoever.

(0) Faculty members from different departments cannot teach in the same room.

Exercise 5.9 Discuss the strengths and weaknesses of the trigger mechanism. Contrast
triggers with other integrity constraints supported by SQL.
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Exercise 5.10 Consider the following relational schema. An employee can work in more
than one department; the pel-time field of the \Vorks relation shows the percentage of time
that a given employee works in a given department.

Emp( eid: integer, ename: string, age: integer, salary: real)

\Vorks( eid: integer, did: integer, pcLtime: integer)

Dept( did: integer, budget: real, mana,gerid: integer)

\Vrite SQL-92 integrity constraints (domain, key, foreign key, or CHECK constraints; or asser··
bons) or SQL:1999 triggers to ensure each of the following requirements, considered indepen­
dently.

1. Employees must make a minimum salary of $1000.

2. Every manager must be also be an employee.

3. The total percentage of aU appointments for an employee must be under 100%.

4. A manager must always have a higher salary than any employee that he or she manages.

5. Whenever an employee is given a raise, the manager's salary must be increased to be at
least as much.

6. Whenever an employee is given a raise, the manager's salary must be increased to be
at least as much. Further, whenever an employee is given a raise, the department's
budget must be increased to be greater than the sum of salaries of aU employees in the
department.

PROJECT-BASED EXERCISE

Exercise 5.11 Identify the subset of SQL queries that are supported in Minibase.

BIBLIOGRAPHIC NOTES

The original version of SQL was developed as the query language for IBM's System R project,
and its early development can be traced in [107, 151]. SQL has since become the most
widely used relational query language, and its development is now subject to an international
standardization process.

A very readable and comprehensive treatment of SQL-92 is presented by Melton and Simon
in [524], and the central features of SQL:1999 are covered in [525]. We refer readers to these
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semantics for a large subset ofSQL queries is presented in [560]. SQL:1999 is the current Inter­
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(ANSI) standard. Melton is the editor of the ANSI and ISO SQL:1999 standard, document
ANSI/ISO/IEe 9075-:1999. The corresponding ISO document is ISO/lEe 9075-:1999. A
successor, planned for 2003, builds on SQL:1999 SQL:200:3 is close to ratification (a.s of June
20(2). Drafts of the SQL:200:3 deliberations are available at the following URL:

ftp://sqlstandards.org/SC32/
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[774] contains a collection of papers that cover the active database field. [794J includes a
good in-depth introduction to active rules, covering smnantics, applications and design issues.
[251] discusses SQL extensions for specifying integrity constraint checks through triggers.
[123] also discusses a procedural mechanism, called an alerter, for monitoring a database.
[185] is a recent paper that suggests how triggers might be incorporated into SQL extensions.
Influential active database prototypes include Ariel [366], HiPAC [516J, ODE [18], Postgres
[722], RDL [690], and Sentinel [36]. [147] compares various architectures for active database
systems.

[32] considers conditions under which a collection of active rules has the same behavior,
independent of evaluation order. Semantics of active databases is also studied in [285] and
[792]. Designing and managing complex rule systems is discussed in [60, 225]. [142] discusses
rule management using Chimera, a data model and language for active database systems.
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6
DATABASE APPLICATION

DEVELOPMENT

.. How do application programs connect to a DBMS?

.. How can applications manipulate data retrieved from a DBMS?

.. How can applications modify data in a DBMS?

.. What are cursors?

.. What is JDBC and how is it used?

.. What is SQLJ and how is it used?

.. What are stored procedures?

.. Key concepts: Embedded SQL, Dynamic SQL, cursors; JDBC,
connections, drivers, ResultSets, java.sql, SQLJ; stored procedures,
SQL/PSM

Hf~ profits most who serves best.

------Ivlotto for Rotary International

In Chapter 5, we looked at a wide range of SQL query constructs, treating SQL
as an independent language in its own right. A relational DBMS supports an
inteuLctive SqL interface, and users can directly enter SQL commands. This
simple approach is fine as long as the task at hand can be accomplished entirely
with SQL cormnands. In practice, we often encounter situations in which we
need the greater flexibility of a general-purpose programming language in addi­
tion to the data manipulation facilities provided by SQL. For example, we rnay
want to integrate a database application with a nice graphical user interface,
or we may want to integrate with other existing applications.

185
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Applications that rely on the DBMS to manage data run as separate processes
that connect to the DBlvIS to interact with it. Once a connection is established,
SQL commands can be used to insert, delete, and modify data. SQL queries can
be used to retrieve desired data. but we need to bridge an important difference
in how a database system sees data and how an application program in a
language like Java or C sees data: The result of a database query is a set (or
multiset) or records, hut Java has no set or multiset data type. This mismatch
is resolved through additional SQL constructs that allow applications to obtain
a handle on a collection and iterate over the records one at a time.

vVe introduce Embedded SQL, Dynamic SQL, and cursors in Section 6.1. Em­
bedded SQL allows us to access data using static SQL queries in application
code (Section 6.1.1); with Dynamic SQL, we can create the queries at run-time
(Section 6.1.3). Cursors bridge the gap between set-valued query answers and
programming languages that do not support set-values (Section 6.1.2).

The emergence of Java as a popular application development language, espe­
cially for Internet applications, has made accessing a DBMS from Java code a
particularly important topic. Section 6.2 covers JDBC, a prograruming inter­
face that allows us to execute SQL queries from a Java program and use the
results in the Java program. JDBC provides greater portability than Embed­
ded SQL or Dynamic SQL, and offers the ability to connect to several DBMSs
without recompiling the code. Section 6.4 covers SQLJ, which does the same
for static SQL queries, but is easier to program in than Java, with JDBC.

Often, it is useful to execute application code at the database server, rather than
just retrieve data and execute application logic in a separate process. Section
6.5 covers stored procedures, which enable application logic to be stored and
executed at the databa"se server. We conclude the chapter by discussing our
B&N case study in Section 6.6.

'Vhile writing database applications, we must also keep in mind that typically
many application programs run concurrently. The transaction concept, intro­
duced in Chapter 1, is used to encapsulate the effects of an application on
the datahase. An application can select certain transaction properties through
SQL cormnands to control the degree to which it is exposed to the changes of
other concurrently running applications. \Ve touch on the transaction concept
at many points i,n this chapter, and, in particular, cover transaction-related ~hS­

pects of JDBC. A full discussion of transaction properties and SQL's support
for transactions is deferred until Chapter 16.

Examples that appear in this chapter are available online at

http://www.cs.wisc.edu/-dbbook
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In this section, we cover how SQL commands can be executed from within a
program in a host language such as C or Java. The use of SQL commands
within a host language program is called Embedded SQL. Details of Embed~
ded SQL also depend on the host language. Although similar capabilities are
supported for a variety of host languages, the syntax sometimes varies.

vVe first cover the basics of Embedded SQL with static SQL queries in Section
6.1.1. We then introduce cursors in Section 6.1.2. vVe discuss Dynamic SQL,
which allows us to construct SQL queries at runtime (and execute them) in
Section 6.1.:3.

6.1.1 Embedded SQL

Conceptually, embedding SQL commands in a host language program is straight­
forward. SQL statements (i.e., not declarations) can be used wherever a state­
ment in the host language is allowed (with a few restrictions). SQL statements
must be clearly marked so that a preprocessor can deal with them before in­
voking the compiler for the host language. Also, any host language variables
used to pass arguments into an SQL command must be declared in SQL. In
particular, some special host language variables must be declared in SQL (so
that, for example, any error conditions arising during SQL execution can be
communicated back to the main application program in the host language).

There are, however, two complications to bear in mind. First, the data types
recognized by SQL may not be recognized by the host language and vice versa.
This mismatch is typically addressed by casting data values appropriately be­
fore passing them to or frorn SQL commands. (SQL, like other programming
languages, provides an operator to cast values of aIle type into values of an­
other type.) The second complication h~s to do with SQL being set-oriented,
and is addressed using cursors (see Section 6.1.2. Commands operate on and
produce tables, which are sets

In our discussion of Embedded SQL, w(~ assmne thi'Lt the host language is C
for concretenc~ss. because minor differcnces exist in how SQL statements are
embedded in differcnt host languages.

Declaring Variables and Exceptions

SQL statements can refer to variables defined in the host program. Such host­
language variables must be prefixed by a colon (:) in SQL statements and be
declared between the commands EXEC SQL BEGIN DECLARE SECTION and EXEC
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SQL END DECLARE SECTION. The declarations are similar to how they would
look in a C program and, as usual in C. are separated by semicolons. For
example. we can declare variables c-sname, c_sid, c_mt'ing, and cage (with the
initial c used as a naming convention to emphasize that these are host language
variables) as follows:

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];
long csid;
short crating;
float cage;
EXEC SQL END DECLARE SECTION

The first question that arises is which SQL types correspond to the various
C types, since we have just declared a collection of C variables whose val­
ues are intended to be read (and possibly set) in an SQL run-time environ­
ment when an SQL statement that refers to them is executed. The SQL-92
standard defines such a correspondence between the host language types and
SQL types for a number of host languages. In our example, c_snamc has the
type CHARACTER(20) when referred to in an SQL statement, csid has the type
INTEGER, crating has the type SMALLINT, and cage has the type REAL.

\Ve also need some way for SQL to report what went wrong if an error condition
arises when executing an SQL statement. The SQL-92 standard recognizes
two special variables for reporting errors, SQLCODE and SQLSTATE. SQLCODE is
the older of the two and is defined to return some negative value when an
error condition arises, without specifying further just what error a particular
negative integer denotes. SQLSTATE, introduced in the SQL-92 standard for the
first time, &':lsociates predefined values with several common error conditions,
thereby introducing some uniformity to how errors are reported. One of these
two variables must be declared. The appropriate C type for SQLCODE is long
and the appropriate C type for SQLSTATE is char [6J , that is, a character string
five characters long. (Recall the null-terminator in C strings.) In this chapter,
we assume that SQLSTATE is declared.

Embedding SQL Statements

All SQL staternents embedded within a host program must be clearly marked,
with the details dependent on the host language; in C, SQL statements must be
prefixed by EXEC SQL. An SQL statement can essentially appear in any place
in the host language program where a host language statement can appear.



Database Application DC?lelopment 189

As a simple example, the following Embedded' SQL statement inserts a row,
whose column values me based on the values of the host language variables
contained in it, into the Sailors relation:

EXEC SQL
INSERT INTO Sailors VALUES (:c_sname, :csid, :crating, :cage);

Observe that a semicolon terminates the command, as per the convention for
terminating statements in C.

The SQLSTATE variable should be checked for errors and exceptions after each
Embedded SQL statement. SQL provides the WHENEVER command to simplify
this tedious task:

EXEC SQL WHENEVER [SQLERROR I NOT FOUND] [ CONTINUE I GOTO st'mt ]

The intent is that the value of SQLSTATE should be checked after each Embedded
SQL statement is executed. If SQLERROR is specified and the value of SQLSTATE
indicates an exception, control is transferred to stmt, which is presumably re­
sponsible for error and exception handling. Control is also transferred to stmt
if NOT FOUND is specified and the value of SQLSTATE is 02000, which denotes NO
DATA.

6.1.2 Cursors

A major problem in embedding SQL statements in a host language like C is
that an impedance mismatch occurs because SQL operates on set" of records,
whereas languages like C do not cleanly support a set-of-records abstraction.
The solution is to essentially provide a mechanism that allows us to retrieve
rows one at a time from a relation.

This mechanism is called a cursor. vVe can declare a cursor on any relation
or on any SQL query (because every query returns a set of rows). Once a
curwr is declared, we can open it (which positions the cursor just before the
first row); fetch the next row; move the cursor (to the next row, to the row
after the next n, to the first row, or to the previous row, etc., by specifying
additional parameters for the FETCH command); or close the cursor. Thus, a
cursor essentially allows us to retrieve the rows in a table by positioning the
cursor at a particular row and reading its contents.

Basic Cursor Definition and Usage

r'11rsors enable us to examine, in the host language program, a collection of
JWS computed by an Embedded SQL statement:
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.. \Ve usually need to open a cursor if the embedded statement is a SELECT
(i.e.) a query). However, we can avoid opening a cursor if the answer
contains a single row, as we see shortly.

.. INSERT, DELETE, and UPDATE staternents typically require no cursor, al­
though some variants of DELETE and UPDATE use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning
a value to the host variable c~sir1, declared earlier, as follows:

EXEC SQL SELECT
INTO
FROM
WHERE

S.sname, S.age
:c_sname, :c_age
Sailors S
S.sid = :c_sid;

The INTO clause allows us to assign the columns of the single answer row to
the host variables csname and c_age. Therefore, we do not need a cursor to
embed this query in a host language program. But what about the following
query, which computes the names and ages of all sailors with a rating greater
than the current value of the host variable cminmting?

SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c_minrating

This query returns a collection of rows, not just one row. 'When executed
interactively, the answers are printed on the screen. If we embed this query in
a C program by prefixing the cOlnmand with EXEC SQL, how can the answers
be bound to host language variables? The INTO clause is inadequate because
we must deal with several rows. The solution is to use a cursor:

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c_minrating;

This code can be included in a C program, and once it is executed, the cursor
8ir~lo is defined. Subsequently, we can open the cursor:

OPEN sinfo:

The value of cminmting in the SQL query associated with the cursor is the
value of this variable when we open the cursor. (The cursor declaration is
processed at compile-time, and the OPEN command is executed at run-time.)
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A cursor can be thought of as 'pointing' to a row in the collection of answers
to the query associated with it. vVhen a cursor is opened, it is positioned just
before the first row. \Ve can use the FETCH command to read the first row of
cursor sinfo into host language variables:

FETCH sinfo INTO :csname, :cage;

When the FETCH statement is executed, the cursor is positioned to point at
the next row (which is the first row in the table when FETCH is executed for
the first time after opening the cursor) and the column values in the row are
copied into the corresponding host variables. By repeatedly executing this
FETCH statement (say, in a while-loop in the C program), we can read all the
rows computed by the query, one row at a time. Additional parameters to the
FETCH command allow us to position a cursor in very flexible ways, but we do
not discuss them.

How do we know when we have looked at all the rows associated with the
cursor? By looking at the special variables SQLCODE or SQLSTATE, of course.
SQLSTATE, for example, is set to the value 02000, which denotes NO DATA, to
indicate that there are no more rows if the FETCH statement positions the cursor
after the last row.

When we are done with a cursor, we can close it:

CLOSE sinfo;

It can be opened again if needed, and the value of : cminrating in the
SQL query associated with the cursor would be the value of the host variable
cminrating at that time.

Properties of Cursors

The general form of a cursor declaration is:

DECLARE cursomame [INSENSITIVE] [SCROLL] CURSOR
[WITH HOLD]
FOR some query
[ ORDER BY order-item-list ]
[ FOR READ ONLY I FOR UPDATE ]

A cursor can be declared to be a read-only cursor (FOR READ ONLY) or, if
it is a cursor on a base relation or an updatable view, to be an updatable
cursor (FOR UPDATE). If it is IIpdatable, simple variants of the UPDATE and
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DELETE commands allow us to update or delete the row on which the cursor
is positioned. For example, if sinfa is an updatable cursor and open, we can
execute the following statement:

UPDATE Sailors S
SET S.rating = S.rating ~ 1
WHERE CURRENT of sinfo;

This Embedded SQL statement modifies the rating value of the row currently
pointed to by cursor sinfa; similarly, we can delete this row by executing the
next statement:

DELETE Sailors S
WHERE CURRENT of sinfo;

A cursor is updatable by default unless it is a scrollable or insensitive cursor
(see below), in which case it is read-only by default.

If the keyword SCROLL is specified, the cursor is scrollable, which means that
variants of the FETCH command can be used to position the cursor in very
flexible ways; otherwise, only the basic FETCH command, which retrieves the
next row, is allowed.

If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging
over a private copy of the collection of answer rows. Otherwise, and by default,
other actions of some transaction could modify these rows, creating unpre­
dictable behavior. For example, while we are fetching rows using the sinfa
cursor, we might modify rating values in Sailor rows by concurrently executing
the command:

UPDATE Sailors S
SET S.rating = S.rating -

Consider a Sailor row such that (1) it has not yet been fetched, and (2) its
original rating value would have met the condition in the WHERE clause of the
query associated with sinfa, but the new rating value does not. Do we fetch
such a Sailor row'? If INSENSITIVE is specified, the behavior is as if all answers
were computed,and stored when sinfo was opened; thus, the update command
has no effect on the rows fetched by sinfa if it is executed after sinfo is opened.
If INSENSITIVE is not specified, the behavior is implementation dependent in
this situation.

A holdable cursor is specified using the WITH HOLD clause, and is not closed
when the transaction is conunitted. The motivation for this cornes from long
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transactions in which we access (and possibly change) a large number of rows of
a table. If the transaction is aborted for any reason, the system potentially has
to redo a lot of work when the transaction is restarted. Even if the transaction
is not aborted, its locks are held for a long time and reduce the concurrency
of the system. The alternative is to break the transaction into several smaller
transactions, but remembering our position in the table between transactions
(and other similar details) is complicated and error-prone. Allowing the ap­
plication program to commit the transaction it initiated, while retaining its
handle on the active table (i.e., the cursor) solves this problem: The applica­
tion can commit its transaction and start a new transaction and thereby save
the changes it has made thus far.

Finally, in what order do FETCH commands retrieve rows? In general this order
is unspecified, but the optional ORDER BY clause can be used to specify a sort
order. Note that columns mentioned in the ORDER BY clause cannot be updated
through the cursor!

The order-item-list is a list of order-items; an order-item is a column name,
optionally followed by one of the keywords ASC or DESC. Every column men­
tioned in the ORDER BY clause must also appear in the select-list of the query
associated with the cursor; otherwise it is not clear what columns we should
sort on. The keywords ASC or DESC that follow a column control whether the
result should be sorted-with respect to that column-in ascending or descend­
ing order; the default is ASC. This clause is applied as the last step in evaluating
the query.

Consider the query discussed in Section 5.5.1, and the answer shown in Figure
5.13. Suppose that a cursor is opened on this query, with the clause:

ORDER BY minage ASC, rating DESC

The answer is sorted first in ascending order by minage, and if several rows
have the same minage value, these rows are sorted further in descending order
by rating. The cursor would fetch the rows in the order shown in Figure 6.1.

I rating I minage I

8 25.5

3 25.5

7 35.0

Figure 6.1 Order in which 'fuples Are Fetched
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6.1.3 Dynamic SQL

Consider an application such as a spreadsheet or a graphical front-end that
needs to access data from a DBMS. Such an application must accept commands
from a user and, based on what the user needs, generate appropriate SQL
statements to retrieve the necessary data. In such situations, we may not be
able to predict in advance just what SQL statements need to be executed, even
though there is (presumably) some algorithm by which the application can
construct the necessary SQL statements once a user's command is issued.

SQL provides some facilities to deal with such situations; these are referred
to as Dynamic SQL. We illustrate the two main commands, PREPARE and
EXECUTE, through a simple example:

char c_sqlstring[] = {"DELETE FROM Sailors WHERE rating>5"};
EXEC SQL PREPARE readytogo FROM :csqlstring;
EXEC SQL EXECUTE readytogo;

The first statement declares the C variable c_sqlstring and initializes its value to
the string representation of an SQL command. The second statement results in
this string being parsed and compiled as an SQL command, with the resulting
executable bound to the SQL variable readytogo. (Since readytogo is an SQL
variable, just like a cursor name, it is not prefixed by a colon.) The third
statement executes the command.

Many situations require the use of Dynamic SQL. However, note that the
preparation of a Dynamic SQL command occurs at run-time and is run-time
overhead. Interactive and Embedded SQL commands can be prepared once
at compile-time and then re-executecl as often as desired. Consequently you
should limit the use of Dynamic SQL to situations in which it is essential.

There are many more things to know about Dynamic SQL~~~how we can pa'3S
parameters from the host language program to the SQL statement being pre­
parcel, for example--but we do not discuss it further.

6.2 AN INTRODUCTION TO JDBC

Embedded SQL enables the integration of SQL with a general-purpose pro­
gramming language. As described in Section 6.1.1, a DBMS-specific preproces­
sor transforms the Embedded SQL statements into function calls in the host
language. The details of this translation vary across DBMSs, and therefore
even though the source code can be cOlnpiled to work with different DBMSs,
the final executable works only with one specific DBMS.
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ODBC and JDBC, short for Open DataBase Connectivity and Java DataBase
Connectivity, also enable the integration of SQL with a general-purpose pro­
gramming language. Both ODBC and JDBC expose database capabilities in
a standardized way to the application programmer through an application
programming interface (API). In contrast to Embedded SQL, ODBC and
JDBC allow a single executable to access different DBMSs 'Without recompi­
lation. Thus, while Embedded SQL is DBMS-independent only at the source
code level, applications using ODBC or JDBC are DBMS-independent at the
source code level and at the level of the executable. In addition, using ODBC
or JDBC, an application can access not just one DBMS but several different
ones simultaneously.

ODBC and JDBC achieve portability at the level of the executable by introduc­
ing an extra level of indirection. All direct interaction with a specific DBMS
happens through a DBMS-specific driver. A driver is a software program
that translates the ODBC or JDBC calls into DBMS-specific calls. Drivers
are loaded dynamically on demand since the DBMSs the application is going
to access are known only at run-time. Available drivers are registered with a
driver manager.

One interesting point to note is that a driver does not necessarily need to
interact with a DBMS that understands SQL. It is sufficient that the driver
translates the SQL commands from the application into equivalent commands
that the DBMS understands. Therefore, in the remainder of this section, we
refer to a data storage subsystem with which a driver interacts as a data
source.

An application that interacts with a data source through ODBC or JDBC se­
lects a data source, dynamically loads the corresponding driver, and establishes
a connection with the data source. There is no limit on the number of open
connections, and an application can have several open connections to different
data sources. Each connection has transaction semantics; that is, changes from
one connection are visible to other connections only after the connection has
committed its changes. While a connection is opcn, transactions are executed
by submitting SQL statements, retrieving results, processing errors, and finally
committing or rolling back. The application disconnects from the data source
to terminate the interaction.

In the remainder of this chapter, we concentrate on JDBC.
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I JDBC Drivers: The most up-to-date source of .IDBC drivers is the Sun

JDBC Driver page at
http://industry.java.sun.com/products/jdbc/drivers
JDBC drivers are available for all major database sytems.

6.2.1 Architecture

The architecture of JDBC has four main components: the application, the
driver manager, several data source specific dr-iveTs, and the corresponding
data SOUTces.

The application initiates and terminates the connection with a data source.
It sets transaction boundaries, submits SQL statements, and retrieves the
results-----all through a well-defined interface as specified by the JDBC API. The
primary goal of the dr-iver manager is to load JDBC drivers and pass JDBC
function calls from the application to the correct driver. The driver manager
also handles JDBC initialization and information calls from the applications
and can log all function calls. In addition, the driver manager performs· some
rudimentary error checking. The dr-iver establishes the connection with the
data source. In addition to submitting requests and returning request results,
the driver translates data, error formats, and error codes from a form that is
specific to the data source into the JDBC standard. The data source processes
commands from the driver and returns the results.

Depending on the relative location of the data source and the application,
several architectural scenarios are possible. Drivers in JDBC are cla.ssified into
four types depending on the architectural relationship between the application
and the data source:

III Type I Bridges: This type of driver translates JDBC function calls
into function calls of another API that is not native to the DBMS. An
example is a JDBC-ODBC bridge; an application can use JDBC calls to
access an ODBC compliant data source. The application loads only one
driver, the bridge. Bridges have the advantage that it is easy to piggy­
back the applica.tion onto an existing installation, and no new drivers have
to be installed. But using bridges hl:l.-'3 several drawbacks. The increased
number of layers between data source and application affects performance.
In addition, the user is limited to the functionality that the ODBC driver
supports.

iii Type II Direct Thanslation to the Native API via N on-Java
Driver: This type of driver translates JDBC function calls directly into
method invocations of the API of one specific data source. The driver is
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usually ,vritten using a combination of C++ and Java; it is dynamically
linked and specific to the data source. This architecture performs signif­
icantly better than a JDBC-ODBC bridge. One disadvantage is that the
database driver that implements the API needs to be installed on each
computer that runs the application.

II Type III~~Network Bridges: The driver talks over a network to a
middleware server that translates the JDBC requests into DBMS-specific
method invocations. In this case, the driver on the client site (Le., the
network bridge) is not DBMS-specific. The JDBC driver loaded by the ap~

plication can be quite small, as the only functionality it needs to implement
is sending of SQL statements to the middleware server. The middleware
server can then use a Type II JDBC driver to connect to the data source.

II Type IV-Direct Translation to the Native API via Java Driver:
Instead of calling the DBMS API directly, the driver communicates with
the DBMS through Java sockets. In this case, the driver on the client side is
written in Java, but it is DBMS-specific. It translates JDBC calls into the
native API of the database system. This solution does not require an in­
termediate layer, and since the implementation is all Java, its performance
is usually quite good.

6.3 JDBC CLASSES AND INTERFACES

JDBC is a collection of Java classes and interfaces that enables database access
from prograrl1s written in the Java language. It contains methods for con­
necting to a remote data source, executing SQL statements, examining sets
of results from SQL statements, transaction management, and exception han­
dling. The cla.sses and interfaces are part of the java. sql package. Thus, all
code fragments in the remainder of this section should include the statement
import java. sql . * at the beginning of the code; we omit this statement in
the remainder of this section. JDBC 2.0 also includes the j avax. sql pack­
age, the JDBC Optional Package. The package j avax. sql adds, among
other things, the capability of connection pooling and the Row-Set interface.
\\Te discuss connection pooling in Section 6.3.2, and the ResultSet interface in
Section 6.3.4.

\\Te now illustrate the individual steps that are required to submit a databa.se
query to a data source and to retrieve the results.

6.3.1 JDBC Driver Management

In .lDBe, data source drivers are managed by the Drivermanager class, which
maintains a list of all currently loaded drivers. The Drivermanager cla.ss has
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methods registerDriver, deregisterDriver, and getDrivers to enable dy­
namic addition and deletion of drivers.

The first step in connecting to a data source is to load the corresponding JDBC
driver. This is accomplished by using the Java mechanism for dynamically
loading classes. The static method forName in the Class class returns the Java
class as specified in the argument string and executes its static constructor.
The static constructor of the dynamically loaded class loads an instance of the
Driver class, and this Driver object registers itself with the DriverManager
class.

The following Java example code explicitly loads a JDBC driver:

Class.forName("oracle/jdbc.driver.OracleDriver");

There are two other ways ofregistering a driver. We can include the driver with
-Djdbc. drivers=oracle/jdbc. driver at the command line when we start the
Java application. Alternatively, we can explicitly instantiate a driver, but this
method is used only rarely, as the name of the driver has to be specified in the
application code, and thus the application becomes sensitive to changes at the
driver level.

After registering the driver, we connect to the data source.

6.3.2 Connections

A session with a data source is started through creation of a Connection object;
A connection identifies a logical session with a data source; multiple connections
within the same Java program can refer to different data sources or the same
data source. Connections are specified through a JDBC URL, a URL that
uses the jdbc protocol. Such a URL has the form

jdbc:<subprotocol>:<otherParameters>

The code example shown in Figure 6.2 establishes a connection to an Oracle
database assuming that the strings userld and password are set to valid values.

In JDBC, connections can have different properties. For example, a connection
can specify the granularity of transactions. If autocommit is set for a con­
nection, then each SQL statement is considered to be its own transaction. If
autocommit is off, then a series of statements that compose a transaction can
be committed using the commit 0 method of the Connection cla..<;s, or aborted
using the rollbackO method. The Connection cla.'ss has methods to set the
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String uri = .. jdbc:oracle:www.bookstore.com:3083..
Connection connection;
try {

Connection connection =
DriverManager. getConnection (urI, userId,password);

}
catch(SQLException excpt) {

System.out.println(excpt.getMessageO);
return;

}

Figure 6.2 Establishing a Connection with JDBC

- ----~--._--_._---~,._-----~---_._-----,
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JDBC Connections: Remember to close connections to data sources
and return shared connections to the connection pool. Database systems
have a limited number of resources available for connections, and orphan
connections can often only be detected through time-outs-and while the
database system is waiting for the connection to time-out, the resources
used by the orphan connection are wasted.

autocommit mode (Connection. setAutoCommit) and to retrieve the current
autocommit mode (getAutoCommit). The following methods are part of the
Connection interface and permit setting and getting other properties:

• public int getTransactionIsolation() throws SQLExceptionand
public void setTransactionlsolation(int 1) throws SQLException.
These two functions get and set the current level of isolation for transac­
tions handled in the current connection. All five SQL levels of isolation
(see Section 16.6 for a full discussion) are possible, and argument 1 can be
set as follows:

- TRANSACTIONJNONE

- TRANSACTIONJREAD.UNCOMMITTED

- TRANSACTIONJREAD.COMMITTED

- TRANSACTIONJREPEATABLEJREAD

- TRANSACTION.BERIALIZABLE

• public boolean getReadOnlyO throws SQLException and
public void setReadOnly(boolean readOnly) throws SQLException.
These two functions allow the user to specify whether the transactions
executecl through this connection are rcad only.
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.. public boolean isClosed() throws SQLException.
Checks whether the current connection has already been closed.

.. setAutoCommit and get AutoCommit.
vVe already discussed these two functions.

Establishing a connection to a data source is a costly operation since it in­
volves several steps, such as establishing a network connection to the data
source, authentication, and allocation of resources such as memory. In case an
application establishes many different connections from different parties (such
as a Web server), connections are often pooled to avoid this overhead. A con­
nection pool is a set of established connections to a data source. Whenever a
new connection is needed, one of the connections from the pool is used, instead
of creating a new connection to the data source.

Connection pooling can be handled either by specialized code in the application,
or the optional j avax. sql package, which provides functionality for connection
pooling and allows us to set different parameters, such as the capacity of the
pool, and shrinkage and growth rates. Most application servers (see Section
7.7.2) implement the j avax . sql package or a proprietary variant.

6.3.3 Executing SQL Statements

We now discuss how to create and execute SQL statements using JDBC. In the
JDBC code examples in this section, we assume that we have a Connection
object named con. JDBC supports three different ways of executing statements:
Statement, PreparedStatement, and CallableStatement. The Statement
class is the base class for the other two statment classes. It allows us to query
the data source with any static or dynamically generated SQL query. We cover
the PreparedStatement class here and the CallableStatement class in Section
6.5, when we discuss stored procedures.

The PreparedStatement cla,Cis dynamicaJly generates precompiled SQL state­
ments that can be used several times; these SQL statements can have param­
eters, but their structure is fixed when the PreparedStatement object (repre­
senting the SQL statement) is created.

Consider the sample code using a PreparedStatment object shown in Figure
6.3. The SQL query specifies the query string, but uses ''1' for the values
of the parameters, which are set later using methods setString, setFloat,
and setlnt. The ''1' placeholders can be used anywhere in SQL statements
where they can be replaced with a value. Examples of places where they can
appear include the WHERE clause (e.g., 'WHERE author=?'), or in SQL UPDATE
and INSERT staternents, as in Figure 6.3. The method setString is one way
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/ / initial quantity is always zero
String sql = "INSERT INTO Books VALUES('?, 7, '?, ?, 0, 7)";
PreparedStatement pstmt = con.prepareStatement(sql);

/ / now instantiate the parameters with values
/ / a,ssume that isbn, title, etc. are Java variables that
/ / contain the values to be inserted
pstmt.clearParameters() ;
pstmt.setString(l, isbn);
pstmt.setString(2, title);
pstmt.setString(3, author);
pstmt.setFloat(5, price);
pstmt.setInt(6, year);

int numRows = pstmt.executeUpdate();

Figure 6.3 SQL Update Using a PreparedStatement Object
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to set a parameter value; analogous methods are available for int, float,
and date. It is good style to always use clearParameters 0 before setting
parameter values in order to remove any old data.

There are different ways of submitting the query string to the data source. In
the example, we used the executeUpdate command, which is used if we know
that the SQL statement does not return any records (SQL UPDATE, INSERT,
ALTER, and DELETE statements). The executeUpdate method returns an inte­
ger indicating the number of rows the SQL statement modified; it returns 0 for
successful execution without modifying any rows.

The executeQuery method is used if the SQL statement returns data, such &"l

in a regular SELECT query. JDBC has its own cursor mechanism in the form
of a ResultSet object, which we discuss next. The execute method is more
general than executeQuery and executeUpdate; the references at the end of
the chapter provide pointers with more details.

6.3.4 Resul,tSets

As discussed in the previous section, the statement executeQuery returns a,
ResultSet object, which is similar to a cursor. ResultSet cursors in JDBC
2.0 are very powerful; they allow forward and reverse scrolling and in-place
editing and insertions.
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In its most basic form, the ResultSet object allows us to read one row of the
output of the query at a time. Initially, the ResultSet is positioned before
the first row, and we have to retrieve the first row with an explicit call to the
next 0 method. The next method returns false if there are no more rows in
the query answer, and true other\vise. The code fragment shown in Figure 6.4
illustrates the basic usage of a ResultSet object.

ResultSet rs=stmt.executeQuery(sqlQuery);
/ / rs is now a cursor
/ / first call to rs.nextO moves to the first record
/ / rs.nextO moves to the next row
String sqlQuery;
ResultSet rs = stmt.executeQuery(sqlQuery)
while (rs.next()) {

/ / process the data
}

Figure 6.4 Using a ResultSet Object

While next () allows us to retrieve the logically next row in the query answer,
we can move about in the query answer in other ways too:

• previous 0 moves back one row.

• absolute (int num) moves to the row with the specified number.

• relative (int num) moves forward or backward (if num is negative) rela­
tive to the current position. relative (-1) has the same effect as previous.

• first 0 moves to the first row, and last 0 moves to the last row.

Matching Java and SQL Data Types

In considering the interaction of an application with a data source, the issues
we encountered in the context of Embedded SQL (e.g., passing information
between the application and the data source through shared variables) arise
again. To deal with such issues, JDBC provides special data types and speci­
fies their relationship to corresponding SQL data types. Figure 6.5 shows the
accessor methods in a ResultSet object for the most common SQL datatypes.
With these accessor methods, we can retrieve values from the current row of
the query result referenced by the ResultSet object. There are two forms for
each accessor method: One method retrieves values by column index, starting
at one, and the other retrieves values by column name. The following exam­
ple shows how to access fields of the current ResultSet row using accesssor
methods.
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I SQL Type I Java cla.c;;s I ResultSet get method I
BIT Boolean getBooleanO

CHAR String getStringO
VARCHAR String getStringO
DOUBLE Double getDoubleO
FLOAT Double getDoubleO

INTEGER Integer getIntO
REAL Double getFloatO
DATE java.sql.Date getDateO
TIME java.sql.Time getTimeO

TIMESTAMP java.sql.TimeStamp getTimestamp ()

Figure 6.5 Reading SQL Datatypes from a ResultSet Object

ResultSet rs=stmt.executeQuery(sqIQuery);
String sqlQuerYi
ResultSet rs = stmt.executeQuery(sqIQuery)
while (rs.nextO) {

isbn = rs.getString(l);
title = rs.getString(" TITLE");
/ / process isbn and title

}

6.3.5 Exceptions and Warnings

Similar to the SQLSTATE variable, most of the methods in java. sql can throw
an exception of the type SQLException if an error occurs. The information
includes SQLState, a string that describes the error (e.g., whether the statement
contained an SQL syntax error). In addition to the standard getMessage 0
method inherited from Throwable, SQLException has two additional methods
that provide further information, and a method to get (or chain) additional
exceptions:

III public String getSQLState 0 returns an SQLState identifier based on
the SQL:1999 specification, as discussed in Section 6.1.1.

.. public i:p.t getErrorCode () retrieves a vendor-specific error code.

III public SQLException getNextExceptionO gets the next exception in a
chain of exceptions associated with the current SQLException object.

An SQL\¥arning is a subclass of SQLException. Warnings are not H•.'3 severe as
errors and the program can usually proceed without special handling of warn­
ings. \Varnings are not thrown like other exceptions, and they are not caught a.,
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part of the try"-catch block around a java. sql statement. VVe Heed to specif­
ically test whether warnings exist. Connection, Statement, and ResultSet
objects all have a getWarnings 0 method with which we can retrieve SQL
warnings if they exist. Duplicate retrieval of warnings can be avoided through
clearWarnings O. Statement objects clear warnings automatically on execu­
tion of the next statement; ResultSet objects clear warnings every time a new
tuple is accessed.

Typical code for obtaining SQLWarnings looks similar to the code shown in
Figure 6.6.

try {
stmt = con.createStatement();
warning = con.getWarnings();
while( warning != null) {

/ / handleSQLWarnings / / code to process warning
warning = warning.getNextWarningO; / /get next warning

}
con.clear\Varnings() ;

stmt.executeUpdate( queryString );
warning = stmt.getWarnings();
while( warning != null) {

/ / handleSQLWarnings / / code to process warning
warning = warning.getNextWarningO; / /get next warning

}
} / / end try
catch ( SQLException SQLe) {

/ / code to handle exception
} / / end catch

Figure 6.6 Processing JDBC Warnings and Exceptions

6.3.6 Examining Database Metadata

\Ve can use tlw DatabaseMetaData object to obtain information about the
database system itself, as well as information frorn the database catalog. For
example, the following code fragment shows how to obtain the name and driver
version of the JDBC driver:

Databa..seMetaData md = con.getMetaD<Lta():

System.out.println("Driver Information:");
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System.out.println("Name:" + md.getDriverNameO
+ "; version:" + mcl.getDriverVersion());
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The DatabaseMetaData object has many more methods (in JDBC 2.0, exactly
134); we list some methods here:

• public ResultSet getCatalogs 0 throws SqLException. This function
returns a ResultSet that can be used to iterate over all the catalog relations.
The functions getIndexInfo 0 and getTables 0 work analogously.

• pUblic int getMaxConnections 0 throws SqLException. This function
returns the ma.ximum number of connections possible.

We will conclude our discussion of JDBC with an example code fragment that
examines all database metadata shown in Figure 6.7.

DatabaseMetaData dmd = con.getMetaDataO;
ResultSet tablesRS = dmd.getTables(null,null,null,null);
string tableName;

while(tablesRS.next()) {
tableNarne = tablesRS .getString(" TABLE_NAME");

/ / print out the attributes of this table
System.out.println("The attributes of table"

+ tableName + " are:");
ResultSet columnsRS = dmd.getColums(null,null,tableName, null);
while (columnsRS.next()) {

System.out.print(colummsRS.getString(" COLUMN_NAME")
+" ");

}

/ / print out the primary keys of this table
System.out.println("The keys of table" + tableName + " are:");
ResultSet keysRS = dmd.getPrimaryKeys(null,null,tableName);
while (keysRS. next ()) {

'System.out.print(keysRS.getStringC'COLUMN_NAME") +" ");
}

}

Figure 6.7 Obtaining Infon-nation about it Data Source
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6.4 SQLJ

SQLJ (short for 'SQL-Java') was developed by the SQLJ Group, a group of
database vendors and Sun. SQLJ was developed to complement the dynamic
way of creating queries in JDBC with a static model. It is therefore very close
to Embedded SQL. Unlike JDBC, having semi-static SQL queries allows the
compiler to perform SQL syntax checks, strong type checks of the compatibil­
ity of the host variables with the respective SQL attributes, and consistency
of the query with the database schema-tables, attributes, views, and stored
procedures--all at compilation time. For example, in both SQLJ and Embed­
ded SQL, variables in the host language always are bound statically to the
same arguments, whereas in JDBC, we need separate statements to bind each
variable to an argument and to retrieve the result. For example, the following
SQLJ statement binds host language variables title, price, and author to the
return values of the cursor books.

#sql books = {
SELECT title, price INTO :title, :price
FROM Books WHERE author = :author

};

In JDBC, we can dynamically decide which host language variables will hold
the query result. In the following example, we read the title of the book into
variable ftitle if the book was written by Feynman, and into variable otitle
otherwise:

/ / assume we have a ResultSet cursor rs
author = rs.getString(3);

if (author=="Feynman") {
ftitle = rs.getString(2):

}
else {

otitle = rs.getString(2);
}

vVhen writing SQLJ applications, we just write regular Java code and embed
SQL statements according to a set of rules. SQLJ applications are pre-processed
through an SQLJ translation program that replaces the embedded SQLJ code
with calls to an SQLJ Java library. The modified program code can then be
compiled by any Java compiler. Usually the SQLJ Java library makes calls to
a JDBC driver, which handles the connection to the datab&'3e system.



Database Application Development 2Q7

An important philosophical difference exists between Embedded SQL and SQLJ
and JDBC. Since vendors provide their own proprietary versions of SQL, it is
advisable to write SQL queries according to the SQL-92 or SQL:1999 standard.
However, when using Embedded SQL, it is tempting to use vendor-specific SQL
constructs that offer functionality beyond the SQL-92 or SQL:1999 standards.
SQLJ and JDBC force adherence to the standards, and the resulting code is
much more portable across different database systems.

In the remainder of this section, we give a short introduction to SQLJ.

6.4.1 Writing SQLJ Code

We will introduce SQLJ by means of examples. Let us start with an SQLJ code
fragment that selects records from the Books table that match a given author.

String title; Float price; String atithor;
#sql iterator Books (String title, Float price);
Books books;

/ / the application sets the author
/ / execute the query and open the cursor
#sql books = {

SELECT title, price INTO :titIe, :price
FROM Books WHERE author = :author

};

/ / retrieve results
while (books.next()) {

System.out.println(books.titleO + ", " + books.price());
}
books.close() ;

The corresponding JDBC code fragment looks as follows (assuming we also
declared price, name, and author:

PrcparcdStatcment stmt = connection.prepareStatement(
" SELECT title, price FROM Books WHERE author = ?");

/ / set the parameter in the query ancl execute it
stmt.setString(1, author);
ResultSet 1'8 = stmt.executeQuery();

/ / retrieve the results
while (rs.next()) {
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System.out.println(rs.getString(l) + ", " + rs.getFloat(2));
}

6

Comparing the JDBC and SQLJ code, we see that the SQLJ code is much
easier to read than the JDBC code. Thus, SQLJ reduces software development
and maintenance costs.

Let us consider the individual components of the SQLJ code in more detail.
All SQLJ statements have the special prefix #sql. In SQLJ, we retrieve the
results of SQL queries with iterator objects, which are basically cursors. An
iterator is an instance of an iterator class. Usage of an iterator in SQLJ goes
through five steps:

• Declare the Iterator Class: In the preceding code, this happened through
the statement
#sql iterator Books (String title, Float price);
This statement creates a new Java class that we can use to instantiate
objects.

• Instantiate an Iterator Object from the New Iterator Class: We
instantiated our iterator in the statement Books books;.

• Initialize the Iterator Using a SQL Statement: In our example, this
happens through the statement #sql books ;;;;;; ....

• Iteratively, Read the Rows From the Iterator Object: This step is
very similar to reading rows through a ResultSet object in JDBC.

• Close the Iterator Object.

There are two types of iterator classes: named iterators and positional iterators.
For named iterators, we specify both the variable type and the name of each
column of the iterator. This allows us to retrieve individual columns by name as
in our previous example where we could retrieve the title colunm from the Books
table using the expression books. titIe (). For positional iterators, we need
to specifY only the variable type for each column of the iterator. To access
the individual columns of the iterator, we use a FETCH ... INTO eonstruct,
similar to Embedded SQL. Both iterator types have the same performance;
which iterator to use depends on the programmer's taste.

Let us revisit our example. \Ve can make the iterator a positional iterator
through the following statement:

#sql iterator Books (String, Float);

vVe then retrieve the individual rows from the iterator 3,.'3 follows:
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while (true) {
#sql { FETCH :books INTO :title, :price, };
if (books.endFetch()) {

break:
}

/ / process the book
}

6.5 STORED PROCEDURES
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It is often important to execute some parts of the application logic directly in
the process space of the database system. Running application logic directly
at the databa.se has the advantage that the amount of data that is transferred
between the database server and the client issuing the SQL statement can be
minimized, while at the same time utilizing the full power of the databa.se
server.

When SQL statements are issued from a remote application, the records in the
result of the query need to be transferred from the database system back to
the application. If we use a cursor to remotely access the results of an SQL
statement, the DBMS has resources such as locks and memory tied up while the
application is processing the records retrieved through the cursor. In contrast,
a stored procedure is a program that is executed through a single SQL
statement that can be locally executed and completed within the process space
of the database server. The results can be packaged into one big result and
returned to the application, or the application logic can be performed directly
at the server, without having to transmit the results to the client at alL

Stored procedures are also beneficial for software engineering rea,sons. Once
a stored procedure is registered with the database server, different users can
re-use the stored procedure, eliminating duplication of efforts in writing SQL
queries or application logic, and making code maintenance ea."lY. In addition,
application programmers do not need to know the the databa.se schema if we
encapsulate all databa.'3e access into stored procedures.

Although they,are called stored procedur'es, they do not have to be procedures
in a programming language sense; they can be functions.

6.5.1 Creating a Simple Stored Procedure

Let us look at the example stored procedure written in SQL shown in Figure
(i.S. vVe see that stored procedures must have a name; this stored procedure
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has the name 'ShowNumberOfOrders.' Otherwise, it just contains an SQL
statement that is precompiled and stored at the server.

CREATE PROCEDURE ShowNumberOfOrders
SELECT C.cid, C.cname, COUNT(*)

FROM Customers C, Orders a
WHERE C.cid = O.cid
GROUP BY C.cid, C.cname

Figure 6.8 A Stored Procedure in SQL

Stored procedures can also have parameters. These parameters have to be
valid SQL types, and have one of three different modes: IN, OUT, or INOUT.
IN parameters are arguments to' the stored procedure. OUT parameters are
returned from the stored procedure; it assigns values to all OUT parameters
that the user can process. INOUT parameters combine the properties of IN and
OUT parameters: They contain values to be passed to the stored procedures, and
the stored procedure can set their values as return values. Stored procedures
enforce strict type conformance: If a parameter is of type INTEGER, it cannot
be called with an argument of type VARCHAR.

Let us look at an example of a stored procedure with arguments. The stored
procedure shown in Figure 6.9 has two arguments: book_isbn and addedQty.
It updates the available number of copies of a book with the quantity from a
new shipment.

CREATE PROCEDURE Addlnventory (
IN book_isbn CHAR(lO),
IN addedQty INTEGER)

UPDATE Books
SET
WHERE

qty_in_stock = qtyjn_stock + addedQty
bookjsbn = isbn

Figure 6.9 A Stored Procedure with Arguments

Stored procedures do not have to be written in SQL; they can be written in any
host language. As an example, the stored procedure shown in Figure 0.10 is a
Java function that is dynamically executed by the databa..<;e server whenever it
is called by the dient:

6.5.2 Calling Stored Procedures

Stored procedures can be called in interactive SQL with the CALL statement:
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CREATE PROCEDURE RallkCustomers(IN number INTEGER)
LANGUAGE Java
EXTERNAL NAME 'file:/ / /c:/storedProcedures/rank.jar'

Figure 6.10 A Stored Procedure in Java
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CALL storedProcedureName(argumentl, argument2, ... , argumentN);

In Embedded SQL, the arguments to a stored procedure are usually variables
in the host language. For example, the stored procedure AddInventory would
be called as follows:

EXEC SQL BEGIN DECLARE SECTION
char isbn[lO];
long qty;

EXEC SQL END DECLARE SECTION

/ / set isbn and qty to some values
EXEC SQL CALL AddInventory(:isbn,:qty);

Calling Stored Procedures from JDBC

We can call stored procedures from JDBC using the CallableStatment class.
CallableStatement is a subclass of PreparedStatement and provides the same
functionality. A stored procedure could contain multiple SQL staternents or a
series of SQL statements-thus, the result could be many different ResultSet
objects. We illustrate the case when the stored procedure result is a single
ResultSet.

CallableStatement cstmt=
COIl. prepareCall(" {call ShowNumberOfOrders}");

ResultSet rs = cstmt.executeQueryO
while (rs.next())

Calling Stored Procedures from SQLJ

The stored procedure 'ShowNumberOfOrders' is called as follows using SQLJ:

/ / create the cursor class
#sql !terator CustomerInfo(int cid, String cname, int count);

/ / create the cursor
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CustomerInfo customerinfo;

/ / call the stored procedure
#sql customerinfo = {CALL ShowNumberOfOrders};
while (customerinfo.nextO) {

System.out.println(customerinfo.cid() + "," +
customerinfo.count()) ;

}

6.5.3 SQLIPSM

CHAPTER (5

All major databa...<;e systems provide ways for users to write stored procedures in
a simple, general purpose language closely aligned with SQL. In this section, we
briefly discuss the SQL/PSM standard, which is representative of most vendor­
specific languages. In PSM, we define modules, which are collections of stored
procedures, temporary relations, and other declarations.

In SQL/PSM, we declare a stored procedure as follows:

CREATE PROCEDURE name (parameter1,... , parameterN)
local variable declarations
procedure code;

We can declare a function similarly as follows:

CREATE FUNCTION name (parameterl, ... , parameterN)
RETURNS sqIDataType

local variable declarations
function code;

Each parameter is a triple consisting of the mode (IN, OUT, or INOUT as
discussed in the previous section), the parameter name, and the SQL datatype
of the parameter. We can seen very simple SQL/PSM procedures in Section
6.5.1. In this case, the local variable declarations were empty, and the procedure
code consisted of an SQL query.

We start out with an example of a SQL/PSM function that illustrates the
main SQL/PSM constructs. The function takes as input a customer identified
by her cid and a year. The function returns the rating of the customer, which
is defined a...'3 follows: Customers who have bought more than ten books during
the year are rated 'two'; customer who have purcha...<;ed between 5 and 10 books
are rated 'one', otherwise the customer is rated 'zero'. The following SQL/PSM
code computes the rating for a given customer and year.

CREATE PROCEDURE RateCustomer
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(IN custId INTEGER, IN year INTEGER)
RETURNS INTEGER

DECLARE rating INTEGER;
DECLARE numOrders INTEGER;
SET numOrders =

(SELECT COUNT(*) FROM Orders 0 WHERE O.tid = custId);
IF (numOrders> 10) THEN rating=2;
ELSEIF (numOrders>5) THEN rating=1;
ELSE rating=O;
END IF;
RETURN rating;

Let us use this example to give a short overview of some SQL/PSM constructs:

• We can declare local variables using the DECLARE statement. In our exam­
ple, we declare two local variables: 'rating', and 'numOrders'.

• PSM/SQL functions return values via the RETURN statement. In our ex­
ample, we return the value of the local variable 'rating'.

• vVe can assign values to variables with the SET statement. In our example,
we assigned the return value of a query to the variable 'numOrders'.

• SQL/PSM h&<; branches and loops. Branches have the following form:

IF (condition) THEN statements;
ELSEIF statements;

ELSEIF statements;
ELSE statements; END IF

Loops are of the form

LOOP
staternents:

END LOOP

• Queries can be used as part of expressions in branches; queries that return
a single ;ralue can be assigned to variables as in our example above.

• 'We can use the same cursor statements &s in Embedded SQL (OPEN, FETCH,
CLOSE), but we do not need the EXEC SQL constructs, and variables do not
have to be prefixed by a colon ':'.

We only gave a very short overview of SQL/PSM; the references at the end of
the chapter provide more information.
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6.6 CASE STUDY: THE INTERNET BOOK SHOP

DBDudes finished logical database design, as discussed in Section 3.8, and now
consider the queries that they have to support. They expect that the applica­
tion logic will be implemented in Java, and so they consider JDBC and SQLJ as
possible candidates for interfacing the database system with application code.

Recall that DBDudes settled on the following schema:

Books( isbn: CHAR(10), title: CHAR(8), author: CHAR(80),
qty_in_stock: INTEGER, price: REAL, year_published: INTEGER)

Customers( cid: INTEGER, cname: CHAR(80), address: CHAR(200))
Orders (ordernum: INTEGER, isbn: CHAR(lO), cid: INTEGER,

cardnum: CHAR(l6), qty: INTEGER, order_date: DATE, ship_date: DATE)

Now, DBDudes considers the types of queries and updates that will arise. They
first create a list of tasks that will be performed in the application. Tasks
performed by customers include the following.

II Customers search books by author name, title, or ISBN.

.. Customers register with the website. Registered customers might want
to change their contact information. DBDudes realize that they have to
augment the Customers table with additional information to capture login
and password information for each customer; we do not discuss this aspect
any further.

III Customers check out a final shopping basket to complete a sale.

III Customers add and delete books from a 'shopping basket' at the website.

.. Customers check the status of existing orders and look at old orders.

Administrative ta.'3ks performed by employees of B&N are listed next.

II Employees look up customer contact information.

III Employees add new books to the inventory.

.. Employees fulfill orders, and need to update the shipping date of individual
books.

.. Employees analyze the data to find profitable customers and customers
likely to respond to special marketing campaigns.

Next, DBDudes consider the types of queries that will a,rise out of these tasks.
To support searching for books by name, author, title, or ISBN, DBDudes
decide to write a stored procedure as follows:
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CREATE PROCEDURE SearchByISBN (IN book.isbn CHAR (10) )
SELECT B.title, B.author, B.qty_in~'3tock,B.price, B.yeaLpublished
FROM Books B
WHERE B.isbn = book.isbn

Placing an order involves inserting one or more records into the Orders table.
Since DBDudes has not yet chosen the Java-based technology to program the
application logic, they assume for now that the individual books in the order
are stored at the application layer in a Java array. To finalize the order, they
write the following JDBC code shown in Figure 6.11, which inserts the elements
from the array into the Orders table. Note that this code fragment assumes
several Java variables have been set beforehand.

String sql = "INSERT INTO Orders VALUES(7, 7, 7, 7, 7, 7)";
PreparedStatement pstmt = con.prepareStatement(sql);
con.setAutoCommit(false);

try {
/ / orderList is a vector of Order objects
/ / ordernum is the current order number
/ / dd is the ID of the customer, cardnum is the credit card number
for (int i=O; iiorderList.lengthO; i++)

/ / now instantiate the parameters with values
Order currentOrder = orderList[i];
pstmt.clearParameters () ;
pstmt.setInt(l, ordernum);
pstmt.setString(2, Order.getlsbnO);
pstmt.setInt(3, dd);
pstmt.setString(4, creditCardNum);
pstmt.setlnt(5, Order.getQtyO);
pstmt.setDate(6, null);

pstmt.executeUpdate();
}
con.commit();

catch (SqLException e){
con.rollbackO;
System.out. println (e.getMessage());

}

Figure 6.11 Inserting a Completed Order into the Database
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DBDudes writes other JDBC code and stored procedures for all of the remain­
ing tasks. They use code similar to some of the fragments that we have seen in
this chapter.

II Establishing a connection to a database, as shown in Figure 6.2.

II Adding new books to the inventory, a'3 shown in Figure 6.3.

II Processing results from SQL queries a'3 shown in Figure 6.4-

II For each customer, showing how many orders he or she has placed. We
showed a sample stored procedure for this query in Figure 6.8.

II Increa'3ing the available number of copies of a book by adding inventory,
as shown in Figure 6.9.

II Ranking customers according to their purchases, as shown in Figure 6.10.

DBDudcs takes care to make the application robust by processing exceptions
and warnings, as shown in Figure 6.6.

DBDudes also decide to write a trigger, which is shown in Figure 6.12. When­
ever a new order is entered into the Orders table, it is inserted with ship~date

set to NULL. The trigger processes each row in the order and calls the stored
procedure 'UpdateShipDate'. This stored procedure (whose code is not shown
here) updates the (anticipated) ship_date of the new order to 'tomorrow', in
case qty jlLstock of the corresponding book in the Books table is greater than
zero. Otherwise, the stored procedme sets the ship_date to two weeks.

CREATE TRIGGER update_ShipDate
AFTER INSERT ON Orders

FOR EACH ROW
BEGIN CALL UpdatcShipDate(new); END

1* Event *j

1* Action *j

Figure 6.12 Trigger to Update the Shipping Date of New Orders

6.7 REVIEW QUESTIONS

Answers to the i'eview questions can be found in the listed sections.

lYl vVhy is it not straightforward to integrate SQL queries with a host pro­
gramming language? (Section 6.1.1)

IIii How do we declare variables in Ernbcdded SQL? (Section 6.1.1)
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• How do we use SQL statements within a host langl.lage? How do we check
for errors in statement execution? (Section 6.1.1)

• Explain the impedance mismatch between host languages and SQL, and
describe how cursors address this. (Section 6.1.2)

• '\That properties can cursors have? (Section 6.1.2)

• What is Dynamic SQL and how is it different from Embedded SQL? (Sec­
tion 6.1.3)

• What is JDBC and what are its advantages? (Section 6.2)

• What are the components of the JDBC architecture? Describe four differ­
ent architectural alternatives for JDBC drivers. (Section 6.2.1)

• How do we load JDBC drivers in Java code? (Section 6.3.1)

• How do we manage connections to data sources? What properties can
connections have? (Section 6.3.2)

• What alternatives does JDBC provide for executing SQL DML and DDL
statements? (Section 6.3.3)

• How do we handle exceptions and warnings in JDBC? (Section 6.3.5)

• 'What functionality provides the DatabaseMetaDataclass? (Section 6.3.6)

• What is SQLJ and how is it different from JDBC? (Section 6.4)

• vVhy are stored procedures important? How do we declare stored proce­
dures and how are they called from application code? (Section 6.5)

EXERCISES

Exercise 6.1 Briefly answer the following questions.

1. Explain the following terms: Cursor, Embedded SQL, JDBC, SQLJ, stored procedure.

2. What are the differences between JDBC and SQLJ? \Nhy do they both exist?

3. Explain the term stored procedure, and give examples why stored procedures are useful.

Exercise 6.2 Explain how the following steps are performed in JDBC:

1. Connect to a data source.

2. Start, commit, and abort transactions.

3. Call a stored procedure.

How are these steps performed in SQLJ?
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Exercise 6.3 Compare exception handling and handling of warnings ill embedded SQL, dy­
namic SQL, .IDBC, and SQL.I.

Exercise 6.4 Answer the following questions.

1. Why do we need a precompiler to translate embedded SQL and SQL.J? Why do we not
need a precompiler for .IDBC?

2. SQL.J and embedded SQL use variables in the host language to pass parameters to SQL
queries, whereas .JDBC uses placeholders marked with a ''1'. Explain the difference, and
why the different mechanisms are needed.

Exercise 6.5 A dynamic web site generates HTML pages from information stored in a
database. Whenever a page is requested, is it dynamically assembled from static data and
data in a database, resulting in a database access. Connecting to the database is usually
a time~consuming process, since resources need to be allocated, and the user needs to be
authenticated. Therefore, connection pooling--setting up a pool of persistent database
connections and then reusing them for different requests can significantly improve the per­
formance of database-backed websites. Since servlets can keep information beyond single
requests, we can create a connection pool, and allocate resources from it to new requests.

Write a connection pool class that provides the following methods:

III Create the pool with a specified number of open connections to the database system.

11II Obtain an open connection from the pool.

III Release a connection to the pool.

III Destroy the pool and close all connections.

PROJECT-BASED EXERCISES

In the following exercises, you will create database-backed applications. In this chapter, you
will create the parts of the application that access the database. In the next chapter, you
will extend this code to other &'3pects of the application. Detailed information about these
exercises and material for more exercises can be found online at

http://www.cs.wisc.edu/-dbbook

Exercise 6.6 Recall the Notown Records database that you worked with in Exercise 2.5 and
Exercise 3.15. You have now been tasked with designing a website for Notown. It should
provide the following functionality:

III Usen; can sem'ch for records by name of the musician, title of the album, and Bame of
the song.

11II Users can register with the site, and registered users ca.n log on to the site. Once logged
on, users should not have to log on again unless they are inactive for a long time.

III Users who have logged on to the site can add items to a shopping basket.

11II Users with items in their shopping basket can check out and ma.ke a purchase.
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NOtOWIl wants to use JDBC to access the datab&<;e, \¥rite .JDBC code that performs the
necessary data access and manipulation. You will integrate this code with application logic
and presentation in the next chapter.

If Notown had chosen SQLJ instead of JDBC, how would your code change?

Exercise 6.7 Recall the database schema for Prescriptions-R-X that you created in Exer~

cise 2.7. The Prescriptions-R-X chain of pharmacies has now engaged you to design their
new website. The website has two different classes of users: doctors and patients. Doctors
should be able to enter new prescriptions for their patients and modify existing prescriptions.
Patients should be able to declare themselves as patients of a doctor; they should be able
to check the status of their prescriptions online; and they should be able to purchase the
prescriptions online so that the drugs can be shipped to their home address.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec­
essary data access and manipulation. You will integrate this code with application logic and
presentation in the next chapter.

Exercise 6.8 Recall the university database schema that you worked with in Exercise 5.l.
The university has decided to move enrollment to an online system. The website has two
different classes of users: faculty and students. Faculty should be able to create new courses
and delete existing courses, and students should be able to enroll in existing courses.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec­
essary data access and manipulation. You will integrate this code with application logic and
presentation in the next chapter.

Exercise 6.9 Recall the airline reservation schema that you worked on in Exercise 5.3. De­
sign an online airline reservation system. The reservation system will have two types of users:
airline employees, and airline passengers. Airline employees can schedule new flights and can­
cel existing flights. Airline passengers can book existing flights from a given destination.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec­
essary data access and manipulation. You will integrate this code with application logic and
presentation in the next chapter.

BIBLIOGRAPHIC NOTES

Information on ODBC can be found on Microsoft's web page (www.microsoft.com/data/odbc),
and information on JDBC can be found on tlw Java web page (j ava. sun. com/products/jdbc).
There exist rnany books on ODBC, for example, Sanders' ODBC Developer's Guicle [652] and
the lvIicrosoft ODBC SDK [5:3;3]. Books on JDBC include works by Hamilton et al. [359],
Reese [621], and White et a!. [773].
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INTERNET APPLICATIONS

It How do we name resources on the Internet?

It How do Web browsers and webservers communicate?

It How do we present documents on the Internet? How do we differen­
tiate between formatting and content?

It What is a three-tier application architecture? How do we write three­
tiered applications?

It Why do we have application servers?

.. Key concepts: Uniform Resource Identifiers (URI), Uniform Re.­
source Locators (URL); Hypertext Transfer Protocol (HTTP), state­
less protocol; Java; HTML; XML, XML DTD; three-tier architecture,
client-server architecture; HTML forms; JavaScript; cascading style
sheets, XSL; application server; Common Gateway Interface (CGI);
servlet; JavaServer Page (JSP); cookie

Wow! They've got the Internet on computers now!

--Homer Simpson, The Simpsons

7.1 INTROpUCTION

The proliferation of computer networks, including the Internet and corporate
'intranets,' has enabled users to access a large number of data sources. This
increased access to databases is likely to have a great practical impact; data
and services can now be offered directly to customers in ways impossible until

220
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recently. Examples of such electronic commerce rtpplications include pur­
chasing books through a \Veb retailer such <1.'3 Amazon.com, engaging in online
auctions at a site such as eBay, and exchanging bids and specifications for
products between companies. The emergence of standards such as XrvIL for
describing the content of documents is likely to further accelerate electronic
commerce and other online applications.

While the first generation of Internet sites were collections of HTML files, most
major sites today store a large part (if not all) of their data in database systems.
They rely on DBMSs to provide fast, reliable responses to user requests received
over the Internet. This is especially true of sites for electronic commerce and
other business applications.

In this chapter, we present an overview of concepts that are central to Internet
application development. We start out with a basic overview of how the Internet
works in Section 7.2. We introduce HTML and XML, two data formats that are
used to present data on the Internet, in Sections 7.3 and 7.4. In Section 7.5, we
introduce three-tier architectures, a way of structuring Internet applications
into different layers that encapsulate different functionality. In Sections 7.6
and 7.7, we describe the presentation layer and the middle layer in detail; the
DBMS is the third layer. We conclude the chapter by discussing our B&N case
study in Section 7.8.

Examples that appear in this chapter are available online at

http://www.cs.wisc.edu/-dbbook

7.2 INTERNET CONCEPTS

The Internet has emerged as a universal connector between globally distributed
software systems. To understand how it works, we begin by discussing two ba"lic
issues: how sites on the Internet are identified, and how programs at one site
communicate with other sites.

vVe first introduce Uniform Resource Identifiers, a naming schema for locating
resources on the Internet in Section 7.2.1. \Ve then talk about the most popular
protocol for accessing resources over the Vv"eh, the hypertext transfer protocol
(HTTP) in Se(tion 7.2.2.

7.2.1 Uniform Resource Identifiers

Uniform Resource Identifiers (URIs), are strings that uniquely identify
resources 011 the Internet. A resource is any kind of information that can
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j;istributed Applications and Service-Oriented Architectures:
I ~he advent of XML, due to its loosely-coupled nature, has made· infor­

mation exchange between different applications feasible to an extent previ­
ously unseen. By using XML for information exchange, applications can be
written in different programming languages, run on different operating sys­
tems, and yet they can still share information with each other. There are
also standards for externally describing the intended content of an XML
file or message, most notably the recently adopted W3C XML Schemas
standard.
A promising concept that has arisen out of the XML revolution is the notion
of a Web service. A Web service is an application that provides a well­
defined service, packaged as a set of remotely callable procedures accessible
through the Internet. Web services have the potential to enable powerful
new applications by composing existing Web services-all communicating
seamlessly thanks to the use of standardizedXML-based information ex­
change. Several technologies have been developed or are currently under
development that facilitate design and implementation of distributed ap­
plications. SOAP is a W3C standard for XML-based invocation of remote
services (think XML RPC) that allows distributed applications to commu­
nicate either synchronously or asynchronously via structured, typed XML
messages. SOAP calls can ride on a variety of underlying transport layers,
including HTTP (part of what is making SOAP so successful) and vari­
ous reliable messaging layers. Related to the SOAP standard are W3C's
Web Services Description Language (WSDL) for describing Web
service interfaces, and Universal Description, Dis.;;overy, and Inte­
gration (UDDI), a WSDL-based Web services registry standard (think
yellow pages for Web services).
SOAP-based Web services are the foundation for Microsoft's recently re­
leased .NET framework, their application development infrastructure and
associated run-time system for developing distributed applications, as well
as for the Web services offerings of major software vendors such as IBM,
BEA, and others. Many large software application vendors (major compa­
nies like PeopleSoft and SAP) have announced plans to provide Web service
interfaces to their products and the data that they manage, and many are
hoping that XML and Web services will finally provide the answer to the
long-standing problem of enterprise application integration. Web services
are also being looked to as a natural foundation for the next generation of
business process management (or workflow) systems.
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be identified by a URI, and examples include webpages, images, downloadable
files, services that can be remotely invoked, mailboxes, and so on. The most
common kind of resource is a static file (such as a HTML document), but a
resource may also be a dynamically-generated HTML file, a movie, the output
of a program, etc.

A URI has three parts:

• The (name of the) protocol used to access the resource.

• The host computer where the resource is located.

• The path name of the resource itself on the host computer.

Consider an example URI, such as http://www.bookstore.com/index .html.
This URI can be interpreted as follows. Use the HTTP protocol (explained in
the next section) to retrieve the document index. html located at the computer
www.bookstore.com.This example URI is an instance of a Universal Re­
source Locator (URL) , a subset of the more general URI naming scheme;
the distinction is not important for our purposes. As another example, the
following HTML fragment shows a URI that is an email address:

<a href=lImailto:webmaster@bookstore.com ll >Email the webmaster.</A>

7.2.2 The Hypertext Transfer Protocol (HTTP)

A communication protocol is a set of standards that defines the structure
of messages between two communicating parties so that they can understand
each other's messages. The Hypertext Transfer Protocol (HTTP) is the
most common communication protocol used over the Internet. It is a client­
server protocol in which a client (usually a Web browser) sends a request to an
HTTP server, which sends a response back to the client. When a user requests
a webpage (e.g., clicks on a hyperlink), the browser sends HTTP request
messages for the objects in the page to the server. The server receives the
requests and responds with HTTP response messages, which include the
objects. It is important to recognize that HTTP is used to transmit all kinds
of resources, not just files, but most resources on the Internet today are either
static files or :(lIes output from server-side scripts.

A variant of the HTTP protocol called the Secure Sockets Layer (SSL)
protocol uses encryption to exchange information securely between client and
server. We postpone a discussion of SSL to Section 21.5.2 and present the basic
HTTP protocol in this chapter.
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As an example, consider what happens if a user clicks on the following link:
http://www.bookstore.com/index . html. 'We first explain the structure of an
HTTP request message and then the structure of an HTTP response message.

HTTP Requests

The client (\\Teb browser) establishes a connection with the webserver that
hosts the resource and sends a HTTP request message. The following example
shows a sample HTTP request message:

GET index.html HTTP/l.l

User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg

The general structure of an HTTP request consists of several lines of ASCII
text, with an empty line at the end. The first line, the request line, has three
fields: the HTTP method field, the URI field, and the HTTP version
field. The method field can take on values GET and POST; in the exam­
ple the message requests the object index. html. (We discuss the differences
between HTTP GET and HTTP POST in detail in Section 7.11.) The version
field indicates which version of HTTP is used by the client and can be used
for future extensions of the protocol. The user agent indicates the type of
the client (e.g., versions of Netscape or Internet Explorer); we do not discuss
this option further. The third line, starting with Accept, indicates what types
of files the client is willing to accept. For example, if the page index. html
contains a movie file with the extension .mpg, the server will not send this file
to the client, as the client is not ready to accept it.

HTTP Responses

The server responds with an HTTP response message. It retrieves tht: page
index. html, uses it to assemble the HTTP response message, and sends the
message to the client. A sample HTTP response looks like this:

HTTP/l.l 200 OK
Date: Mon, 04 Mar 2002 12:00:00 GMT
Content-Length: 1024
Content-Type: text/html
Last-Modified: Mall, 22 JUIl 1998 09:23:24 GMT
<HTML>
<HEAD>
</HEAD>

<BODY>
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<H1>Barns and Nobble Internet Bookstore</H1>
Our inventory:
<H3>Science</H3>
<B>The Character of Physical Law</B>
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The HTTP response message has three parts: a status line, several header
lines, and the body of the message (which contains the actual object that the
client requested). The status line has three fields (analogous to the request
line of the HTTP request message): the HTTP version (HTTP/1.1), a status
code (200), and an associated server message (OK). Common status codes and
associated messages are:

• 200 OK: The request succeeded and the object is contained in the body of
the response message";

• 400 Bad Request: A generic error code indicating that the request could
not be fulfilled by the server.

• 404 Not Found: The requested object does not exist on the server.

• 505 HTTP Version Not Supported: The HTTP protocol version that the
client uses is not supported by the server. (Recall that the HTTP protocol
version sent in the client's request.)

Our example has three header lines: The date header line indicates the time
and date when the HTTP response was created (not that this is not the object
creation time). The Last-Modified header line indicates when the object was
created. The Content-Length header line indicates the number of bytes in the
object being sent after the last header line. The Content-Type header line
indicates that the object in the entity body is HTML text.

The client (the Web browser) receives the response message, extracts the HTML
file, parses it, and displays it. In doing so, it might find additional URIs in the
file, and it then uses the HTTP protocol to retrieve each of these resources,
establishing a new connection each time.

One important issue is that the HTTP protocol is a stateless protocol. Every
message----from, the client to the HTTP server and vice-versa-is self-contained,
and the connection established with a request is maintained only until the
response message is sent. The protocol provides no mechanism to automatically
'remember' previous interactions between client and server.

The stateless nature of the HTTP protocol has a major impact on how Inter­
net applications are written. Consider a user who interacts with our exalIlple
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bookstore application. Assume that the bookstore permits users to log into
the site and then carry out several actions, such as ordering books or changing
their address, without logging in again (until the login expires or the user logs
out). How do we keep track of whether a user is logged in or not? Since HTTP
is stateless, we cannot switch to a different state (say the 'logged in' state) at
the protocol level. Instead, for every request that the user (more precisely, his
or her Web browser) sends to the server, we must encode any state information
required by the application, such as the user's login status. Alternatively, the
server-side application code must maintain this state information and look it
up on a per-request basis. This issue is explored further in Section 7.7.5.

Note that the statelessness of HTTP is a tradeoff between ease of implementa­
tion of the HTTP protocol and ease of application development. The designers
of HTTP chose to keep the protocol itself simple, and deferred any functionality
beyond the request of objects to application layers above the HTTP protocol.

7.3 HTML DOCUMENTS

In this section and the next, we focus on introducing HTML and XML. In
Section 7.6, we consider how applications can use HTML and XML to create
forms that capture user input, communicate with an HTTP server, and convert
the results produced by the data management layer into one of these formats.

HTML is a simple language used to describe a document. It is also called a
markup language because HTML works by augmenting regular text with
'marks' that hold special meaning for a Web browser. Commands in the lan­
guage, called tags, consist (usually) of a start tag and an end tag of the
form <TAG> and </TAG>, respectively. For example, consider the HTML frag­
ment shown in Figure 7.1. It describes a webpage that shows a list of books.
The document is enclosed by the tags <HTML> and </HTML>, marking it as an
HTML document. The remainder of the document-enclosed in <BODY> ...
</BoDY>-contains information about three books. Data about each book is
represented as an unordered list (UL) whose entries are marked with the LI
tag. HTML defines the set of valid tags as well 8.'3 the meaning of the tags. :For
example, HTML specifies that the tag <TITLE> is a valid tag that denotes the
title of the document. As another example, the tag <UL> always denotes an
unordered list.

Audio, video, and even programs (written in Java, a highly portable language)
can be included in HTML documents. vVhen a user retrieves such a document
using a suitable browser, images in the document arc displayed, audio and video
clips are played, and embedded programs are executed at the uset's machine;
the result is a rich multimedia presentation. The e8."ie with which HTML docu-
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<HTML>
<HEAD>
</HEAD>
<BODY>
<Hl>Barns and Nobble Internet Bookstore</Hl>
Our inventory:
<H3>Science</H3>

<B>The Character of Physical Law</B>
<UL>

<LI>Author: Richard Feynman</LI>
<LI>Published 1980</LI>
<Ll>Hardcover</LI>

</UL>
<H3>Fiction</H3>

<B>Waiting for the Mahatma</B>
<UL>

<LI>Author: R.K. Narayan</LI>
<LI>Published 1981</Ll>

</UL>
<B>The English Teacher</B>
<UL>

<LI>Author: R.K. Narayan</LI>
<LI>Published 1980</LI>
<LI>Paperback</LI>

</UL>
</BODY>
</HTML>

Figure 7.1 Book Listing in HTML
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ments can be created--there are now visual editors that automatically generate
HTML----and accessed using Internet browsers has fueled the explosive growth
of the Web.

7.4 XML DOCUMENTS

In this section, we introduce XML a.'3 a document format, and consider how
applications can utilize XML. Managing XML documents in a DBMS poses
several new challenges; we discuss this a.'3pect of XML in Chapter 27.
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vVhile HTl\.fL can be used to mark up documents for display purposes, it is
not adequate to describe the structure of the content for more general applica­
tions. For example, we can send the HTML document shown in Figure 7.1 to
another application that displays it, but the second application cannot distin­
guish the first names of authors from their last names. (The application can
try to recover such information by looking at the text inside the tags, but this
defeats the purpose of using tags to describe document structure.) Therefore,
HTML is unsuitable for the exchange of complex documents containing product
specifications or bids, for example.

Extensible Markup Language (XML) is a markup language developed to
remedy the shortcomings of HTML. In contrast to a fixed set of tags whose
meaning is specified by the language (as in HTML), XML allows users to de­
fine new collections of tags that can be used to structure any type of data or
document the user wishes to transmit. XML is an important bridge between
the document-oriented view of data implicit in HTML and the schema-oriented
view of data that is central to a DBMS. It has the potential to make database
systems more tightly integrated into Web applications than ever before.

XML emerged from the confluence of two technologies, SGML and HTML. The
Standard Generalized Markup Language (SGML) is a metalanguage
that allows the definition of data and document interchange languages such as
HTML. The SGML standard was published in 1988, and many organizations
that rnanage a large number of complex documents have adopted it. Due to its
generality, SGML is complex and requires sophisticated programs to harness
its full potential. XML was developed to have much of the power of SGML
while remaining relatively simple. Nonetheless, XML, like SGML, allows the
definition of new document markup languages.

Although XML does not prevent a user from designing tags that encode the
display of the data in a Web browser, there is a style language for XML called
Extensible Style Language (XSL). XSL is a standard way of describing
how an XML docmnent that adheres to a certain vocabulary of tags should be
displayed.

7.4.1 Introduction to XML

Vve use the smaJI XML docmnent shown in Figure 7.2 a,s an example.

11II Elements: Elements, also called tags, a.rc the primary building blocks of
an XML docmnent. The start of the content of an element ELM is marked
with <ELM>, which is called the start tag, and the end of the content end
is marked with </ELM>, called the end tag. In our example document.
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The Design Goals ofXML: XML wa.."l developed'startingin 1996 by a
working group under guidance of the ';Yorld Wide Web Consortium (W3C)
XML Special Interest Group. The design goals for XML included the
following:

1. XML should be compatible with SGML.

2. It should be easy to write programs that process XML documents.

3. The design of XML should be formal and concise.

the element BOOKLIST encloses all information in the sample document.
The element BOOK demarcates all data associated with a single book.
XML elements are case sensitive: the element BOOK is different from
Book. Elements must be properly nested. Start tags that appear inside
the content of other tags must have a corresponding end tag. For example,
consider the following XML fragment:

<BOOK>
<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME>
<LASTNAME>Feynluan</LASTNAME>

</AUTHOR>
</BOOK>
The element AUTHOR is completely nested inside the element BOOK, and
both the elements LASTNAME and FIRSTNAME are nested inside the element
AUTHOR.

.. Attributes: An element can have descriptive attributes that provide ad­
ditional information about the element. The values of attributes are set
inside the start tag of an element. For example, let ELM denote an element
with the attribute att. We can set the value of att to value through the
following expression: <ELM att=" value II >. All attribute values must be
enclosed in quotes. In Figure 7.2, the element BOOK has two attributes.
The attribute GENRE indicates the genre of the book (science or fiction)
and the attribute FORMAT indicates whether the book is a hardcover or a
paperback.

III Entity References: Entities are shortcuts for portions of common text or
the content of external files, and we call the usage of an entity in the XML
document an entity reference. Wherever an entity reference appears in
the document, it is textually replaced by its content. Entity references
start with a '&' and end with a '; '. Five predefined entities in XML are
placeholders for chara.cters with special meaning in XML. For example, the
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<?xml version=11.0" encoding="UTF-S Il standalone=llyes ll?>

<BOOKLIST>
<BOOK GENRE=" Science" FORMAT=" Hardcover" >

<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME>
<LASTNAME>Feynman</LASTNAME>

</AUTHOR>
<TITLE>The Character of Physical Law</TITLE>
<PUBLISHED>1980</PUBLISHED>

</BOOK>
<BOOK> GENRE=" Fiction" >

<AUTHOR>

<FIRSTNAME>R.K.</FIRSTNAME>
<LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>Waiting for the Mahatma</TITLE>

<PUBLISHED>1981</PUBLISHED>
</BOOK>
<BOOK GENRE=" Fiction" >

<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME>

<LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>The English Teacher</TITLE>
<PUBLISHED> 1980</PUBLISHED>

</BOOK>
</BOOKLIST>

Figure 7.2 Book Information in XML

< character that marks the beginning of an XML command is reserved and
has to be represented by the entity It. The other four reserved characters
are &, >, ", and '; they are represented by the entities amp, gt, quot,
and apos. For example, the text '1 < 5' has to be encoded in an XML
document &'3 follows: &apos; 1&1t ; 5&apos;. We can also use entities to
insert arbitrary Unicode characters into the text. Unicode is a standard
for character representations, similar to ASCII. For example, we can display
the Japanese Hiragana character a using the entity reference &#x3042.

• Comments: We can insert comments anywhere in an XML document.
Comments start with <! - and end with ->. Comments can contain arbi­
trary text except the string --.
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• Document Type Declarations (DTDs): In XML, we can define our
own markup language. A DTD is a set of rules that allows us to specify
our own set of elements, attributes, and entities. Thus, a DTD is basically
a grammar that indicates what tags are allowed, in what order they can
appear, and how they can be nested. We discuss DTDs in detail in the
next section.

We call an XML document well-formed if it has no associated DTD but
follows these structural guidelines:

• The document starts with an XML declaration. An example of an XML
declaration is the first line of the XML document shown in Figure 7.2.

• A root element contains all the other elements. In our example, the root
element is the element BOOKLIST.

• All elements must be properly nested. This requirement states that start
and end tags of an element must appear within the same enclosing element.

7.4.2 XML DTDs

A DTD is a set of rules that allows us to specify our own set of elements,
attributes, and entities. A DTD specifies which elements we can use and con­
straints on these elements, for example, how elements can be nested and where
elements can appear in the document. We call a document valid if a DTD is
associated with it and the document is structured according to the rules set by
the DTD. In the remainder of this section, we use the example DTD shown in
Figure 7.3 to illustrate how to construct DTDs.

< ! DOCTYPE BOOKLIST [
<! ELEMENT BOOKLIST (BOOK)*>

<! ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?»
<!ELEMENT AUTHOR (FIRSTNAME,LASTNAME»

<! ELEMENT FIRSTNAME (#PCDATA»
<! ELEMENT LASTNAME (#PCDATA»

<! ELEMENT TITLE (#PCDATA»
<! ELEMENT PUBLISHED (#PCDATA»

<! ATTLIST BOOK GENRE (ScienceIFiction) #REQUIRED>
<!ATTLIST BOOK FORMAT (PaperbackIHardcover) "Paperback">

]>

Figure 7.3 Bookstore XML DTD
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A DTD is enclosed in <! DOCTYPE name [DTDdeclarationJ >, where name is
the name of the outermost enclosing tag, and DTDdeclaration is the text of
the rules of the DTD. The DTD starts with the outermost element---the root
elenwnt--which is BOOKLIST in our example. Consider the next rule:

<!ELEMENT BOOKLIST (BOOK)*>

This rule tells us that the element BOOKLIST consists of zero or more BOOK
elements. The * after BOOK indicates how many BOOK elements can appear
inside the BOOKLIST element. A * denotes zero or more occurrences, a + denotes
one or more occurrences, and a? denotes zero or one occurrence. For example,
if we want to ensure that a BOOKLIST has at least one book, we could change
the rule as follows:

<!ELEMENT BOOKLIST (BOOK)+>

Let us look at the next rule:

<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?»

This rule states that a BOOK element contains a AUTHOR element, a TITLE ele­
ment, and an optional PUBLISHED clement. Note the use of the? to indicate
that the information is optional by having zero or one occurrence of the element.
Let us move ahead to the following rule:

< !ELEMENT LASTNAME (#PCDATA»

Until now we considered only elements that contained other elements. This
rule states that LASTNAME is an element that does not contain other elements,
but contains actual text. Elements that only contain other elements are said
to have element content, whereas elements that also contain #PCDATA are
::laid to have mixed content. In general, an element type declaration has the
following structure:

< !ELEMENT (contentType»

Five possible content types are:

III Other elements.

II The special syrnbol #PCDATA, which indicates (parsed) character data.

II The special symbol EMPTY, which indicates that the element has no content.
Elements that have no content are not required to have an end tag.

11II The special symbol ANY, which indicates that any content is permitted.
This content should be avoided whenever possible ::lince it disables all check­
ing of the document structure inside the element.
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• A regular expression constructed from the preceding four choices. A
regular expression is one of the following:

- expL exp2, exp3: A list of regular expressions.

- exp*: An optional expression (zero or more occurrences).

- exp?: An optional expression (zero or one occurrences).

- exp+: A mandatory expression (one or more occurrences).

- expl I exp2: expl or exp2.

Attributes of elements are declared outside the element. For example, consider
the following attribute declaration from Figure 7.3:

<! ATTLIST BOOK GENRE (ScienceIFiction) #REQUIRED»

This XML DTD fragment specifies the attribute GENRE, which is an attribute
of the element BOOK. The attribute can take two values: Science or Fiction.
Each BOOK element must be described in its start tag by a GENRE attribute
since the attribute is required as indicated by #REQUIRED. Let us look at the
general structure of a DTD attribute declaration:

<! ATTLIST elementName (attName attType default)+>

The keyword ATTLIST indicates the beginning of an attribute declaration. The
string elementName is the name of the element with which the following at­
tribute dcfinition is associated. What follows is the declaration of one or more
attributes. Each attribute has a name, as indicated by attName, and a type,
as indicated by attType. XML defines several possible types for an attribute.
We discuss only string types and enumerated types here. An attribute of
type string can take any string as a value. We can declare such an attribute by
setting its type field to CDATA. F'or example, we can declare a third attribute of
type string of the elernent BOOK a.s follows:

<!ATTLIST BOOK edition CDATA "1">

If an attribute has an enumerated type, we list all its possible values in the
attribute declaration. In our example, the itttribute GENRE is an enumerated
attribute type; its possible attribute values are 'Science' and 'Fiction'.

The last part 'Of an attribute declaration is called its default specification.
The DTD in Figure 7.:3 shows two different default specifications: #REQUIRED
itnd the string 'Pitperback'. The default specification #REQUIRED indicates that
the attribute is required and whenever its associated element itppears some­
where in the XML document ~t value for the attribute must be specified. The
debult specification indicated by the string 'Paperback' indicates that the at­
tribute is not required; whenever its a.')sociated element itppears without setting
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<?xml version=11.0" encoding=IUTF-8" standalone=" no "?>
< ! DOCTYPE BOOKLIST SYSTEM" books.dtd" >
<BOOKLIST>

<BOOK GENRE=" Science" FORMAT=" Hardcover" >
<AUTHOR>

Figure 7.4 Book Information in XML

XML Schema: The DTD mechanism has several limitations, in spite of
its widespread use. For example, elements and attributes cannot be as­
signed types in a flexible way, and elements are always ordered, even if the
application does not require this. XML Schema is a new W3C proposal
that provides a more powerful way to describe document structure than
DTDs; it is a superset of DTDs, allowing legacy data to be handled eas­
ily. An interesting aspect is that it supports uniqueness and foreign key
constraints.

a value for the attribute, the attribute automatically takes the value 'Paper­
back'. For example, we can make the attribute value 'Science' the default value
for the GENRE attribute as follows:

<! ATTLIST BOOK GENRE (ScienceIFiction) "Science" >

In our bookstore example, the XML document with a reference to the DTD is
shown in Figure 7.4.

7.4.3 Domain-Specific DTDs

Recently, DTDs have been developed for several specialized domains-including
a wide range of commercial, engineering, financial, industrial, and scientific
domains----and a lot of the excitement about XML h3...<; its origins in the belief
that more and more standardized DTDs will be developed. Standardized DTDs
would enable seamless data exchange among heterogeneous sources, a problem
solved today either by implementing specialized protocols such as Electronic
Data Interchange (EDI) or by implementing ad hoc solutions.

Even in an environment where all XML data is valid, it is not possible to
straightforwardly integrate several XML documents by matching elements in
their DTDs, because even when two elements have identical names in two
different DTDs, the meaning of the elements could be completely different.
If both documents use a single, standard DTD, we avoid this problem. The
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development of standardized DTDs is more a social process than a research
problem, since the major players in a given domain or industry segment have
to collaborate.

For example, the mathematical markup language (MathML) has been
developed for encoding mathematical material on the Web. There are two
types of MathML elements. The 28 presentation elements describe the lay­
out structure of a document; examples are the mrow element, which indicates a
horizontal row of characters, and the msup element, which indicates a base and a
subscript. The 75 content elements describe mathematical concepts. An ex­
ample is the plus element, which denotes the addition operator. (A third type
of element, the math element, is used to pass parameters to the MathML pro­
cessor.) MathML allows us to encode mathematical objects in both notations
since the requirements of the user of the objects might be different. Content
elements encode the precise mathematical meaning of an object without ambi­
guity, and the description can be used by applications such as computer algebra
systems. On the other hand, good notation can suggest the logical structure to
a human and emphasize key aspects of an object; presentation elements allow
us to describe mathematical objects at this level.

For example, consider the following simple equation:

x 2
- 4x - 32 = 0

Using presentation elements, the equation is represented as follows:

<mrow>
<mrow> <msup><mi>x</mi><mn>2</mn></msup>

<mo>-</mo>
<mrow><mn>4</mn>

<mo>&invisibletimes;</mo>
<mi>x</mi>

</mrow>
<mo>-</ mo><mn>32< / mn>

</mrow><mo>=</mo><mn>O</nm>
</mrow>

Using content elements, the equation is described as follows:

<reln><eq/>
<apply>

<minus/>
<apply> <power/> <ci>x</ci> <cn>2</cn> </apply>
<apply> <times/> <cn>4</cn> <ci>x</ci> </apply>
<cn>32</cn>
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</apply> <cn>O</cn>
</reln>

CHAPTER J7

Note the additional power that we gain from using MathML instead of en­
coding the formula in HTML. The common way of displaying mathematical
objects inside an HTML object is to include images that display the objects,
for example, as in the following code fragment:

<IMG SRC=lIimages/equation.gifll ALI=II x**2 - 4x - 32 = 10 II >

The equation is encoded inside an IMG tag with an alternative display format
specified in the ALI tag. Using this encoding of a mathematical object leads
to the following presentation problems. First, the image is usually sized to
match a certain font size, and on systems with other font sizes the image is
either too small or too large. Second, on systems with a different background
color, the picture does not blend into the background and the resolution of the
image is usually inferior when printing the document. Apart from problems
with changing presentations, we cannot easily search for a formula or formula
fragments on a page, since there is no specific markup tag.

7.5 THE THREE-TIER APPLICATION ARCHITECTURE

In this section, we discuss the overall architecture of data-intensive Internet
applications. Data-intensive Internet applications can be understood in terms
of three different functional components: data management, application logic,
and pTesentation. The component that handles data mallgement usually utilizes
a DBMS for data storage, but application logic and presentation involve much
more than just the DBMS itself.

We start with a short overview of the history of database-backed application
architectures, and introduce single-tier and client-server architectures in Section
7.5.1. \Ve explain the three-tier architecture in detail in Section 7.5.2, and show
its advantages in Section 7.5.3.

7.5.1 Single-Tier and Client-Server Architectures

In this section, we provide some perspective on the three-tier architecture by
discussing single-tier and client-server architectures, the predecessors of the
three-tier architecture. Initially, data-intensive applications were combined into
a single tier, including the DBMS, application logic, and user interface, a"
illustrated in Figure 7.5. The application typically ran on a mainframe, and
users accessed it through dumb teT'minals that could perform only data input
and display. This approach ha..s the benefit of being easily maintained by a
central administrator.
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Figure 7.5 A Single-Tier Architecture

Figure 7.6 A Two-Server Architecture: Thin Clients

Single-tier architectures have a,n important drawback: Users expect graphical
interfaces that require much more computational power than simple dumb ter­
minals. Centralized computation of the graphical displays of such interfaces
requires much more computational power than a single server hclS available,
and thus single-tier architectures do not scale to thousands of users. The com­
moditization of the PC and the availability of cheap client computers led to
the developlnent of the two-tier architecture.

Two-tier architectures, often also referred to a<; client-server architec­
tures, consist of a client computer and a server computer, which interact
through a well-defined protocol. What part of the functionality the client im­
plements, and what part is left to the server, can vary. In the traditional client­
server architecture, the client implements just the graphical user interface,
and the server. implements both the business logic and the data management;
such clients are often called thin clients, and this architecture is illustra,ted in
Figure 7.6.

Other divisions are possible, such as more powerful clients that hnplement both
user interface and business logic, or clients that implement user interface and
part of the business logic, with the remaining part being implemented at the
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server level; such clients are often called thick clients, and this architecture is
illustrated in Figure 7.7.

Compared to the single-tier architecture, two-tier architectures physically sep­
arate the user interface from the data management layer. To implement two­
tier architectures, we can no longer have dumb terminals on the client side;
we require computers that run sophisticated presentation code (and possibly,
application logic).

Over the last ten years, a large number of client-server development tools such
Microsoft Visual Basic and Sybase Powerbuilder have been developed. These
tools permit rapid development of client-server software, contributing to the
success of the client-server model, especially the thin-client version.

The thick-client model has several disadvantages when compared to the thin­
client model. First, there is no central place to update and maintain the busi­
ness logic, since the application code runs at many client sites. Second, a large
amount of trust is required between the server and the clients. As an exam-­
pIe, the DBMS of a bank has to trust the (application executing at an) ATM
machine to leave the database in a consistent state. (One way to address this
problem is through stored procedures, trusted application code that is registered
with the DBMS and can be called from SQL statelnents. 'Ve discuss stored
procedures in detail in Section 6.5.)

A third disadvantage of the thick-client architecture is that it does not scale
with the number of clients; it typically cannot handle more than a few hundred
clients. The application logic at the client issues SQL queries to the server
and the server returns the query result to the client, where further processing
takes place. Large query results might be transferred between client and server.
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Figure 7.8 A Standard Three-Tier Architecture

(Stored procedures can mitigate this bottleneck.) Fourth, thick-client systems
do not scale as the application accesses more and more database systems. As­
sume there are x different database systems that are accessed by y clients, then
there are x . y different connections open at any time, clearly not a scalable
solution.

These disadvantages of thick-client systems and the widespread adoption of
standard, very thin clients~notably,Web browsers~haveled to the widespread
use thin-client architectures.

7.5.2 Three~Tier Architectures

The thin-client two-tier architecture essentially separates presentation issues
from the rest of the application. The three-tier architecture goes one step
further, and also separates application logic from data management:

III Presentation Tier: Users require a natural interface to make requests,
provide input, and to see results. The widespread use of the Internet has
made Web-based interfaces increasingly popular.

III Middle Tier: The application logic executes here. An enterprise-class
application reflects complex business processes, and is coded in a general
purpose language such as C++ or Java.

III Data Management Tier: Data-intensive Web applications involve DBMSs,
which are the subject of this book.

Figure 7.8 shows a basic three-tier architecture. Different technologies have
been developed to enable distribution of the three tiers of an application across
multiple hardware platforms and different physical sites. Figure 7.9 shows the
technologies relevant to each tier.
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Overview of the Presentation Tier

CHAPTERi' 7

At the presentation layer, we need to provide forms through which the user
can issue requests, and display responses that the middle tier generates. The
hypertext markup language (HTML) discussed in Section 7.3 is the basic data
presentation language.

It is important that this layer of code be easy to adapt to different display
devices and formats; for example, regular desktops versus handheld devices
versus cell phones. This adaptivity can be achieved either at the middle tier
through generation of different pages for different types of client, or directly at
the client through style sheets that specify how the data should be presented.
In the latter case, the middle tier is responsible for producing the appropriate
data in response to user requests, whereas the presentation layer decides how
to display that information.

\Ve cover presentation tier technologies, including style sheets, in Section 7.6.

Overview of the Middle Tier

The middle layer runs code that implements the business logic of the applica­
tion: It controls what data needs to be input before an action can be executed,
determines the control flow between multi-action steps, controls access to the
database layer, and often assembles dynamically generated HTML pages from
databa"se query results.
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The middle tier code is responsible for supporting all the different roles involved
in the application. For example, in an Internet shopping site implementation,
we would like customers to be able to browse the catalog and make purchases,
administrators to be able to inspect current inventory, and possibly data ana­
lysts to ask summary queries about purchase histories. Each of these roles can
require support for several complex actions.

For example, consider the a customer who wants to buy an item (after browsing
or searching the site to find it). Before a sale can happen, the customer has
to go through a series of steps: She has to add items to her shopping ba.sket,
she has to provide her shipping address and credit card number (unless she has
an account at the site), and she has to finally confirm the sale with tax and
shipping costs added. Controlling the flow among these steps and remembering
already executed steps is done at the middle tier of the application. The data
carried along during this series of steps might involve database accesses, but
usually it is not yet permanent (for example, a shopping basket is not stored
in the database until the sale is confirmed).

We cover the middle tier in detail in Section 7.7.

7.5.3 Advantages of the Three-Tier Architecture

The three-tier architecture has the following advantages:

1/ Heterogeneous Systems: Applications can utilize the strengths of dif­
ferent platforms and different software components at the different tiers.
It is easy to modify or replace the code at any tier without affecting the
other tiers.

II Thin Clients: Clients only need enough computation power for the pre­
sentation layer. Typically, clients are Web browsers.

II Integrated Data Access: In many applications, the data must be ac­
cessed from several sources. This can be handled transparently at the
middle tier, where we can centrally manage connections to all database
systems involved.

II Scalabilit,y to Many Clients: Each client is lightweight and all access to
the system is through the middle tier. The middle tier can share database
connections across clients, and if the middle tier becomes the bottle-neck,
we can deploy several servers executing the middle tier code; clients can
connect to anyone of these servers, if the logic is designed appropriately.
This is illustrated in Figure 7.10, which also shows how the middle tier
accesses multiple data sources. Of course, we rely upon the DBMS for each
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Figure 7.10 Middle~Tier Replication and Access to Multiple Data Sources
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data source to be scalable (and this might involve additional parallelization
or replication, as discussed in Chapter 22).

• Software Development Benefits: By dividing the application cleanly
into parts that address presentation, data access, and business logic, we
gain many advantages. The business logic is centralized, and is therefore
easy to maintain, debug, and change. Interaction between tiers occurs
through well-defined, standardized APls. Therefore, each application tier
can be built out of reusable components that can be individually developed,
debugged, and tested.

7.6 THE PRESENTATION LAYER

In this section, we describe technologies for the client side of the three-tier ar­
chitecture. vVe discuss HTML forms as a special means of pa.ssing arguments
from the client to the middle tier (i.e., from the presentation tier to the middle
tier) in Section 7.6.1. In Section 7.6.2, we introduce JavaScript, a Java-based
scripting language that can be used for light-weight computation in the client
tier (e.g., for simple animations). We conclude our discussion of client-side tech­
nologies by presenting style sheets in Section 7.6.3. Style sheets are languages
that allow us to present the same webpage with different formatting for clients
with different presentation capabilities; for example, Web browsers versus cell
phones, or even a Netscape browser versus Microsoft's Internet Explorer.

7.6.1 HTML Forms

HTML forms are a common way of communicating data from the client tier to
the middle tier. The general format of a form is the following:

<FORM ACTION="page.jsp" METHOD="GET" NAME="LoginForm">
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A single HTML document can contain more than one form. Inside an HTML
form, we can have any HTML tags except another FORM element.

The FORM tag has three important attributes:

• ACTION: Specifies the URI of the page to which the form contents are
submitted; if the ACTION attribute is absent, then the URI of the current
page is used. In the sample above, the form input would be submited to
the page named page. j sp, which should provide logic for processing the
input from the form. (We will explain methods for reading form data at
the middle tier in Section 7.7.)

• METHOD: The HTTP/1.0 method used to submit the user input from the
filled-out form to the webserver. There are two choices, GET and POST; we
postpone their discussion to the next section.

• NAME: This attribute gives the form a name. Although not necessary,
naming forms is good style. In Section 7.6.2, we discuss how to write
client-side programs in JavaScript that refer to forms by name and perform
checks on form fields.

Inside HTML forms, the INPUT, SELECT, and TEXTAREA tags are used to specify
user input elements; a form can have many elements of each type. The simplest
user input element is an INPUT field, a standalone tag with no terminating tag.
An example of an INPUT tag is the following:

<INPUT TYPE=ltext" NAME="title">

The INPUT tag has several attributes. The three most important ones are TYPE,
NAME, and VALUE. The TYPE attribute determines the type of the input field. If
the TYPE attribute h&'3 value text, then the field is a text input field. If the
TYPE attribute has value password, then the input field is a text field where the
entered characters are displayed as stars on the screen. If the TYPE attribute
has value reset, it is a simple button that resets all input fields within the
form to their default values. If the TYPE attribute has value submit, then it is
a button that sends the values of the different input fields in the form to the
server. Note that reset and submit input fields affect the entire form.

The NAME attribute of the INPUT tag specifies the symbolic name for this field
and is used to identify the value of this input fi.eld when it is sent to the server.
NAME has to be set for INPUT tags of all types except submit and reset. In the
preceding example, we specified title as the NAME of the input field.
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The VALUE attribute of an input tag can be used for text or password fields to
specify the default contents of the field. For submit or reset buttons, VALUE
determines the label of the button.

The form in Figure 7.11 shows two text fields, one regular text input field and
one password field. It also contains two buttons, a reset button labeled 'Reset
Values' and a submit button labeled 'Log on.' Note that the two input fields
are named, whereas the reset and submit button have no NAME attributes.

<FORM ACTION="page.jsp" METHoD="GET" NAME="LoginForm">
<INPUT TYPE="text" NAME="username" VALUE=" Joe"><P>
<INPUT TYPE="password" NAME="p&ssword"><P>
<INPUT TYPE="reset" VALUE="Reset Values"><P>
<INPUT TYPE="submit" VALUE="Log on">

</FoRM>

Figure 7.11 HTl'vlL Form with Two Text Fields and Two Buttons

HTML forms have other ways of specifying user input, such as the aforemen­
tioned TEXTAREA and SELECT tags; we do not discuss them.

Passing Arguments to Server~Side Scripts

As mentioned at the beginning of Section 7.6.1, there are two different ways to
submit HTML Form data to the webserver. If the method GET is used, then
the contents of the form are assembled into a query URI (as discussed next)
and sent to the server. If the method POST is used, then the contents of the
form are encoded as in the GET method, but the contents are sent in a separate
data block instead of appending them directly to the URI. Thus, in the GET
method the form contents are directly visible to the user as the constructed
URI, whereas in the POST method, the form contents are sent inside the HTTP
request message body and are not visible to the user.

Using the GET method gives users the opportunity to bookmark the page with
the constructed URI and thus directly jump to it in subsequent sessions; this
is not possible with the POST method. The choice of GET versus POST should
be determined' by the application and its requirements.

Let us look at the encoding of the URI when the GET method is used. The
encoded URI has the following form:

action?name1=vallle1&name2=value2&name;J=value3
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The action is the URI specified in the ACTION attribute to the FORM tag, or the
current document URI if no ACTION attribute was specified. The 'name=value'
pairs are the user inputs from the INPUT fields in the form. For form INPUT
fields where the user did not input anything, the name is stil present with an
empty value (name=). As a concrete example, consider the PCl,.'3sword submission
form at the end of the previous section. Assume that the user inputs 'John
Doe' as username, and 'secret' as password. Then the request URI is:

page.jsp?username=J01111+Doe&password=secret

The user input from forms can contain general ASCII characters, such as the
space character, but URIs have to be single, consecutive strings with no spaces.
Therefore, special characters such as spaces, '=', and other unprintable charac­
ters are encoded in a special way. To create a URI that has form fields encoded,
we perform the following three steps:

1. Convert all special characters in the names and values to '%xyz,' where
'xyz' is the ASCII value of the character in hexadecimal. Special characters
include =, &, %, +, and other unprintable characters. Note that we could
encode all characters by their ASCII value.

2. Convert all space characters to the '+' character.

3. Glue corresponding names and values from an individual HTML INPUT tag
together with '=' and then paste name-value pairs from different HTML
INPUT tags together using'&' to create a request URI of the form:
action?namel=value1&name2=value2&name3=value3

Note that in order to process the input elements from the HTML form at
the middle tier, we need the ACTION attribute of the FORM tag to point to a
page, script, or program that will process the values of the form fields the user
entered. We discuss ways of receiving values from form fields in Sections 7.7.1
and 7.7.3.

7.6.2 JavaScript

JavaScript is a scripting language at the client tier with which we can add
programs to webpages that run directly at the client (Le., at the machine run­
ning the Web !)rowser). J avaScript is often used for the following types of
computation at the client:

III Browser Detection: J avaScript can be used to detect the browser type
and load a browser-specific page.

III Form Validation: JavaScript is used to perform simple consistency checks
on form fields. For example, a JavaScript program might check whether a
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form input that asks for an email address contains the character '@,' or if
all required fields have been input by the user.

• Browser Control: This includes opening pages in customized windows;
examples include the annoying pop-up advertisements that you see at many
websites, which are programmed using JavaScript.

J avaScript is usually embedded into an HTML document with a special tag,
the SCRIPT tag. The SCRIPT tag has the attribute LANGUAGE, which indicates
the language in which the script is written. For JavaScript, we set the lan­
guage attribute to JavaScript. Another attribute of the SCRIPT tag is the
SRC attribute, which specifies an external file with JavaScript code that is au­
tomatically embedded into the HTML document. Usually JavaScript source
code files use a '.js' extension. The following fragment shows a JavaScript file
included in an HTML document:

<SCRIPT LANGUAGE=" JavaScript" SRC="validateForm.js"> </SCRIPT>

The SCRIPT tag can be placed inside HTML comments so that the JavaScript
code is not displayed verbatim in Web browsers that do not recognize the
SCRIPT tag. Here is another JavaScipt code example that creates a pop-up
box with a welcoming message. We enclose the JavaScipt code inside HTML
comments for the reasons just mentioned.

<SCRIPT LANGUAGE=" JavaScript" >
<I--

alert (" Welcome to our bookstore");
//-->
</SCRIPT>

JavaScript provides two different commenting styles: single-line comments that
start with the '//' character, and multi-line comments starting with '/*' and
ending with ,*/' characters.l

JavaScript has variables that can be numbers, boolean values (true or false),
strings, and some other data types that we do not discuss. Global variables have
to be declared in advance of their usage with the keyword var, and they can
be used anywhere inside the HTML documents. Variables local to a JavaScript
function (explained next) need not be declared. Variables do not have a fixed
type, but implicitly have the type of the data to which they have been assigned.

1 Actually, '<! --' also marks the start of a single-line comment, which is why we did not have
to mark the HTML starting cormnent '<! --' in the preceding example using J avaScript comment
notation. In contrast, the HTML closing comment "-->" has to be commented out in JavaScript as
it is interpreted otherwise.
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JavaScript has the usual assignment operators (=, + =, etc.), the usual arith­
metic operators (+, -, *, /, %), the usual comparison operators (==, ! =,
>=, etc.), and the usual boolean operators (&& for logical AND, 11 for logical
OR, and! for negation). Strings can be concatenated using the '+' charac­
ter. The type of an object determines the behavior of operators; for example
1+1 is 2, since we are adding numbers, whereas "1"+"1" is "11," since we
are concatenating strings. JavaScript contains the usual types of statements,
such as assignments, conditional statements (if Ccondition) {statements;}
else {statements; }), and loops (for-loop, do-while, and while-loop).

JavaScript allows us to create functions using the function keyword: function
f Cargl, arg2) {statements;}. We can call functions from JavaScript code,
and functions can return values using the keyword return.

We conclude this introduction to JavaScript with a larger example of a JavaScript
function that tests whether the login and password fields of a HTML form are
not empty. Figure 7.12 shows the JavaScript function and the HTML form.
The JavaScript code is a function called testLoginEmptyO that tests whether
either of the two input fields in the form named LoginForm is empty. In the
function testLoginEmpty, we first use variable loginForm to refer to the form
LoginForm using the implicitly defined variable document, which refers to the
current HTML page. (JavaScript has a library of objects that are implicitly de­
fined.) We then check whether either of the strings loginForm. userif. value
or loginForm. password. value is empty.

The function testLoginEmpty is checked within a form event handler. An
event handler is a function that is called if an event happens on an object in
a webpage. The event handler we use is onSubmit, which is called if the submit
button is pressed (or if the user presses return in a text field in the form). If
the event handler returns true, then the form contents are submitted to the
server, otherwise the form contents are not submitted to the server.

J avaScript has functionality that goes beyond the basics that we explained in
this section; the interested reader is referred to the bibliographic notes at the
end of this chapter.

7.6.3 Style Sheets

Different clients have different displays, and we need correspondingly different
ways of displaying the same information. For example, in the simplest ca.se,
we might need to use different font sizes or colors that provide high-contra.st
on a black-and-white screen. As a more sophisticated example, we might need
to re-arrange objects on the page to accommodate small screens in personal
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<SCRIPT LANGUAGE==" JavaScript">
<!--
function testLoginEmpty()
{

10ginForm = document.LoginForm
if ((loginForm.userid.value == "") II

(loginFonn.password.value == I. II )) {
alert(,Please enter values for userid and password.');
return false;

}
else

return true;

}
//-->
</SCRIPT>
<Hi ALIGN = "CENTER" >Barns and Nobble Internet Bookstore</Hi>
<H3 ALIGN = "CENTER">Plec1Se enter your userid and password:</H3>
<FORM NAME = "LoginForm ll METHOD="POST"

ACTI ON= II TableOfContents.jsp"
onSubmit=" return testLoginEmptyO" >

Userid: <INPUT TYPE="TEXT" NAME=lI userid"><P>
Password: <INPUT TYPE="PASSWORD" NAME="password"><P>
<INPUT TYPE="SUBMIT" VALUE="Login " NAME="SUBMIT">
<INPUT TYPE="RESET" VALUE=IIClear Input" NAME="RESET">

</FORM>

Figure 7.12 Form Validation with JavaScript

digital assistants (PDAs). As another example, we might highlight different
infonnation to focus on some important part of the page. A style sheet is a
method to adapt the same document contents to different presentation formats.
A style sheet contains instructions that tell a 'Veb browser (or whatever the
client uses to display the webpage) how to translate the data of a document
into a presentation that is suitable for the client's display.

Style sheets separate the transformative aspect of the page from the ren­
dering aspects of the page. During transformation, the objects in the XML
document are rearranged to form a different structure, to omit parts of the
XML document, or to merge two different XML documents into a single docu­
ment. During rendering, we take the existing hierarchical structure of the XML
document and format the document according to the user's display device.
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BODY {BACKGROUND-COLOR: yellow}
Hi {FONT-SIZE: 36pt}
H3 {COLOR: blue}
P {MARGIN-LEFT: 50px; COLOR: red}

Figure 7.13 An Example Style sheet
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The use of style sheets has many advantages. First, we can reuse the same doc­
ument many times and display it differently depending on the context. Second,
we can tailor the display to the reader's preference such as font size, color style,
and even level of detail. Third, we can deal with different output formats, such
as different output devices (laptops versus cell phones), different display sizes
(letter versus legal paper), and different display media (paper versus digital
display). Fourth, we can standardize the display format within a corporation
and thus apply style sheet conventions to documents at any time. Further,
changes and improvements to these display conventions can be managed at a
central place.

There are two style sheet languages: XSL and ess. ess was created for HTML
with the goal of separating the display characteristics of different formatting
tags from the tags themselves. XSL is an extension of ess to arbitrary XML
docurnents; besides allowing us to define ways of formatting objects, XSL con­
tains a transformation language that enables us to rearrange objects. The
target files for ess are HTML files, whereas the target files for XSL are XML
files.

Cascading Style Sheets

A Cascading Style Sheet (CSS) defines how to display HTML elements.
(In Section 7.13, we introduce a more general style sheet language designed for
XML documents.) Styles are normally stored in style sheets, which are files
that contain style definitions. Many different HTML documents, such as all
documents in a website, can refer to the same ess. Thus, we can change the
format of a website by changing a single file. This is a very convenient way
of changing the layout of many webpages at the seune time, and a first step
toward the separation of content from presentation.

An example style sheet is shown in Figure 7.13. It is included into an HTML
file with the following line:

<LINK REL="style sheet" TYPE="text/css" HREF="books.css" />
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Each line in a CSS sheet consists of three parts; a selector, a property, and a
value. They are syntactically arranged in the following way:

selector {property: value}

The selector is the element or tag whose format we are defining. The property
indicates the tag's attribute whose value we want to set in the style sheet, and
the property is the actual value of the attribute. As an example, consider the
first line of the example style sheet shown in Figure 7.13:

BODY {BACKGROUND-COLOR: yellow}

This line has the same effect as changing the HTML code to the following:

<BODY BACKGROUND-COLOR=" yellow" >.

The value should always be quoted, as it could consist of several words. More
than one property for the same selector can be separated by semicolons as
shown in the last line of the example in Figure 7.13:

P {MARGIN-LEFT: 50px; COLOR: red}

Cascading style sheets have an extensive syntax; the bibliographic notes at the
end of the chapter point to books and online resources on CSSs.

XSL

XSL is a language for expressing style sheets. An XSL style sheet is, like CSS,
a file that describes how to display an XML document of a given type. XSL
shares the functionality of CSS and is compatible with it (although it uses a
different syntax).

The capabilities of XSL vastly exceed the functionality of CSS. XSL contains
the XSL Transformation language, or XSLT, a language that allows 11S to
transform the input XML document into a XML document with another struc­
ture. For example, with XSLT we can change the order of elements that we are
displaying (e.g.; by sorting them), process elements more than once, suppress
elements in one place and present them in another, and add generated text to
the presentation.

XSL also contains the XML Path Language (XPath), a language that
allows us to refer to parts of an XML document. We discuss XPath in Section
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27. XSL also contains XSL Formatting Object, a way of formatting the output
of an XSL transformation.

7.7 THE MIDDLE TIER

In this section, we discuss technologies for the middle tier. The first gen­
eration of middle-tier applications were stand-alone programs written in a
general-purpose programming language such as C, C++, and Perl. Program­
mers quickly realized that interaction with a stand-alone application was quite
costly; the overheads include starting the application every time it is invoked
and switching processes between the webserver and the application. Therefore,
such interactions do not scale to large numbers of concurrent users. This led
to the development of the application server, which provides the run-time
environment for several technologies that can be used to program middle-tier
application components. Most of today's large-scale websites use an application
server to run application code at the middle tier.

Our coverage of technologies for the middle tier mirrors this evolution. We
start in Section 7.7.1 with the Common Gateway Interface, a protocol that is
used to transmit arguments from HTML forms to application programs run­
ning at the middle tier. We introduce application servers in Section 7.7.2. We
then describe technologies for writing application logic at the middle tier: Java
servlets (Section 7.7.3) and Java Server Pages (Section 7.7.4). Another impor­
tant functionality is the maintenance of state in the middle tier component of
the application as the client component goes through a series of steps to com­
plete a transaction (for example, the purchase of a market basket of items or
the reservation of a flight). In Section 7.7.5, we discuss Cookies, one approach
to maintaining state.

7.7.1 CGI: The Common Gateway Interface

The Common Gateway Interface connects HTML forms with application pro­
grams. It is a protocol that defines how arguments from forms are passed to
programs at the server side. We do not go into the details of the actual CGI
protocol since libraries enable application programs to get arguments from the
HTML fonn; we shortly see an example in a CGI program. Programs that
communicate with the webserver via CGI are often called CGI scripts, since
many such application programs were written in a scripting language such Ike.;

Perl.

As an example of a program that interfaces with an HTML form via CGI,
consider the sample page shown in Figure 7.14. This webpage contains a form
where a user can fill in the name of an author. If the user presses the 'Send
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<HTML><HEAD><TITLE>The Database Bookstore</TITLE></HEAD>
<BODY>
<FORM ACTION="find_books.cgi II METHOD=POST>

Type an author name:
<INPUT TYPE="text II NAME=lauthorName"

SIZE=30 MAXLENGTH=50>
<INPUT TYPE="submi til value="Send it">
<INPUT TYPE=lreset" VALUE="Clear form II >

</FORM>
</BODY></HTML>

Figure 7.14 A Sample 'Neb Page Where Form Input Is Sent to a CGI Script

it' button, the Perl script 'findBooks.cgi' shown in Figure 7.14 is executed as
a separate process. The CGl protocol defines how the communication between
the form and the script is performed. Figure 7.15 illustrates the processes
created when using the CGl protocol.

Figure 7.16 shows the example CGl script, written in Perl. We omit error­
checking code for simplicity. Perl is· an interpreted language that is often used
for CGl scripting and many Perl libraries, called modules, provide high-level
interfaces to the CGl protocol. \Ve use one such library, called the DBI li­
brary, in our example. The CGI module is a convenient collection of functions
for creating CGl scripts. In part 1 of the sample script, we extract the argument
of the HTML form that is passed along from the client as follows:

$authorName = $dataln- >paramCauthorName');

Note that the parameter name authorName wa.s used in the form in Figure
7.14 to name the first input field. Conveniently, the CGl protocol abstracts the
actual implementation of how the webpage is returned to the Web browser; the
webpage consists simply of the output of our program, and we start assembling
the output HTML page in part 2. Everything the script writes in print­
statements is part of the dynamically constructed webpage returned to the
browser. \Ve finish in part 3 by appending the closing format tags to the
resulting page.

7.7.2 Application Servers

Application logic can be enforced through server-side programs that are in­
voked using the CGl protocol. However, since each page request results in the
creation of a new process, this solution does not scale well to a large number
of simultaneous requests. This performance problem led to the development of
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Figure 7.15 Process Structure with eGI Scripts

#!/usr/bin/perl
use CGI;

### part 1
$dataln = new CGI;
$dataln-l,headerO;
$authorName = $dataln-l,param('authorName');

### part 2
print (II<HTML><TITLE>Argument passing test</TITLE> II) ;
print (II The user passed the following argument: II) ;
print (lI authorName: ", $authorName);

### part 3
print ("</HTML>");
exit;

Figure 7.16 A Simple Perl Script

specialized programs called application servers. An application server main­
tains a pool of threads or processes and uses these to execute requests. Thus,
it avoids the startup cost of creating a new process for each request.

Application servers have evolved into flexible middle-tier packages that pro­
vide many functions in addition to eliminating the process-creation overhead.
They facilitate concurrent access to several heterogeneous data sources (e.g., by
providing JDBC drivers), and provide session management services. Often,
business processes involve several steps. Users expect the system to maintain
continuity during such a multistep session. Several session identifiers such as
cookies, URI extensions, and hidden fields in HTML forms can be used to
identify a session. Application servers provide functionality to detect when a
session starts and ends and keep track of the sessions of individual users. They
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also help to ensure secure database access by supporting a general user-id mech­
anism. (For more on security, see Chapter 21.)

A possible architecture for a website with an application server is shown in Fig­
ure 7.17. The client (a Web browser) interacts with the webserver through the
HTTP protocol. The webserver delivers static HTML or XML pages directly
to the client. To assemble dynamic pages, the webserver sends a request to the
application server. The application server contacts one or more data sources to
retrieve necessary data or sends update requests to the data sources. After the
interaction with the data sources is completed, the application server assembles
the webpage and reports the result to the webserver, which retrieves the page
and delivers it to the client.

The execution of business logic at the webserver's site, server-side process­
ing, has become a standard model for implementing more complicated business
processes on the Internet. There are many different technologies for server-side
processing and we only mention a few in this section; the interested reader is
referred to the bibliographic notes at the end of the chapter.

7.7.3 Servlets

Java servlets are pieces of Java code that run on the middle tier, in either
webservers or application servers. There are special conventions on how to
read the input from the user request and how to write output generated by the
servlet. Servlets are truly platform-independent, and so they have become very
popular with Web developers.

Since servlets are Java programs, they are very versatile. For example, servlets
can build webpages, access databases, and maintain state. Servlets have access
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import java.io.*;

import javCLx.servlet. *;
import javax.servlet.http.*;

pUblic class ServletTemplate extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
/ / Use 'out' to send content to browser
out.println("Hello World");

}
}

Figure 7.18 Servlet Template

255
@

to all Java APls, including JDBC. All servlets must implement the Servlet
interface. In most cases, servlets extend the specific HttpServlet class for
servers that communicate with clients via HTTP. The HttpServlet class pro­
vides methods such as doGet and doPost to receive arguments from HTML
forms, and it sends its output back to the elient via HTTP. Servlets that
communicate through other protocols (such as ftp) need to extend the class
GenericServlet.

Servlets are compiled Java classes executed and maintained by a servlet con­
tainer. The servlet container manages the lifespan of individual servlets by
creating and destroying them. Although servlets can respond to any type of re­
quest, they are commonly used to extend the applications hosted by webservers.
For such applications, there is a useful library of HTTP-specific servlet classes.

Servlets usually handle requests from HTML forms and maintain state between
the client and the server. We discuss how to maintain state in Section 7.7.5.
A template of a generic servlet structure is shown in Figure 7.18. This simple
servlet just outputs the two words "Hello World," but it shows the general
structure of a full-fledged servlet. The request object is used to read HTML
form data. The response object is used to specify the HTTP response status
code and headers of the HTTP response. The object out is used to compose
the content that is returned to the client.

Recall that HTTP sends back the status line, a header, a blank line, and then
the context. Right now our servlet just returns plain text. We can extend our
servlet by setting the content type to HTML, generating HTML a,s follows:
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PrinfWriter out = response.get\Vriter();
String docType =

"<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 " +
"Transitional//EN"> \n";

out.println(docType +
"<HTML>\n" +

"<HEAD><TITLE>Hello 'vVWW</TITLE></HEAD>\n" +

"<BODY>\n" +
"<Hl>Hello WWW</Hl>\n" +
"</BODY></HTML>");

What happens during the life of a servlet? Several methods are called at
different stages in the development of a servlet. When a requested page is
a servlet, the webserver forwards the request to the servlet container, which
creates an instance of the servlet if necessary. At servlet creation time, the
servlet container calls the init () method, and before deallocating the servlet,
the servlet container calls the servlet's destroyO method.

When a servlet container calls a servlet because of a requested page, it starts
with the service () method, whose default behavior is to call one of the follow­
ing methods based on the HTTP transfer method: service () calls doGet 0
for a HTTP GET request, and it calls doPost () for a HTTP POST request.
This automatic dispatching allows the servlet to perform different tasks on the
request data depending on the HTTP transfer method. Usually, we do not over­
ride the service () method, unless we want to program a servlet that handles
both HTTP POST and HTTP GET requests identically.

We conclude our discussion of servlets with an example, shown in Figure 7.19,
that illustrates how to pass arguments from an HTML form to a servlet.

7.7.4 JavaServer Pages

In the previous section, we saw how to use Java programs in the middle tier
to encode application logic and dynamically generate webpages. If we needed
to generate HTML output, we wrote it to the out object. Thus, we can think
about servlets as Java code embodying application logic, with embedded HTML
for output.

JavaServer pages (.JSPs) interchange the roles of output amI application logic.
JavaServer pages are written in HTML with servlet-like code embedded in
special HT1VIL tags. Thus, in comparison to servlets, JavaServer pages are
better suited to quickly building interfaces that have some logic inside, wherea..':i
servlets are better suited for complex application logic.
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import java.io. *;

import javax.servlet. *;

import javax.servlet.http.*;

import java.util.*;

public class ReadUserName extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType('j textjhtml'j);

PrintWriter out = response.getWriter();

out.println("<BODY>\n" +

"<Hi ALIGN=CENTER> Username: </Hi>\n" +

"<UL>\n" +

" <LI>title: "
+ request.getParameter("userid") + "\n" +
+ request.getParameter("password'j) + "\n

j
' +

1</UL>\n" +

1</BODY></HTML>")j

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
doGet (request, response);

}
}

Figure 7.19 Extracting the User Name and Password From a Form
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~While there is a big difference for the programmer, the middle tier handles
JavaServer pages in a very simple way: They are usually compiled into a servlet,
which is then handled by a servlet container analogous to other servlets.

The code fragment in Figure 7.20 shows a simple JSP example. In the middle
of the HTML code, we access information that was passed from a form.

< !DOCTYPE HTML PUBLIC 11_//W3C/ /DTD HTML 4.0

Transitional//EN lI >
<HTML>
<HEAD><TITLE>Welcome to Barnes and Nobble</TITLE></HEAD>
<BODY>

<Hl>Welcome back!</Hl>
<% String name="NewUser ll ;

if (request.getParameter(lIusernamell) != null) {
name=request .getParameter (" username" );

}
%>
You are logged on as user <%=name%>
<P>
Regular HTML for all the rest of the on-line store's webpage.

</BODY>
</HTML>

Figure 7.20 Reading Form Parameters in JSP

7.7.5 Maintaining State

As discussed in previous sections, there is a need to maintain a user's state
across different pages. As an example, consider a user who wants to make a
purchase at the Barnes and Nobble website. The user must first add items
into her shopping basket, which persists while she navigates through the site.
Thus, we use the notion of state mainly to remember information as the user
navigates through the site.

The HTTP protocol is stateless. We call an interaction with a webserver state­
less if no inforination is retained from one request to the next request. We call
an interaction with a webserver stateful, or we say that state is maintained,
if some memory is stored between requests to the server, and different actions
are taken depending on the contents stored.
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In our example of Barnes and Nobble, we need to maintain the shopping basket
of a user. Since state is not encapsulated in the HTTP protocol, it has to be
maintained either at the server or at the client. Since the HTTP protocol
is stateless by design, let us review the advantages and disadvantages of this
design decision. First, a stateless protocol is easy to program and use, and
it is great for applications that require just retrieval of static information. In
addition, no extra memory is used to maintain state, and thus the protocol
itself is very efficient. On the other hand, without some additional mechanism
at the presentation tier and the middle tier, we have no record of previous
requests, and we cannot program shopping baskets or user logins.

Since we cannot maintain state in the HTTP protocol, where should we mtain­
tain state? There are basically two choices. We can maintain state in the
middle tier, by storing information in the local main memory of the applica­
tion logic, or even in a database system. Alternatively, we can maintain state
on the client side by storing data in the form of a cookie. We discuss these two
ways of maintaining state in the next two sections.

Maintaining State at the Middle Tier

At the middle tier, we have several choices as to where we maintain state.
First, we could store the state at the bottom tier, in the database server. The
state survives crashes of the system, but a database access is required to query
or update the state, a potential performance bottleneck. An alternative is to
store state in main memory at the middle tier. The drawbacks are that this
information is volatile and that it might take up a lot of main memory. We
can also store state in local files at the middle tier, &s a compromise between
the first two approaches.

A rule of thumb is to use state maintenance at the middle tier or database tier
only for data that needs to persist over many different user sessions. Examples
of such data are past customer orders, click-stream data recording a user's
movement through the website, or other permanent choices that a user makes,
such as decisions about personalized site layout, types of messages the user is
willing to receive, and so on. As these examples illustrate, state information is
often centered around users who interact with the website.

Maintaining State at the Presentation Tier: Cookies

Another possibility is to store state at the presentation tier and pass it to the
middle tier with every HTTP request. We essentially work around around
the statelessness of the HTTP protocol by sending additional information with
every request. Such information is called a cookie.
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/ / no 88L required
/ / one month lifetime

A cookie is a collection of (name, val'Ue)~~pairs that can be manipulated at
the presentation and middle tiers. Cookies are ea..''!Y to use in Java servlets
and J ava8erver Pages and provide a simple way to make non-essential data
persistent at the client. They survive several client sessions because they persist
in the browser cache even after the browser is closed.

One disadvantage of cookies is that they are often perceived as as being invasive,
and many users disable cookies in their Web browser; browsers allow users to
prevent cookies from being saved on their machines. Another disadvantage is
that the data in a cookie is currently limited to 4KB, but for most applications
this is not a bad limit.

We can use cookies to store information such as the user's shopping basket, login
information, and other non-permanent choices made in the current session.

Next, we discuss how cookies can be manipulated from servlets at the middle
tier.

The Servlet Cookie API

A cookie is stored. in a small text file at the client and. contains (name, val'l1e/­
pairs, where both name and value are strings. We create a new cookie through
the Java Cookie class in the middle tier application code:

Cookie cookie = new Cookie( II username" ,"guest" );
cookie.setDomain(" www.bookstore.com .. );
cookie.set8ecure(false);
cookie.setMaxAge(60*60*24*7*31);
response.addCookie(cookie);

Let us look at each part of this code. First, we create a new Cookie object with
the specified (name, val'l1e)~~·pair. Then we set attributes of the cookie; we list
some of the most common attributes below:

III setDomain and getDomain: The domain specifies the website that will
receive the cookie. The default value for this attribute is the domain that
created the cookie.

II setSecure and getSecure: If this flag is true, then the cookie is sent only
if we are llsing a secure version of the HTTP protocol, such <t,<; 88L.

III setMaxAge and getMaxAge: The MaxAge attribute determines the lifetime
of the cookie in seconds. If the value of MaxAge is less than or equal to
zero, the cookie is deleted when the browser is closed.
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• setName and getName: We did not use these functions in our code fragment;
they allow us to Ilame the cookie.

• setValue and getValue: These functions allow us to set and read the
value of the cookie.

The cookie is added to the request object within the Java servlet to be sent
to the client. Once a cookie is received from a site (www.bookstore.comin this
example), the client's Web browser appends it to all HTTP requests it sends
to this site, until the cookie expires.

We can access the contents of a cookie in the middle-tier code through the
request object getCookies 0 method, which returns an array of Cookie ob­
jects. The following code fragment reads the array and looks for the cookie
with name 'username.'

CookieD cookies = request.getCookiesO;
String theUser;
for(int i=O; i < cookies.length; i++) {

Cookie cookie = cookies[i];
if (cookie.getNameO.equals("username"))

theUser = cookie.getValueO;
}

A simple test can be used to check whether the user has turned oft' cookies:
Send a cookie to the user, and then check whether the request object that
is returned still contains the cookie. Note that a cookie should never contain
an unencrypted password or other private, unencrypted data, as the user can
easily inspect, modify, and erase any cookie at any time, including in the middle
of a session. The application logic needs to have sufficient consistency checks
to ensure that the data in the cookie is valid.

7.8 CASE STUDY: THE INTERNET BOOK SHOP

DBDudes now moves on to the implementation of the application layer and
considers alternatives for connecting the DBMS to the World Wide Web.

DBDudes begifls by considering session management. For example, users who
log in to the site, browse the catalog, and select books to buy do not want
to re-enter their cllstomer identification numbers. Session management has to
extend to the whole process of selecting books, adding them to a shopping cart,
possibly removing books from the cart, and checking out and paying for the
books.
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DBDudes then considers whether webpages for books should be static or dy­
namic. If there is a static webpage for each book, then we need an extra
database field in the Books relation that points to the location of the file.
Even though this enables special page designs for different books, it is a very
labor-intensive solution. DBDudes convinces B&N to dynamically assemble
the webpage for a book from a standard template instantiated with informa­
tion about the book in the Books relation. Thus, DBDudes do not use static
HTML pages, such as the one shown in Figure 7.1, to display the inventory.

DBDudes considers the use of XML a'S a data exchange format between the
database server and the middle tier, or the middle tier and the client tier.
Representation of the data in XML at the middle tier as shown in Figures 7.2
and 7.3 would allow easier integration of other data sources in the future, but
B&N decides that they do not anticipate a need for such integration, and so
DBDudes decide not to use XML data exchange at this time.

DBDudes designs the application logic as follows. They think that there will
be four different webpages:

• index. j sp: The home page of Barns and Nobble. This is the main entry
point for the shop. This page has search text fields and buttons that allow
the user to search by author name, ISBN, or title of the book. There is
also a link to the page that shows the shopping cart, cart. j sp.

• login. j sp: Allows registered users to log in. Here DBDudes use an
HTML form similar to the one displayed in Figure 7.11. At the middle
tier, they use a code fragment similar to the piece shown in Figure 7.19
and JavaServerPages as shown in Figure 7.20.

• search. j sp: Lists all books in the database that match the search condi­
tion specified by the user. The user can add listed items to the shopping
basket; each book ha'3 a button next to it that adds it. (If the item is
already in the shopping basket, it increments the quantity by one.) There
is also a counter that shows the total number of items currently in the
shopping basket. (DBDucles makes a note that that a quantity of five for a
single item in the shopping basket should indicate a total purcha'3c quantity
of five as well.) The search. j sp page also contains a button that directs
the user to cart. j sp.

III cart. j sp: Lists all the books currently in the shopping basket. The list­
ing should include all items in the shopping basket with the product name,
price, a text box for the quantity (which the user can use to change quanti­
ties of items), and a button to remove the item from the shopping basket.
This page has three other buttons: one button to continue shopping (which
returns the user to page index. j sp), a second button to update the shop-
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ping basket with the altered quantities from the text boxes, and a third
button to place the order, which directs the user to the page confirm.jsp.

II coni irm. j sp: Lists the complete order so far and allows the user to enter
his or her contact information or customer ID. There are two buttons on
this page: one button to cancel the order and a second button to submit
the final order. The cancel button ernpties the shopping ba.'3ket and returns
the user to the home page. The submit button updates the database with
the new order, empties the shopping basket, and returns the user to the
home page.

DBDudes also considers the use of JavaScript at the presentation tier to check
user input before it is sent to the middle tier. For example, in the page
login. j sp, DBDudes is likely to write JavaScript code similar to that shown
in Figure 7.12.

This leaves DBDudes with one final decision: how to connect applications to
the DBMS. They consider the two main alternatives presented in Section 7.7:
CGI scripts versus using an application server infrastructure. If they use CGI
scripts, they would have to encode session management logic-not an easy task.
If they use an application server, they can make use of all the functionality
that the application server provides. Therefore, they recommend that B&N
implement server-side processing using an application server.

B&N accepts the decision to use an application server, but decides that no
code should be specific to any particular application server, since B&N does
not want to lock itself into one vendor. DBDudes agrees proceeds to build the
following pieces:

III DBDudes designs top level pages that allow customers to navigate the
website as well as various search forms and result presentations.

II Assuming that DBDudes selects a Java-ba..sed application server, they have
to write Java servlets to process form-generated requests. Potentially, they
could reuse existing (possibly commercially available) JavaBeans. They
can use JDBC a." a databa.':ie interface; exarnples of JDBC code can be
found in Section 6.2. Instead of prograrnming servlets, they could resort
to Java Server Pages and annotate pages with special .JSP markup tags.

II DBDudes select an application server that uses proprietary markup tags,
but due to their arrangement with B&N, they are not allowed to use such
tags in their code.

For completeness, we remark that if DBDudes and B&N had agreed to use CGr
scripts, DBDucles would have had the following ta.sks:
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II Create the top level HTML pages that allow users to navigate the site and
vaTious forms that allow users to search the catalog by ISBN, author name,
or title. An example page containing a search form is shown in Figure
7.1. In addition to the input forms, DBDudes must develop appropriate
presentations for the results.

II Develop the logic to track a customer session. Relevant information must be
stored either at the server side or in the customer's browser using cookies.

II Write the scripts that process user requests. For example, a customer can
use a form called 'Search books by title' to type in a title and search for
books with that title. The CGI interface communicates with a script that
processes the request. An example of such a script written in Perl using
the DBI library for data access is shown in Figure 7.16.

Our discussion thus far covers only the customer interface, the part of the
website that is exposed to B&N's customers. DBDudes also needs to add
applications that allow the employees and the shop owner to query and access
the database and to generate summary reports of business activities.

Complete files for the case study can be found on the webpage for this book.

7.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

II What are URIs and URLs? (Section 7.2.1)

II How does the HTTP protocol work? What is a stateless protocol? (Sec­
tion 7.2.2)

II Explain the main concepts of HTML. Why is it used only for data presen­
tation and not data exchange? (Section 7.3)

II What are some shortc.ornings of HTML, and how does XML address them?
(Section 7.4)

II What are the main components of an XML document? (Section 7.4.1)

II Why do we have XML DTDs? What is a well-formed XML document?
What is a valid XML document? Give an example of an XML document
that is valid but not well-formed, and vice versa. (Section 7.4.2)

II 'What is the role of domain-specific DTDs? (Section 7.4.3)

II \Vhat is a three-tier architecture? 'What advantages does it offer over single­
tier and two-tier architectures? Give a short overview of the functionality
at each of the three tiers. (Section 7.5)
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• Explain hmv three-tier architectures address each of the following issues
of databa.<;e-backed Internet applications: heterogeneity, thin clients, data
integration, scalability, software development. (Section 7.5.3)

• Write an HTML form. Describe all the components of an HTML form.
(Section 7.6.1)

• What is the difference between the HTML GET and POST methods? How
does URI encoding of an HT~IL form work? (Section 7.11)

• What is JavaScript used for? Write a JavaScipt function that checks
whether an HTML form element contains a syntactically valid email ad­
dress. (Section 7.6.2)

• What problem do style sheets address? What are the advantages of using
style sheets? (Section 7.6.3)

• What are Ca.5cading Style Sheets? Explain the components of Ca.<;cading
Style Sheets. What is XSL and how it is different from CSS? (Sections
7.6.3 and 7.13)

• What is CGl and what problem does it address? (Section 7.7.1)

• What are application servers and how are they different from webservers?
(Section 7.7.2)

• What are servlets? How do servlets handle data from HTML forms? Ex­
plain what happens during the lifetime of a servlet. (Section 7.7.3)

• What is the difference between servlets and JSP? When should we use
servlets and when should we use JSP? (Section 7.7.4)

• Why do we need to maintain state at the middle tier? What are cookies?
How does a browser handle cookies? How can we access the data in cookies
from servlets? (Section 7.7.5)

EXERCISES

Exercise 7.1 Briefly answer the following questions:

1. Explain the following terms and describe what they are used for: HTML, URL, XML,
Java, JSP, XSL, XSLT, servlet, cookie, HTTP, ess, DTD.

2. What is eGl? Why was eGI introduced? What are the disadvantages of an architecture
using eel scripts?

3. \Vhat is the difference between a webserver and an application server? What fUl1cionality
do typical application servers provide?

4. When is an XML document well-formed? When is an XML document valid?

Exercise 7.2 Briefly answer the following questions about the HTTP protocol:
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1. \Nhat is a communication protocol?

2. "What is the structure of an HTTP request message? What is the structure of an HTTP
response message? \Vhy do HTTP messages carry a version field?

3. vVhat is a stateless protocol? "Why was HTTP designed to be stateless?

4. Show the HTTP request message generated when you request the home page of this
book (http://TNWW . cs. wisc. edur dbbook). Show the HTTP response message that the
server generates for that page.

Exercise 7.3 In this exercise, you are asked to write the functionality of a generic shopping
basket; you will use this in several subsequent project exercises. Write a set of JSP pages that
displays a shopping basket of items and allows users to add, remove, and change the quantity
of items. To do this, use a cookie storage scheme that stores the following information:

• The UserId of the user who owns the shopping basket.

• The number of products stored in the shopping basket.

I! A product id and a quantity for each product.

When manipulating cookies, remember to set the Expires property such that the cookie can
persist for a session or indefinitely. Experiment with cookies using JSP and make sure you
know how to retrieve, set values, and delete the cookie.

You need to create five JSP pages to make your prototype complete:

.. Index Page (index. j sp): This is the main entry point. It has a link that directs the
user to the Products page so they can start shopping.

I! Products Page (products. j sp): Shows a listing of all products in the database with
their descriptions and prices. This is the main page where the user fills out the shopping
basket. Each listed product should have a button next to it, which adds it to the shopping
basket. (If the item is already in the shopping basket, it increments the quantity by
one.) There should also be a counter to show the total number of items currently in the
shopping basket. Note that if a user has a quantity of five of a single item in the shopping
basket, the counter should indicate a total quantity of five. The page also contains a
button that directs the user to the Cart page.

I! Cart Page (cart. jsp): Shows a listing of all items in the shopping basket cookie. The
listing for each item should include the product name, price, a text box for the quantity
(the user can changc the quantity of items here), and a button to remove the item from
the shopping basket. This page has three other buttons: one button to continue shopping
(which returns the user to the Products page), a second button to update the cookie
with the altered quantities from the text boxes, and a third button to place or confirm
the order, which directs the user to the Confirm page.

I! Confirm Pl;tge (confirm. j sp) : List.s the final order. There are two but.tons on this
page. One button cancels t.he order and the other submits the completed order. The
cancel button just deletes the cookie and returns the lIser to the Index page. The submit
button updates the database with the new order, delet.es the cookie, and returns the lIser
to the Index page.

Exercise 7.4 In the previous exercise, replace the page products. jsp with the follmving
search page search. j sp. 'T'his page allows users to search products by name or descrip­
tion. There should be both a text box for the search text and radio buttons to allow the
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user to choose between search-by-name and search-by-description (as \vell as a submit but­
ton to retrieve the results), The page that handles search results should be modeled after
products.jsp (as described in the previous exercise) and be called products.jsp. It should
retrieve all records where the search text is a substring of the name or description (as chosen
by the user). To integrate this with the previous exercise, simply replace all the links to
products. j sp with search. j sp.

Exercise 7.5 'Write a simple authentication mechanism (without using encrypted transfer of
passwords, for simplicity). We say a user is authenticated if she has provided a valid username­
password combination to the system; otherwise, we say the user is not authenticated. Assume
for simplicity that you have a database schema that stores only a customer id and a password:

Passwords(cid: integer, username: string, password: string)

1. How and where are you going to track when a user is 'logged on' to the system?

2. Design a page that allows a registered user to log on to the system.

3. Design a page header that checks whether the user visiting this page is logged in.

Exercise 7.6 (Due to Jeff Derstadt) TechnoBooks.com is in the process of reorganizing its
website. A major issue is how to efficiently handle a large number of search results. In a
human interaction study, it found that modem users typically like to view 20 search results at
a time, and it would like to program this logic into the system. Queries that return batches of
sorted results are called top N queries. (See Section 25.5 for a discussion of database support
for top N queries.) For example, results 1-20 are returned, then results 21~40, then 41-60,
and so OIl. Different techniques are used for performing top N queries and TechnoBooks.com
would like you to implement two of them.

Infrastructure: Create a database with a table called Books and populate it with some
books, using the format that follows. This gives you III books in your database with a title
of AAA, BBB, CCC, DDD, or EEE, but the keys are not sequential for books with the same
title.

Books( bookid: INTEGER, title: CHAR(80), author: CHAR(80), price: REAL)

For i = 1 to 111 {
Insert the tuple (i, "AAA", "AAA Author", 5.99)
i=i+l
Insert the tuple (i, "BBB", "BBB Author", 5.99)
i = i + 1
Insert the tuple (i, "CCC", "CCC Author", 5.99)
i=i+1
Insert the tuple (i, "DDD", "DDD Author", 5.99)
1=i+l
Insert the tuple (i, "EEE", "EEE Author", 5.99)

Placeholder Technique: The simplest approach to top N queries is to store a placeholder
for the first and last result tuples, and then perform the same query. When the new query
results are returned, you can iterate to the placeholders and return the previous or next 20
results.
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I Tuples Shown Lower Placeholder Previous Set Upper Placeholder Next Set I
1-20 1 None 20 "- 21-40

21-40 21 1-20 40 41-60
41-60 41 21-40 60 61-80

Write a webpage in JSP that displays the contents of the Books table, sorted by the Title and
BookId, and showing the results 20 at a time. There should be a link (where appropriate) to
get the previous 20 results or the next 20 results. To do this, you can encode the placeholders
in the Previous or Next Links as follows. Assume that you are displaying records 21-40. Then
the previous link is display. j sp?lower=21 and the next link is display. j sp?upper=40.

You should not display a previous link when there are no previous results; nor should you
show a Next link if there are no more results. When your page is called again to get another
batch of results, you can perform the same query to get all the records, iterate through the
result set until you are at the proper starting point, then display 20 more results.

What are the advantages and disadvantages of this technique?

Query Constraints Technique: A second technique for performing top N queries is to
push boundary constraints into the query (in the WHERE clause) so that the query returns only
results that have not yet been displayed. Although this changes the query, fewer results are
returned and it saves the cost of iterating up to the boundary. For example, consider the
following table, sorted by (title, primary key).

I Batch I Result Number Title I Primary Key

1 1 AAA 105
1 2 BBB 13
1 3 eee 48
1 4 DDD 52
1 5 DDD 101
2 6 DDD 121
2 7 EEE 19
2 8 EEE 68
2 9 FFF 2
2 10 FFF 33

FFF
."~

:~ 11 58
3 12 FFF 59
3 13 GGG 93
3 14 EHH 132
3 15 HHH 135

In batch 1, rows 1 t.hrough 5 are displayed, in batch 2 rows 6 through 10 are displayed, and so
on. Using the placeholder technique, all 15 results would be returned for each batch. Using
the constraint technique, batch 1 displays results 1-5 but returns results 1-15, batch 2 will
display results 6-10 but returns only results 6-15, and batch :~ will display results 11-15 but
return only results 11-15.
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The constraint can be pushed into the query because of the sorting of this table. Consider
the following query for batch 2 (displaying results 6-10):

EXEC SQL SELECT B.Title
FROM Books B
WHERE (B.Title = 'DDD' AND B.BookId > 101) OR (B.Title > 'DDD')
ORDER BY B.Title, B.Bookld

This query first selects all books with the title 'DDD,' but with a primary key that is greater
than that of record 5 (record 5 has a primary key of 101). This returns record 6. Also, any
book that has a title after 'DDD' alphabetically is returned. You can then display the first
five results.

The following information needs to be retained to have Previous and Next buttons that return
more results:

• Previous: The title of the first record in the previous set, and the primary key of the
first record in the previous set.

• Next: The title of the first record in the next set; the primary key of the first record in
the next set.

These four pieces of information can be encoded into the Previous and Next buttons as in the
previous part. Using your database table from the first part, write a JavaServer Page that
displays the book information 20 records at a time. The page should include Previous and
Next buttons to show the previous or next record set if there is one. Use the constraint query
to get the Previous and Next record sets.

PROJECT~BASEDEXERCISES

In this chapter, you continue the exercises from the previous chapter and create the parts of
the application that reside at the middle tier and at the presentation tier. More information
about these exercises and material for more exercises can be found online at

http://~.cs.wisc.edu/-dbbook

Exercise 7.7 Recall the Notown Records website that you worked on in Exercise 6.6. Next,
you are asked to develop the actual pages for the Notown Records website. Design the part
of the website that involves the presentation tier and the middle tier, and integrate the code
that you wrote in Exercise 6.6 to access the database.

I. Describe in detail the set of webpages that users can access. Keep the following issues
in mind:

• All users start at a common page.

• For each action, what input does the user provide? How will the user provide it -by
clicking on a link or through an HTML form?

• What sequence of steps does a user go through to purchase a record? Describe the
high-level application flow by showing how each lIser action is handled.
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2. vVrite the webpages in HTML without dynamic content.

3. vVrite a page that allows users to log on to the site. Use cookies to store the information
permanently at the user's browser.

4. Augment the log-on page with JavaScript code that checks that the username consists
only of the characters from a to z.

5. Augment the pages that allow users to store items in a shopping basket with a condition
that checks whether the user has logged on to the site. If the user has not yet logged on,
there should be no way to add items to the shopping cart. Implement this functionality
using JSP by checking cookie information from the user.

6. Create the remaining pages to finish the website.

Exercise 7.8 Recall the online pharmacy project that you worked on in Exercise 6.7 in
Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and
presentation layer and finish the website.

Exercise 7.9 Recall the university database project that you worked on in Exercise 6.8 in
Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and
presentation layer and finish the website.

Exercise 7.10 Recall the airline reservation project that you worked on in Exercise 6.9 in
Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and
presentation layer and finish the website.

BIBLIOGRAPHIC NOTES

The latest version of the standards mentioned in this chapter can be found at the website
of the World Wide Web Consortium (www. w3. org). It contains links to information about
I-ITML, cascading style sheets, XIvIL, XSL, and much more. The book by Hall is a gen­
eral introduction to Web progn1.111ming technologies [357]; a good starting point on the Web
is www.Webdeve1oper.com. There are many introductory books on CGI progranuning, for
example [210, 198]. The JavaSoft (java. sun. com) home page is a good starting point for
Servlets, .JSP, and all other Java-related technologies. The book by Hunter [394] is a good
introduction to Java Servlets. Microsoft supports Active Server Pages (ASP), a comparable
tedmology to .lSI'. l'vIore information about ASP can be found on the Microsoft Developer's
Network horne page (msdn. microsoft. com).

There are excellent websites devoted to the advancement of XML, for example 1.l1-iTW. xm1. com
and www.ibm.com/xm1. that also contain a plethora of links with information about the other
standards. There are good introductory books on many diflerent aspects of XML, for exarnple
[195, 158,597,474, :381, 320]. Information about UNICODE can be found on its home page
http://www.unicode.org.

Inforrnation about .lavaServer Pages ane! servlets can be found on the JavaSoft home page at
java. sun. com at java. sun. com/products/j sp and at java. sun. com/products/servlet.



PART III

STORAGE AND INDEXING
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8
OVERVIEW'OF STORAGE

AND INDEXING

.. How does a DBMS store and access persistent data?

.. Why is I/O cost so important for database operations?

.. How does a DBMS organize files of data records on disk to minimize
I/O costs?

... What is an index, and why is it used?

.. What is the relationship between a file of data records and any indexes
on this file of records?

.. What are important properties of indexes?

.. How does a hash-based index work, and when is it most effective?

.. How does a tree-based index work, and when is it most effective?

... How can we use indexes to optimize performance for a given workload?

.. Key concepts: external storage, buffer manager, page I/O; file orga-
nization, heap files, sorted files; indexes, data entries, search keys, clus­
tered index, clustered file, primary index; index organization, hash­
based and tree-based indexes; cost comparison, file organizations and
common operations; performance tuning, workload, composite search
keys, use of clustering,

____________________J

If you don't find it in the index, look very carefully through the entire catalog.

--Sears, Roebuck, and Co., Consumers' Guide, 1897

The ba.'3ic abstraction of data in a DBMS is a collection of records, or a file,
and each file consists of one or more pages. The files and access methods
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software layer organizes data carefully to support fast access to desired subsets
of records. Understanding how records are organized is essential to using a
database system effectively, and it is the main topic of this chapter.

A file organization is a method of arranging the records in a file when the
file is stored on disk. Each file organization makes certain operations efficient
but other operations expensive.

Consider a file of employee records, each containing age, name, and sal fields,
which we use as a running example in this chapter. If we want to retrieve
employee records in order of increasing age, sorting the file by age is a good file
organization, but the sort order is expensive to maintain if the file is frequently
modified. Further, we are often interested in supporting more than one oper­
ation on a given collection of records. In our example, we may also want to
retrieve all employees who make more than $5000. We have to scan the entire
file to find such employee records.

A technique called indexing can help when we have to access a collection of
records in multiple ways, in addition to efficiently supporting various kinds of
selection. Section 8.2 introduces indexing, an important aspect of file organi­
zation in a DBMS. We present an overview of index data structures in Section
8.3; a more detailed discussion is included in Chapters 10 and 11.

We illustrate the importance of choosing an appropriate file organization in
Section 8.4 through a simplified analysis of several alternative file organizations.
The cost model used in this analysis, presented in Section 8.4.1, is used in
later chapters as welL In Section 8.5, we highlight some important choices to
be made in creating indexes. Choosing a good collection of indexes to build
is arguably the single most powerful tool a database administrator has for
improving performance.

8.1 DATA ON EXTERNAL STORAGE

A DBMS stores vast quantities of data, and the data must persist across pro­
gram executions. Therefore, data is stored on external storage devices such as
disks and tapes, and fetched into main memory as needed for processing. The
unit of information read from or written to disk is a page. The size of a page
is a DBMS parameter, and typical values are 4KB or 8KB.

The cost of page I/O (input from disk to main Inemory and output from mem­
ory to disk) dominates the cost of typical database operations, and databa,'>e
systems are carefully optimized to rninimize this cost. While the details of how
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files of records are physically stored on disk and how main memory is utilized
are covered in Chapter 9, the following points are important to keep in mind:

• Disks are the most important external storage devices. They allow us to
retrieve any page at a (more or less) fixed cost per page. However, if we
read several pages in the order that they are stored physically, the cost can
be much less than the cost of reading the same pages in a random order.

• Tapes are sequential access devices and force us to read data one page after
the other. They are mostly used to archive data that is not needed on a
regular basis.

• Each record in a file has a unique identifier called a record id, or rid for
short. An rid ha.'3 the property that we can identify the disk address of the
page containing the record by using the rid.

Data is read into memory for processing, and written to disk for persistent
storage, by a layer of software called the buffer manager. When the files and
access methods layer (which we often refer to as just the file layer) needs to
process a page, it asks the buffer manager to fetch the page, specifying the
page's rid. The buffer manager fetches the page from disk if it is not already
in memory.

Space on disk is managed by the disk space m,anager, according to the DBMS
software architecture described in Section 1.8. When the files and access meth­
ods layer needs additional space to hold new records in a file, it asks the disk
space manager to allocate an additional disk page for the file; it also informs
the disk space manager when it no longer needs one of its disk pages. The disk
space manager keeps track of the pages in use by the file layer; if a page is freed
by the file layer, the space rnanager tracks this, and reuses the space if the file
layer requests a new page later on.

In the rest of this chapter, we focus on the files and access methods layer.

8.2 FILE ORGANIZATIONS AND INDEXING

The file of records is an important abstraction in a DBMS, and is imple­
mented by the files and access methods layer of the code. A file can be created,
destroyed, and have records inserted into and deleted from it. It also supports
scallS; a scan operation allows us to step through all the records in the file one
at a time. A relatioll is typically stored a.':l a file of records.

The file layer stores the records in a file in a collection of disk pages. It keeps
track of pages allocated to each file, and as records are inserted into and deleted
from the file, it also tracks availa.ble space within pages allocated to the file.



276 CHAPTER 8

The simplest file structure is an unordered file, or heap file. Records in a
heap file are stored in random order across the pages of the file. A heap file
organization supports retrieval of all records, or retrieval of a particular record
specified by its rid; the file manager must keep track of the pages allocated for
the file. ("Ve defer the details of how a heap file is implemented to Chapter 9.)

An index is a data structure that organizes data records on disk to optimize
certain kinds of retrieval operations. An index allows us to efficiently retrieve
all records that satisfy search conditions on the search key fields of the index.
We can also create additional indexes on a given collection of data records,
each with a different search key, to speed up search operations that are not
efficiently supported by the file organization used to store the data records.

Consider our example of employee records. We can store the records in a file
organized as an index on employee age; this is an alternative to sorting the file
by age. Additionally, we can create an auxiliary index file based on salary, to
speed up queries involving salary. The first file contains employee records, and
the second contains records that allow us to locate employee records satisfying
a query on salary.

"Ve use the term data entry to refer to the records stored in an index file. A
data entry with search key value k, denoted as k*, contains enough information
to locate (one or more) data records with search key value k. We can efficiently
search an index to find the desired data entries, and then use these to obtain
data records (if these are distinct from data entries).

There are three main alternatives for what to store as a data entry in an index:

1. A data entry h is an actual data record (with search key value k).

2. A data entry is a (k, rid) pair, where rid is the record id of a data record
with search key value k.

3. A data entry is a (k. rid-list) pair, where rid-list is a list of record ids of
data records with search key value k.

Of course, if the index is used to store actual data records, Alternative (1),
each entry b is a data record with search key value k. We can think of such an
index &'3 a special file organization. Such an indexed file organization can
be used instead of, for exarnple, a sorted file or an unordered file of records.

Alternatives (2) and (3), which contain data entries that point to data records,
are independent of the file organization that is used for the indexed file (i.e.,
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the file that contains the data records). Alternative (3) offers better space uti­
lization than Alternative (2), but data entries are variable in length, depending
on the number of data records with a given search key value.

If we want to build more than one index on a collection of data records-for
example, we want to build indexes on both the age and the sal fields for a col­
lection of employee records-~at most one of the indexes should use Alternative
(1) because we should avoid storing data records multiple times.

8.2.1 Clustered Indexes

When a file is organized so that the ordering of data records is the same as
or close to the ordering of data entries in some index, we say that the index
is clustered; otherwise, it clustered is an unclustered index. An index that
uses Alternative (1) is clustered, by definition. An index that uses Alternative
(2) or (3) can be a clustered index only if the data records are sorted on the
search key field. Otherwise, the order of the data records is random, defined
purely by their physical order, and there is no reasonable way to arrange the
data entries in the index in the same order.

In practice, files are rarely kept sorted since this is too expensive to maintain
when the data is updated~ So, in practice, a clustered index is an index that uses
Alternative (1), and indexes that use Alternatives (2) or (3) are unclustered.
We sometimes refer to an index using Alternative (1) as a clustered file,
because the data entries are actual data records, and the index is therefore a
file of data records. (As observed earlier, searches and scans on an index return
only its data entries, even if it contains additional information to organize the
data entries.)

The cost of using an index to answer a range search query can vary tremen­
dously based on whether the index is clustered. If the index is clustered, i.e.,
we are using the search key of a clustered file, the rids in qualifying data entries
point to a contiguous collection of records, and we need to retrieve only a few
data pages. If the index is unclustered, each qualifying data entry could contain
a rid that points to a distinct data page, leading to as many data page l/Os
8.'3 the number of data entries that match the range selection, as illustrated in
Figure 8.1. This point is discussed further in Chapter 13.

8.2.2 Primary and Secondary Indexes

An index on a set of fields that includes the primaTy key (see Chapter 3) is
called a primary index; other indexes are called secondary indexes. (The
terms jJrimaTy inde.T and secondaTy index are sometimes used with a different
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Data entries

Data
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Figure 8.1 Uuelllst.ered Index Using Alt.ernat.ive (2)

CHAPTER .~

Index file

Data tile

meaning: An index that uses Alternative (1) is called a primary index, and
one that uses Alternatives (2) or (3) is called a secondary index. We will be
consistent with the definitions presented earlier, but the reader should be aware
of this lack of standard terminology in the literature.)

Two data entries are said to be duplicates if they have the same value for the
search key field associated with the index. A primary index is guaranteed not
to contain duplicates, but an index on other (collections of) fields can contain
duplicates. In general, a secondary index contains duplicates. If we know
tha.t no duplicates exist, that is, we know that the search key contains some
candidate key, we call the index a unique index.

An important issue is how data entries in an index are organized to support
efficient retrieval of data entries.vVe discuss this next.

8.3 INDEX DATA STRUCTURES

One way to organize data entries is to hash data entries on the sea.rch key.
Another way to organize data entries is to build a tree-like data structure that
directs a search for data entries. "Ve introduce these two basic approaches ill
this section. \iV~e study tree-based indexing in more detail in Chapter 10 and
ha"sh-based indexing in Chapter 11.

We note that the choice of hash or tree indexing techniques can be combined
with any of the three alternatives for data entries.
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8.3.1 Hash-Based Indexing

2'49

Vie can organize records using a technique called hashing to quickly find records
that have a given search key value. For example, if the file of employee records
is hashed on the name field, we can retrieve all records about Joe.

In this approach, the records in a file are grouped in buckets, where a bucket
consists of a primary page and, possibly, additional pages linked in a chain.
The bucket to which a record belongs can be determined by applying a special
function, called a hash function, to the search key. Given a bucket number,
a hash-based index structure allows us to retrieve the primary page for the
bucket in one or two disk l/Os.

On inserts, the record is inserted into the appropriate bucket, with 'overflow'
pages allocated as necessary. To search for a record with a given search key
value, we apply the hash function to identify the bucket to which such records
belong and look at all pages in that bucket. If we do not have the search key
value for the record, for example, the index is based on sal and we want records
with a given age value, we have to scan all pages in the file.

In this chapter, we assume that applying the hash function to (the search key
of) a record allows us to identify and retrieve the page containing the record
with one I/O. In practice, hash-based index structures that adjust gracefully
to inserts and deletes and allow us to retrieve the page containing a record in
one to two l/Os (see Chapter 11) are known.

Hash indexing is illustrated in Figure 8.2, where the data is stored in a file that
is hashed on age; the data entries in this first index file are the actual data
records. Applying the hash function to the age field identifies the page that
the record belongs to. The hash function h for this example is quite simple;
it converts the search key value to its binary representation and uses the two
least significant bits as the bucket identifier.

Figure 8.2 also shows an index with search key sal that contains (sal, rid) pairs
as data entries. The tid (short for record id) component of a data entry in this
second index is a pointer to a record with search key value sal (and is shown
in the figure as an arrow pointing to the data record).

Using the terminology introduced in Section 8.2, Figure 8.2 illustrates Alter­
nativE"S (1) and (2) for data entries. The file of employee records is hashed on
age, and Alternative (1) is used for for data entries. The second index, on sal,
also uses hashing to locate data entries, which are now (sal, rid of employee
recoT'(~ pairs; that is, Alternative (2) is used for data entries.
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Ashby. 25, 3000

Basu, 33, 4003

Bristow,29,2007

h(age)=l0
Cass, 50, 5004

Daniels, 22, 6003

File of <sal, rid> pairs
Employees file hashed on age hashed on sal

Figure 8.2 Index-Organized File Hashed on age, with Auxiliary Index on sal

Note that the search key for an index can be any sequence of one or more
fields, and it need not uniquely identify records. For example, in the salary
index, two data entries have the same search key value 6003. (There is an
unfortunate overloading of the term key in the database literature. A primary
key or candidate key-fields that uniquely identify a record; see Chapter 3~is

unrelated to the concept of a search key.)

8.3.2 Tree-Based Indexing

An alternative to hash-based indexing is to organize records using a tree­
like data structure. The data entries are arranged in sorted order by search
key value, and a hierarchical search data structure is maintained that directs
searches to the correct page of data entries.

Figure 8.3 shows the employee records from Figure 8.2, this time organized in a
tree-structured index with search keyage. Each node in this figure (e.g., nodes
labeled A, B, L1, L2) is a physical page, and retrieving a node involves a disk
I/O.

The lowest level of the tree, called the leaf level, contains the data entries;
in our example, these are employee records. To illustrate the ideas better, we
have drawn Figure 8.3 as if there were additional employee records, some with
age less than 22 and some with age greater than EiO (the lowest and highest
age values that appear in Figure 8.2). Additional records with age less than
22 would appear in leaf pages to the left page L1, and records with age greater
than 50 would appear in leaf pages to the right of page L~~.
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...
LEAF LEVEL L1 /

Daniels. 22. 6003

/'"" Ashby, 25, 3000
/ I--B-ris-to-w-,2-9,-2-00-7--Y

L3

Smith, 44, 3000

Tracy, 44, 5004

Cass, 50, 5004

...

Figure 8.3 Tree·Structured Index

This structure allows us to efficiently locate all data entries with search key
values in a desired range. All searches begin at the topmost node, called the
root, and the contents of pages in non-leaf levels direct searches to the correct
leaf page. Non-leaf pages contain node pointers separated by search key values.
The node pointer to the left of a key value k points to a subtree that contains
only data entries less than k. The node pointer to the right of a key value k
points to a subtree that contains only data entries greater than or equal to k.

In our example, suppose we want to find all data entries with 24 < age < 50.
Each edge from the root node to a child node in Figure 8.2 has a label that
explains what the corresponding subtree contains. (Although the labels for the
remaining edges in the figure are not shown, they should be easy to deduce.)
In our example search, we look for data entries with search key value > 24,
and get directed to the middle child, node A. Again, examining the contents
of this node, we are directed to node B. Examining the contents of node B, we
are directed to leaf node Ll, which contains data entries we are looking for.

Observe that leaf nodes L2 and L3 also contain data entries that satisfy our
search criterion. To facilitate retrieval of such qualifying entries during search,
all leaf pages are maintained in a doubly-linked list. Thus, we can fetch page
L2 using the 'next' pointer on page Ll, and then fetch page L3 using the 'next'
pointer on L2.

Thus, the number of disk I/Os incurred during a search is equal to the length
of a path from the root to a leaf, plus the number of leaf pages with qualifying
data entries. The B+ tree is an index structure that ensures that all paths
from the root to a leaf in a given tree are of the same length, that is, the
structure is always balanced in height. Finding the correct leaf page is faster
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than binary search of the pages in a sorted file because each non~leaf node can
accommodate a very large number of node-pointers, and the height of the tree
is rarely more than three or four in practice. The height of a balanced tree is
the length of a path from root to leaf; in Figure 8.3, the height is three. The
number of l/Os to retrieve a desired leaf page is four, including the root and
the leaf page. (In practice, the root is typically in the buffer pool because it
is frequently accessed, and we really incur just three I/Os for a tree of height
three.)

The average number of children for a non-leaf node is called the fan-out of
the tree. If every non-leaf node has n children, a tree of height h has nh leaf
pages. In practice, nodes do not have the same number of children, but using
the average value F for n, we still get a good approximation to the number of
leaf pages, F h . In practice, F is at least 100, which means a tree of height four
contains 100 million leaf pages. Thus, we can search a file with 100 million leaf
pages and find the page we want using four l/Os; in contrast, binary search of
the same file would take log21OO,000,000 (over 25) l/Os.

8.4 COMPARISON OF FILE ORGANIZATIONS

We now compare the costs of some simple operations for several basic file
organizations on a collection of employee records. We assume that the files and
indexes are organized according to the composite search key (age, sa~, and that
all selection operations are specified on these fields. The organizations that we
consider are the following:

• File of randomly ordered employee records, or heap file.

• File of employee records sorted on (age, sal).

• Clustered B+ tree file with search key (age, sal).

• Heap file with an unclustered B+ tree index on (age, sal).

• Heap file with an unclustered hash index on (age, sal).

Our goal is to emphasize the importance of the choice of an appropriate file
organization, and the above list includes the main alternatives to consider in
practice. Obviously, we can keep the records unsorted or sort them. We can
also choose to build an index on the data file. Note that even if the data file
is sorted, an index whose search key differs from the sort order behaves like an
index on a heap file!

The operations we consider are these:
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• Scan: Fetch all records in the file. The pages in the file must be fetched
from disk into the buffer pool. There is also a CPU overhead per record
for locating the record on the page (in the pool).

• Search with Equality Selection: Fetch all records that satisfy an equal­
ity selection; for example, "Find the employee record for the employee with
age 23 and sal 50." Pages that contain qualifying records must be fetched
from disk, and qualifying records must be located within retrieved pages.

• Search with Range Selection: Fetch all records that satisfy a range
selection; for example, "Find all employee records with age greater than
35."

• Insert a Record: Insert a given record into the file. We must identify the
page in the file into which the new record must be inserted, fetch that page
from disk, modify it to include the new record, and then write back the
modified page. Depending on the file organization, we may have to fetch,
modify, and write back other pages as well.

• Delete a Record: Delete a record that is specified using its rid. We must
identify the page that contains the record, fetch it from disk, modify it, and
write it back. Depending on the file organization, we may have to fetch,
modify, and write back other pages as well.

8.4.1 Cost Model

In our comparison of file organizations, and in later chapters, we use a simple
cost model that allows us to estimate the cost (in terms of execution time) of
different database operations. We use B to denote the number of data pages
when records are packed onto pages with no wasted space, and R to denote
the number of records per page. The average time to read or write a disk
page is D, and the average time to process a record (e.g., to compare a field
value to a selection constant) is C. In the ha.'3hed file organization, we use a
function, called a hash function, to map a record into a range of numbers; the
time required to apply the hash function to a record is H. For tree indexes, we
will use F to denote the fan-out, which typically is at lea.'3t 100 as mentioned
in Section 8.3.2.

Typical values today are D = 15 milliseconds, C and H = 100 nanoseconds; we
therefore expect the cost of I/O to dominate. I/O is often (even typically) the
dominant component of the cost of database operations, and so considering I/O
costs gives us a good first approximation to the true costs. Further, CPU speeds
are steadily rising, whereas disk speeds are not increasing at a similar pace. (On
the other hand, as main memory sizes increase, a much larger fraction of the
needed pages are likely to fit in memory, leading to fewer I/O requests!) \Ve
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have chosen to concentrate on the I/O component of the cost model, and we
assume the simple constant C for in-memory per-record processing cost. Bear
the follO\ving observations in mind:

.. Real systems must consider other aspects of cost, such as CPU costs (and
network transmission costs in a distributed database).

.. Even with our decision to focus on I/O costs, an accurate model would be
too complex for our purposes of conveying the essential ideas in a simple
way. We therefore use a simplistic model in which we just count the number
of pages read from or written to disk as a measure of I/O. \lVe ignore the
important issue of blocked access in our analysis-typically, disk systems
allow us to read a block of contiguous pages in a single I/O request. The
cost is equal to the time required to seek the first page in the block and
transfer all pages in the block. Such blocked access can be much cheaper
than issuing one I/O request per page in the block, especially if these
requests do not follow consecutively, because we would have an additional
seek cost for each page in the block.

We discuss the implications of the cost model whenever our simplifying as­
sumptions are likely to affect our conclusions in an important way.

8.4.2 Heap Files

Scan: The cost is B(D +RC) because we must retrieve each of B pages taking
time D per page, and for each page, process R records taking time C per record.

Search with Equality Selection: Suppose that we know in advance that
exactly one record matches the desired equality selection, that is, the selection
is specified on a candidate key. On average, we must scan half the file, assuming
that the record exists and the distribution of values in the search field is uniform.
For each retrieved data page, we must check all records on the page to see if
it is the desired record. The cost is O.5B(D + RC). If no record satisfies the
selection, however, we must scan the entire file to verify this.

If the selection is not on a candidate key field (e.g., "Find employees aged 18"),
we always have to scan the entire file because records with age = 18 could be
dispersed all over the file, and we have no idea how many such records exist.

Search with Range Selection: The entire file must be scanned because
qualifying records could appear anywhere in the file, and we do not know how
many qualifying records exist. The cost is B(D + RC).
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Insert: \Ve assume that records are always inserted at the end of the file. \¥e
must fetch the last page in the file, add the record, and write the page back.
The cost is 2D + C.

Delete: We must find the record, remove the record from the page, and write
the modified page back. vVe assume that no attempt is made to compact the
file to reclaim the free space created by deletions, for simplicity. 1 The cost is
the cost of searching plus C + D.

We assume that the record to be deleted is specified using the record id. Since
the page id can easily be obtained from the record id, we can directly read in
the page. The cost of searching is therefore D.

If the record to be deleted is specified using an equality or range condition
on some fields, the cost of searching is given in our discussion of equality and
range selections. The cost of deletion is also affected by the number of qualifying
records, since all pages containing such records must be modified.

8.4.3 Sorted Files

Scan: The cost is B(D +RC) because all pages must be examined. Note that
this case is no better or worse than the case of unordered files. However, the
order in which records are retrieved corresponds to the sort order, that is, all
records in age order, and for a given age, by sal order.

Search with Equality Selection: We assume that the equality selection
matches the sort order (age, sal). In other words, we assume that a selection
condition is specified on at leclst the first field in the composite key (e.g., age =
30). If not (e.g., selection sal = t50 or department = "Toy"), the sort order
does not help us and the cost is identical to that for a heap file.

We can locate the first page containing the desired record or records, should
any qualifying records exist, with a binary search in log2B steps. (This analysis
assumes that the pages in the sorted file are stored sequentially, and we can
retrieve the ith page on the file directly in one disk I/O.) Each step requires
a disk I/O and two cornparisons. Once the page is known, the first qualifying
record can again be located by a binary search of the page at a cost of Clog2R.
The cost is Dlo92B +Clog2R, which is a significant improvement over searching
heap files.

] In practice, a directory or other data structure is used to keep track of free space, and records are
inserted into the first available free slot, as discussed in Chapter 9. This increases the cost of insertion
and deletion a little, but not enough to affect our comparison.
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If several records qualify (e.g., "Find all employees aged 18"), they are guar­
anteed to be adjacent to each other due to the sorting on age, and so the
cost of retrieving all such records is the cost of locating the first such record
(Dlog2B+Clog2R) plus the cost ofreading all the qualifying records in sequen­
tial order. Typically, all qualifying records fit on a single page. If no records
qualify, this is established by the search for the first qualifying record, which
finds the page that would have contained a qualifying record, had one existed,
and searches that page.

Search with Range Selection: Again assuming that the range selection
matches the composite key, the first record that satisfies the selection is located
as for search with equality. Subsequently, data pages are sequentially retrieved
until a record is found that does not satisfy the range selection; this is similar
to an equality search with many qualifying records.

The cost is the cost of search plus the cost of retrieving the set of records that
satisfy the search. The cost of the search includes the cost of fetching the first
page containing qualifying, or matching, records. For small range selections,
all qualifying records appear on this page. For larger range selections, we have
to fetch additional pages containing matching records.

Insert: To insert a record while preserving the sort order, we must first find
the correct position in the file, add the record, and then fetch and rewrite all
subsequent pages (because all the old records are shifted by one slot, assuming
that the file has no empty slots). On average, we can &'3sume that the inserted
record belongs in the middle of the file. Therefore, we must read the latter half
of the file and then write it back after adding the new record. The cost is that
of searching to find the position of the new record plus 2 . (O.5B(D + RC)),
that is, search cost plus B(D + RC).

Delete: We must search for the record, remove the record from the page, and
write the modified page back. We must also read and write all subsequent
pages because all records that follow the deleted record must be moved up to
cornpact the free space. 2 The cost is the same as for an insert, that is, search
cost plus B(D + RC). Given the rid of the record to delete, we can fetch the
page containing the record directly.

If records to be deleted are specified by an equality or range condition, the cost
of deletion depends on the number of qualifying records. If the condition is
specified on the sort field, qualifying records are guaranteed to be contiguous,
and the first qualifying record can be located using binary search.

2Unlike a heap file. there is no inexpensive way to manage free space, so we account for the cost
of compacting it file when il record is deleted.
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8.4.4 Clustered Files

In a clustered file, extensive empirical study has shown that pages are usually
at about 67 percent occupancy. Thus, the Humber of physical data pages is
about 1.5B, and we use this observation in the following analysis.

Scan: The cost of a scan is 1.5B(D + RC) because all data pages must be
examined; this is similar to sorted files, with the obvious adjustment for the
increased number of data pages. Note that our cost metric does not capture
potential differences in cost due to sequential I/O. We would expect sorted files
to be superior in this regard, although a clustered file using ISAM (rather than
B+ trees) would be close.

Search with Equality Selection: We assume that the equality selection
matches the search key (age, sal). We can locate the first page containing
the desired record or records, should any qualifying records exist, in logF1.5B
steps, that is, by fetching all pages from the root to the appropriate leaf. In
practice, the root page is likely to be in the buffer pool and we save an I/O,
but we ignore this in our simplified analysis. Each step requires a disk I/O
and two comparisons. Once the page is known, the first qualifying record can
again be located by a binary search of the page at a cost of Clog2R. The cost
is DlogF1.5B +Clog2 R, which is a significant improvement over searching even
sorted files.

If several records qualify (e.g., "Find all employees aged 18"), they are guar­
anteed to be adjacent to each other due to the sorting on age, and so the
cost of retrieving all such records is the cost of locating the first such record
(Dlogp1.5B + Clog2R) plus the cost of reading all the qualifying records in
sequential order.

Search with Range Selection: Again assuming that the range selection
matches the composite key, the first record that satisfies the selection is located
a..'3 it is for search with equality. Subsequently, data pages are sequentially
retrieved (using the next and previous links at the leaf level) until a record is
found that does not satisfy the range selection; this is similar to an equality
search with many qualifying records.

Insert: To insert a record, we must first find the correct leaf page in the index,
reading every page from root to leaf. Then, we must add the llew record. Most
of the time, the leaf page has sufficient space for the new record, and all we
need to do is to write out the modified leaf page. Occasionally, the leaf is full
and we need to retrieve and modify other pages, but this is sufficiently rare
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that we can ignore it in this simplified analysis. The cost is therefore the cost
of search plus one write, DlogF L5B + Clog2R + D.

Delete: \;Ye must search for the record, remove the record from the page,
and write the modified page back. The discussion and cost analysis for insert
applies here as well.

8.4.5 Heap File with Unclustered Tree Index

The number of leaf pages in an index depends on the size of a data entry.
We assume that each data entry in the index is a tenth the size of an em­
ployee data record, which is typical. The number of leaf pages in the index is
o.1(L5B) = O.15B, if we take into account the 67 percent occupancy of index
pages. Similarly, the number of data entries on a page 10(0.67R) = 6.7R,
taking into account the relative size and occupancy.

Scan: Consider Figure 8.1, which illustrates an unclustered index. To do a full
scan of the file of employee records, we can scan the leaf level of the index and
for each data entry, fetch the corresponding data record from the underlying
file, obtaining data records in the sort order (age, sal).

We can read all data entries at a cost of O.15B(D + 6.7RC) l/Os. Now comes
the expensive part: We have to fetch the employee record for each data entry
in the index. The cost of fetching the employee records is one I/O per record,
since the index is unclustered and each data entry on a leaf page of the index
could point to a different page in the employee file. The cost of this step is
B R(D + C), which is prohibitively high. If we want the employee records
in sorted order, we would be better off ignoring the index and scanning the
employee file directly, and then sorting it. A simple rule of thumb is that a file
can be sorted by a two-Pl1SS algorithm in which each pass requires reading and
writing the entire file. Thus, the I/O cost of sorting a file with B pages is 4B,
which is much less than the cost of using an unclustered index.

Search with Equality Selection: \lVe assume that the equalit.y selection
matches the sort order (age, sal). \Ve can locate the first page containing the
desired data entry or entries, should any qualifying entries exist, in lagrO.15B
steps, that is, by fetching all pages from the root to the appropriate leaf. Each
step requires a disk I/O and two comparisons. Once the page is known, the
first qua1ifying data entry can again be located by a binary search of the page
at a cost of Clog2 G. 7R. The first qualifying data record can be fetched fronl
the employee file with another I/O. The cost is DlogpO.15B + Clag26.7R + D,
which is a significant improvement over searching sorted files.
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If several records qualify (e.g., "Find all employees aged ISn
), they are not

guaranteed to be adjacent to each other. The cost of retrieving all such records
is the cost oflocating the first qualifying data entry (Dlo9pO.15B +Clo926.7R)
plus one I/O per qualifying record. The cost of using an unclustered index is
therefore very dependent on the number of qualifying records.

Search with Range Selection: Again assuming that the range selection
matches the composite key, the first record that satisfies the selection is located
as it is for search with equality. Subsequently, data entries are sequentially
retrieved (using the next and previous links at the leaf level of the index)
until a data entry is found that does not satisfy the range selection. For each
qualifying data entry, we incur one I/O to fetch the corresponding employee
records. The cost can quickly become prohibitive as the number of records that
satisfy the range selection increases. As a rule of thumb, if 10 percent of data
records satisfy the selection condition, we are better off retrieving all employee
records, sorting them, and then retaining those that satisfy the selection.

Insert: "Ve must first insert the record in the employee heap file, at a cost of
2D + C. In addition, we must insert the corresponding data entry in the index.
Finding the right leaf page costs Dl09pO.15B + Cl0926.7R, and writing it out
after adding the new data entry costs another D.

Delete: We need to locate the data record in the employee file and the data
entry in the index, and this search step costs Dl09FO.15B + Cl0926.7R + D.
Now, we need to write out the modified pages in the index and the data file,
at a cost of 2D.

8.4.6 Heap File With Unclustered Hash Index

As for unclustered tree indexes, we a.'3sume that each data entry is one tenth
the size of a data record. vVe consider only static hashing in our analysis, and
for simplicity we a.'3sume that there are no overflow chains.a

In a static ha.shed file, pages are kept at about SO percent occupancy (to leave
space for future insertions and minimize overflows as the file expands). This is
achieved by adding a new page to a bucket when each existing page is SO percent
full, when records are initially loaded into a hashed file structure. The number
of pages required to store data entries is therefore 1.2.5 times the number of
pages when the entries are densely packed, that is, 1.25(0.10B) = O.125B.
The number of data entries that fit on a page is 1O(O.80R) = 8R, taking into
account the relative size and occupancy.

:JThe dynamic variants of hashing are less susceptible to the problem of overflow chains, and have
a slight.ly higher average cost per search, but are otherwise similar to the static version.
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Scan: As for an unclustered tree index, all data entries can be retrieved in­
expensively, at a cost of O.125B(D + 8RC) I/Os. However, for each entry, we
incur the additional cost of one I/O to fetch the corresponding data record; the
cost of this step is BR(D + C). This is prohibitively expensive, and further,
results are unordered. So no one ever scans a hash index.

Search with Equality Selection: This operation is supported very efficiently
for matching selections, that is, equality conditions are specified for each field
in the composite search key (age, sal). The cost of identifying the page that
contains qualifying data entries is H. Assuming that this bucket consists of
just one page (i.e., no overflow pages), retrieving it costs D. If we assume that
we find the data entry after scanning half the records on the page, the cost of
scanning the page is O.5(8R)C = 4RC. Finally, we have to fetch the data
record from the employee file, which is another D. The total cost is therefore
H + 2D + 4RC, which is even lower than the cost for a tree index.

If several records qualify, they are not guaranteed to be adjacent to each other.
The cost of retrieving all such records is the cost of locating the first qualifying
data entry (H +D +4RC) plus one I/O per qualifying record. The cost of using
an unclustered index therefore depends heavily on the number of qualifying
records.

Search with Range Selection: The hash structure offers no help, and the
entire heap file of employee records must be scanned at a cost of B(D + RC).

Insert: We must first insert the record in the employee heap file, at a cost
of 2D + C. In addition, the appropriate page in the index must be located,
modified to insert a new data entry, and then written back. The additional
cost is H + 2D + C.

Delete: We need to locate the data record in the employee file and the data
entry in the index; this search step costs H + 2D + 4RC. Now, we need to
write out the modified pages in the index and the data file, at a cost of 2D.

8.4.7 Comparison of I/O Costs

Figure 8.4 compares I/O costs for the various file organizations that we dis­
cussed. A heap file has good storage efficiency and supports fast scanning and
insertion of records. However, it is slow for searches and deletions.

A sorted file also offers good storage efficiency. but insertion and ddetion of
records is slow. Searches are fa.ster than in heap files. It is worth noting that,
in a real DBMS, a file is almost never kept fully sorted.
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Sorted BD Dlog2B Dlog2 B +# Sear-ch + Sear-ch+
matching pages BD BD
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matching pages D D
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Figure 8.4 A Comparison of I/O Costs

A clustered file offers all the advantages of a sorted file and supports inserts
and deletes efficiently. (There is a space overhead for these benefits, relative to
a sorted file, but the trade-off is well worth it.) Searches are even faster than in
sorted files, although a sorted file can be faster when a large number of records
are retrieved sequentially, because of blocked I/O efficiencies.

Unclustered tree and hash indexes offer fast searches, insertion, and deletion,
but scans and range searches with many matches are slow. Hash indexes are a
little faster on equality searches, but they do not support range searches.

In summary, Figure 8.4 demonstrates that no one file organization is uniformly
superior in all situations.

8.5 INDEXES AND PERFORMANCE TUNING

In this section, we present an overview of choices that arise when using indexes
to improve performance in a database system. The choice of indexes has a
tremendous impact on system performance, and must be made in the context
of the expected workload, or typical mix of queries and update operations.

A full discussion of indexes and performance requires an understanding of
database query evaluation and concurrency control. We therefore return to
this topic in Chapter 20, where we build on the discussion in this section. In
particular, we discuss examples involving multiple tables in Chapter 20 because
they require an understanding of join algorithms and query evaluation plans.
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8.5.1 Impact of the Workload

The first thing to consider is the expected workload and the common opera­
tions. Different file organizations and indexes, a:"l we have seen, support different
operations well.

In generaL an index supports efficient retrieval of data entries that satisfy a
given selection condition. Recall from the previous section that there are two
important kinds of selections: equality selection and range selection. Hash­
based indexing techniques are optimized only for equality selections and fa.re
poorly on range selections. where they are typically worse than scanning the
entire file of records. Tree-based indexing techniques support both kinds of
selection conditions efficiently, explaining their widespread use.

Both tree and hash indexes can support inserts, deletes, and updates quite
efficiently. Tree-based indexes, in particular, offer a superior alternative to
maintaining fully sorted files of records. In contrast to simply maintaining the
data entries in a sorted file, our discussion of (B+ tree) tree-structured indexes
in Section 8.3.2 highlights two important advantages over sorted files:

1. vVo can handle inserts and deletes of data entries efficiently.

2. Finding the correct leaf page when searching for a record by search key
value is much faster than binary search of the pages in a sorted file.

The one relative disadvantage is that the pages in a sorted file can be allocated
in physical order on disk, making it much faster to retrieve several pages in
sequential order. Of course. inserts and deletes on a sorted file are extremely
expensive. A variant of B+ trees, called Indexed Sequential Access Method
(ISAM), offers the benefit of sequential allocation of leaf pages, plus the benefit
of fast searches. Inserts and deletes are not handled as well a'3 in B+ trees, but
are rnuch better than in a sorted file. \Ve will study tree-structured indexing
in detail in Cha,pter 10.

8.5.2 Clustered Index Organization

As we smv in Section 8.2.1. a clustered index is really a file organization for
the underlying data records. Data records can be la.rge, and we should avoid
replicating them; so there can be at most one clustered index on a given collec­
tion of records. On the other hanel. we UU1 build several uncIustered indexes
on a data file. Suppose that employee records are sorted by age, or stored in a
clustered file with search keyage. If. in addition. we have an index on the sal
field, the latter nlUst be an llnclllstered index. \:Ve can also build an uncIustered
index on. say, depaThnent, if there is such a field.
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Clustered indexes, while less expensive to maintain than a fully sorted file, are
nonetJleless expensive to maintain. When a new record h&'3 to be inserted into
a full leaf page, a new leaf page must be allocated and sorne existing records
have to be moved to the new page. If records are identified by a combination of
page id and slot, &'5 is typically the case in current database systems, all places
in the datab&"ie that point to a moved record (typically, entries in other indexes
for the same collection of records) must also be updated to point to the new
location. Locating all such places and making these additional updates can
involve several disk I/Os. Clustering must be used sparingly and only when
justified by frequent queries that benefit from clustering. In particular, there
is no good reason to build a clustered file using hashing, since range queries
cannot be answered using h&c;h-indexcs.

In dealing with the limitation that at most one index can be clustered, it is
often useful to consider whether the information in an index's search key is
sufficient to answer the query. If so, modern database systems are intelligent
enough to avoid fetching the actual data records. For example, if we have
an index on age, and we want to compute the average age of employees, the
DBMS can do this by simply examining the data entries in the index. This is an
example of an index-only evaluation. In an index-only evaluation of a query
we need not access the data records in the files that contain the relations in the
query; we can evaluate the query completely through indexes on the files. An
important benefit of index-only evaluation is that it works equally efficiently
with only unclustered indexes, as only the data entries of the index are used in
the queries. Thus, unclustered indexes can be used to speed up certain queries
if we recognize that the DBMS will exploit index-only evaluation.

Design Examples Illustrating Clustered Indexes

To illustrate the use of a clustered index 011 a range query, consider the following
example:

SELECT
FROM
WHERE

E.dno
Employees E
E.age > 40

If we have a H+ tree index on age, we can use it to retrieve only tuples that
satisfy the selection E. age> 40. \iVhether such an index is worthwhile depends
first of all on the selectivity of the condition. vVhat fraction of the employees are
older than 40'1 If virtually everyone is older than 40 1 we gain little by using an
index 011 age; a sequential scan of the relation would do almost as well. However,
suppose that only 10 percent of the employees are older than 40. Now, is an
index useful? The answer depends on whether the index is clustered. If the
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index is unclustered, we could have one page I/O per qualifying employee, and
this could be more expensive than a sequential scan, even if only 10 percent
of the employees qualify! On the other hand, a clustered B+ tree index on
age requires only 10 percent of the l/Os for a sequential scan (ignoring the few
l/Os needed to traverse from the root to the first retrieved leaf page and the
l/Os for the relevant index leaf pages).

As another example, consider the following refinement of the previous query:

SELECT
FROM
WHERE
GROUP BY

Kdno, COUNT(*)
Employees E
E.age> 10
E.dno

If a B+ tree index is available on age, we could retrieve tuples using it, sort
the retrieved tuples on dna, and so answer the query. However, this may not
be a good plan if virtually all employees are more than 10 years old. This plan
is especially bad if the index is not clustered.

Let us consider whether an index on dna might suit our purposes better. We
could use the index to retrieve all tuples, grouped by dna, and for each dna
count the number of tuples with age> 10. (This strategy can be used with
both hash and B+ tree indexes; we only require the tuples to be grouped, not
necessarily sorted, by dna.) Again, the efficiency depends crucially on whether
the index is clustered. If it is, this plan is likely to be the best if the condition
on age is not very selective. (Even if we have a clustered index on age, if the
condition on age is not selective, the cost of sorting qualifying tuples on dna is
likely to be high.) If the index is not clustered, we could perform one page I/O
per tuple in Employees, and this plan would be terrible. Indeed, if the index
is not clustered, the optimizer will choose the straightforward plan based on
sorting on dna. Therefore, this query suggests that we build a clustered index
on dna if the condition on age is not very selective. If the condition is very
selective, we should consider building an index (not necessarily clustered) on
age instead.

Clustering is also important for an index on a search key that does not include
a candidate key, that is, an index in which several data entries can have the
same key value. To illustrate this point, we present the following query:

SELECT E.dno
FROM Employees E
WHERE E.hobby='Stamps'
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If many people collect stamps, retrieving tuples through an unclustered index
on hobby can be very inefficient. It may be cheaper to simply scan the relation
to retrieve all tuples and to apply the selection on-the-fly to the retrieved tuples.
Therefore, if such a query is important, we should consider making the index
on hobby a clustered index. On the other hand, if we assume that eid is a key
for Employees, and replace the condition E.hobby= 'Stamps' by E. eid=552, we
know that at most one Employees tuple will satisfy this selection condition. In
this case, there is no advantage to making the index clustered.

The next query shows how aggregate operations can influence the choice of
indexes:

SELECT E.dno, COUNT(*)
FROM Employees E
GROUP BY E.dno

A straightforward plan for this query is to sort Employees on dno to compute
the count of employees for each dno. However, if an index-hash or B+ tree--­
on dno is available, we can answer this query by scanning only the index. For
each dno value, we simply count the number of data entries in the index with
this value for the search key. Note that it does not matter whether the index
is clustered because we never retrieve tuples of Employees.

8.5.3 Composite Search Keys

The search key for an index can contain several fields; such keys are called
composite search keys or concatenated keys. As an example, consider a
collection of employee records, with fields name, age, and sal, stored in sorted
order by name. Figure 8.5 illustrates the difference between a composite index
with key (age, sa0, a composite index with key (sal, age), an index with key
age, and an index with key sal. All indexes shown in the figure use Alternative
(2) for data entries.

If the search key is composite, an equality query is one in which each field in
the search key is bound to a constant. For example, we can ask to retrieve all
data entries with age = 20 and sal = 10. The hashed file organization supports
only equality queries, since a ha"ih function identifies the bucket containing
desired records only if a value is specified for each field in the search key.

With respect to a composite key index, in a range query not all fields in the
search key are bound to constants. For example, we can ask to retrieve all data
entries with age :=0:: 20; this query implies that any value is acceptable for the
sal field. As another example of a range query, we can ask to retrieve all data
entries with age < 30 and sal> 40.
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Figure 8.5 Composite Key Indexes

Nate that the index cannot help on the query sal > 40, because, intuitively,
the index organizes records by age first and then sal. If age is left unspeci­
fied, qualifying records could be spread across the entire index. We say that
an index matches a selection condition if the index can be used to retrieve
just the tuples that satisf:y the condition. For selections of the form condition
1\ ... 1\ condition, we can define when an index matches the selection as 1'01­
10ws:4 For a hash index, a selection matches the index if it includes an equality
condition ('field = constant') on every field in the composite search key for the
index. For a tree index, a selection matches the index if it includes an equal­
ity or range condition on a prefi.T of the composite search key. (As examples,
(age) and (age, sal, department) are prefixes of key (age, sal, depa7'tment) , but
(age, department) and (sal, department) are not.)

Trade-offs in Choosing Composite Keys

A composite key index can support a broader range of queries because it
matches more selection conditions. Further, since data entries in a composite
index contain more information about the data record (i.e., more fields than
a single-attribute index), the opportunities for index-only evaluation strategies
are increased. (Recall from Section 8.5.2 that an index-only evaluation does
not need to access data records, but finds all required field values in the data
entries of indexes.)

On the negative side, a composite index must be updated in response to any
operation (insert, delete, or update) that modifies any field in the search key.
A composite index is Hlso likely to be larger than a singk'-attribute search key

4 For a more general discussion, see Section 14.2.)
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index because the size of entries is larger. For a composite B+ tree index, this
also means a potential increase in the number of levels, although key COlnpres­
sion can be used to alleviate this problem (see Section 10.8.1).

Design Examples of Composite Keys

Consider the following query, which returns all employees with 20 < age < 30
and 3000 < sal < 5000:

SELECT
FROM
WHERE

E.eid
Employees E
E.age BETWEEN 20 AND 30
AND E.sal BETWEEN 3000 AND 5000

A composite index on (age, sal) could help if the conditions in the WHERE clause
are fairly selective. Obviously, a hash index will not help; a B+ tree (or ISAM)
index is required. It is also clear that a clustered index is likely to be superior
to an unclustered index. For this query, in which the conditions on age and sal
are equally selective, a composite, clustered B+ tree index on (age, sal) is as
effective as a composite, clustered B+ tree index on (sal, age). However, the
order of search key attributes can sometimes make a big difference, as the next
query illustrates:

SELECT
FROM
WHERE

E.eid
Employees E
E.age = 25
AND E.sal BETWEEN 3000 AND 5000

In this query a composite, clustered B+ tree index on (age, sal) will give good
performance because records are sorted by age first and then (if two records
have the same age value) by sal. Thus, all records with age = 25 are clustered
together. On the other hand, a composite, clustered B+ tree index on (sal, age)
will not perform as well. In this case, records are sorted by sal first, and there­
fore two records with the same age value (in particular, with age = 25) may be
quite far apart. In effect, this index allows us to use the range selection on sal,
but not the equality selection on age, to retrieve tuples. (Good performance
on both variants of the query can be achieved using a single spatial index. \:Ye
discuss spatial indexes in Chapter 28.)

Composite indexes are also useful in dealing with many aggregate queries. Con­
sider:

SELECT AVG (E.sal)
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FROM
WHERE

Employees E
E.age = 25
AND Ksal BETWEEN 3000 AND 5000

CHAPTERt 8

A composite B+ tree index on (age, sal) allows us to answer the query with
an index-only scan. A composite B+ tree index on (sal, age) also allows us
to answer the query with an index-only scan, although more index entries are
retrieved in this case than with an index on (age, sal).

Here is a variation of an earlier example:

SELECT
FROM
WHERE
GROUP BY

Kdno, COUNT(*)
Employees E
E.sal=lO,OOO
Kdno

An index on dna alone does not allow us to evaluate this query with an index­
only scan, because we need to look at the sal field of each tuple to verify that
sal = 10, 000. However, we can use an index-only plan if we have a composite
B+ tree index on (sal, dna) or (dna, sal). In an index with key (sal, dno) , all
data entries with sal = 10,000 are arranged contiguously (whether or not the
index is clustered). Further, these entries are sorted by dna, making it easy to
obtain a count for each dna group. Note that we need to retrieve only data
entries with sal = 10, 000.

It is worth observing that this strategy does not work if the WHERE clause is
modified to use sal> 10, 000. Although it suffices to retrieve only index data
entries-that is, an index-only strategy still applies-these entries must now
be sorted by dna to identify the groups (because, for example, two entries with
the same dna but different sal values may not be contiguous). An index with
key (dna, sal) is better for this query: Data entries with a given dna value are
stored together, and each such group of entries is itself sorted by sal. For each
dna group, we can eliminate the entries with sal not greater than 10,000 and
count the rest. (Using this index is less efficient than an index-only scan with
key (sal, dna) for the query with sal = 10, 000, because we must read all data
entries. Thus, the choice between these indexes is influenced by which query is
more common.)

As another eXEunple, suppose we want to find the minimum sal for each dna:

SELECT Kdno, MIN(E.sal)
FROM Employees E
GROUP BY E.dno
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An index on dna alone does not allow us to evaluate this query with an index­
only scan. However, we can use an index-only plan if we have a composite B+
tree index on (dna, sal). Note that all data entries in the index with a given
dna value are stored together (whether or not the index is clustered). :B\lrther,
this group of entries is itself sorted by 8al. An index on (sal, dna) enables us
to avoid retrieving data records, but the index data entries must be sorted on
dno.

8.5.4 Index Specification in SQL: 1999

A natural question to ask at this point is how we can create indexes using
SQL. The SQL:1999 standard does not include any statement for creating or
dropping index structures. In fact, th.e standard does not even require SQL
implementations to support indexes! In practice, of course, every commercial
relational DBMS supports one or more kinds of indexes. The following com­
mand to create a B+ tree index-we discuss B+ tree indexes in Chapter 10----·-is
illustrative:

CREATE INDEX IndAgeRating ON Students
WITH STRUCTURE = BTREE,

KEY = (age, gpa)

This specifies that a B+ tree index is to be created on the Students table using
the concatenation of the age and gpa columns as the key. Thus, key values are
pairs of the form (age, gpa) , and there is a distinct entry for each such pair.
Once created, the index is automatically maintained by the DBMS adding or
removing data entries in response to inserts or deletes of records on the Students
relation.

8.6 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

III 'Where does a DBMS store persistent data? How does it bring data into
main memory for processing? What DBMS component reads and writes
data from main memory, and what is the unit of I/O? (Section 8.1)

• 'What is a file organization? vVhat is an index? What is the relationship
between files and indexes? Can we have several indexes on a single file
of records? Can an index itself store data records (i.e., act as a file)?
(Section 8.2)

III What is the 8earch key for an index? What is a data entry in an index?
(Section 8.2)
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• vVhat is a clustered index? vVhat is a prinwry index? How many clustered
indexes can you build on a file? How many unclustered indexes can you
build? (Section 8.2.1)

• Hmv is data organized in a hash-ba'lcd index? \Vhen would you use a
hash-based index? (Section 8.3.1)

• How is data organized in a tree-based index? vVhen would you use a tree­
based index? (Section 8.3.2)

• Consider the following operations: scans, equality and 'range selections,
inserts, and deletes, and the following file organizations: heap files, sorted
files, clustered files, heap files with an unclustered tree index on the search
key, and heap files with an unclusteTed hash index. Which file organization
is best suited for each operation? (Section 8.4)

• What are the main contributors to the cost of database operations? Discuss
a simple cost model that reflects this. (Section 8.4.1)

• How does the expected workload influence physical database design deci­
siems such as what indexes to build? vVhy is the choice of indexes a central
aspect of physical database design? (Section 8.5)

• What issues are considered in using clustered indexes? What is an indcl;­
only evaluation method? \\That is its primary advantage? (Section 8.5.2)

• What is a composite 8earch key? What are the pros and cons of composite
search keys? (Section 8.5.3)

• What SQL commands support index creation? (Section 8.5.4)

EXERCISES

Exercise 8.1 Answer the following questions about data on external storage in a DBMS:

1. \Vhy does a DBMS store data on external storage?

2. Why are I/O costs important in a DBMS?

3. \Vhat is a record id? Given a record's id, how many I/Os are needed to fetch it into
main memory?

4. \Vhat is the role of the buffer manager in a DBMS? What is the role of the disk space
manager? How do these layers interact with the file and access methods layer?

Exercise 8.2 Answer the following questions about files and indexes:

1. What operations arc supported by the file of records abstraction?

2. \Vhat is an index on a file of records? \Nhat is a search key for an index? Why do we
need indexes?
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Figure 8.6 An Instance of t.he St.udents Relation. Sorted by age

3. What alternatives are available for the data entries in an index?

4. What is the difference between a primary index and a secondary index? \Vhat is a
duplicate data entry in an index? Can a primary index contain duplicates?

5. What is the difference between a clustered index and an unclustered index? If an index
contains data records as 'data entries,' can it be unclustered?

6. How many clustered indexes can you create on a file? Woule! you always create at least
one clustered index for a file?

7. Consider Alternatives (1), (2) and (3) for 'data entries' in an index, as discussed in
Section 8.2 . Are all of them suitable for secondary indexes? Explain.

Exercise 8.3 Consider a relation stored as a randomly ordered file for which the only index
is an unclustered index on a field called sal. If you want to retrieve all records with sal> 20,
is using the index always the best alternative? Explain.

Exercise 8.4 Consider the instance of the Students relation shown in Figure 8.6, sorted by
age: For the purposes of this question, assume that these tuples are stored in a sorted file in
the order shown; the first tuple is on page 1 the second tuple is also on page 1; and so on.
Each page can store up to three data records; so the fourth tuple is on page 2.

Explain what the data entries in each of the following indexes contain. If the order of entries
is significant, say so and explain why. If such all index cannot be constructeel, say so and
explain why.

1. An unclustereel index on age using Alternative (1).

2. An unclusterecl index on age using Alternative (2).

3. An unclustered index on age using Alternative (:3).

4. A clustered index on age using Alternative (1).

5. A clustered index on age using Alt.ernative (2).

6. A clustered index on age using Alternative (:3).

7. An unc:lustered index on gpo using Alternative (1).

8. An unclustered index on gpa using Alternative (2).

9. An unclustered index on gpa using Alternative (3).

10. A clustered index on gpa using Alternative (1).

11. A clustered index on gpa using Alternative (2).

12. A clustered index on gpa using Alternative (:3).
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Figure 8.7 I/O Cost Comparison

Exercise 8.5 Explain the difference between Hash indexes and B+-tree indexes. In partic­
ular, discuss how equality and range searches work, using an example.

Exercise 8.6 Fill in the I/O costs in Figure 8.7.

Exercise 8.7 If you were about to create an index on a relation, what considerations would
guide your choice? Discuss:

1. The choice of primary index.

2. Clustered versus unclustered indexes.

3. Hash versus tree indexes.

4. The use of a sorted file rather than a tree-based index.

5, Choice of search key for the index. What is a composite search key, and what consid­
erations are made in choosing composite search keys? What are index-only plans, and
what is the influence of potential index-only evaluation plans on the choice of search key
for an index?

Exercise 8.8 Consider a delete specified using an equality condition. For each of the five
file organizations, what is the cost if no record qualifies? What is the cost if the condition is
not on a key?

Exercise 8.9 What main conclusions can you draw from the discussion of the five basic file
organizations discussed in Section 8.4? Which of the five organizations would you choose for
a file where the most frequent operations are a<; follows?

1. Search for records based on a range of field values.

2. Perform inserts and scans, where the order of records docs not matter.

3. Search for a record based on a particular field value.

Exercise 8.10 Consider the following relation:

Emp( eid: integer, sal: integer l age: real, did: integer)

There is a clustered index on cid and an llnclustered index on age.

1. How would you use the indexes to enforce the constraint that eid is a key?

2. Give an example of an update that is definitely speeded 1lJi because of the available
indexes. (English description is sufficient.)
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3. Give an example of an update that is definitely slowed down because of the indexes.
(English description is sufficient.)

4. Can you give an example of an update that is neither speeded up nor slowed down by
the indexes?

Exercise 8.11 Consider the following relations:

Emp( eid: integer, ename: varchar, sal: integer, age: integer, did: integer)
Dept(did: integer, budget: integer, floor: integer, mgr_eid: integer)

Salaries range from $10,000 to $100,000, ages vary from 20 to 80, each department has about
five employees on average, there are 10 floors, and budgets vary from $10,000 to $1 million.
You can assume uniform distributions of values.

For each of the following queries, which of the listed index choices would you choose to speed
up the query? If your database system does not consider index-only plans (i.e., data records
are always retrieved even if enough information is available in the index entry), how would
your answer change? Explain briefly.

1. Query: Print ename, age, and sal for all employees.

(a) Clustered hash index on (ename, age, sal) fields of Emp.

(b) Unclustered hash index on (ename, age, sal) fields of Emp.

(c) Clustered B+ tree index on (ename, age, sal) fields of Emp.

(d) Unclustered hash index on (eid, did) fields of Emp.

(e) No index.

2. Query: Find the dids of departments that are on the 10th floor and have a budget of less
than $15,000.

(a) Clustered hash index on the floor field of Dept.

(b) Unclustered hash index on the floor' field of Dept.

(c) Clustered B+ tree index on (floor, budget) fields of Dept.

(d) Clustered B+ tree index on the budget: field of Dept.

(e) No index.

PROJECT-BASED EXERCISES

Exercise 8.12 Answer the following questions:

1. What indexing techniques are supported in Minibase?

2. \;v'hat alternatives for data entries are supported'?

:3. Are clustered indexes supported?

BIBLIOGRAPHIC NOTES

Several books discuss file organization in detail [29, :312, 442, 531, 648, 695, 775].

Bibliographic: notes for hash-indexes and B+-trees are included in Chapters 10 and 11.
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STORING DATA:

DISKS AND FILES

.. What are the different kinds of memory in a computer system?

.. What are the physical characteristics of disks and tapes, and how do
they affect the design of database systems?

... What are RAID storage systems, and what are their advantages?

.. How does a DBMS keep track of space on disks? How does a DBMS
access and modify data on disks? What is the significance of pages as
a unit of storage and transfer?

,.. How does a DBMS create and maintain files of records? How are
records arranged on pages, and how are pages organized within a file?

.. Key concepts: memory hierarchy, persistent storage, random versus
sequential devices; physical disk architecture, disk characteristics, seek
time, rotational delay, transfer time; RAID, striping, mirroring, RAID
levels; disk space manager; buffer manager, buffer pool, replacement
policy, prefetching, forcing; file implementation, page organization,
record organization

A memory is what is left when :iomething happens and does not cornpletely
unhappen.

. Edward DeBono

This chapter initiates a study of the internals of an RDBivIS. In terms of the
DBj\JS architecture presented in Section 1.8, it covers the disk space manager,
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the buffer manager, and implementation-oriented aspects of the Jiles and access
methods layer.

Section 9.1 introduces disks and tapes. Section 9.2 describes RAID disk sys­
tems. Section 9.3 discusses how a DBMS manages disk space, and Section 9.4
explains how a DBMS fetches data from disk into main memory. Section 9.5
discusses how a collection of pages is organized into a file and how auxiliary
data structures can be built to speed up retrieval of records from a file. Sec­
tion 9.6 covers different ways to arrange a collection of records on a page, and
Section 9.7 covers alternative formats for storing individual records.

9.1 THE MEMORY HIERARCHY

Memory in a computer system is arranged in a hierarchy, a'S shown in Fig­
ure 9.1. At the top, we have primary storage, which consists of cache and
main memory and provides very fast access to data. Then comes secondary
storage, which consists of slower devices, such as magnetic disks. Tertiary
storage is the slowest class of storage devices; for example, optical disks and
tapes. Currently, the cost of a given amount of main memory is about 100 times

Request for data

----- .....
Data satisfying request

CPU

",/.,
CACHE ....

,/ Primary storage

MAIN MEMORY f.: ....
,/

MAGNETIC DISK Secondary storage....
,/

TAPE Tertiary storage

Figure 9.1 The Ivlemory Hierarchy

the cost of the same amount of disk space, and tapes are even less expensive
than disks. Slower storage devices such as tapes and disks play an important
role in database systems because the amount of data is typically very large.
Since buying e110ugh main memory to store all data is prohibitively expensive,
we must store data on tapes and disks and build database systems that can
retrieve data from lower levels of the memory hierarchy into main mernory as
needed for processing.
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There are reasons other than cost for storing data on secondary and tertiaJ:y
storage. On systems with 32-bit addressing, only 232 bytes can be directly ref­
erenced in main memory; the number of data objects may exceed this number!
Further, data must be maintained across program executions. This requires
storage devices that retain information when the computer is restarted (after
a shutdown or a crash); we call such storage nonvolatile. Primary storage is
usually volatile (although it is possible to make it nonvolatile by adding a bat­
tery backup feature), whereas secondary and tertiary storage are nonvolatile.

Tapes are relatively inexpensive and can store very large amounts of data. They
are a good choice for archival storage, that is, when we need to maintain data
for a long period but do not expect to access it very often. A Quantum DLT
4000 drive is a typical tape device; it stores 20 GB of data and can store about
twice as much by compressing the data. It records data on 128 tape tracks,
which can be thought of as a linear sequence of adjacent bytes, and supports
a sustained transfer rate of 1.5 MB/sec with uncompressed data (typically 3.0
MB/sec with compressed data). A single DLT 4000 tape drive can be used to
access up to seven tapes in a stacked configuration, for a maximum compressed
data capacity of about 280 GB.

The main drawback of tapes is that they are sequential access devices. We must
essentially step through all the data in order and cannot directly access a given
location on tape. For example, to access the last byte on a tape, we would have
to wind through the entire tape first. This makes tapes unsuitable for storing
operational data, or data that is frequently accessed. Tapes are mostly used to
back up operational data periodically.

9.1.1 Magnetic Disks

Magnetic disks support direct access to a desired location and are widely used
for database applications. A DBMS provides seamless access to data on disk;
applications need not worry about whether data is in main memory or disk.
To understand how disks work, eonsider Figure 9.2, which shows the structure
of a disk in simplified form.

Data is stored on disk in units called disk blocks. A disk block is a contiguous
sequence of bytes and is the unit in which data is written to a disk and read
from a disk. Bloc:ks are arranged in concentric rings called tracks, on one or
more platters. Tracks can be recorded on one or both surfaces of a platter;
we refer to platters as single-sided or double-sided, accordingly. The set of all
tracks with the SaIne diameter is called a cylinder, because the space occupied
by these tracks is shaped like a cylinder; a cylinder contains one track per
platter surface. Each track is divided into arcs, called sectors, whose size is a
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characteristic of the disk and cannot be changed. The size of a disk block can
be set when the disk is initialized as a multiple of the sector size.

An array of disk heads, one per recorded surface, is moved as a unit; when
one head is positioned over a block, the other heads are in identical positions
with respect to their platters. To read or write a block, a disk head must be
positioned on top of the block.

Current systems typically allow at most one disk head to read or write at any
one time. All the disk heads cannot read or write in parallel~-this technique
would increa.se data transfer rates by a factor equal to the number of disk
heads and considerably speed up sequential scans. The rea.son they cannot is
that it is very difficult to ensure that all the heads are perfectly aligned on the
corresponding tracks. Current approaches are both expensive and more prone
to faults than disks with a single active heacl. In practice, very few commercial
products support this capability and then only in a limited way; for example,
two disk heads may be able to operate in parallel.

A disk controller interfaces a disk drive to the computer. It implements com­
mands to read or write a sector by moving the arm assembly and transferring
data to and from the disk surfaces. A checksum is computed for when data
is written to a sector and stored with the sector. The checksum is computed
again when the data on the sector is read back. If the sector is corrupted or the
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An Example of a Current Disk: The IBM Deskstar 14G~~~Th~l
IBM Deskstar 14GPX is a 3.5 inch§.J4.4 GB hfl,rd disk with an average
seek time of 9.1 miUisecoudsTmsec) and an average rotational delay of
4.17 msec. However, the time to seek from one track to the nexUs just 2.2
msec, the maximum seek time is 15.5 :rnsec. The disk has five double-sided
platters that spin at 7200 rotations per minute. Ea,ch platter holds 3.35 GB
of data, with a density of 2.6 gigabit per square inch. The data transfer
rate is about 13 MB per secmld. To put these numbers in perspective,
observe that a disk access takes about 10 msecs, whereas accessing a main
memory location typically takes less than 60 nanoseconds!

read is faulty for some reason, it is very unlikely that the checksum computed
when the sector is read matches the checksum computed when the sector was
written. The controller computes checksums, and if it detects an error, it tries
to read the sector again. (Of course, it signals a failure if the sector is corrupted
and read fails repeatedly.)

~While direct access to any desired location in main memory takes approxi­
mately the same time, determining the time to access a location on disk is
more complicated. The time to access a disk block has several components.
Seek time is the time taken to move the disk heads to the track on which
a desired block is located. As the size of a platter decreases, seek times also
decrease, since we have to move a disk head a shorter distance. Typical platter
diameters are 3.5 inches and 5.25 inches. Rotational delay is the waiting
time for the desired block to rotate under the disk head; it is the time required
for half a rotation all average and is usually less than seek time. Transfer
time is the time to actually read or write the data in the block once the head
is positioned, that is, the time for the disk to rotate over the block.

9.1.2 Performance Implications of Disk Structure
1. Data must be in mernory for the DBMS to operate on it.

2. The unit for data transfer between disk and main memory is a block; if a
single item on a block is needed, the entire block is transferred. Reading
or writing a disk block is called an I/O (for input/output) operation.

3. The time to read or write a block varies, depending on the location of the
data:

access time = seek time + rotational delay + tmn8feT time

These observations imply that the time taken for database operations is affected
significantly by how data is stored OIl disks. The time for moving blocks to



Storing Data: D'isks and Files 309

or from disk usually dOlninates the time taken for database operations. To
minimize this time, it is necessary to locate data records strategically on disk
because of the geometry and mechanics of disks. In essence, if two records are
frequently used together, we should place them close together. The 'closest'
that two records can be on a disk is to be on the same block. In decrea<;ing
order of closeness, they could be on the same track, the same cylinder, or an
adjacent cylinder.

Two records on the same block are obviously as close together as possible,
because they are read or written as part of the same block. As the platter
spins, other blocks on the track being read or written rotate under the active
head. In current disk designs, all the data on a track can be read or written
in one revolution. After a track is read or written, another disk head becomes
active, and another track in the same cylinder is read or written. This process
continues until all tracks in the current cylinder are read or written, and then
the arm assembly moves (in or out) to an adjacent cylinder. Thus, we have a
natural notion of 'closeness' for blocks, which we can extend to a notion of next
and previous blocks.

Exploiting this notion of next by arranging records so they are read or written
sequentially is very important in reducing the time spent in disk l/Os. Sequen­
tial access minimizes seek time and rotational delay and is much faster than
random access. (This observation is reinforced and elaborated in Exercises 9.5
and 9.6, and the reader is urged to work through them.)

9.2 REDUNDANT ARRAYS OF INDEPENDENT DISKS

Disks are potential bottlenecks for system performance and storage system rfc'­
liability. Even though disk performance ha,s been improving continuously, mi­
croprocessor performance ha.'s advanced much more rapidly. The performance
of microprocessors has improved at about 50 percent or more per year, but
disk access times have improved at a rate of about 10 percent per year and
disk transfer rates at a rate of about 20 percent per year. In addition, since
disks contain mechanical elements, they have much higher failure rates than
electronic parts of a computer system. If a disk fails, all the data stored on it
is lost.

A disk array is an arrangement of several disks, organized to increase per­
formance and improve reliability of the resulting storage system. Performance
is increased through data striping. Data striping distributes data over several
disks to give the impression of having a single large, very fa'3t disk. Reliabil­
ity is improved through redundancy. Instead of having a single copy of the
data, redundant information is maintained. The redundant information is carc-
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fully organized so that, in C&'3e of a disk failure, it can be used to reconstruct
the contents of the failed disk. Disk arrays that implement a combination of
data striping and redundancy are called redundant arrays of independent
disks, or in short, RAID.! Several RAID organizations, referred to as RAID
levels, have been proposed. Each RAID level represents a different trade-off
between reliability and performance.

In the remainder of this section, we first discuss data striping and redundancy
and then introduce the RAID levels that have become industry standards.

9.2.1 Data Striping

A disk array gives the user the abstraction of having a single, very large disk.
If the user issues an I/O request, we first identify the set of physical disk blocks
that store the data requested. These disk blocks may reside on a single disk in
the array or may be distributed over several disks in the array. Then the set
of blocks is retrieved from the disk(s) involved. Thus, how we distribute the
data over the disks in the array influences how many disks are involved when
an I/O request is processed.

In data striping, the data is segmented into equal-size partitions distributed
over multiple disks. The size of the partition is called the striping unit. The
partitions are usually distributed using a round-robin algorithm: If the disk
array consists of D disks, then partition i is written onto disk i mod D.

As an example, consider a striping unit of one bit. Since any D successive data
bits are spread over all D data disks in the array, all I/O requests involve an
disks in the array. Since the smallest unit of transfer from a disk is a block,
each I/O request involves transfer of at least D blocks. Since we can read the D
blocks from the D disks in parallel, the transfer rate of each request is D times
the transfer rate of a single disk; each request uses the aggregated bandwidth
of all disks in the array. But the disk access time of the array is ba.'3ically the
access time of a single disk, since all disk heads have to move for" all requests.
Therefore, for a disk array with a striping unit of a single bit, the number of
requests per time unit that the array can process and the average response time
for each individual request are similar to that of a single disk.

As another exarhple, consider a striping unit of a disk block. In this case, I/O
requests of the size of a disk block are processed by one disk in the array. If
rnany I/O requests of the size of a disk block are made, and the requested

1 Historically, the J in RAID stood for inexpensive, as a large number of small disks was much more
econornical than a single very large disk. Today, such very large disks are not even manufactured .. ··a
sign of the impact of RAID.
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Redundancy Schemes: Alternatives to the parity scheme include
schemes based on Hamming codes and Reed-Solomon codes. In ad­
dition to recovery from single disk failures, Hamming codes can identify­
which disk failed. Reed-Solomon codes can recover from up to two simul­
taneous disk failures. A detailed discussion of these schemes is beyond
the scope of our discussion here; the bibliography provides pointers for the
interested reader.

blocks reside on different disks, we can process all requests in parallel and thus
reduce the average response time of an I/O request. Since we distributed the
striping partitions round-robin, large requests of the size of many contiguous
blocks involve all disks. We can process the request by all disks in parallel and
thus increase the transfer rate to the aggregated bandwidth of all D disks.

9.2.2 Redundancy

While having more disks increases storage system performance, it also low­
ers overall storage system reliability. Assume that the mean-time-to-failure
(MTTF), of a single disk is 50, 000 hours (about 5.7 years). Then, the MTTF
of an array of 100 disks is only 50, 000/100 = 500 hours or about 21 days,
assuming that failures occur independently and the failure probability of a disk
does not change over time. (Actually, disks have a higher failure probability
early and late in their lifetimes. Early failures are often due to undetected
manufacturing defects; late failures occur since the disk wears out. Failures do
not occur independently either: consider a fire in the building, an earthquake,
or purchase of a set of disks that come from a 'bad' manufacturing batch.)

Reliability of a disk array can be increased by storing redundant information.
If a disk fails, the redundant information is used to reconstruct the data on the
failed disk. Redundancy can immensely increase the MTTF of a disk array.
When incorporating redundancy into a disk array design, we have to make two
choices. First, we have to decide where to store the redundant information. We
can either store the redundant information on a small number of check disks
or distribute the redundant information uniformly over all disks.

The second choice we have to make is how to compute the redundant infor­
mation. Most disk arrays store parity information: In the parity scheme, an
extra check disk contains information that can be used to recover from failure
of anyone disk in the array. Assume that we have a disk array with D disks
and consider the first bit on each data disk. Suppose that i of the D data bits
are 1. The first bit on the check disk is set to 1 if i is odd; otherwise, it is set to
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O. This bit on the check disk is called the parity of the data bits. The check
disk contains parity information for each set of corresponding D data bits.

To recover the value of the first bit of a failed disk we first count the number
of bits that are 1 on the D - 1 nonfailed disks; let this number be j. If j is odd
and the parity bit is 1, or if j is even and the parity bit is 0, then the value
of the bit on the failed disk must have been O. Otherwise, the value of the bit
on the failed disk must have been 1. Thus, with parity we can recover from
failure of anyone disk. Reconstruction of the lost information involves reading
all data disks and the check disk.

For example, with an additional 10 disks with redundant information, the
MTTF of our example storage system with 100 data disks can be increased
to more than 250 years! "What is more important, a large MTTF implies a
small failure probability during the actual usage time of the storage system,
which is usually much smaller than the reported lifetime or the MTTF. (Who
actually uses lO-year-old disks?)

In a RAID system, the disk array is partitioned into reliability groups, where
a reliability group consists of a set of data disks and a set of check disks. A
common 7'cdundancy scheme (see box) is applied to each group. The number
of check disks depends on the RAID level chosen. In the remainder of this
section, we assume for ease of explanation that there is only one reliability
group. The reader should keep in mind that actual RAID implementations
consist of several reliability groups, and the number of groups plays a role in
the overall reliability of the resulting storage system.

9.2.3 Levels of Redundancy

Throughout the discussion of the different RAID levels, we consider sample
data that would just fit on four disks. That is, with no RAID technology our
storage system would consist of exactly four data disks. Depending on the
RAID level chosen, the number of additional disb varies from zero to four.

Level 0: Nonredundant

A RAID Level 0 system uses data striping to incre,clse the maximum bandwidth
available. No redundant information is maintained. \\ThUe being the solution
with the lowest cost, reliability is a problem, since the MTTF decreases linearly
with the number of disk drives in the array. RAID Level 0 has the best write
performance of all RAID levels, because absence of redundant information im­
plies that no redundant information needs to be updated! Interestingly, RAID
Level 0 docs not have the best read perfonnancc of all RAID levels, since sys-
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tems with redundancy have a choice of scheduling disk accesses, as explained
in the next section.

In our example, the RAID Level a solution consists of only four data disks.
Independent of the number of data disks, the effective space utilization for a
RAID Level a system is always 100 percent.

Levell: Mirrored

A RAID Level 1 system is the most expensive solution. Instead of having
one copy of the data, two identical copies of the data on two different disks are
lnaintained. This type of redundancy is often called mirroring. Every write of
a disk block involves a write on both disks. These writes may not be performed
simultaneously, since a global system failure (e.g., due to a power outage) could
occur while writing the blocks and then leave both copies in an inconsistent
state. Therefore, we always write a block on one disk first and then write the
other copy on the mirror disk. Since two copies of each block exist on different
disks, we can distribute reads between the two disks and allow parallel reads
of different disk blocks that conceptually reside on the same disk. A read of a
block can be scheduled to the disk that h&'3 the smaller expected access time.
RAID Level 1 does not stripe the data over different disks, so the transfer rate
for a single request is comparable to the transfer rate of a single disk.

In our example, we need four data and four check disks with mirrored data for
a RAID Levell implementation. The effective space utilization is 50 percent,
independent of the number of data disks.

Level 0+1: Striping and Mirroring

RAID Level 0+ l---sometimes also referred to H..S RA ID Level 10- -combines
striping and mirroring. As in RAID Level L read requests of the size of a disk
block can be scheduled both to a disk and its mirror image. In addition, read
requests of the size of several contiguous blocks benefit froIl1 the aggregated
bandwidth of all disks. Thc cost for writes is analogous to RAID LevelL

As in RAID Levell, our exa.Inple with four data disks requires four check disks
and the effective space utilization is always 50 percent.

Level 2: Error-Correcting Codes

In RAID Level 2, the striping unit is a single bit. The redundancy scheme used
is Hamming code. In our example with four data disks, only three check disks
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are needed. In general, the number of check disks grows logarithmically with
the number of data disks.

Striping at the bit level has the implication that in a disk array with D data
disks, the smallest unit of transfer for a read is a set of D blocks. Therefore,
Level 2 is good for workloads with many large requests, since for each request,
the aggregated bandwidth of all data disks is used. But RAID Level 2 is bad
for small requests of the size of an individual block for the same reason. (See
the example in Section 9.2.1.) A write of a block involves reading D blocks
into main memory, modifying D + C blocks, and writing D + C blocks to
disk, where C is the number of check disks. This sequence of steps is called a
read-modify-write cycle.

For a RAID Level 2 implementation with four data disks, three check disks
are needed. In our example, the effective space utilization is about 57 percent.
The effective space utilization increases with the number of data disks. For
example, in a setup with 10 data disks, four check disks are needed and the
effective space utilization is 71 percent. In a setup with 25 data disks, five
check disks are required and the effective space utilization grows to 83 percent.

Level 3: Bit~Interieaved Parity

While the redundancy schema used in RAID Level 2 improves in terms of cost
over RAID Level 1, it keeps more redundant information than is necessary.
Hamming code, as used in RAID Level 2, has the advantage of being able to
identify which disk has failed. But disk controllers can easily detect which
disk has failed. Therefore, the check disks do not need to contain information
to identify the failed disk. Information to recover the lost data is sufficient.
Instead of using several disks to store Hamming code, RAID Level 3 has a
single check disk with parity information. Thus, the reliability overhead for
RAID Level 3 is a single disk, the lowest overhead possible.

The performance characteristics of RAID Levels 2 and 3 are very similar. RAID
Level 3 can also process only one I/O at a time, the minimum transfer unit is
D blocks, and a write requires a read-modify-write cycle.

Level 4: Block~Interleaved Parity

RAID Level 4 hEk"i a striping unit of a disk block, instead of a single bit as in
RAID Level 3. Block-level striping has the advantage that read requests of
the size of a disk block can be sen;ed entirely by the disk where the requested
block resides. Large read requests of several disk blocks can still utilize the
aggregated bandwidth of the D disks.
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The \vrite of a single block still requires a read-modify-write cycle, but only
one data disk and the check disk are involved. The parity on the check disk
can be updated without reading all D disk blocks, because the new parity can
be obtained by noticing the differences between the old data block and the new
data block and then applying the difference to the parity block on the check
disk:

NewParity = (OldData XOR NewData) XOR OldParity

The read-modify-write cycle involves reading of the old data block and the old
parity block, modifying the two blocks, and writing them back to disk, resulting
in four disk accesses per write. Since the check disk is involved in each write,
it can easily become the bottleneck.

RAID Level 3 and 4 configurations with four data disks require just a single
check disk. In our example, the effective space utilization is 80 percent. The
effective space utilization increases with the number of data disks, since always
only one check disk is necessary.

Level 5: Block-Interleaved Distributed Parity

RAID Level 5 improves on Level 4 by distributing the parity blocks uniformly
over all disks, instead of storing them on a single check disk. This distribution
has two advantages. First, several write requests could be processed in parallel,
since the bottleneck of a unique check disk has been eliminated. Second, read
requests have a higher level of parallelism. Since the data is distributed over
all disks, read requests involve all disks, whereas in systems with a dedicated
check disk the check disk never participates in reads.

A RAID Level 5 system has the best performance of all RAID levels with
redundancy for small and large read ancllarge write requests. Small writes still
require a read-modify-write cycle and are thus less efficient than in RAID Level
1.

In our example, the corresponding RAID Level 5 system has five disks overall
and thus the effective spa,ce utilization is the same as in RAID Levels 3 and 4.

Level 6: P+Q Redundancy

The motivation for RAID Level 6 is the observation that recovery from failure
of a single disk is not sufficient in very large disk arrays. First, in large disk
arrays, a second disk lllight fail before replacement of an already failed disk
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could take place. In addition, the probability of a disk failure during recovery
of a failed disk is not negligible.

A RAID Level 6 system uses Reed-Solomon codes to be able to recover from
up to two simultaneous disk failures. RAID Level 6 requires (conceptually)
two check disks, but it also uniformly distributes redundant information at the
block level as in RAID Level 5. Thus. the performance characteristics for small
and large read requests and for large write requests are analogous to RAID
Level 5. For small writes, the read-modify-write procedure involves six instead
of four disks as compared to RAID Level 5, since two blocks with redundant
information need to be updated.

For a RAID Level 6 system with storage capacity equal to four data disks, six
disks are required. In our example, the effective space utilization is 66 percent.

9.2.4 Choice of RAID Levels

If data loss is not an issue, RAID Level 0 improves overall system performance
at the lowest cost. RAID Level 0+ 1 is superior to RAID Level 1. The main
application areas for RAID Level 0+1 systems are small storage subsystems
where the cost of mirroring is moderate. Sometimes, RAID Level 0+1 is used
for applications that have a high percentage of writes in their workload, since
RAID Level 0+1 provides the best write performance. RAID Levels 2 and
4 are always inferior to RAID Levels 3 and 5, respectively. RAID Level 3 is
appropriate for workloads consisting mainly of large transfer requests of several
contiguous blocks. The performance of a RAID Level 3 system is bad for
workloads with many small requests of a single disk block. RAID Level 5 is a
good general-purpose solution. It provides high performance for large as well
as small requests. RAID Level 6 is appropriate if a higher level of reliability is
required.

9.3 DISK SPACE MANAGEMENT
I

The lowest level of software in the DB.lVIS architecture discussed in Section 1.8,
called the disk space manager, manages space on disk. Abstractly, the disk
space manager supports the concept of a page as a unit of data and provides
cOlmnands to allocate or deallocate a page and read or write a page. The size
of a page is chosen to be the size of a disk block and pages are stored as disk
blocks so that reading or writing a page can be done in one disk I/O.

It is often useful to allocate a sequence of pages (lS a contiguous sequence of
blocks to hold data frequently accessed in sequential order. This capability
is essential for exploiting the advantages of sequentially accessing disk blocks,
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which we discussed earlier in this chapter. Such a capability, if desired, must
be provided by the disk space manager to highcr-levellayers of the DBMS.

The disk space manager hides details of the underlying hardware (and possibly
the operating system) and allows higher levels of the software to think of the
data cLS a collection of pages.

9.3.1 Keeping Track of Free Blocks

A database grows and shrinks <1.<; records are inserted and deleted over time.
The disk space manager keeps track of which disk blocks are in usc, in addition
to keeping track of which pages are on which disk blocks. Although it is likely
that blocks are initially allocated sequentially on disk, subsequent allocations
and deallocations could in general create 'holes.'

One way to keep track of block usage is to maintain a. list of free blocks. As
blocks are deallocated (by the higher-level software that requests and uses these
blocks), we can add them to the free list for future use. A pointer to the first
block on the free block list is stored in a known location on disk.

A second way is to maintain a bitmap with one bit for each disk block, which
indicates whether a block is in use or not. A bitmap also allows very fast
identification and allocation of contiguous areas on disk. This is difficult to
accomplish with a linked list approach.

9.3.2 Using OS File Systems to Manage Disk Space

Operating systems also manage space on disk. Typically, an operating system
supports the abstraction of a file as a sequence of bytes. The as manages
space on the disk and translates requests, such as "Read byte i of file f," into
corresponding low-level instructions: "Read block m of track t of cylinder c
of disk d." A database disk space manager could he built using OS files. J:;'or
example, the entire database could reside in one or more as files for which
a number of blocks are allocated (by the aS) and initialized. The disk space
manager is then responsible for managing the space in these OS files.

Many database systems do not rely on the as file system and instead do their
own disk management, either from scratch or by extending as facilities. The
reasons are practical <1.<; well eLe; technical One practical reason is that a DB~1S

vendor who \vishes to support several as platfonns cannot assume features
specific to any OS, for porta.bilit,'rr, and would therefore try to make the DBMS
code as self-contained as possible. A technical reason is that on a :32-bit systern,
the la.rgest file size is 4 GD, whereas a DBMS may want to access a single file
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larger than that. A related problem is that typical as files cannot span disk
devices, which is often desirable or even necessary in a DBMS. Additional
technical reasons why a DBMS does not rely on the as file system are outlined
in Section 9.4.2.

9.4 BUFFER MANAGER

To understand the role of the buffer manager, consider a simple example. Sup­
pose that the database contains 1 million pages, but only 1000 pages of main
memory are available for holding data. Consider a query that requires a scan
of the entire file. Because all the data cannot be brought into main memory at
one time, the DBMS must bring pages into main memory as they are needed
and, in the process, decide what existing page in main memory to replace to
make space for the new page. The policy used to decide which page to replace
is called the replacement policy.

In terms of the DBMS architecture presented in Section 1.8, the buffer man­
ager is the software layer responsible for bringing pages from disk to main
memory as needed. The buffer manager manages the available main memory
by partitioning it into a collection of pages, which we collectively refer to as the
buffer pool. The main memory pages in the buffer pool are called frames;
it is convenient to think of them as slots that can hold a page (which usually
resides on disk or other secondary storage media).

Higher levels of the DBMS code can be written without worrying about whether
data pages are in memory or not; they ask the buffer manager for the page,
and it is brought into a frame in the buffer pool if it is not already there.
Of course, the higher-level code that requests a page must also release the
page when it is no longer needed, by informing the buffer manager, so that
the frame containing the page can be reused. The higher-level code must also
inform the buffer manager if it modifies the requested page; the buffer manager
then makes sure that the change is propagated to the copy of the page on disk.
Buffer management is illustrated in Figure 9.3.

In addition to the buffer pool itself, the buffer manager maintains some book­
keeping information and two variables for each frame in the pool: pirLcount
and dirty. The number of times that the page currently in a given frame has
been requested but not released-the number of current users of the page--is
recorded in the pin_count variable for that frame. The Boolean variable dirty
indicates whether the page ha.<; been modified since it was brought into the
buffer pool from disk.
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Page requests from higher-level code

BUFFER POOL

If a requested page is not in the
pool and the pool is full, the
buffer manager's replacement
policy controls which existing
page is replaced.

Figure 9.3 The Buffer Pool

MAIN MEMORY

DISK
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Initially, the pin_count for every frame is set to 0, and the dirty bits are turned
off. When a page is requested the buffer manager does the following:

1. Checks the buffer pool to see if some frame contains the requested page
and, if so, increments the pin_count of that frame. If the page is not in the
pool, the buffer manager brings it in as follows:

(a) Chooses a frame for replacement, using the replacement policy, and
increments its pin_count.

(b) If the dirty bit for the replacement frame is on, writes the page it
contains to disk (that is, the disk copy of the page is overwritten with
the contents of the frame).

(c) Reads the requested page into the replacement frame.

2. Returns the (main memory) address of the frame containing the requested
page to the requestor.

Incrementing pirLco'llnt is often called pinning the requested page in its frame.
When the code that calls the buffer manager and requests the page subsequently
calls the buffer manager and releases the page, the pin_count of the frame
containing the requested page is decremented. This is called unpinning the
page. If the requestor has modified the page, it also informs the buffer manager
of this at the time that it unpins the page, and the dirty bit for the frame is set.
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The buffer manager will not read another page into a frame until its pi'll-count

becomes 0, that is, until all requestors of the page have unpilln~d it.

If a requested page is not in the buffer pool and a free frame is not available
in the buffer pool, a frame with pirl-count 0 is chosen for replacement. If there
are many such frames, a frame is chosen according to the buffer manager's
replacement policy. vVe discuss various replacement policies in Section 9.4.1.

\-\Then a page is eventually chosen for replacement, if the dir'ty bit is not set,
it means that the page h1-:1..<; not been modified since being brought into main
memory. Hence, there is no need to write the page back to disk; the copy
on disk is identical to the copy in the frame, and the frame can simply be
overwritten by the newly requested page. Otherwise, the modifications to the
page must be propagated to the copy on disk. (The crash recovery protocol
may impose further restrictions, as we saw in Section 1.7. For example, in the
Write-Ahead Log (WAL) protocol, special log records are used to describe the
changes made to a page. The log records pertaining to the page to be replaced
may well be in the buffer; if so, the protocol requires that they be written to
disk before the page is written to disk.)

If no page in the buffer pool has pin_count 0 and a page that is not in the pool
is requested, the buffer manager must wait until some page is released before
responding to the page request. In practice, the transaction requesting the page
may simply be aborted in this situation! So pages should be released-by the
code that calls the buffer manager to request the page- as soon as possible.

A good question to ask at this point is, "What if a page is requested by several
different transactions?" That is, what if the page is requested by programs
executing independently on behalf of different users? Such programs could
make conflicting changes to the page. The locking protocol (enforced by higher­
level DBMS code, in particular the transaction manager) ensures that each
transaction obtains a shared or exclusive lock before requesting a page to read
or rnodify. Two different transactions cannot hold an exclusive lock on the
same page at the same time; this is how conflicting changes are prevented. The
buffer rnanager simply ~1..'3surnes tha.t the appropriate lock has been obtained
before a page is requested.

9.4.1 Buffer Replacement Policies

The policy used to choose an unpinned page for replacement can affect the time
taken for database operations considerably. Of the man,Y alternative policies,
each is suitable in different situations.
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The best-known replacement policy is least recently used (LRU). This can
be implemented in the buffer manager using a queue of pointers to frames with
pin_count O. A frame is added to the end of the queue when it becomes a
candidate for replacement (that is, when the p'irLco'unt goes to 0). The page
chosen for replacement is the one in the frame at the head of the queue.

A variant of LRU, called clock replacement, has similar behavior but less
overhead. The idea is to choose a page for replacement using a current variable
that takes on values 1 through N, where N is the number of buffer frames, in
circular order. Vie can think of the frames being arranged in a circle, like a
clock's face, and current as a clock hand moving across the face. To approximate
LRU behavior, each frame also has an associated referenced bit, which is turned
on when the page p'in~count goes to O.

The current frame is considered for replacement. If the frame is not chosen for
replacement, current is incremented and the next frame is considered; this pro­
cess is repeated until some frame is chosen. If the current frame has pin_count
greater than 0, then it is not a candidate for replacement and current is in­
cremented. If the current frame has the referenced bit turned on, the clock
algorithm turns the referenced bit off and increments cm'rent-this way, a re­
cently referenced page is less likely to be replaced. If the current frame has
p'irLcount 0 and its referenced bit is off, then the page in it is chosen for re­
placement. If all frames are pinned in some sweep of the clock hand (that is,
the value of current is incremented until it repeats), this means that no page
in the buffer pool is a replacement candidate.

The LRU and clock policies are not always the best replacement strategies for a
database system, particularly if many user requests require sequential scans of
the data. Consider the following illustrative situation. Suppose the buffer pool
h<4'3 10 frames, and the file to be scanned has 10 or fewer pages. Assuming,
for simplicity, that there are no competing requests for pages, only the first
scan of the file does any I/O. Page requests in subsequent scans always find the
desired page in the buffer pool. On the other hand, suppose that the file to be
scanned has 11 pages (which is one more than the number of available pages
in the buffer pool). Using LRU, every scan of the file will result in reading
every page of the file! In this situation, called sequential flooding, LRU is
the worst possible replacement strategy.

Other replacement policies include first in first out (FIFO) and most re­
cently used (MRU), which also entail overhead similar to LRU, and random,
arnong others. The details of these policies should be evident from their names
and the preceding discussion of LRU and clock.
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Buffer Management in Practice: IBM DB2 and Sybase ASE allow !
buffers to be partitioned into named pools. Each database, table, or in- I
dex can be bound to one of these pools. Each pool can be configured to I
use either LRU or clock replacement in ASE; DB2 uses a variant of clock !
replacement, with the initial clock value based on the nature of the page !
(e.g., index non-leaves get a higher starting clock value, which delays their
replacement). Interestingly, a buffer pool client in DB2 can explicitly indi­
cate that it hates a page, making the page the next choice for replacement.
As a special case, DB2 applies MRU for the pages fetched in some utility
operations (e.g., RUNSTATS), and DB2 V6 also supports FIFO. Informix
and Oracle 7 both maintain a single global buffer pool using LRU; Mi­
crosoft SQL Server has a single pool using clock replacement. In Oracle
8, tables can be bound to one of two pools; one has high priority, and the
system attempts to keep pages in this pool in memory.
Beyond setting a maximum number of pins for a given transaction, there
are typically no features for controlling buffer pool usage on a per­
transaction basis. Microsoft SQL Server, however, supports a reservation of
buffer pages by queries that require large amounts of memory (e.g., queries
involving sorting or hashing).

9.4.2 Buffer Management in DBMS versus OS

Obvious similarities exist between virtual memory in operating systems and
buffer management in database management systems. In both cases, the goal
is to provide access to more data than will fit in main memory, and the basic
idea is to bring in pages from disk to main memory a.<.; needed, replacing pages
no longer needed in main memory. Why can't we build a DBMS using the
virtual memory capability of an OS? A DBMS can often predict the order
in which pages will be accessed, or page reference patterns, much more
accurately than is typical in an as environment, and it is desirable to utilize
this property. Further, a DBMS needs more control over when a page is written
to disk than an as typically provides.

A DBMS can often predict reference patterns because most page references
are generated by higher-level operations (such as sequential scans or particular
implementations of various relational algebra opera.tors) with a. known pattern
of page accesses. This ability to predict reference patterns allows for a better
choice of pages to replace and makes the idea of specialized buffer replacmnent
policies more attractive in the DBMS environment.

Even more important, being able to predict reference patterns enables the usc
of a simple and very effective strategy called prefetching of pages. The
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Prefetching: IBM DB2 supports both sequential alld list prefeteh
(prefetching a list of pages). In general, the prefeteh size is 32 4KB· pages,
but this can be set by the user. £tor some sequential type datahaseutilities
(e.g., COPY, RUNSTATS), DB2 prefetches up to 64 4KB pages,·!'cJr a
smaller buffer pool (i.e., less than 1000 buffers), the prefetch quantity is
adjusted downward to 16 or 8 pages. The prefetch size can be configured by
the user; for certain environments, it may be best to prefetch 1000 pages at
a time! Sybase ASE supports asynchronous prefetching of up to 256 pages,
and uses this capability to reduce latency during indexed access to a table
in a range scan. Oracle 8 uses prefetching for sequential scan, retrieving
large objects, and certain index scans. Microsoft SQL Server supports
prefetching for sequential scan and for scarlS along the leaf level ofa B+
tree index, and the prefetch size can be adjusted a<; a scan progresses. SQL
Server also uses asynchronous prefetching extensively. Informix supports
prefetching with a user-defined prefetch size.

buffer manager can anticipate the next several page requests and fetch the
corresponding pages into memory before the pages are requested. This strategy
has two benefits. First, the pages are available in the buffer pool when they
are requested. Second, reading in a contiguous block of pages is much faster
than reading the same pages at different times in response to distinct requests.
(Review the discussion of disk geometry to appreciate why this is so.) If the
pages to be prcfetched are not contiguous, recognizing that several pages need
to be fetched can nonetheless lead to faster I/O because an order of retrieval
can be chosen for these pages that minimizes seek times and rotational delays.

Incidentally, note that the I/O can typically be done concurrently with CPU
computation. Once the prefetch request is issued to the disk, the disk is re­
sponsible for reading the requested pages into memory pages and the CPU can
continue to do other work.

A DBMS also requires the ability to explicitly force a page to disk, that is, to
ensure that the copy of the page on disk is updated with the copy in memory.
As a related point, a DBMS must be able to ensure that certain pages in the
buffer pool are written to disk before certain other pages to implement the ';VAL
protocol for cra,<;h recovery, as we saw in Section 1.7. Virtual memory imple­
mentations in operating systems cannot be relied on to provide such control
over when pages are written to disk; the OS command to write a page to disk
may be implemented by essentially recording the write request and deferring
the actual modification of the disk copy. If the systern crashes in the interim,
the effects can be catastrophic for a DBMS. (Crash recovery is discllssed further
in Chapter 18.)
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Indexes as Files: In Chapter 8, we presented indexes as a way of 6rga11i~~--··w·l
ing data records for efficient search. From an implementation standpoint, I

I
i

indexes are just another kind of file, containing records that dil'ect traffic
on requests for data records. For example, a tree index is a collection of
records organized into one page per node in the tree. It is convenient to
actually think of a tree index as two files, because it contains two kinds
of records: (1) a file of index entries, which are records with fields for the
index's search key, and fields pointing to a child node, and (2) a file of data
entries, whose structure depends on the choice of data entry alternative.

9.5 FILES OF RECORDS

We now turn our attention from the way pages are stored on disk and brought
into main memory to the way pages are used to store records and organized
into logical collections or files. Higher levels of the DBMS code treat a page as
effectively being a collection of records, ignoring the representation and storage
details. In fact, the concept of a collection of records is not limited to the
contents of a single page; a file can span several pages. In this section, we
consider how a collection of pages can be organized as a file. We discuss how
the space on a page can be organized to store a collection of records in Sections
9.6 and 9.7.

9.5.1 Implementing Heap Files

The data in the pages of a heap file is not ordered in any way, and the only
guarantee is that one can retrieve all records in the file by repeated requests
for the next record. Every record in the file has a unique rid, and every page
in a file is of the same size.

Supported operations on a heap file include CTeatc and destmy files, 'insert a
record, delete a record with a given rid, get a record with a given rid, and scan
all records in the file. To get or delete a record with a given rid, note that we
must be able to find the id of the page containing the record, given the id of
the record.

vVe must keep track of the pages in each heap file to support scans, and we must
keep track of pages that contain free space to implement insertion efficiently.
\Ve discuss two alternative ways to rnaintain this information. In each of these
alternatives, pages must hold two pointers (which are page ids) for file-level
bookkeeping in addition to the data.
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Linked List of Pages

One possibility is to maintain a heap file as a doubly linked list of pages. The
DBMS can remember where the first page is located by maintaining a table
containing pairs of (heap_file_name, page_Laddr) in a known location on disk.
We call the first page of the file the header page.

An important task is to maintain information about empty slots created by
deleting a record from the heap file. This task has two distinct parts: how to
keep track of free space within a page and how to keep track of pages that have
some free space. We consider the first part in Section 9.6. The second part can
be addressed by maintaining a doubly linked list of pages with free space and
a doubly linked list of full pages; together, these lists contain all pages in the
heap file. This organization is illustrated in Figure 9.4; note that each pointer
is really a page id.

Data

page

Data

page

Linked list of
full pages

Linked list of pages
with free space

page

Data

Data

page

Figure 9.4 Heap File Organization with a Linked List

If a new page is required, it is obtained by making a request to the disk space
manager and then added to the list of pages in the file (probably as a page
with free space, because it is unlikely that the new record will take up all the
space on the page). If a page is to be deleted from the heap file, it is removed
from the list and the disk space Inanager is told to deallocate it. (Note that the
scheme can easily be generalized to allocate or deallocate a sequence of several
pages and maintain a doubly linked list of these page sequences.)

One disadvantage of this scheIue is that virtually all pages in a file will be on
the free list if records are of variable length, because it is likely that every page
ha",,, at least a few free bytes. To insert a typical record, we must retrieve and
exaInine several pages on the free list before we find one with enough free space.
The directory-based heap file organization that we discuss next addresses this
problem.
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Directory of Pages

CHAPTER,g

An alternative to a linked list of pages is to maintain a directory of pages.
The DBMS must remember where the first directory page of each heap file is
located. The directory is itself a collection of pages and is shown as a linked
list in Figure 9.5. (Other organizations are possible for the directory itself, of
course.)

Header page

Data

page 2

Data

page N
DIRECTORY

Figure 9.5 Heap File Organization with a Directory

Each directory entry identifies a page (or a sequence of pages) in the heap file.
As the heap file grows or shrinks, the number of entries in the directory-and
possibly the number of pages in the directory itself--grows or shrinks corre­
spondingly. Note that since each directory entry is quite small in comparison to
a typical page, the size of the directory is likely to be very small in comparison
to the size of the heap file.

Free space can be managed by maintaining a bit per entry, indicating whether
the corresponding page has any free space, or a count per entry, indicating the
amount of free space on the page. If the file contains variable-length records,
we can examine the free space count for an entry to determine if the record
fits on the page pointed to by the entry. Since several entries fit on a directory
page, we can efficiently search for a data page with enough space to hold a
record to be inserted.

9.6 PAGE FORMATS

The page abstraction is appropriate when dealing with I/O issue-s, but higher
levels of the DBMS see data a..<; a collection of records. In this section, we
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Rids in COInmercial Systems: IBM DB2 l Informix, Microsoft SQL
Server l Oracle 8, and Sybase ASE all implement record ids as a page id
and slot number. Syba..c;e ASE uses the following page organization, which
is typical: Pages contain a header followed by the rows and a slot array.
The header contains the page identity, its allocation state, page free space
state, and a timestamp. The slot array is simply a mapping of slot number
to page offset.
Oracle 8 and SQL Server use logical record ids rather than page id and slot
number in one special case: If a table has a clustered index, then records in
the table are identified using the key value for the clustered index. This has
the advantage that secondary indexes need not be reorganized if records
are moved ac~oss pages.

consider how a collection of records can be arranged on a page. We can think
of a page as a collection of slots, each of which contains a record. A record is
identified by using the pair (page id, slot number); this is the record id (rid).
(We remark that an alternative way to identify records is to assign each record
a unique integer as its rid and maintain a table that lists the page and slot of
the corresponding record for each rid. Due to the overhead of maintaining this
table, the approach of using (page id, slot number) as an rid is more common.)

We now consider some alternative approaches to managing slots on a page.
The main considerations are how these approaches support operations such as
searching, inserting, or deleting records on a page.

9.6.1 Fixed-Length Records

If all records on the page are guaranteed to be of the same length, record slots
arc uniform and can be arranged consecutively within a page. At any instant,
some slots are occupied by records and others are unoccupied. When a record
is inserted into the page, we must locate an empty slot and place the record
there. The main issues are how we keep track of empty slots and how we locate
all records on a page. The alternatives hinge on how we handle the deletion of
a record.

The first alternative is to store records in the first N slots (where N is the
number of records on the page); whenever a record is deleted, we move the last
record on the page into the vacated slot. This format allows us to locate the
ith record on a page by a simple offset calculation, and all empty slots appear
together at the end of the page. However, this approach docs not work if there
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are external references to the record that is moved (because the rid contains
the slot number, which is now changed).

The second alternative is to handle deletions by using an array of bits, one per
slot, to keep track of free slot information. Locating records on the page requires
scanning the bit array to find slots whose bit is on; when a record is deleted,
its bit is turned off. The two alternatives for storing fixed-length records are
illustrated in Figure 9.6. Note that in addition to the information about records
on the page, a page usually contains additional file-level information (e.g., the
id of the next page in the file). The figure does not show this additional
information.
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Figure 9.6 Alternative Page Organizations for Fixed-Length Recorcls

The slotted page organization described for variable-length records in Section
9.6.2 can also be used for fixed-length records. It becomes attractive if we need
to move records around on a page for reasons other than keeping track of space
freed by deletions. A typical example is that we want to keep the records on a
page sorted (according to the value in some field).

9.6.2 Variable-Length Records

If records are of variable length, then we cannot divide the page into a fixed
collection of slots. The problem is that, when a new record is to be inserted,
we have to find an empty slot of just the right length----if we use a slot that
is too big, we waste space, ancl obviously we cannot use a slot that is smaller
than the record length. Therefore, when a record is inserted, we must allocate
just the right amount of space for it, and when a record is deleted, we must
move records to fill the hole created by the deletion, to ensure that all the free
space on the page is contiguous. Therefore, the ability to move records on a
page becomes very important.
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The most flexible organization for variable-length records is to maintain a di­
rectory of slots for each page, with a (record offset, recOT'd length) pair per
slot. The first component (record offset) is a 'pointer' to the record, as shown
in Figure 9.7; it is the ofl'set in bytes from the start of the data area on the
page to the start of the record, Deletion is readily accomplished by setting the
record ofl'set to -1. Records can be moved around on the page because the rid,
which is the page number and slot number (that is, position in the directory),
does not change when the record is moved; only the record ofl'set stored in the
slot changes.

DATA AREA

rid = (i,N)

PAGE i

/ offset of record from
/ start of data area

I

\
\ Record with rid = (i,l)
\~__II

length =24

Figure 9.7 Page Organization for Variable-Length R.ecords

The space available for new records must be managed carefully because the page
is not preformatted into slots. One way to manage free space is to maintain a
pointer (that is, ofl'set from the start of the data area on the page) that indicates
the start of the free space area. vVhen a new record is too large to fit into the
remaining free space, we have to move records on the page to reclairn the space
freed by records deleted earlier. The idea is to ensure that, after reorganization,
all records appear in contiguous order, followed by the available free space.

A subtle point to be noted is that the slot for a deleted record cannot always
be removed from the slot directory, because slot numbers are used to identify
records-by deleting a slot, we change (decrement) the slot number of subse­
quent slots in the slot directory, and thereby change the rid of records pointed
to by subsequent slots. The only way to remove slots from the slot directory is
to remove the last slot if the record that it points to is deleted. However, when



330 CHAPTER .9

a record is inserted, the slot directory should be scanned for an element that
currently does not point to any record, and this slot should be used for the new
record. A new slot is added to the slot directory only if all existing slots point
to records. If inserts are much more common than deletes (as is typically the
case), the number of entries in the slot directory is likely to be very close to
the actual number of records on the page.

This organization is also useful for fixed-length records if we need to move
them around frequently; for example, when we want to maintain them in some
sorted order. Indeed, when all records are the same length, instead of storing
this common length information in the slot for each record, we can store it once
in the system catalog.

In some special situations (e.g., the internal pages of a B+ tree, which we
discuss in Chapter 10), we lIlay not care about changing the rid of a record. In
this case, the slot directory can be compacted after every record deletion; this
strategy guarantees that the number of entries in the slot directory is the same
as the number of records on the page. If we do not care about modifying rids,
we can also sort records on a page in an efficient manner by simply moving slot
entries rather than actual records, which are likely to be much larger than slot
entries.

A simple variation on the slotted organization is to maintain only record offsets
in the slots. for variable-length records, the length is then stored with the
record (say, in the first bytes). This variation makes the slot directory structure
for pages with fixed-length records the salIle a..s for pages with variab1e~length

records.

9.7 RECORD FORMATS

In this section, we discuss how to organize fields within a record. While choosing
a way to organize the fields of a record, we must take into account whether the
fields of the record are of fixed or variable length and consider the cost of various
operations on the record, including retrieval and modification of fields.

Before discussing record fonnats, we note that in addition to storing individual
records, inforlI1(~tion conllnon to all records of a given record type (such a.'3 the
number of fields and field types) is stored in the system catalog, which can
be thought of as a description of the contents of a database, maintained by the
DBMS (Section 12.1). This avoids repeated storage of the same information
with each record of a given type.
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Record Formats in Commercial Aystems: In IBM DB2, fixed-length
fields are at fixed offsets from the beginning of the record. Variable-length
fields have ofIset and length in the fixed offset part of the record, and
the fields themselves follow the fixed-length part of the record. Informix,
Microsoft SQL Server, and Sybase ASE use the same organization with
minor variations. In Oracle 8, records are structured as if all fields are
potentially of variable length; a record is a sequence of length-data pairs,
with a special length value used to denote a null value.

9.7.1 Fixed-Length Records

In a fixed-length record, each field h&<; a fixed length (that is, the value in this
field is of the same length in all records), and the number of fields is also fixed.
The fields of such a record can be stored consecutively, and, given the address of
the record, the address of a particular field can be calculated using information
about the lengths of preceding fields, which is available in the system catalog.
This record organization is illustrated in Figure 9.8.

Base address (B) Address =B+L1+L2

Fi = Field i

Li = Length of
field i

Figure 9.8 Organi'lation of Records with Fixed-Length Fields

9.7.2 Variable-Length Records

In the relational model, every record in a relation contains the same number
of fields. If the number of fields is fixed, a record is of variable length only
because some of its fields are of variable length.

One possible orga,nizatioll is to store fields consecutively, separated by delim­
iters (which are special characters that do not appear in the data itself). This
organization requires a scan of the record to locate a desired field.

An alternative is to reserve some space at the beginning of a record for use 1:LS

an array of integer offsets-the ith integer in this array is the starting address
of the ith field value relative to the start of the record. Note that we also store
an offset to the end of the record; this offset is needed to recognize where the
last held ends. Both alternatives are illustrated in Figure 9.9.
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Fields delimited by special symbol $

Array of field offsets

Figure 9.9 Alternative Record Organizations for Variable-Length Fields

The second approach is typically superior. For the overhead of the offset array,
we get direct access to any field. We also get a clean way to deal with null
values. A mdl value is a special value used to denote that the value for a field
is unavailable or inapplicable. If a field contains a null value, the pointer to the
end of the field is set to be the same as the pointer to the beginning of the field.
That is, no space is used for representing the null value, and a comparison of
the pointers to the beginning and the end of the field is used to determine that
the value in the field is null.

Variable~length record formats can obviously be used to store fixed-length
records as well; sometimes, the extra overhead is justified by the added flexibil­
ity, because issues such as supporting n'ull values and adding fields to a recorcl
type arise with fixed-length records as well.

I-laving variable-length fields in a record can raise some subtle issues, especially
when a record is modified.

III Modifying a field may cause it to grow, whieh requires us to shift all subse­
quent fields to make space for the modification in all three record formats
just presentcel.

III A modified record may no longer fit into the space remaining on its page.
If so, it may have to be moved to another page. If riels, which are used
to 'point' to a record, include the page number (see Section 9.6), moving
a record to 'another page causes a problem. We may have to leave a 'for­
warding address' on this page identifying the ne"v location of the record.
And to ensure that space is ahvays available for this forwarding address,
we would have to allocate some minimum space for each record, regardless
of its length.
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Large Records in Real Systems: In Sybc1se ASE, a record can be at
most 1962 bytes. This limit is set by the 2KB log page size, since records
are not allowed to be larger than a page. The exceptions to this rule. an~
BLOBs and CLOBs, which consist of 1:1 set of bidirectionally linked pages.
IBlvl DB2 and Microsoft SqL Server also do not allow records to span
pages, although large objects are allowed to span pages and are handled
separately from other data types. In DB2, record size is limited only by
the page size; in SQL Server, a record can be at most 8KB, excluding
LOBs. Informix and Oracle 8 allow records to span pages. Informix allows
records to be at most 32KB, while Oracle has no maximum record size;
large records are organized as a singly directed list.

III A record may grow so large that it no longer fits on anyone page. We have
to deal with this condition by breaking a record into smaller records. The
smaller records could be chained together-part of each smaller record is
a pointer to the next record in the chain---to enable retrieval of the entire
original record.

9.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

III Explain the term memory hierarchy. What are the differences between
primary, secondary, and tertiary storage? Give examples of each. Which
of these is volatile, and which are pCf'sistenf? Why is persistent storage
more important for a DBMS than, say, a program that generates prime
numbers? (Section 9.1)

III Why are disks used so widely in a DBMS? What are their advantages
over main memory and tapes? ':Vhat are their relative disadvantages?
(Section 9.1.1)

III What is a disk block or page? How are blocks arranged in a disk? How
does this affect the time to access a block? Discuss seek tiTne, rotational
dday, and transfer time. (Section 9.1.1)

III Explain how careful placement of pages on the disk to exploit the geometry
of a disk can minimize the seek time and rotational delay when pages are
read sequentially. (Section 9.1.2)

III Explain what a RAID systenl is and how it improves performance and
reliability. Discuss str-iping and its impact on performance and nxlundancy
and its irnpact on reliability. vVhat are the trade-offs between reliability
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and performance in the different RAID organizations called RAID levels'?
(Section 9.2)

.. Wnat is the role of the DBMS d'isk space manager'? vVhy do database
systems not rely on the operating system instead? (Section 9.3)

.. Why does every page request in a DBMS go through the buffer manager?
What is the buffer poor? '\That is the difference between a frame in a buffer
pool, a page in a file, and a block on a disk? (Section 9.4)

.. What information does the buffer manager maintain for each page in the
buffer pool? ·What information is maintained for each frame? What is
the significance of p'in_count and the d'irty flag for a page? Under what
conditions can a page in the pool be replaced? Under what conditions
must a replaced page be written back to disk? (Section 9.4)

.. Why does the buffer manager have to replace pages in the buffer pool?
How is a page chosen for replacement? vVhat is sequent'ial flood'ing, and
what replacement policy causes it? (Section 9.4.1)

.. A DBMS buffer manager can often predict the access pattern for disk pages.
How does it utilize this ability to minimize I/O costs? Discuss prefetch­
'ing. \iVhat is forc'ing, and why is it required to support the write-ahead
log protocol in a DBMS? In light of these points, explain why database
systems reimplement many services provided by operating systems. (Sec­
tion 9.4.2)

.. Why is the abstraction of a file of records important? How is the software
in a DBMS layered to take advantage of this? (Section 9.5)

.. What is a heap file? How are pages organized in a heap file? Discuss list
versus directory organizations. (Section 9.5.1)

III Describe how records are arranged on a page. \i\That is a slot, and how
are slots used to identify records? How do slots ena.ble us to move records
on a page withont altering the record's identifier? ·What arc the differ­
ences in page organizations for fixed-length and variable-length records?
(Section 9.6)

iii ·What are the differences in how fields are arranged within fixed-length and
variable-length records? For variable-length records, explain how the array
of offsets organization provides direct access to a specific field and supports
null values. (Section 9.7)
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EXERCISES

Exercise 9.1 \-Vhat is the most important difference behveen a disk and a tape?

Exercise 9.2 Explain the terms seek time, mtat'ional delay, and transfer t'ime.

33:)

Exercise 9.3 Both disks and main memory support direct access to any desired location
(page). On average, main memory accesses are faster, of course. \\That is the other important
difference (from the perspective of the time required to access a desired page)?

Exercise 9.4 If you have a large file that is frequently scanned sequentially, explain how you
would store the pages in the file on a disk.

Exercise 9.5 Consider a disk with a sector size of 512 bytes, 2000 tracks per surface, 50
sectors per track, five double-sided platters, and average seek time of 10 msec.

1. What is the capacity of a track in bytes? What is the capacity of each surface? What is
the capacity of the disk?

2. How many cylinders does the disk have?

:~. Give examples of valid block sizes. Is 256 bytes a valid block size? 2048? 51,200?

4. If the disk platters rotate at 5400 rpm (revolutions per minute), what is the maximum
rotational delay?

5. If one track of data can be transferred per revolution, what is the transfer rate?

Exercise 9.6 Consider again the disk specifications from Exercise 9.5 and suppose that a
block size of 1024 bytes is chosen. Suppose that a file containing 100,000 records of 100 bytes
each is to be stored on such a disk and that no record is allowed to span two blocks.

L How many records fit onto a block?

2. How many blocks are required to store the entire file? If the file is arranged sequentially
on disk, how lllallY surfaces are needed?

:3. How many records of 100 bytes each can be stored using this disk?

4. If pages are stored sequentially on disk, with page 1 on block 1 of track 1, what page is
stored on block 1 of track 1 on the next disk surface? How would your answer change if
the disk were capable of reading and writing from all heads in parallel?

5. VVhat titne is required to read a file containing 100,000 records of 100 bytes each sequen­
tially? Again, how \vould your answer change if the disk were capable of reading/writing
from all heads in parallel (and the data was arranged optimally)?

6. \\That is the time required to read a file containing 100,000 records of 100 bytes each in a
random order? To read a record, the block containing the recOl'd has to be fetched from
disk. Assume that each block request incurs the average seek time and rotational delay.

Exercise 9.7 Explain what. the buffer manager JIms! do to process a read request for a page.
\Vhat happens if the requested page is in the pool but not pinned?

Exercise 9.8 When does a buffer manager write a page to disk?

Exercise 9.9 What. does it mean to say that a page is p'inned in the buffer pool? Who is
responsible for pinning pages? \Vho is responsible for unpinning pages?
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Exercise 9.10 'When a page in the bulTer pool is modified, how does the DBMS ensure that
this change is propagated to disk? (Explain the role of the buffer manager as well as the
modifier of the page.)

Exercise 9.11 \Vhat happens if a page is requested when all pages in the buffer pool are
dirty?

Exercise 9.12 \Vhat is sequential flooding of the buffer pool?

Exercise 9.13 Name an important capability of a DBIVIS buffer manager that is not sup­
ported by a typical operating system's buffer manager.

Exercise 9.14 Explain the term prefetching. \Vhy is it important?

Exercise 9.15 Modern disks often have their own main memory caches, typically about
1 MB, and use this to prefetch pages. The rationale for this technique is the empirical
observation that, if a disk page is requested by some (not necessarily database!) application,
80% of the time the next page is requested as well. So the disk gambles by reading ahead.

1. Give a nontechnical reason that a DBMS may not want to rely on prefetching controlled
by the disk.

2. Explain the impact on the disk's cache of several queries running concurrently, each
scanning a different file.

3. Is this problem addressed by the DBMS buffer manager prefetching pages? Explain.

4. Modern disks support segmented caches, with about four to six segments, each of which
is used to cache pages from a different file. Does this technique help, with respect to
the preceding problem? Given this technique, does it matter whether the DBMS buffer
manager also does prefetching?

Exercise 9.16 Describe two possible record formats. What are the trade-offs between them?

Exercise 9.17 Describe two possible page formats. What are the trade-offs between them?

Exercise 9.18 Consider the page format for variable-length records that uses a slot directory.

1. One approach to managing the slot directory is to use a maximum size (i.e., a maximum
number of slots) and allocate the directory array when the page is created. Discuss the
pros and cons of this approach with respect to the approach discussed in the text.

2. Suggest a modification to this page format that would allow us to sort records (according
to the value in some field) without moving records and without changing the record ids.

Exercise 9.19 Consider the two internal organizations for heap files (using lists of pages and
a directory of pages) discussed in the text.

1. Describe them briefly and explain the trade-offs. \Vhich organization would you choose
if records are variable in length?

2. Can you suggest a single page format to implement both internal file organizations'?

Exercise 9.20 Consider a list-based organizat.ion of the pages in a heap file in which two
lists are maintained: a list of all pages in the file and a list of all pages with free space. In
contrast, the list-based organizatioll discussed in the text maintains a list of full pages and a
list of pages with free space.
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1. VVhat are the trade-offs, if any'? Is one of them clearly superior?

2. For each of these organizations, describe a suitable page format.

Exercise 9.21 Modern disk drives store more sectors on the outer tracks than the inner
tracks. Since the rotation speed is constant, the sequential data transfer rate is also higher on
the outer tracks. The seek time and rotational delay are unchanged. Given this information,
explain good strategies for placing files with the following kinds of access patterns:

1. rrequent, random accesses to a small file (e.g., catalog relations).

2. Sequential scans of a large file (e.g., selection from a relation with no index).

3. Random accesses to a large file via an index (e.g., selection from a relation via the index).

4. Sequential scans of a small file.

Exercise 9.22 Why do frames in the buffer pool have a pin count instead of a pin flag?

PROJECT-BASED EXERCISES

Exercise 9.23 Study the public interfaces for the disk space manager, the buffer manager,
and the heap file layer in Minibase.

1. Are heap files with variable-length records supported?

2. What page format is used in Minibase heap files?

3. What happens if you insert a record whose length is greater than the page size?

4. How is free space handled in Minibase?

BIBLIOGRAPHIC NOTES

Salzberg [648] and Wiederhold [776] discuss secondary storage devices and file organizations
in detail.
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dissertation [.317] and the publications from the RAID Advisory Board [605].

The design and implementation of storage managers is discussed in [65, 1:33, 219, 477, 718].
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much of interest from that stanelpoint as well. Other papers that cover storage management
issues in the context of significant implemented prototype systems are [480] and [588]. The
Dali storage Inanager, which is optimized for main memory databases, is described in [406].
Three techniques for ilnplementing long fields are compared in [96]. The impact of processor
cache misses 011 DBMS performallce ha.'i received attention lately, as complex queries have
become increasingly CPU-intensive. [:33] studies this issue, and shows that performance can be
significantly improved by using a new arrangement of records within a page, in which records
on a page are stored in a column~oriented format (all field values for the first attribute followed
by values for the second attribute, etc.).

Stonebraker discusses operating systems issues in the context of databases in [715]. Several
buffer management policies for databa.se systems are compared in [181]. Buffer management
is also studied in [119, 169, 2G1, 2:35].
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TREE-STRUCTURED

INDEXING

... What is the intuition behind tree-structured indexes? Why are they
good for range selections?

... How does an ISAM index handle search, insert, and delete?

i"- How does a B+ tree index handle search, insert, and delete?

... What is the impact of duplicate key values on index implementation'?

... What is key compression, and why is it important?

... What is bulk-loading, and why is it important?

... What happens to record identifiers when dynamic indexes are up­
dated? How does this affect clustered indexes?

Itt Key concepts: ISAM, static indexes, overflow pages, locking issues;
B+ trees, dynamic indexes, balance, sequence sets, node format; B+
tree insert operation, node splits, delete operation, merge versus redis­
tribution, minimum occupancy; duplicates, overflow pages, including
rids in search keys; key compression; bulk-loading; effects of splits on
rids in clustered indexes.

One that would have the fruit must climb the tree.

I'homas Fuller

VVe now consider two index data structures, called ISAM and B+ trees, b<:h':led
on tree organizations. These structures provide efficient support for range
searches, including sorted file scans as a special c<h'3e. Unlike sorted files, these
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index structures support efficient insertion and deletion. They also provide
support for equality selections, although they are not &'3 efficient in this case as
hash-b::l.'3ed indexes, which are discussed in Chapter 11.

An ISAJVI1 tree is a static index structure that is effective when the file is
not frequently updated, but it is unsuitable for files that grow and shrink a
lot. \Ve discuss ISAM in Section 10.2. The B+ tree is a dynamic structure
that adjusts to changes in the file gracefully. It is the most widely used index
structure because it adjusts well to changes and supports both equality and
range queries. We introduce B+ trees in Section 10.3. We cover B+ trees in
detail in the remaining sections. Section 10.3.1 describes the format of a tree
node. Section lOA considers how to search for records by using a B+ tree
index. Section 10.5 presents the algorithm for inserting records into a B+ tree,
and Section 10.6 presents the deletion algorithm. Section 10.7 discusses how
duplicates are handled. \Ve conclude with a discussion of some practical issues
concerning B+ trees in Section 10.8.

Notation: In the ISAM and B+ tree structures, leaf pages contain data entries,
according to the terminology introduced in Chapter 8. For convenience, we
denote a data entry with search key value k as k*. Non-leaf pages conta.in
inde:c entries of the form (search key 'Value., page id) and are used to direct the
sea.rch for a desired data entry (which is stored in some leaf). We often simply
use entr'Y where the context makes the nature of the entry (index or data) clear.

10.1 INTUITION FOR TREE INDEXES

Consider a file of Students recorcls sorted by gpa. To answer a range selection
such as "Find all students with a gpa higher than 3.0," we must identify the
first such student by doing a binary search of the file and then scan the file
from that point on. If the file is large, the initial binary search can be quite
expensive, since cost is proportional to the number of pages fetched; can we
improve upon this method'?

OIle idea is to create a second file with OIle record per page in the original
(data) file, of the form (first key on page, pointer to page), again sortecl by the
key attribute (which is gpa in our example). The format of a page in the second
inde:c file is illustrated in Figure 10.1.

We refer to pairs of the form (key, pointer) ~l.S indc:J: entries or just entries \'\'hen
the context is dear. Note that each index page contains OIle pointer more than

I ISAM stands for Indexed Sequential Access Method.
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index entry
r·.. ········

FigUl'e 10.1 Format of an Index Page

CHAPTER 10,

the number of keys---each key serves as a separator- for the contents of the pages
pointed to by the pointers to its left and right.

The simple index file data structure is illustrated in Figure 10.2.

I PafJe 1 ·11 Page 2.· II Page 31

Index file

Data file

Figure 10.2 One-Level Index Structure

We can do a binary search of the index file to identify the page containing the
first key (gpo.) value that satisfies the range selection (in our example, the first
student with gpo. over 3.0) and follow the pointer to the page containing the first
data. record with that key value. We can then scan the data file sequentially
from that point on to retrieve other qualifying records. This example uses the
index to find the first data page containing a Students record with gpo. greater
than 3.0, and the data file is scanned from that point on to retrieve other such
Students records.

Because the size of an entry in the index file (key value and page icl) is likely
to be much smaller than the size of a page, and only one such entry exists per
page of the data file, the index file is likely to be much smaller than the data
file; therefore, a binary search of the index file is much faster than a binary
search of the data file. However, a binary search of the index file could still
be fairly expensive, and the index file is typically still large enough to make
inserts and clelett~s expensive.

The potential large size of the index file motivates the tree indexing idea: Why
not apply the previous step of building an auxiliar:v structure all the collection
of inde:l: records and so on recursively until the smallest auxiliary structure fits
OIl one page? This repeated construction of a one-level index leads to a tree
structure with several levels of non-leaf pages.
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As we observed in Section 8.3.2, the power of the approach comes from the fact
that locating a record (given a search key value) involves a traversal from the
root to a leaf, with one I/O (at most; SCHne pages, e.g.) the root, are likely to be
in the buffer pool) per level. Given the typical fan-out value (over 100), trees
rarely have more than 3-4 levels.

The next issue to consider is how the tree structure can handle inserts and
deletes of data entries. Two distinct approaches have been used, leading to the
ISAM and B+ tree data structures, which we discuss in subsequent sections.

10.2 INDEXED SEQUENTIAL ACCESS METHOD (ISAM)

The ISAM data structure is illustrated in Figure 10.3. The data entries of the
ISAM index are in the leaf pages of the tree and additional overflow pages
chained to some leaf page. Database systems carefully organize the layout of
pages so that page boundaries correspond closely to the physical characteristics
of the underlying storage device. The ISAM structure is completely static
(except for the overflow pages, of which it is hoped, there will be few) and
facilitates such low-level optimizations.

Non-leaf
pages

Leaf
pages

OverjlowP{~c::::J1 ~ ~
Primary pages

Figure 10.3 ISAM Index Structure

Each tree node is a disk page, and all the data resides in the leaf pages. This
corresponds to an index that uses Alternative (1) for data entries, in terms of
the alternatives described in Chapter 8; we can create an index with Alternative
(2) by storing t.he data records in a separate file and storing (key, rid) pairs in
the leaf pages of the ISAM index. When the file is created, all leaf pages are
allocated sequentially and sorted on the search key value. (If Alternative (2)
or (3) is used, the data records are created and sorted before allocating the leaf
pages of the ISAM index.) The non-leaf level pages are then allocated. If there
are several inserts to the file subsequently, so that more entries are inserted into
a leaf than will fit onto a single page, additional pages are needed because the
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index structure is static. These additional pages are allocated from an overflow
area. The allocation of pages is illustrated in Figure 10.4.

Data Pages

Index Pages

Overflow Pages

Figure 10.4 Page Allocation in ISAM

The basic operations of insertion, deletion, and search are all quite straightfor­
ward. J;"'or an equality selection search, we start at the root node and determine
which subtree to search by comparing the value in the search field of the given
record with the key values in the node. (The search algorithm is identical to
that for a B+ tree; we present this algorithm in more detail later.) For a range
query, the starting point in the data (or leaf) level is determined similarly, and
data pages are then retrieved sequentially. For inserts and deletes, the appro­
priate page is determined as for a search, and the record is inserted or deleted
with overflow pages added if necessary.

The following example illustrates the ISAM index structure. Consider the tree
shown in Figure 10.5. All searches begin at the root. For example, to locate a
record with the key value 27, we start at the root and follow the left pointer,
since 27 < 40. We then follow the middle pointer, since 20 <= 27 < 33. For a
range sea,rch, we find the first qualifying data entry as for an equality selection
and then retrieve primary leaf pages sequentially (also retrieving overflow pages
as needed by following pointers from the primary pages). The primary leaf
pages are cL..ssumed to be allocated sequentially this a..ssumption is reasonable
because the number of such pages is known when the tree is created and does
not change subsequently under inserts and deletes-and so no 'next leaf page'
pointers are needed.

vVe assume that each leaf page can contain two entries. If we now insert a
record with key value 23, the entry 23* belongs in the second data page, which
already contains 20* and 27* and has no more space. We deal with this situation
by adding an overflow page and putting 23* in. the overflow page. Chains of
overflow pages can easily develop. F'or instance, inserting 48*, 41 *, and 42*
leads to an overflow chain of two pages. The tree of Figure 10.5 with all these
insertions is shown ill Figure 10.6.
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110*1
15*IEEl B3 140 *1 46*11 51*l 55*1 163 *1 97* I

Figure 10.5 Sa.mple ISAM Tree

Non-leaf

pages

Primary

leaf

pages

Overflow

pages

Figure 10.6 ISAM Tree a.fter Inserts
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The deletion of an entry h is handled by simply removing the entry. If this
entry is on an overflow page and the overflow page becomes empty, the page can
be removed. If the entry is on a primary page and deletion makes the primary
page empty, the simplest approach is to simply leave the empty primary page
~s it is; it serves as a placeholder for future insertions (and possibly lloll-empty
overflow pages, because we do not move records from the overflow pages to the
primary page when deletions on the primary page create space). Thus, the
number of primary leaf pages is fixed at file creation time.

10.2.1 Overflow Pages, Locking Considerations

Note that, once the ISAM file is created, inserts and deletes affect only the
contents of leaf pages. A consequence of this design is that long overflow chains
could develop if a number of inserts are made to the same leaf. These chains
can significantly affect the time to retrieve a record because the overflow chain
has to be searched as well when the search gets to this leaf. (Although data in
the overflow chain can be kept sorted, it usually is not, to make inserts fast.) To
alleviate this problem, the tree is initially created so that about 20 percent of
each page is free. However, once the free space is filled in with inserted records,
unless space is freed again through deletes, overflow chains can be eliminated
only by a complete reorganization of the file.

The fact that only leaf pages are modified also has an important advantage with
respect to concurrent access. When a page is accessed, it is typically 'locked'
by the requestor to ensure that it is not concurrently modified by other users
of the page. To modify a page, it must be locked in 'exclusive' mode, which is
permitted only when no one else holds a lock on the page. Locking can lead
to queues of users (transactions, to be more precise) waiting to get access to a
page. Queues can be a significant performance bottleneck, especially for heavily
accessed pages near the root of an index structure. In the ISAM structure,
since we know that index-level pages are never modified, we can safely omit
the locking step. Not locking index-level pages is an important advantage of
ISAM over a dynamic structure like a B+ tree. If the data distribution and
size are relatively static, which means overflow chains are rare, ISAM might be
preferable to B+ trees due to this advantage.

10.3 B+ TREES: A DYNAMIC INDEX STRUCTURE

A static structure such as the ISAI\il index suffers from the problem that long
overflow chains can develop a"s the file grows, leading to poor performance. This
problem motivated the development of more flexible, dynamic structures that
adjust gracefully to inserts and deletes. The B+ tree search structure, which
is widely llsed, is a balanced tree in which the internal nodes direct the search
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and the leaf nodes contain the data entries. Since the tree structure grows and
shrinks dynamically, it is not feasible to allocate the leaf pages sequentially as in
ISAM, where the set of primary leaf pages was static. To retrieve all leaf pages
efficiently, we have to link them using page pointers. By organizing them into a
doubly linked list, we can easily traverse the sequence of leaf pages (sometimes
called the sequence set) in either direction. This structure is illustrated in
Figure 10.7.2

Index entries

(To direct search)

Index
file

Data entries

("Sequence set")

Figure 10.7 Structure of a B+ 'n'ee

The following are some of the main characteristics of a B+ tree:

• Operations (insert, delete) on the tree keep it balanced.

• A minimum occupancy of 50 percent is guaranteed for each node except
the root if the deletion algorithm discussed in Section 10.6 is implemented.
However, deletion is often implemented by simply locating the data entry
and removing it, without adjusting the tree &'3 needed to guarantee the 50
percent occupancy, because files typically grow rather than shrink.

l1li Searching for a record requires just a traversal from the root to the appro­
priate leaf. Vie refer to the length of a path from the root to a leaf any
leaf, because the tree is balanced as the height of the tree. For example,
a tree with only a leaf level and a single index level, such as the tree shown
in Figure 10.9, has height 1, and a tree that h&'3 only the root node has
height O. Because of high fan-out, the height of a B+ tree is rarely more
than 3 or 4.

\Ve will study B+ trees in which every node contains Tn entries, where d :::;
nJ, :::; 2d. The value d is a parameter of the B+ tree, called the order of the

.._-
2If the tree is created by IYll.lk.. looding (see Section 10.8.2) an existing data set, the sequence set.

can be nHlde physically sequential, but this physical ordering is gradually destroyed as new data is
added and delet.ed over time.
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tree, and is a measure of the capacity of a tree node. The root node is the
only exception to this requirement on the number of entries; for the root, it is
simply required that 1 ::; m ::; 2d.

If a file of records is updated frequently and sorted access is important, main­
taining a B+ tree index with data records stored as data entries is almost
always superior to maintaining a sorted file. For the space overhead of storing
the index entries, we obtain all the advantages of a sorted file plus efficient in­
sertion and deletion algorithms. B+ trees typically maintain 67 percent space
occupancy. B+ trees are usually also preferable to ISAM indexing because in­
serts are handled gracefully without overflow chains. However, if the dataset
size and distribution remain fairly static, overflow chains may not be a major
problem. In this case, two factors favor ISAM: the leaf pages are allocated in
sequence (making scans over a large range more efficient than in a B+ tree, in
which pages are likely to get out of sequence on disk over time, even if they were
in sequence after bulk-loading), and the locking overhead ofISAM is lower than
that for B+ trees. As a general rule, however, B+ trees are likely to perform
better than ISAM.

10.3.1 Format of a Node

The format of a node is the same as for ISAM and is shown in Figure 10.1.
Non-leaf nodes with m 'index entr'ies contain m+ 1 pointers to children. Pointer
Pi points to a subtree in which all key va.lues K are such that Ki ::; K < K i +1.

As special ca"Jes, Po points to a tree in which all key values are less than Kl'
and Pm points to a tree in which all key values are greater than or equal to
K m . For leaf nodes, entries arc denoted a"J k*, as usual. Just as in ISAM, leaf
nodes (and only leaf nodes!) contain data entries. In the common ca.'se that
Alternative (2) or (:3) is used, leaf entries are (K,I(K) ) pairs, just like non-leaf
entries. Regardless of the alternative chosen for leaf entries, the leaf pages are
chained together in a doubly linked list. Thus, the leaves form a sequence,
which can be used to answer range queries efficiently.

The reader should carefully consider how such a node organization can be
achieved using the record formats presented in Section 9.7; after all, each key
pointer pair can be thought of as a record. If the field being indexed is of
fixed length, these index entries will be of fixed length; otherwise, we have
variable-length records. In either case the B+ tree can itself be viewed as a file
of records. If the leaf pages do not contain the actual data records, then the
13+ tree is indeed a file of records that is distinct from the file that contains the
data. If the leaf pages contain data. records, then a file contains the 13+ tree a...s
well as the data.
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10.4 SEARCH
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The algorithm for sean:h finds the leaf node in which a given data entry belongs.
A pseudocode sketch of the algorithm is given in Figure 10.8. "\Te use the
notation *ptT to denote the value pointed to by a pointer variable ptT and &
(value) to denote the address of val'nc. Note that finding i in tTcc_seaTch requires
us to search within the node, which can be done with either a linear search or
a binary search (e.g., depending on the number of entries in the node).

In discussing the search, insertion, and deletion algorithms for B+ trees, we
assume that there are no duplicates. That is, no two data entries are allowed
to have the same key value. Of course, duplicates arise whenever the search
key does not contain a candidate key and must be dealt with in practice. We
consider how duplicates can be handled in Section 10.7.

fune find (search key value K) returns nodepointer
/ / Given a seaTch key value, finds its leaf node

return tree_search(root, K); / / searches from root
endfune

fune tTee-seaTch (nodepointer, search key value K) returns nodepointer
/ / Searches tree for entry

if *nodepointer is a leaf, return nodepointer;
else,

if K < K 1 then return tree_search(Po, K);
else,

if K 2: K m then return tree_search(Pm , K); / / 171 = # entries
else,

find i such that K i :::; K < Ki+ 1 ;

return tree_search(Pi , K)
endfune

Figure 10.8 Algorithm for Search

Consider the sample B+ tree shown in Figure 10.9. This B+ tree is of order
d=2. That is, each node contains between 2 and 4 entries. Each non--leaf entry
is a (key valuc.' nodepointcT) pair; at the leaf level, the entries are data records
that we denote by k*. To search for entry 5*, we follow the left-most child
pointer, since 5 < 13. To search for the entries 14* or 15*, we follow the second
pointer, since 1:3 :::; 14 < 17, and 1:3 :::; 15 < 17. (vVe do not find 15* on the
appropriate leaf and can conclude that it is not present in the tree.) To find
24 *, we follow the fourth child pointer, since 24 :::; 24 < :30.
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Figure 10.9 Example of a B+ Tree, Order d=2

10.5 INSERT

The algorithm for insertion takes an entry, finds the leaf node where it belongs,
and inserts it there. Pseudocode for the B+ tree insertion algorithm is given
in Figure HUG. The basic idea behind the algorithm is that we recursively
insert the entry by calling the insert algorithm on the appropriate child node.
Usually, this procedure results in going down to the leaf node where the entry
belongs, placing the entry there, and returning all the way back to the root
node. Occasionally a node is full and it must be split. When the node is split,
an entry pointing to the node created by the split must be inserted into its
parent; this entry is pointed to by the pointer variable newchildentry. If the
(old) root is split, a new root node is created and the height of the tree increa..<;es
by 1.

To illustrate insertion, let us continue with the sample tree shown in Figure
10.9. If we insert entry 8*, it belongs in the left-most leaf, which is already
full. This insertion causes a split of the leaf page; the split pages are shown in
Figure 10.11. The tree must now be adjusted to take the new leaf page into
account, so we insert an entry consisting of the pair (5, pointer to new page)
into the parent node. Note how the key 5, which discriminates between the
split leaf page and its newly created sibling, is 'copied up.' \\Te cannot just
'push up' 5, because every data entry must appear in a leaf page.

Since the parent node is also full, another split occurs. In general we have to
split a non-leaf node when it is full, containing 2d keys and 2d + 1 pointers, and
we have to add another index entry to account for a child split. We now have
2d+ 1 keys and 2d+2 pointers, yielding two minimally full non-leaf nodes, each
containing d keys and d + 1 pointers, and an extra key, which we choose to be
the 'middle' key. This key and a pointer to the second non-leaf node constitute
an index entry that must be inserted into the parent of the split non-leaf node.
The middle key is thus 'pushed up' the tree, in contrast to the case for a split
of a leaf page.
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proc inseTt (nodepointel', entry, newchildentry)
/ / InseTts entry into subtree with TOot '*nodepointer'; degree is d;
/ /'newchildentTy' null initially, and null on retUTn unless child is split

if *nodepointer is a non-leaf node, say N,
find'i such that J(i S entry's key value < J(i+l; / / choose subtree
insert(.R;, entry, newchildentry); / / recurs'ively, insert entry
if newchildentry is null, return; / / usual case; didn't split child
else, / / we split child, must insert *newchildentry in N

if N has space, / / usual case
put *newchildentry on it, set newchildentry to null, return;

else, / / note difference wrt splitting of leaf page!
split N: / / 2d + 1 key values and 2d + 2 nodepointers
first d key values and d + 1 nodepointers stay,
last d keys and d + 1 pointers move to new node, N2;
/ / *newchildentry set to guide searches between Nand N2
newchildentry = & ((smallest key value on N2,

pointer to N2));
if N is the root, / / root node was just split

create new node with (pointer to N, *newchildentry);
make the tree's root-node pointer point to the new node;

return;

if *nodepointer is a leaf node, say L,
if L has space, / / usual case
put entry on it, set newchildentry to null, and return;
else, / / once in a while, the leaf is full

split L: first d entries stay, rest move to brand new node L2;
newchildentry = & ((smallest key value on L2, pointer to L2));
set sibling pointers in Land L2;
return;

endproc

Figure 10.1.0 Algorithrn for Insertion into B+ Tree of Order d
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/

,_ - - Entry to be inserted in parent 11(.)de.[i]1 <<-- -- (Note that 5 is 'copied up' and

_-....... "---\ ,ontin.", to ,ppcM;n the lenf.)

EEf-rJ-~r
Figure 10.11 Split Leaf Pages during Insert of Entry 8*

The split pages in our example are shown in Figure 10.12. The index entry
pointing to the new non-leaf node is the pair (17, pointer to new index-level
page); note that the key value 17 is 'pushed up' the tree, in contrast to the
splitting key value 5 in the leaf split, which was 'copied up.'

/

Entry to be inserted in parent node.

~
7 ..£~_ :' - - (Note that 17 is 'pushed up' and

and appears once In the index. Contrast
thIS with a leaf spILt.)

)EffJD HPJ
Figure 10.12 Split Index Pages during Insert of Entry 8*

The difference in handling leaf-level and index-level splits arises from the B+
tree requirement that all data entries h must reside in the leaves. This re­
quirement prevents us from 'pushing up' 5 and leads to the slight redundancy
of having some key values appearing in the leaf level as well as in some index
leveL However, range queries can be efficiently answered by just retrieving the
sequence of leaf pages; the redundancy is a small price to pay for efficiency. In
dealing with the index levels, we have more flexibility, and we 'push up' 17 to
avoid having two copies of 17 in the index levels.

Now, since the split node was the old root, we need to create a new root node
to hold the entry that distinguishes the two split index pages. The tree after
completing the insertion of the entry 8* is shown in Figure 10.13.

One variation of the insert algorithm tries to redistribute entries of a node N
with a sibling before splitting the node; this improves average occupancy. The
sibling of a node N, in this context, is a node that is immediately to the left
or right of N and has the same pare'nt as N.
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Figure 10.13 B+ Tree after Inserting Entry 8*

To illustrate redistribution, reconsider insertion of entry 8* into the tree shown
in Figure 10.9. The entry belongs in the left-most leaf, which is full. However,
the (only) sibling of this leaf node contains only two entries and can thus
accommodate more entries. We can therefore handle the insertion of 8* with a
redistribution. Note how the entry in the parent node that points to the second
leaf has a new key value; we 'copy up' the new low key value on the second
leaf. This process is illustrated in Figure 10.14.

Figure 10.14 B+ Tree after Inserting Entry 8* Using Redistribution

To determine whether redistribution is possible, we have to retrieve the sibling.
If the sibling happens to be full, we have to split the node anyway. On average,
checking whether redistribution is possible increases I/O for index node splits,
especially if we check both siblings. (Checking whether redistribution is possible
may reduce I/O if the redistribution succeeds whereas a split propagates up the
tree, but this case is very infrequent.) If the file is growing, average occupancy
will probably not be affected much even if we do not redistribute. Taking these
considerations ,into account, not redistributing entries at non-leaf levels usually
pays off.

If a split occurs at the leaf level, however, we have to retrieve a neighbor
to adjust the previous and next-neighbor pointers with respect to the newly
created leaf node. Therefore, a limited form of redistribution makes sense: If a
leaf node is full, fetch a neighbor node; if it ha.'3 space and has the same parent,
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redistribute the entries. Othenvise (the neighbor has diflerent parent, Le., it is
not a sibling, or it is also full) split the leaf node and a,djust the previous and
next-neighbor pointers in the split node, the newly created neighbor, and the
old neighbor.

10.6 DELETE

The algorithm for deletion takes an entry, finds the leaf node where it belongs,
and deletes it. Pseudocode for the B+ tree deletion algorithm is given in
Figure 10.15. The basic idea behind the algorithm is that we recursively delete
the entry by calling the delete algorithm on the appropriate child node. We
usually go down to the leaf node where the entry belongs, remove the entry
from there, and return all the way back to the root node. Occasionally a
node is at minimum occupancy before the deletion, and the deletion causes
it to go below the occupancy threshold. When this happens, we must either
redistribute entries from an adjacent sibling or merge the node with a sibling to
maintain minimum occupancy. If entries are redistributed between two nodes,
their parent node must be updated to reflect this; the key value in the index
entry pointing to the second node must be changed to be the lowest search key
in the second node. If two nodes are merged, their parent must be updated to
reflect this by deleting the index entry for the second node; this index entry is
pointed to by the pointer variable oldchildentry when the delete call returns to
the parent node. If the last entry in the root node is deleted in this manner
because one of its children was deleted, the height of the tree decreases by 1.

To illustrate deletion, let us consider the sample tree shown in Figure 10.13. To
delete entry 19*, we simply remove it from the leaf page on which it appears,
and we are done because the leaf still contains two entries. If we subsequently
delete 20*, however, the leaf contains only one entry after the deletion. The
(only) sibling of the leaf node that contained 20* has three entries, and we can
therefore deal with the situation by redistribution; we move entry 24* to the
leaf page that contained 20* and copy up the new splitting key (27, which is
the new low key value of the leaf from which we borrowed 24*) into the parent.
This process is illustrated in Figure 10.16.

Suppose that we now delete entry 24*. The affected leaf contains only one entry
(22*) after the deletion, and the (only) sibling contains just two entries (27*
and 29*). Therefore, we cannot redistribute entries. However, these two leaf
nodes together contain only three entries and can be merged. \Vhile merging,
we can 'tos::;' the entry ((27, pointer' to second leaf page)) in the parent, which
pointed to the second leaf page, because the second leaf page is elnpty after the
merge and can be discarded. The right subtree of Figure 10.16 after thi::; step
in the deletion of entry 2!1* is shown in Figure 10.17.
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proc delete (parentpointer, nodepointer, entry, oldchiIdentry)
/ / Deletes entry from s'ubtree w'ith TOot '*nodepointer '; degree is d;
/ / 'oldchildentry' null initially, and null upon ret1lrn unless child deleted

if *nodepointer is a non-leaf node, say N,
find i such that K i ::; entry's key value < K i+l; / / choose subtree
delete(nodepointer, Pi, entry, oldchildentry); / / recursive delete
if oldchildentry is null, return; / / usual case: child not deleted
else, / / we discarded child node (see discussion)

remove *oldchildentry from N, / / next, check for underflow
if N has entries to spare, / / usual case

set oldchildentry to null, return; / / delete doesn't go further
else, / / note difference wrt merging of leaf pages!

get a sibling S of N: / / parentpointer arg used to find S
if S has extra entries,

redistribute evenly between Nand S through parent;
set oldchildentry to null, return;

else, merge Nand S / / call node on rhs 111
oldchildentry = & (current entry in parent for M);
pull splitting key from parent down into node on left;
move all entries from 1\11 to node on left;
discard empty node M, return;

if *nodepointer is a leaf node, say L,
if L h&<; entries to spare, / / usual case

remove entry, set oldchildentry to null, and return;
else, / / once in a while, the leaf becomes underfull

get a sibling S of L; / / parentpointer used to find S
if S has extra entries,

redistribute evenly between Land S;
find entry in parent for node on right; / / call it A;J
replace key value in parent entry by new low-key value in 1\11;

set oldchildentry to null, return;
else, merge Land S / / call node on rhs 1\11

oldchildentry = & (current entry in parent for M);
move all entries from 1\11 to node on left;
discard empty node AI, adjust sibling pointers, return;

endproc

Figure 10.15 Algorithm for Deletion from B+ Tree of Order r1
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Figure 10.16 B+ Tree after Deleting Entries 19* and 20*

Figure 10.17 Partial B+ Tree during Deletion of Entry 24*

Deleting the entry (27, pointer to second leaf page) has created a non-Ieaf-Ievel
page with just one entry, which is below the minimum of d = 2. To fix this
problem, we must either redistribute or merge. In either case, we must fetch a
sibling. The only sibling of this node contains just two entries (with key values
5 and 13), and so redistribution is not possible; we must therefore merge.

The situation when we have to merge two non-leaf nodes is exactly the opposite
of the situation when we have to split a non-leaf node. We have to split a non­
leaf node when it contains 2d keys and 2d + 1 pointers, and we have to add
another key--pointer pair. Since we resort to merging two non-leaf nodes only
when we cannot redistribute entries between them, the two nodes must be
minimally full; that is, each must contain d keys and d + 1 pointers prior to
the deletion. After merging the two nodes and removing the key--pointer pair
to be deleted, we have 2d - 1 keys and 2d + 1 pointers: Intuitively, the left­
most pointer on the second merged node lacks a key value. To see what key
value must be combined with this pointer to create a complete index entry,
consider the parent of the two nodes being merged. The index entry pointing
to one of the merged nodes must be deleted from the parent because the node
is about to be discarded. The key value in this index entry is precisely the key
value we need to complete the new merged node: The entries in the first node
being merged, followed by the splitting key value that is 'pulled down' from the
parent, followed by the entries in the second non-leaf node gives us a total of 2d
keys and 2d + 1 pointers, which is a full non-leaf node. Note how the splitting
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key value in the parent is pulled down, in contrast to the case of merging two
leaf nodes.

Consider the merging of two non-leaf nodes in our example. Together, the non­
leaf node and the sibling to be merged contain only three entries, and they have
a total of five pointers to leaf nodes. To merge the two nodes, we also need to
pull down the index entry in their parent that currently discriminates between
these nodes. This index entry has key value 17, and so we create a new entry
(17, left-most child pointer in sibling). Now we have a total of four entries and
five child pointers, which can fit on one page in a tree of order d = 2. Note that
pulling down the splitting key 17 means that it will no longer appear in the
parent node following the merge. After we merge the affected non-leaf node
and its sibling by putting all the entries on one page and discarding the empty
sibling page, the new node is the only child of the old root, which can therefore
be discarded. The tree after completing all these steps in the deletion of entry
24* is shown in Figure 10.18.

Figure 10.18 B+ Tree after Deleting Entry 24*

The previous examples illustrated redistribution of entries across leaves and
merging of both leaf-level and non-leaf-level pages. The remaining case is that
of redistribution of entries between non-leaf-level pages. To understand this
case, consider the intermediate right subtree shown in Figure 10.17. We would
arrive at the same intermediate right subtree if we try to delete 24* from a
tree similar to the one shown in Figure 10.16 but with the left subtree and
root key value as shown in Figure 10.19. The tree in Figure 10.19 illustrates
an intermediate stage during the deletion of 24*. (Try to construct the initial
tree. )

In contrast to the caf.;e when we deleted 24* from the tree of Figure HUG, the
non-leaf level node containing key value :30 now ha..s a sibling that can spare
entries (the entries with key values 17 and 20). vVe move these entries3 over
from the sibling. Note that, in doing so, we essentially push them through the

:11t is sufficient to move over just the entry with key value 20, hut we are moving over two entries
°0 illustrate what happens when several entries are redistributed.
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Figure 10.19 A B+ Tree during a Deletion

splitting entry in their parent node (the root), which takes care of the fact that
17 becomes the new low key value on the right and therefore must replace the
old splitting key in the root (the key value 22). The tree with all these changes
is shown in Figure 10.20.

Figure 10.20 B+ Tree after Deletion

In concluding our discussion of deletion, we note that we retrieve only one
sibling of a node. If this node has spare entries, we use redistribution; otherwise,
we merge. If the node has a second sibling, it may be worth retrieving that
sibling as well to check for the possibility of redistribution. Chances are high
that redistribution is possible, and unlike merging, redistribution is guaranteed
to propagate no further than the parent node. Also, the pages have more
space on them, which reduces the likelihood of a split on subsequent insertions.
(Remember, files typically grow, not shrink!) However, the number of times
that this case arises (the node becomes less than half-full and the first sibling
cannot spare an entry) is not very high, so it is not essential to implement this
refinement of the bct.'3ic algorithm that we presented.

10.7 DUPLICATES

The search, insertion, and deletion algorithms that we presented ignore the
issue of duplicate keys, that is, several data entries with the same key value.
vVe now discuss how duplica.tes can be handled.
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Duplicate Handling in COlllmercial Systems: In a clustered index in
Sybase ASE, the data rows are maintained in sorted order onthe page and
in the eollection of data pages. The data pages are bidireetionally linked
in sort order. Rows with duplicate keys are inserted into (or deleted from}
the ordered set of rows. This may result in overflow pages of rows with
duplieate keys being inserted into the page chain or empty overflow pages
removed from the page chain. Insertion or deletion of a duplicate key does
not affect the higher index level'> unless a split or. lIlergy ofa .non.-overflow
page occurs. In IBM DB2, Oracle 8, and Miero§oft'SQL'Server; dupliclltes
are handled by adding a row id if necessary to eliminate duplicate key
values.

.

The basic search algorithm assumes that all entries with a given key value reside
on a single leaf page. One way to satisfy this assumption is to use overflow
pages to deal with duplicates. (In ISAM, of course, we have overflow pages in
any case, and duplicates are easily handled.)

Typically, however, we use an alternative approach for duplicates. We handle
them just like any other entries and several leaf pages may contain entries with
a given key value. To retrieve all data entries with a given key value, we must
search for the left-most data entry with the given key value and then possibly
retrieve more than one leaf page (using the leaf sequence pointers). Modifying
the search algorithm to find the left-most data entry in an index with duplicates
is an interesting exercise (in fact, it is Exercise 10.11).

One problem with this approach is that, when a record is deleted, if we use
Alternative (2) for data entries, finding the corresponding data entry to delete
in the B+ tree index could be inefficient because we may have to check several
duplicate entries (key, rid) with the same key value. This problem can be
addressed by considering the rid value in the data entry to be part of the
search key, for purposes of positioning the data entry in the tree. This solution
effectively turns the index into a uniq71,e index (i.e" no duplicates), Remember
that a search key can be any sequence of fields in this variant, the rid of the
data record is essentially treated as another field while constructing the search
key.

Alternative (3) f'or data entries leads to a natural solution for duplicates, but if
we have a large number of duplicates, a single data entry could span multiple
pages. And of course, when a data record is deleted, finding the rid to delete
from the corresponding data entry can be inefficient, The solution to this
problem is similar to the one discussed previously for Alternative (2): vVe can
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maintain the list of rids within each data entry in sorted order (say, by page
number and then slot number if a rid consists of a page id and a slot id).

10.8 B+ TREES IN PRACTICE

In this section we discuss several important pragmatic issues.

10.8.1 Key Compression

The height of a B+ tree depends on the number of data entries and the size of
index entries. The size of index entries determines the number of index entries
that will fit on a page and, therefore, the fan-out of the tree. Since the height
of the tree is proportional to logfan-oud# of data entries), and the number of
disk l/Os to retrieve a data entry is equal to the height (unless some pages are
found in the buffer pool), it is clearly important to maximize the fan-out to
minimize the height.

An index entry contains a search key value and a page pointer. Hence the
size depends primarily on the size of the search key value. If search key
values are very long (for instance, the name Devarakonda Venkataramana
Sathyanarayana Seshasayee Yellamanchali Murthy, or Donaudampfschifffahrts­
kapitansanwiirtersmiitze), not many index entries will fit on a page: Fan-out is
low, and the height of the tree is large.

On the other hand, search key values in index entries are used only to direct
traffic to the appropriate leaf. When we want to locate data entries with a
given search key value, we compare this search key value with the search key
values of index entries (on a path from the root to the desired leaf). During
the comparison at an index-level node, we want to identify two index entries
with search key values kl and k2 such that the desired search key value k falls
between k1 and k2. To accomplish this, we need not store search key values in
their entirety in index entries.

For example, suppose we have two adjacent index entries in a node, with search
key values 'David Smith' and 'Devarakonda ... ' To discriminate between these
two values, it is sufficient to store the abbreviated forms 'Da' and 'De.' More
generally, the lneaning of the entry 'David Smith' in the B+ tree is that every
value in the subtree pointed to by the pointer to the left of 'David Smith' is less
than 'David Smith,' and every value in the subtree pointed to by the pointer
to the right of 'David Smith' is (greater than or equal to 'David Smith' and)
less than 'Devarakonda ... '
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B+ Trees in Real Systems: IBM DB2, Infol:mLx, Microsoft SQL Server,
Oracle 8, and Sybase ASE all support clustered ~d unclustered B+ tree
indexes, with some differences in how they handle deletions and duplicate
key values. In Sybase ASE, depending on the concurrency control schelne
being used for· the index, the deleted row is removed (with merging if
the page occupancy goes below threshold) or simply 111arkedas deleted; a
garbage collection scheme is used to recover space .. in th~ latter case, In
Oracle 8, deletions are handled by marking the row as deleted. 1'0 reclaim
the space occupied by deleted records, we can rebuild the index online (i.e.,
while users continue to use the index) or coalesce underfull pages (which
does not reduce tree height). Coalesce is in-place, rebuild creates a copy.
Informix handles deletions by simply marking records as deleted. DB2 and
SQL Server remove deleted records and merge pages when occupancy goes
below threshold.
Oracle 8 also allows records from multiple relations to be co-clustered on
the same page. The co-clustering can be based on a B+ tree search key or
static hashing and up to 32 relations can be stored together.

To ensure such semantics for an entry is preserved, while compressing the entry
with key 'David Smith,' we must examine the largest key value in the subtree to
the left of 'David Smith' and the smallest key value in the subtree to the right
of 'David Smith,' not just the index entries ('Daniel Lee' and 'Devarakonda
... ') that are its neighbors. This point is illustrated in Figure 10.21; the value
'Davey Jones' is greater than 'Dav,' and thus, 'David Smith' can be abbreviated
only to 'Davi,' not to 'Dav.'

000 Devarakonda ... 000

o 0 0

Figure 10.21 Example Illustrating Prefix Key Compression

000

This technique. called prefix key compression or simply key compres­
sion, is supported in many commercial implementations of B+ trees. It can
substantially increCL')e the fan-out of a tree. We do not discuss the details of
the insertion and deletion algorithms in the presence of key compression.
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10.8.2 Bulk-Loading a B+ Tree

Entries are added to a B+ tree in two ways. First, we may have an existing
collection of data records with a B+ tree index on it; whenever a record is
added to the collection, a corresponding entry must be added to the B+ tree
as well. (Of course, a similar comment applies to deletions.) Second, we may
have a collection of data records for which we want to create a B+ tree index
on some key field(s). In this situation, we can start with an empty tree and
insert an entry for each data record, one at a time, using the standard insertion
algorithm. However, this approach is likely to be quite expensive because each
entry requires us to start from the root and go down to the appropriate leaf
page. Even though the index-level pages are likely to stay in the buffer pool
between successive requests, the overhead is still considerable.

For this reason many systems provide a bulk-loading utility for creating a B+
tree index on an existing collection of data records. The first step is to sort
the data entries k* to be inserted into the (to be created) B+ tree according to
the search key k. (If the entries are key-pointer pairs, sorting them does not
mean sorting the data records that are pointed to, of course.) We use a running
example to illustrate the bulk-loading algorithm. We assume that each data
page can hold only two entries, and that each index page can hold two entries
and an additional pointer (i.e., the B+ tree is assumed to be of order d = 1).

After the data entries have been sorted, we allocate an empty page to serve as
the root and insert a pointer to the first page of (sorted) entries into it. We
illustrate this process in Figure 10.22, using a sample set of nine sorted pages
of data entries.

~!--==_~~~~"",L:-=o-s_c_,:_.te_d_p~a~g_e_s_()f_(_la_t_a_e_nt_rie_s~n~ot_Y_"_il_l_B_+_t_re_e~~_----,
ffi EEJ 110*~~ 112j~ 1

20*[221

Figure 10.22 Initial Step in B+ Tree Bulk-Loading

vVe then add one entry to the root page for each page of the sorted data entries.
The new entry consists of \ low key value on page, pointer' to page). vVe proceed
until the root page is full; see Figure 10.23.

To insert the entry for the next page of data entries, we must split the root and
create a new root page. vVe show this step in Figure 10.2/1.



Tr'ee-8iruci'ured Index'ing

Data entry pages not yet in B+ tree

Figure 10.23 Root Page Fills up in B+ Tree Bulk-Loading

Data entry pages Ilot yet ill B+ tree

Figure 10.24 Page Split during B+ 'fi'ee Bulk-Loading

361
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"We have redistributed the entries evenly between the two children of the root,
in anticipation of the fact that the B+ tree is likely to grow. Although it is
difficult (!) to illustrate these options when at most two entries fit on a page,
we could also have just left all the entries on the old page or filled up some
desired fraction of that page (say, 80 percent). These alternatives are simple
variants of the basic idea.

To continue with the bulk-loading example, entries for the leaf pages are always
inserted into the right-most index page just above the leaf level. 'When the right­
most index page above the leaf level fills up, it is split. This action may cause
a split of the right-most index page one step closer to the root, as illustrated
in Figures 10.25 and 10.26.

Data entry pages

not yet in B+ tree

Figure 10.25 Before Adding Entry for Leaf Page Containing 38*

Data entry pages

not yet in B+ tree
I

I
I

ITIf IT, fT ?'
r---.----'i

12113{j2 '122:J123*EJ ~5*136*~ '141 *1! f'*1 ]
Figure 10.26 After Adding Entry for Leaf Page Containing :38*
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Note that splits occur only on the right-most path from the root to the leaf
level. \Ve leave the completion of the bulk-loading example as a simple exercise.

Let us consider the cost of creating an index on an existing collection of records.
This operation consists of three steps: (1) creating the data entries to insert
in the index, (2) sorting the data entries, and (3) building the index from the
sorted entries. The first step involves scanning the records and writing out the
corresponding data entries; the cost is (R + E) I/Os, where R is the number of
pages containing records and E is the number of pages containing data entries.
Sorting is discussed in Chapter 13; you will see that the index entries can be
generated in sorted order at a cost of about 3E I/Os. These entries can then be
inserted into the index as they are generated, using the bulk-loading algorithm
discussed in this section. The cost of the third step, that is, inserting the entries
into the index, is then just the cost of writing out all index pages.

10.8.3 The Order Concept

We presented B+ trees using the parameter d to denote minimum occupancy. It
is worth noting that the concept of order (i.e., the parameter d), while useful for
teaching B+ tree concepts, must usually be relaxed in practice and replaced
by a physical space criterion; for example, that nodes must be kept at lea..c;t
half-full.

One reason for this is that leaf nodes and non-leaf nodes can usually hold
different numbers of entries. Recall that B+ tree nodes are disk pages and
non-leaf nodes contain only search keys and node pointers, while leaf nodes can
contain the actual data records. Obviously, the size of a data record is likely
to be quite a bit larger than the size of a search entry, so many more search
entries than records fit on a disk page.

A second reason for relaxing the order concept is that the search key may
contain a character string field (e.g., the name field of Students) whose size
varies from record to record; such a search key leads to variable-size data entries
and index entries, and the number of entries that will fit on a disk page becomes
variable.

Finally, even i{ the index is built on a fixed-size field, several records may still
have the same search key value (e.g., several Students records may have the
same gpa or name value). This situation can also lead to variable-size leaf entries
(if we use Alternative (3) for data entries). Because of all these complications,
the concept of order is typically replaced by a simple physical criterion (e.g.,
merge if possible when more than half of the space in the node is unused).
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10.8.4 The Effect of Inserts and Deletes on Rids

If the leaf pages contain data records-that is, the B+ tree is a clustered index­
then operations such as splits, merges, and redistributions can change rids.
Recall that a typical representation for a rid is some combination of (physical)
page number and slot number. This scheme allows us to move records within
a page if an appropriate page format is chosen but not across pages, as is the
case with operations such as splits. So unless rids are chosen to be independent
of page numbers, an operation such as split or merge in a clustered B+ tree
may require compensating updates to other indexes on the same data.

A similar comment holds for any dynamic clustered index, regardless of whether
it is tree-based or hash-based. Of course, the problem does not arise with
nonclustered indexes, because only index entries are moved around.

10.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• Why are tree-structured indexes good for searches, especially range selec­
tions? (Section 10.1)

• Describe how search, insert, and delete operations work in ISAM indexes.
Discuss the need for overflow pages, and their potential impact on perfor­
mance. What kinds of update workloads are ISAM indexes most vulnerable
to, and what kinds of workloads do they handle well? (Section 10.2)

• Only leaf pages are affected in updates in ISAM indexes. Discuss the
implications for locking and concurrent access. Compare ISAM and B+
trees in this regard. (Section 10.2.1)

• What are the main differences between ISAM and B+ tree indexes? (Sec­
tion 10.3)

• What is the order of a B+ tree? Describe the format of nodes in a B+
tree. Why are nodes at the leaf level linked? (Section 10.3)

• How rnany nodes must be examined for equality search in a B+ tree? How
many for a range selection? Compare this with ISAM. (Section 10.4)

• Describe the B+ tree insertion algorithm, and explain how it eliminates
overflow pages. Under what conditions can an insert increase the height of
the tree? (Section 10.5)

• During deletion, a node might go below the minimum occupancy threshold.
How is this handled? Under what conditions could a deletion decrease the
height of the tree? (Section 10.6)
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Figure 10.27 Tree for Exercise 10.1

• Why do duplicate search keys require modifications to the implementation
of the basic B+ tree operations? (Section 10.7)

• \Vhat is key compression, and why is it important? (Section 10.8.1)

• How can a new B+ tree index be efficiently constructed for a set of records?
Describe the bulk-loading algorithm. (Section 10.8.2)

• Discuss the impact of splits in clustered B+ tree indexes. (Section 10.8.4)

EXERCISES

Exercise 10.1 Consider the B+ tree index of order d = 2 shown in Figure 10.27.

1. Show the tree that would result from inserting a data entry with key 9 into this tree.

2. Show the B+ tree that would result from inserting a data entry with key 3 into the
original tree. How many page reads and page writes does the insertion require?

:3. Show the B+ tree that would result from deleting the data entry with key 8 from the
original tree, assuming that the left sibling is checked for possible redistribution.

4. Show the B+ tree that would result from deleting the data entry with key 8 from the
original tree, assuming that the right sibling is checked for possible redistribution.

5. Show the B+ tree that would result from starting with the original tree, inserting a data
entry with key 46 and then deleting the data entry with key 52.

6. Show the B+ tree that would result from deleting the data entry with key 91 from the
original tree.

7. Show the B+ tree that would result from starting with the original tree, inserting a data
entry with key 59, and then deleting the data entry with key 91.

8. Show the B+ tree that \vould result from successively deleting the data entries with keys
32, 39, 41, 45, and 73 from the original tree.

Exercise 10.2 Consider the B+ tree index shown in Figure 10.28, which uses Alternative
(1) for data entries. Each intermediate node can hold up to five pointers and four key values.
Each leaf can hold up to four records, and leaf nodes are doubly linked as usual, although
these links are not shown in the figure. Answer the following questions.

1. Name all the tree nodes that mllst be fetched to answer the following query: "Get all
records with search key greater than :38."
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Figure 10.28 Tree for Exercise 10.2

2. Insert a record with search key 109 into the tree.

3. Delete the record with search key 81 from the (original) tree.

4. Name a search key value such that inserting it into the (original) tree would cause an
increase in the height of the tree.

5. Note that subtrees A, B, and C are not fully specified. Nonetheless, what can you infer
about the contents and the shape of these trees?

6. How would your answers to the preceding questions change if this were an ISAM index?

7. Suppose that this is an ISAM index. What is the minimum number of insertions needed
to create a chain of three overflow pages?

Exercise 10.3 Answer the following questions:

1. What is the minimum space utilization for a B+ tree index?

2. What is the minimum space utilization for an ISAM index?

3. If your database system supported both a static and a dynamic tree index (say, ISAM and
B+ trees), would you ever consider using the static index in preference to the dynamic
index?

Exercise 10.4 Suppose that a page can contain at most four data values and that aU data
values are integers. Using only B+ trees of order 2, give examples of each of the following:

1. A B+ tree whose height changes from 2 to 3 when the value 25 is inserted. Show your
structure before and after the insertion.

2. A B+ tree in which the deletion of the value 25 leads to a redistribution. Show your
structure before and aft.er the deletion.

3. A B+ tree in which t.he delet.ion of the value 25 causes a merge of two nodes but without.
altering the height of the tree.

4. An ISAM structure with four buckets, none of which has an overflow page. Further,
every bucket has space for exactly one more entry. Show your structure before and aft.er
inserting t.wo additional values, chosen so that. an overflow page is created.
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Figure 10.29 Tree for Exercise 10.5

Exercise 10.5 Consider the B+ tree shown in Figure 10.29.

1. Identify a list of five data entries such that:

(a) Inserting the entries in the order shown and then deleting them in the opposite
order (e.g., insert a, insert b, delete b, delete a) results in the original tree.

(b) Inserting the entries in the order shown and then deleting them in the opposite
order (e.g., insert a, insert b, delete b, delete a) results in a different tree.

2. What is the minimum number of insertions of data entries with distinct keys that will
cause the height of the (original) tree to change from its current value (of 1) to 3?

3. Would the minimum number of insertions that will cause the original tree to increase to
height 3 change if you were allowed to insert duplicates (multiple data entries with the
same key), assuming that overflow pages are not used for handling duplicates?

Exercise 10.6 Answer Exercise 10.5 assuming that the tree is an ISAM tree! (Some of the
examples asked for may not exist-if so, explain briefly.)

Exercise 10.7 Suppose that you have a sorted file and want to construct a dense primary
B+ tree index on this file.

1. One way to accomplish this task is to scan the file, record by record, inserting each
one using the B+ tree insertion procedure. What performance and storage utilization
problems are there with this approach?

2. Explain how the bulk-loading algorithm described in the text improves upon this scheme.

Exercise 10.8 Assume that you have just built a dense B+ tree index using Alternative (2)
on a heap file containing 20,000 records. The key field for this B+ tree index is a 40-byte
string, and it is a candidate key. Pointers (Le., record ids and page ids) are (at most) 10­
byte values. The size of one disk page is 1000 bytes. The index wa9 built in a bottom-up
fashion using the bulk-loading algorithm, and the nodes at each level were filled up a..9 much
as possible.

1. Ho\v many levels does the resulting tree have?

2. For each level of the trec, how many nodes are at that level?

3. How many levels would the resulting tree have if key compression is llsed and it reduces
the average size of each key in an entry to 10 bytes?
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sid name login age gpa

CHAPTER to

53831 Maclayall maclayan@music 11 1.8
53832 Guldu guldu@music 12 3.8
53666 Jones jones(gcs 18 3.4
53901 Jones jones({'!Jtoy 18 3A
53902 Jones jones@physics 18 3.4
53903 Jones jones(Q)english 18 3.4
53904 Jones jones(ggenetics 18 3.4
53905 Jones jones@astro 18 3.4
53906 Jones jones@chem 18 3.4
53902 Jones jones(Qlsanitation 18 3.8
53688 Smith smith@ee 19 3.2
53650 Smith smith@math 19 3.8
54001 Smith smith@ee 19 3.5
54005 Smith smith@cs 19 3.8
54009 Smith smith@a.'3tro 19 2.2

Figure 10.30 An Instance of the Students Relation

4. How many levels would the resulting tree have without key compression but with all
pages 70 percent full?

Exercise 10.9 The algorithms for insertion and deletion into a B+ tree are presented as
recursive algorithms. In the code for inseTt, for instance, a call is made at the parent of a
node N to insert into (the subtree rooted at) node N, and when this call returns, the current
node is the parent of N. Thus, we do not maintain any 'parent pointers' in nodes of B+
tree. Such pointers are not part of the B+ tree structure for a good reason, as this exercise
demonstrates. An alternative approach that uses parent pointers--again, remember that such
pointers are not part of the standard B+ tree structure!-in each node appears to be simpler:

Search to the appropriate leaf using the search algorithm; then insert the entry and
split if necessary, with splits propagated to parents if necessary (using the parent
pointers to find the parents).

Consider this (unsatisfactory) <dternative approach:

I. Suppose that an internal node N is split into nodes Nand N2. What can you say about
the parent pointers in the children of the original node N?

2. Suggest two \\rays of dealing with the inconsistent parent pointers in the children of node
N.

3. For each of these suggestions, identify a potential (major) disadvantage.

4. \Vhat conclusions can you draw from this exercise?

Exercise 10.10 Consider the instance of the Students relation shown in Figure 10.30. Show
a B+ tree of order 2 in each of these cases, assuming that duplicates are handled using overflow
pages. Clearly indicate what the data entries are (i.e., do not use the k* convention).
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1. A B+ tree index on age using Alternative (1) for data entries.

2. A dense B+ tree index on gpa using Alternative (2) for data entries. For this question,
assume that these tuples are stored in a sorted file in the order shown in the figure: The
first tuple is in page 1, slot 1; the second tuple is in page 1, slot 2; and so on. Each page
can store up to three data records. You can use (page-id, slot) to identify a tuple.

Exercise 10.11 Suppose that duplicates are handled using the approach without overflow
pages discussed in Section 10.7. Describe an algorithm to search for the left-most occurrence
of a data entry with search key value K.

Exercise 10.12 Answer Exercise 10.10 assuming that duplicates are handled without using
overflow pages, using the alternative approach suggested in Section 9.7.

PROJECT-BASED EXERCISES

Exercise 10.13 Compare the public interfaces for heap files, B+ tree indexes, and linear
hashed indexes. What are the similarities and differences? Explain why these similarities and
differences exist.

Exercise 10.14 This exercise involves using Minibase to explore the earlier (non-project)
exercises further.

1. Create the trees shown in earlier exercises and visualize them using the B+ tree visualizer
in Minibase.

2. Verify your answers to exercises that require insertion and deletion of data entries by
doing the insertions and deletions in Minibase and looking at the resulting trees using
the visualizer.

Exercise 10.15 (Note to instructors: Additional details must be pT'Ovided if this cxer'Cise is
assigned; see Appendix 30.) Implement B+ trees on top of the lower-level code in Minibase.

BIBLIOGRAPHIC NOTES

The original version of the B+ tree was presented by Bayer and McCreight [69]. The B+
tree is described in [442] and [194]. B tree indexes for skewed data distributions are studied
in [260]. The VSAM indexing structure is described in [764]. Various tree structures for
supporting range queries are surveyed in [79]. An early paper on multiattribute search keys
is [498].

References for concurrent access to B+ trees are in the bibliography for Chapter 17.
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HASH-BASED INDEXING

... What is the intuition behind hash-structured indexes? Why are they
especially good for equality searches but useless for range selections?

... What is Extendible Hashing? How does it handle search, insert, and
delete?

... What is Linear Hashing? How does it handle search, insert, and
delete?

... What are the similarities and differences between Extendible and Lin­
ear Hashing?

Itt Key concepts: hash function, bucket, primary and overflow pages,
static versus dynamic hash indexes; Extendible Hashing, directory of
buckets, splitting a bucket, global and local depth, directory doubling,
collisions and overflow pages; Linear Hashing, rounds ofsplitting, fam­
ily of hash functions, overflow pages, choice of bucket to split and time
to split; relationship between Extendible Hashing's directory and Lin­
ear Hashing's family of hash functiolis, need for overflow pages in both
schemes in practice, use of a directory for Linear Hashing.

L.~~_~__
Not chaos-like, together crushed and bruised,

But, as the wo~ld harmoniously confused:
Where order in variety we see.

___ J

Alexander Pope, Windsor Forest

In this chapter we consider file organizations that are excellent for equality
selections. The basic idea is to use a hashing function, which maps values

370
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in a search field into a range of b'ucket numbers to find the page on which a
desired data entry belongs. \Ve use a simple scheme called Static Hashing to
introduce the idea. This scheme, like ISAM, suffers from the problem of long
overflow chains, which can affect performance. Two solutions to the problem
are presented. The Extendible Hashing scheme uses a directory to support
inserts and deletes efficiently with no overflow pages. The Linear Hashing
scheme uses a clever policy for creating new buckets and supports inserts and
deletes efficiently without the use of a directory. Although overflow pages are
used, the length of overflow chains is rarely more than two.

Hash-based indexing techniques cannot support range searches, unfortunately.
n'ee-based indexing techniques, discussed in Chapter 10, can support range
searches efficiently and are almost as good as ha...,h-based indexing for equality
selections. Thus, many commercial systems choose to support only tree-based
indexes. Nonetheless, hashing techniques prove to be very useful in imple­
menting relational operations such as joins, as we will see in Chapter 14. In
particular, the Index Nested Loops join method generates many equality se­
lection queries, and the difference in cost between a hash-based index and a
tree-based index can become significant in this context.

The rest of this chapter is organized as follows. Section 11.1 presents Static
Hashing. Like ISAM, its drawback is that performance degrades as the data
grows and shrinks. We discuss a dynamic hashing technique, called Extendible
Hashing, in Section 11.2 and another dynamic technique, called Linear Hashing,
in Section 11.3. vVe compare Extendible and Linear Hashing in Section 11.4.

11.1 STATIC HASHING

The Static Hashing scheme is illustrated in Figure 11.1. The pages containing
the data can be viewed as a collection of buckets, with one primary page
and possibly additional overflow pages per bucket. A file consists of buckets
a through N - 1, with one primary page per bucket initially. Buckets contain
data entTies, which can be any of the three alternatives discussed in Chapter
8.

To search for a data entry, we apply a hash function h to identify the bucket
to which it belongs and then search this bucket. To speed the search of a
bucket, we can maintain data entries in sorted order by search key value; in
this chapter, we do not sort entries, and the order of entries within a bucket
has no significance. To insert a data entry, we use the hash function to identify
the correct bucket and then put the data entry there. If there is no space for
this data entry, we allocate a new overflow page, put the data entry on this
page, and add the page to the overflow chain of the bucket. To delete a data
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h(key) mod N / ~-~-§=l~
// __ ~L~--.-J~· . -

~G\---I ...
,INd-
Primary bucket pages Overflow pages

Figure 11.1 Static Hashing
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entry, we use the hashing function to identify the correct bucket, locate the
data entry by searching the bucket, and then remove it. If this data entry is
the last in an overflow page, the overflow page is removed from the overflow
chain of the bucket and added to a list of free pages.

The hash function is an important component of the hashing approach. It must
distribute values in the domain of the search field uniformly over the collection
of buckets. If we have N buckets, numbered a through N ~ 1, a hash function
h of the form h(value) = (a * value + b) works well in practice. (The bucket
identified is h(value) mod N.) The constants a and b can be chosen to 'tune'
the hash function.

Since the number of buckets in a Static Hashing file is known when the file
is created, the primary pages can be stored on successive disk pages. Hence,
a search ideally requires just one disk I/O, and insert and delete operations
require two I/Os (read and write the page), although the cost could be higher
in the presence of overflow pages. As the file grows, long overflow chains can
develop. Since searching a bucket requires us to search (in general) all pages
in its overflow chain, it is easy to see how performance can deteriorate. By
initially keeping pages 80 percent full, we can avoid overflow pages if the file
does not grow too IIluch, but in general the only way to get rid of overflow
chains is to create a new file with more buckets.

The main problem with Static Hashing is that the number of buckets is fixed.
If a file shrinks greatly, a lot of space is wasted; more important, if a file grows
a lot, long overflow chains develop, resulting in poor performance. Therefore,
Static Hashing can be compared to the ISAM structure (Section 10.2), which
can also develop long overflow chains in case of insertions to the same leaf.
Static Hashing also has the same advantages as ISAM with respect to concur­
rent access (see Section 10.2.1).
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One simple alternative to Static Hashing is to periodically 'rehash' the file to
restore the ideal situation (no overflow chains, about 80 percent occupancy).
However, rehashing takes time and the index cannot be used while rehashing
is in progress. Another alternative is to use dynamic hashing techniques
such as Extendible and Linear Hashing, which deal with inserts and deletes
gracefully. vVe consider these techniques in the rest of this chapter.

11.1.1 Notation and Conventions

In the rest of this chapter, we use the following conventions. As in the previous
chapter, record with search key k, we denote the index data entry by k*. For
hash-based indexes, the first step in searching for, inserting, or deleting a data
entry with search key k is to apply a hash function h to k; we denote this
operation by h(k), and the value h(k) identifies the bucket for the data entry
h. Note that two different search keys can have the same hash value.

11.2 EXTENDIBLE HASHING

To understand Extendible Hashing, let us begin by considering a Static Hashing
file. If we have to insert a new data entry into a full bucket, we need to add
an overflow page. If we do not want to add overflow pages, one solution is
to reorganize the file at this point by doubling the number of buckets and
redistributing the entries across the new set of buckets. This solution suffers
from one major defect--the entire file has to be read, and twice (h') many pages
have to be written to achieve the reorganization. This problem, however, can
be overcome by a simple idea: Use a directory of pointers to bucket.s, and
double t.he size of the number of buckets by doubling just the directory and
splitting only the bucket that overflowed.

To understand the idea, consider the sample file shown in Figure 11.2. The
directory consists of an array of size 4, with each element being a point.er to
a bucket.. (The global depth and local depth fields are discussed shortly, ignore
them for now.) To locat.e a data entry, we apply a hash funct.ion to the search
field and take the last. 2 bit.s of its binary represent.ation t.o get. a number
between 0 and ~~. The pointer in this array position gives us t.he desired bucket.;
we assume that each bucket can hold four data ent.ries. Therefore, t.o locate a
data entry with hash value 5 (binary 101), we look at directory element 01 and
follow the pointer to the data page (bucket B in the figure).

To insert. a dat.a entry, we search to find the appropriate bucket.. For example,
to insert a data entry with hash value 13 (denoted as 13*), we examine directory
element 01 and go to the page containing data ent.ries 1*, 5*, and 21 *. Since
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BucketC

Bucket B

Bucket A
1f L~--L----i----4.,J.--'
~ Data entry r

with h(r)=32

00

01

10

11

LOCAL DEPTH~
GLOBAL DEPTH

DIRECTORY
Bucket D

DATA PAGES

Figure 11.2 Example of an Extendible Ha.~hed File

the page has space for an additional data entry, we are done after we insert the
entry (Figure 11.3).

LOCAL DEPTH~
GLOBAL DEPTH

00

01

10

11

DIRECTORY

Bucket A

Bucket B

Bucket C

BucketD

DATA PAGES

Figure 11.3 After Inserting Entry T with h(T) = 1:3

Next, let us consider insertion of a data entry into a full bucket. The essence
of the Extcndible Hashing idea lies in how we deal with this case. Consider the
insertion of data entry 20* (binary 10100). Looking at directory clement 00,
we arc led to bucket A, which is already full. We 111Ust first split the bucket
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by allocating a new bucket l and redistributing the contents (including the new
entry to be inserted) across the old bucket and its 'split image.' To redistribute
entries across the old bucket and its split image, we consider the last three bits
of h(T); the last two bits are 00, indicating a data entry that belongs to one of
these two buckets, and the third bit discriminates between these buckets. The
redistribution of entries is illustrated in Figure 11.4.

LOCAL DEPTH~:>

GLOBAL DEPTH

00

01

10

11

DIRECTORY Bucket D

Bucket A2 (split image of bucket A)

Figure 11.4 While Inserting Entry r with h(r}=20

Note a problem that we must now resolve""" ""we need three bits to discriminate
between two of our data pages (A and A2), but the directory has only enough
slots to store all two-bit patterns. The solution is to double the directory. El­
ements that differ only in the third bit from the end are said to 'correspond':
COT-r'esponding elements of the directory point to the same bucket with the
exception of the elements corresponding to the split bucket. In our example,
bucket awas split; so, new directory element 000 points to one of the split ver­
sions and new element 100 points to the other. The sample file after completing
all steps in the insertion of 20* is shown in Figure 11.5.

Therefore, doubling the file requires allocating a new bucket page, writing both
this page and the old bucket page that is being split, and doubling the directory
array. The directory is likely to be much smaller than the file itself because
each element is just a page-id, and can be doubled by simply copying it over

lSince there are 'no overflow pages in Extendible Hashing, a bucket can be thought of a.~ a single
page.
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LOCAL DEPTH~
GLOBAL DEPTH

000

001

010

011

100

101

110

111

CHAPTER 11

Bucket A

Bucket B

Bucket C

Bucket 0

DIRECTORY Bucket A2 (split image of bucket A)

Figure 11.5 After Inserting Entry r with h(r) = 20

(and adjusting the elements for the split buckets). The cost of doubling is now
quite acceptable.

We observe that the basic technique used in Extendible Hashing is to treat the
result of applying a hash function h a" a binary number and interpret the last d
bits, where d depends on the size of the directory, as an offset into the directory.
In our example, d is originally 2 because we only have four buckets; after the
split, d becomes 3 because we now have eight buckets. A corollary is that,
when distributing entries across a bucket and its split image, we should do so
on the basis of the dth bit. (Note how entries are redistributed in our example;
see Figure 11.5.) The number d, called the global depth of the hashed file, is
kept as part of the header of the file. It is used every time we need to locate a
data entry.

An important point that arises is whether splitting a bucket necessitates a
directory doubling. Consider our example, as shown in Figure 11.5. If we now
insert 9*, it belongs in bucket B; this bucket is already full. \Ve can deal with
this situation by splitting the bucket and using directory elements 001 and 10]
to point to the bucket and its split image, as shown in Figure 11.6.

Hence, a bucket split does not necessarily require a directory doubling. How­
ever, if either bucket A or A2 grows full and an insert then forces a bucket split,
we are forced to double the directory again.
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LOCAL DEPTH---L..-->

GLOBAL DEPTH

000

001

010

011

100

101

110

111

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket 0

Bucket A2 (split image of bucket A)

Bucket B2 (split image of bucket B)
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Figure 11.6 After Inserting Entry l' with h(r) = 9

To differentiate between these cases and determine whether a directory doubling
is needed, we maintain a local depth for each bucket. If a bucket whose local
depth is equal to the global depth is split, the directory must be doubled. Going
back to the example, when we inserted 9* into the index shown in Figure 11.5,
it belonged to bucket B with local depth 2, whereas the global depth was 3.
Even though the bucket was split, the directory did not have to be doubled.
Buckets A and A2, on the other hand, have local depth equal to the global
depth, and, if they grow full and are split, the directory must then be doubled.

Initially, all local depths are equal to the global depth (which is the number of
bits needed to express the total number of buckets). vVe increment the global
depth by 1 each time the directory doubles, of course. Also, whenever a bucket
is split (whether or not the split leads to a directory doubling), we increment
by 1 the local depth of the split bucket and assign this same (incremented)
local depth to its (newly created) split image. Intuitively, if a bucket has local
depth l, the hash values of data entries in it agree on the la.st l bits; further, no
data entry in any other bucket of the file has a hash value with the same last I
bits. A total of 2dl directory elernents point to a bucket with local depth I; if
d = l, exactly one directory element points to the bucket and splitting such a
bucket requires directory doubling.
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A final point to note is that we can also use the first d bits (the most significant
bits) instead of the last d (least s'ignificant bits), but in practice the last d bits
are used. The reason is that a directory can then be doubled simply by copying
it.

In summary, a data entry can be located by computing its hash value, taking
the last d bits, and looking in the bucket pointed to by this directory element.
For inserts, the data entry is placed in the bucket to which it belongs and the
bucket is split if necessary to make space. A bucket split leads to an increase in
the local depth and, if the local depth becomes greater than the global depth
as a result, to a directory doubling (and an increase in the global depth) as
well.

For deletes, the data entry is located and removed. If the delete leaves the
bucket empty, it can be merged with its split image, although this step is
often omitted in practice. Merging buckets decreases the local depth. If each
directory element points to the same bucket as its split image (i.e., 0 and 2d - 1

point to the same bucket, namely, A; 1 and 2d
- 1 + 1 point to the same bucket,

namely, B, which mayor may not be identical to A; etc.), we can halve the
directory and reduce the global depth, although this step is not necessary for
correctness.

The insertion examples can be worked out backwards as examples of deletion.
(Start with the structure shown after an insertion and delete the inserted ele­
ment. In each case the original structure should be the result.)

If the directory fits in memory, an equality selection can be answered in a
single disk access, as for Static Hashing (in the absence of overflow pages), but
otherwise, two disk I/Os are needed. As a typical example, a 100MB file with
100 bytes per data entry and a page size of 4KB contains 1 million data entries
and only about 25,000 elements in the directory. (Each page/bucket contains
roughly 40 data entries, and we have one directory element per bucket.) Thus,
although equality selections can be twice as slow as for Static Hashing files,
chances are high that the directory will fit in memory and performance is the
same as for Static Ha.<;hing files.

On the other hand, the directory grows in spurts and can become large for
skewed data distTibutions (where our assumption that data pages contain roughly
equal numbers of data entries is not valid). In the context of hashed files, in a
skewed data distribution the distribution of hash values of seaTch field values
(rather than the distribution of search field values themselves) is skewed (very
'bursty' or nonuniform). Even if the distribution of search values is skewed, the
choice of a good hashing function typically yields a fairly uniform distribution
of lw"sh va.lues; skew is therefore not a problem in practice.
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F\lrther, collisions, or data entries with the same hash value, cause a problem
and must be handled specially: \Vhen more data entries th311 \vill fit on a page
have the same hash value, we need overflow pages.

11.3 LINEAR HASHING

Linear Hashing is a dynamic hashing technique, like Extendible Hashing, ad­
justing gracefully to inserts and deletes. In contrast to Extendible Hashing,
it does not require a directory, deals naturally with collisions, and offers a lot
of flexibility with respect to the timing of bucket splits (allowing us to trade
off slightly greater overflow chains for higher average space utilization). If the
data distribution is very skewed, however, overflow chains could cause Linear
Hashing performance to be worse than that of Extendible Hashing.

The scheme utilizes a family of hash functions ha, hI, h2, ... , with the property
that each function's range is twice that of its predecessor. That is, if hi maps
a data entry into one of M buckets, h i+ I maps a data entry into one of 2lv!
buckets. Such a family is typically obtained by choosing a hash function hand
an initial number N ofbuckets,2 and defining hi(value) "'= h(value) mod (2 i N).
If N is chosen to be a power of 2, then we apply h and look at the last di bits;
do is the number of bits needed to represent N, and di = da + i. Typically we
choose h to be a function that maps a data entry to some integer. Suppose
that we set the initial number N of buckets to be 32. In this case do is 5, and
ha is therefore h mod 32, that is, a number in the range 0 to 31. The value of
d l is do + 1 = 6, and hI is h mod (2 * 32), that is, a number in the range 0 to
63. Then h2 yields a number in the range 0 to 127, and so OIl.

The idea is best understood in terms of rounds of splitting. During round
number Level, only hash functions hLeud and hLevel+1 are in use. The buckets
in the file at the beginning of the round are split, one by one from the first to
the last bucket, thereby doubling the number of buckets. At any given point
within a round, therefore, we have buckets that have been split, buckets that
are yet to be split, and buckets created by splits in this round, as illustrated in
Figure 11.7.

Consider how we search for a data entry with a given search key value. \Ve
apply ha..:sh function h Level , and if this leads us to one of the unsplit buckets,
we simply look there. If it leads us to one of the split buckets, the entry may
be there or it may have been moved to the new bucket created earlier in this
round by splitting this bucket; to determine which of the two buckets contains
the entry, we apply hLevel+I'

2Note that 0 to IV - 1 is not the range of fl.!
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Figure 11. 7 Buckets during a Round in Linear Hashing

Unlike Extendible Hashing, when an insert triggers a split, the bucket into
which the data entry is inserted is not necessarily the bucket that is split. An
overflow page is added to store the newly inserted data entry (which triggered
the split), as in Static Hashing. However, since the bucket to split is chosen
in round-robin fashion, eventually all buckets are split, thereby redistributing
the data entries in overflow chains before the chains get to be more than one
or two pages long.

We now describe Linear Hashing in more detail. A counter Level is used to
indicate the current round number and is initialized to O. The bucket to split
is denoted by Next and is initially bucket °(the first bucket). We denote the
number of buckets in the file at the beginning of round Level by N Level. We
can easily verify that N Level = N * 2Level. Let the number of buckets at the
beginning of round 0, denoted by No, be N. We show a small linear hashed
file in Figure 11.8. Each bucket can hold four data entries, and the file initially
contains four buckets, as shown in the figure.

We have considerable flexibility in how to trigger a split, thanks to the use of
overflow pages. We can split whenever a new overflow page is added, or we can
impose additional conditions based all conditions such as space utilization. For
our examples, a split is 'triggered' when inserting a new data entry causes the
creation of an Qverftow page.

\Vhenever a split is triggered the Next bucket is split, and hash function hLevel+l

redistributes entries between this bucket (say bucket number b) and its split
image; the split image is therefore bucket number b + NLeve/. After splitting a
bucket, the value of Next is incremented by 1. In the example file, insertion of
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Figure 11.8 Example of a Linear Hashed File

data entry 43* triggers a split. The file after completing the insertion is shown
in Figure 11.9.

Level=O

PRIMARY OVERFLOW
h 1 h O PAGES PAGES

000 00

~Next=1 -

001 01
"'~

010 10

~
011 11

100 00

Figure 11.9 After Inserting Record T with h(T) = 43

At any time in .the middle of a round Level, all buckets above bucket Ne:rt have
been split, and the file contains buckets that are their split images, as illustrated
in Figure 11.7. Buckets Next through NLevcl have not yet been split. If we use
hLevel on a data entry and obtain a number b in the range Next through NLevel,

the data entry belongs to bucket b. For example, ho(18) is 2 (binary 10); since
this value is between the current values of Ne:r:t (= 1) and N 1 (=,-:': 4), this bucket
has not been split. However, if we obtain a number b in the range 0 through
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Next, the data entry may be in this bucket or in its split image (which is bucket
number b+NLevet}; we have to use hLevel+1 to determine to which of these two
buckets the data entry belongs. In other words, we have to look at one more
bit of the data entry's hash value. For example, ho(32) and ho(44) are both a
(binary 00). Since Next is currently equal to 1, which indicates a bucket that
has been split, we have to apply hI' We have hI (32) = 0 (binary 000) and
h1(44) = 4 (binary 100). Therefore, 32 belongs in bucket A and 44 belongs in
its split image, bucket A2.

Not all insertions trigger a split, of course. If we insert 37* into the file shown
in Figure 11.9, the appropriate bucket has space for the new data entry. The
file after the insertion is shown in Figure 11.10.

Level=O

PRIMARY OVERFLOW
h1 ho PAGES PAGES

000 00

~Next=1 -

001 01 ~~

010 10

~
011 11

100 00 EEITl
Figure 11.10 After Inserting Record r with h(r) = 37

Sometimes the bucket pointed to by Next (the current candidate for splitting)
is full, and a new data entry should be inserted in this bucket. In this case, a
split is triggered, of course, but we do not need a new overflow bucket. This
situation is illustrated by inserting 29* into the file shown in Figure 11.10. The
result is shown in Figure 11.11.

When Next is equal to NLevel - 1 and a split is triggered, we split the last of
the buckets present in the file at the beginning of round Level. The number
of buckets after the split is twice the number at the beginning of the round,
and we start a new round with Level incremented by 1 and Next reset to O.
Incrementing Level amounts to doubling the effective range into which keys are
hashed. Consider the example file in Figure 11.12, which was obtained from the
file of Figure 11.11 by inserting 22*, 66*, and 34*. (The reader is encouraged to
try to work out the details of these insertions.) Inserting 50* causes a split that
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Figure 11.11 After Inserting Record r with h(r") = 29
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leads to incrementing Level, as discussed previously; the file after this insertion
is shown in Figure 11.13.

Level=O

PRIMARY
h 1 h O PAGES

000 00 ~C[l

001 01 ~[J=l

010 10

~Next=3

011 11 ~17'll1'1

100 00 ~J.:~lI{

101 01 EL~1i?I=]
~

110 10 ~
~

OVERFLOW

PAGES

Figure 11.12 After Inserting Records with h(r) = 22,66,and34

In summary, an equality selection costs just one disk I/O unless the bucket has
overflow pages; in practice, the cost on average is about 1.2 disk accesses for
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Level:1
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'---=--L_~_ i

100 00 [44'!3sTT-l
101 11

1..~13~J2::L~l

110 10 r-i4I30:@I1
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Figure 11.13 After Inserting Record r with h(r) = 50

reasonably uniform data distributions. (The cost can be considerably worse-­
linear in the number of data entries in the file----if the distribution is very skewed.
The space utilization is also very poor with skewed data distributions.) Inserts
require reading and writing a single page, unless a split is triggered.

'We not discuss deletion in detail, but it is essentially the inverse of insertion.
If the last bucket in the file is empty, it can be removed and Next can be
decremented. (If Next is 0 and the last bucket becomes empty, Next is made to
point to bucket (AI /2) ~ 1, where !vI is the current number of buckets, Level is
decremented, and the empty bucket is removed.) If we wish, we can combine the
last bucket with its split image even when it is not empty, using some criterion
to trigger this merging in essentially the same way. The criterion is typically
based on the occupancy of the file, and merging can be done to improve space
utilization.

11.4 EXTENDIBLE VS. LINEAR HASHING

To understand the relationship between Linear Hashing and Extendible Hash­
ing, imagine that we also have a directory in Linear Hashing with elements 0
to N - 1. The first split is at bucket 0, and so we add directory element N. In
principle, we may imagine that the entire directory has been doubled at this
point; however, because element 1 is the same as element N + 1, elernent 2 is
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the same a.'3 element N + 2, and so on, we can avoid the actual copying for
the rest of the directory. The second split occurs at bucket 1; now directory
element N + 1 becomes significant and is added. At the end of the round, all
the original N buckets are split, and the directory is doubled in size (because
all elements point to distinct buckets).

\Ve observe that the choice of hashing functions is actually very similar to
what goes on in Extendible Hashing---in effect, moving from hi to hi+1 in
Linear Hashing corresponds to doubling the directory in Extendible Hashing.
Both operations double the effective range into which key values are hashed;
but whereas the directory is doubled in a single step of Extendible Hashing,
moving from hi to hi+l, along with a corresponding doubling in the number
of buckets, occurs gradually over the course of a round in Linear Ha.'3hing.
The new idea behind Linear Ha.'3hing is that a directory can be avoided by a
clever choice of the bucket to split. On the other hand, by always splitting the
appropriate bucket, Extendible Hashing may lead to a reduced number of splits
and higher bucket occupancy.

The directory analogy is useful for understanding the ideas behind Extendible
and Linear Hashing. However, the directory structure can be avoided for Linear
Hashing (but not for Extendible Hashing) by allocating primary bucket pages
consecutively, which would allow us to locate the page for bucket i by a simple
offset calculation. For uniform distributions, this implementation of Linear
Hashing has a lower average cost for equality selections (because the directory
level is eliminated). For skewed distributions, this implementation could result
in any empty or nearly empty buckets, each of which is allocated at least one
page, leading to poor performance relative to Extendible Hashing, which is
likely to have higher bucket occupancy.

A different implementation of Linear Hashing, in which a directory is actually
maintained, offers the flexibility of not allocating one page per bucket; null
directory elements can be used as in Extendible Hashing. However, this imple­
mentation introduces the overhead of a directory level and could prove costly
for large, uniformly distributed files. (Also, although this implementation alle­
viates the potential problem of low bucket occupancy by not allocating pages
for empty buckets, it is not a complete solution because we can still have many
pages with very few entries.)

11.5 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.
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• How does a hash-ba..sed index handle an equality query? Discuss the use of
the hash function in identifying a bucket to search. Given a bucket number,
explain how the record is located on disk.

• Explain how insert and delete operations are handled in a static hash index.
Discuss how overflow pages are used, and their impact on performance.
How many disk l/Os does an equality search require, in the absence of
overflow chains? What kinds of workload does a static hash index handle
well, and when it is especially poor? (Section 11.1)

• How does Extendible Hashing use a directory of buckets? How does Ex­
tendible Hashing handle an equality query? How does it handle insert and
delete operations? Discuss the global depth of the index and local depth of
a bucket in your answer. Under what conditions can the directory can get
large? (Section 11.2)

• What are collisions? Why do we need overflow pages to handle them?
(Section 11.2)

• How does Linear Hashing avoid a directory? Discuss the round-robin split­
ting of buckets. Explain how the split bucket is chosen, and what triggers
a split. Explain the role of the family of hash functions, and the role of
the Level and Next counters. When does a round of splitting end? (Sec­
tion 11.3)

• Discuss the relationship between Extendible and Linear Hashing. What are
their relative merits? Consider space utilization for skewed distributions,
the use of overflow pages to handle collisions in Extendible Hashing, and
the use of a directory in Linear Hashing. (Section 11.4)

EXERCISES

Exercise 11.1 Consider the Extendible Hashing index shown in Figure 1l.14. Answer the
following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you know that
there have been no deletions from this index so far?

3. Suppose you are told that there have been no deletions from this index so far. What can
you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 68.

5. Show the original index after inserting entries with ha.sh values 17 and 69.

6. Show the original index after deleting the entry with hash value 21. (Assume that the
full deletion algorithm is used.)

7. Show the original index after deleting the entry with ha,,;h value 10. Is a merge triggered
by this deletion? If not, explain why. (Assume that the full deletion algorithm is used.)
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Figure 11.14 Figure for Exercise 11.1
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Figure 11.15 Figure for Exercise 11.2

Exercise 11.2 Consider the Linear Hashing index shown in Figure 11.15. Assume that we
split whenever an overflow page is created. Answer the following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you know that
there llave been no deletions from this index so far?

:t Suppose you know that there have been no deletions from this index so far. What can
you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 4.
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5, Show the original index after inserting an entry with hash value 15.

6. Show the original index after deleting the entries with hash values 36 and 44. (Assume
that the full deletion algorithm is used.)

7. Find a list of entries whose insertion into the original index would lead to a bucket with
two overflow pages. Use as few entries as possible t.o accomplish this. "Vhat is the
maximum number of entries that can be inserted into this bucket before a split occurs
that reduces the length of this overflow chain?

Exercise 11.3 Answer the following questions about Extendible Hashing:

1. Explain why local depth and global depth are needed.

2. After an insertion that causes the directory size to double, how many buckets have
exactly one directory entry pointing to them? If an entry is then deleted from one of
these buckets, what happens to the directory size? Explain your answers briefly.

3. Does Extendible I-lashing guarantee at most one disk access to retrieve a record with a
given key value?

4. If the hash function distributes data entries over the space of bucket numbers in a very
skewed (non-uniform) way, what can you say about the size of the directory? What can
you say about the space utilization in data pages (i.e., non-directory pages)?

5. Does doubling the directory require us to examine all buckets with local depth equal to
global depth?

6. Why is handling duplicate key values in Extendible Hashing harder than in ISAM?

Exercise 11.4 Answer the following questions about Linear Hashing:

1. How does Linear Hashing provide an average-case search cost of only slightly more than
one disk I/O, given that overflow buckets are part of its data structure?

2. Does Linear Hashing guarantee at most one disk access to retrieve a record with a given
key value?

3. If a Linear Hashing index using Alternative (1) for data entries contains N records, with
P records per page and an average storage utilization of 80 percent, what is the worst­
case cost for an equality search? Under what conditions would this cost be the actual
search cost?

4. If the hash function distributes data entries over the space of bucket numbers in a very
skew(,d (non-uniform) way, what can you say about thc space utilization in data pages?

Exercise 11.5 Give an example of when you would use each element (A or B) for each of
the following 'A versus B' pairs:

1. A hashed index using Alternative (1) versus heap file organization.

2. Extendible Hashing versus Linear Hashing.

3. Static Hashing versus Linear Hashing.

4. Static Hashing versus ISAIVI.

5. Linear Hashing versus B+ trees.

Exercise 11.6 Give examples of the following:

1. A Linear Hashing index and an Extendible Hashing index with the same data entries,
such that the Linear Hashing index has more pages.
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2. A Linear H&shing index and an Extendible Hashing index with the same data entries,
such that the Extendible Hashing index has more pages.

Exercise 11.7 Consider a relation R( [L, b, c, rf) containing 1 million records, where each page
of the relation holds 10 records. R is organized as a heap file with unclustered indexes, and
the records in R are randomly ordered. Assume that attribute a is a candidate key for R, with
values lying in the range 0 to 999,999. For each of the following queries, name the approach
that would most likely require the fewest l/Os for processing the query. The approaches to
consider follow:

• Scanning through the whole heap file for R.

• Using a B+ tree index on attribute R.a.

• Using a hash index on attribute R.a.

The queries are:

1. Find all R tuples.

2. Find all R tuples such that a < 50.

3. Find all R tuples such that a = 50.

4. Find all R tuples such that a > 50 and a < 100.

Exercise 11.8 How would your answers to Exercise 11.7 change if a is not a candidate key
for R? How would thcy change if we assume that records in R are sorted on a?

Exercise 11.9 Consider the snapshot of the Linear Hashing index shown in Figure 11.16.
Assume that a bucket split occurs whcnever an overflow page is created.

1. vVhat is the mll1:imwn number of data entries that call be inserted (given the best possible
distribution of keys) before you have to split a bucket? Explain very briefly.

2. Show the file after inserting a singlc record whose insertion causes a bucket split.
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3. (a) What is the minimum number of record insertions that will cause a split of all four
buckets? Explain very briefly.

(b) What is the value of Next after making these insertions?

(c) What can you say about the number of pages in the fourth bucket shown after this
series of record insertions?

Exercise 11.10 Consider the data entries in the Linear Hashing index for Exercise 11.9.

1. Show an Extendible Hashing index with the same data entries.

2. Answer the questions in Exercise 11.9 with respect to this index.

Exercise 11.11 In answering the following questions, assume that the full deletion algorithm
is used. Assume that merging is done when a bucket becomes empty.

1. Give an example of Extendible Hashing where deleting an entry reduces global depth.

2. Give an example of Linear Hashing in which deleting an entry decrements Next but leaves
Level unchanged. Show the file before and after the deletion.

3. Give an example of Linear Hashing in which deleting an entry decrements Level. Show
the file before and after the deletion.

4. Give an example of Extendible Hashing and a list of entries el, e2, e3 such that inserting
the entries in order leads to three splits and deleting them in the reverse order yields the
original index. If such an example does not exist, explain.

5. Give an example of a Linear Hashing index and a list of entries el, e2, e3 such that
inserting the entries in order leads to three splits and deleting them in the reverse order
yields the original index. If such an example does not exist, explain.

PROJECT-BASED EXERCISES

Exercise 11.12 (Note to inst1'7u:toTS: Additional details must be provided if this question is
assigned. See Appendi:c 30.) Implement Linear Hashing or Extendible Hashing in Minibase.

BIBLIOGRAPHIC NOTES

Hashing is discussed in detail in [442]. Extendible Hashing is proposed in [256]. Litwin
proposed Linear Hashing in [483]. A generalization of Linear Hashing for distributed envi~

ronments is described in [487]. There has been extensive research into hash-based indexing
techniques. Larson describes two variations of Linear Hashing in [469] and [470]. Ramakr­
ishna presents an analysis of hashing techniques in [607]. Hash functions that do not produce
bucket overflows are studied in [608]. Order-preserving hashing techniques are discussed in
[484] and [308] . Partitioned-hashing, in which each field is hashed to obtain some bits of
the bucket address, extends hashing for the case of queries in which equality conditions are
specified only for some of the key fields. This approach was proposed by Rivest [628] and is
discussed in [747]; a further development is described in [616].
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OVERVIEW OF QUERY

EVALUATION

.... What descriptive information does a DBMS store in its catalog?

.... What alternatives are considered for retrieving rows from a table?

.... ~Why does a DBMS implement several algorithms for each algebra
operation? What factors affect the relative performance of different
algorithms?

.... What are query evaluation plans and how are they represented?

.... Why is it important to find a good evaluation plan for a query? How
is this done in a relational DBMS?

.. Key concepts: catalog, system statistics; fundamental techniques,
indexing, iteration, and partitioning; access paths, matching indexes
and selection conditions; selection operator, indexes versus scans, im­
pact of clustering; projection operator, duplicate elimination; join op­
erator, index nested-loops join, sort-merge join; query evaluation plan;
materialization vs. pipelinining; iterator interface; query optimiza­
tion, algebra equivalences, plan enumeration; cost estimation

This very remarkable man, commends a most practical plan:
You can do what you want, if you don't think you can't,
So c1on't think you can't if you can.

~~~--~Charles Inge

In this chapter, we present an overview of how queries are evaluated in a rela­
tional DBMS. Vve begin with a discussion of how a DBMS describes the data

393
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that it manages, including tables and indexes, in Section 12.1. This descriptive
data, or metadata, stored in special tables called the system catalogs, is
used to find the best way to evaluate a query.

SQL queries are translated into an extended form of relational algebra, and
query evaluation plans are represented as trees of relational operators, along
with labels that identify the algorithm to use at each node. Thus, relational op­
erators serve as building blocks for evaluating queries, and the implementation
of these operators is carefully optimized for good performance. We introduce
operator evaluation in Section 12.2 and describe evaluation algorithms for var­
ious operators in Section 12.3.

In general, queries are composed of several operators, and the algorithms for
individual operators can be combined in many ways to evaluate a query. The
process of finding a good evaluation plan is called query optimization. We intro­
duce query optimization in Section 12.4. The basic task in query optimization,
which is to consider several alternative evaluation plans for a query, is moti­
vated through examples in Section 12.5. In Section 12.6, we describe the space
of plans considered by a typical relational optimizer.

The ideas are presented in sufficient detail to allow readers to understand
how current database systems evaluate typical queries. This chapter provides
the necessary background in query evaluation for the discussion of physical
database design and tuning in Chapter 20. Relational operator implementa­
tion and query optimization are discussed further in Chapters 13, 14, and 15;
this in-depth coverage describes how current systems are implemented.

We consider a number of example queries using the following schema:

Sailors(sid: integer, .mame: string, rating: integer, age: real)
Reserves(sid: integer, bid: integer, day: dates, marne: string)

We aSSUlne that each tuple of Reserves is 40 bytes long, that a page can hold
100 Reserves tuples, and that we have 1000 pages of such tuples. Similarly,
we assume that each tuple of Sailors is 50 bytes long, that a page can hold 80
Sailors tuples, and that we have 500 pages of such tuples.

12.1 THE SYSTEM CATALOG

\Ve can store a table using one of several alternative file structures, and we can
create one or more indexes -each stored as a file 011 every tal)le. Conversely,
in a relational DBMS, every file contains either the tuples in a table or the
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entries in an index. The collection of filE'-s corresponding to users' tables and
indexes represents the data in the databa.<;e.

A relational DBMS maintains information about every table and index that it
contains. The descriptive information is itself stored in a collection of special
tables called the catalog tables. An example of a catalog table is shown
in Figure 12.1. The catalog tables are also called the data dictionary, the
system catalog, or simply the catalog.

12.1.1 Information in the Catalog

Let us consider what is stored in the system catalog. At a minimum, we "have
system-wide information, such as the size of the buffer pool and the page size,
and the following information about individual tables, indexes, and views:

• For each table:

- Its table name, the file name (or some identifier), and the file structure
(e.g., heap file) of the file in which it is stored.

- The attribute name and type of each of its attributes.

- The index name of each index on the table.

- The integrity constmints (e.g., primary key and foreign key constraints)
on the table.

• For each index:

- The inde:I: name and the structure (e.g., B+ tree) of the index.

- The search key attributes.

• For each view:

- Its view name and definition.

In addition, statistics about tables and indexes are stored in the system catalogs
and updated periodically (not every time the underlying tables are modified).
The following information is commonly stored:

• Cardinality: The number of tuples NTaplcs(R) for each table R.

• Size: The number of pages NPages(R) for each table R.

• Index Cardinality: The number of distinct key values NKeys(I) for each
index I.

• Index Size: The nUluber of pages INPages(I) for each index I. (For a B+
tree index I, we take INPagcs to be the number of leaf pages.)
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• Index Height: The number of nonleaf levels IHe'ight(I) for each tree index
I.

• Index Range: The minimum present key value ILow(I) and the maximum
present key value INigh(I) for each index I.

vVe assume that the database architecture presented in Chapter 1 is used.
.Further, we assume that each file of records is implemented as a separate file of
pages. Other file organizations are possible, of course. For example, a page file
can contain pages that store records from more than one record file. If such a
file organization is used, additional statistics must be maintained, such as the
fraction of pages in a file that contain records from a given collection of records.

The catalogs also contain information about users, such as accounting infor­
mation and authorization information (e.g., Joe User can modify the Reserves
table but only read the Sailors table).

How Catalogs are Stored

An elegant aspect of a relational DBMS is that the system catalog is itself
a collection of tables. For example, we might store information about the
attributes of tables in a catalog table called Attribute_Cat:

Attribute_Cat( attLnatne: string, reLname: string,
type: string, position: integer)

Suppose that the database contains the two tables that we introduced at the
begining of this chapter:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Reserves(sid: integer, bid: integer, day: dates, mame: string)

Figure 12.1 shows the tuples in the Attribute_Cat table that describe the at-­
tributes of these two tables. Note that in addition to the tuples describing
Sailors and Reserves, other tuples (the first four listed) describe the four at­
tributes of the Attribute_Cat table itself[ These other tuples illustrate an im­
portant Point: the catalog tables describe all the tables in the database, includ­
ing the catalog tables themselves. When information about a table is needed,
it is obtained from the system catalog. Of course, at the implementation level,
whenever the DBMS needs to find the schema of a catalog table, the code
that retrieves this information must be handled specially. (Otherwise, the code
ha",> to retrieve this information from the catalog tables without, presumably,
knowing the schema of the catalog tables.)
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attT_narne rei ·.>./ ...·.i .·>ttJTJe:<>
attr_name Attribute_Cat string 1
reLname Attribute_Cat string 2

-_.-

type Attribute_Cat string 3
position Attribute_Cat integer 4
sid Sailors integer 1
sname Sailors string 2
rating Sailors integer 3
age Sailors real 4
sid Reserves integer 1
bid Reserves integer 2
day Reserves dates 3
rname Reserves string 4

Figure 12.1 An Instance of the Attribute_Cat Relation
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The fact that the system catalog is also a collection of tables is very useful. For
example, catalog tables can be queried just like any other table, using the query
language of the DBMS! Further, all the techniques available for implementing
and managing tables apply directly to catalog tables. The choice of catalog
tables and their schema..., is not unique and is made by the implementor of the
DBMS. Real systems vary in their catalog schema design, but the catalog is
always implemented as a collection of tables, and it essentially describes all the
data stored in the database. 1

12.2 INTRODUCTION TO OPERATOR EVALUATION

Several alternative algorithms are available for implementing each relational
operator, and for most operators no algorithm is universally superior. Several
factors influence which algorithm performs best, including the sizes of the tables
involved, existing indexes and sort orders, the size of the available buffer pool,
and the buffer replacement policy.

In this section, we describe some common techniques used in developing eval­
uation algorithms for relational operators, and introduce the concept of access
paths, which are the different ways in which rows of a table can be retrieved.

ISome systems may store additional information in a non-relational form. For example, a system
with a sophisticated query optimizer may maintain histograms or other statistical information about
the distribution of values in certain attributes of a table. \Ve can think of such information, when it.
is maintained, as a supplement to the catalog tables.
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12.2.1 Three Common Techniques

The algorithms for various relational operators actually have a lot in common.
A few simple techniques are used to develop algorithms for each operator:

III Indexing: If a selection or join condition is specified, use an index to
examine just the tuples that satisfy the condition.

III Iteration: Examine all tuples in an input table, one after the other. If
we need only a few fields from each tuple and there is an index whose key
contains all these fields, instead of examining data tuples, we can scan all
index data entries. (Scanning all data entries sequentially makes no use
of the index's ha.8h- or tree-based search structure; in a tree index, for
example, we would simply examine all leaf pages in sequence.)

III Partitioning: By partitioning tuples on a sort key, we can often decom­
pose an operation into a less expensive collection of operations on parti­
tions. Sorting and hashing are two commonly used partitioning techniques.

We discuss the role of indexing in Section 12.2.2. The iteration and partitioning
techniques are seen in Section 12.3.

12.2.2 Access Paths

An access path is a way of retrieving tuples from a table and consists of
either (1) a file scan or (2) an index plus a matching selection condition. Every
relational operator accepts one or more tables as input, and the access methods
used to retrieve tuples contribute significantly to the cost of the operator.

Consider a simple selection that is a conjunction of conditions of the form
attT op 'ualue, where op is one of the comparison operators <, ::;, =, =f., ~,

or >. Such selections are said to be in conjunctive normal form (CNF),
and each condition is called a conjunct.2 Intuitively, an index matches a
selection condition if the index can be used to retrieve just the tuples that
satis(y the condition.

III A hash index matches a CNF selection if there is a term of the form
attribute=1wJue in the selection for each attribute in the index's search key.

III A tree index matches a CNF selection if there is a term of the form
attTibute op value for each attribute in a prefLr of the index's search key.
((eL; and (a,b; are prefixes of key (a,b,e), but (a,e) and (b,e) are not.)

2We consider more complex selection conditions in Section 14.2.
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Note that op can be any comparison; it is not n:Btricted to he equality as
it is for matching selections on a h&"h index.

An index can match some subset of the conjuncts in a selection condition (in
CNP), even though it does not match the entire condition. \Ve refer to the
conjuncts that the index matches as the primary conjuncts in the selection.

The following examples illustrate access paths.

• If we have a hash index H on the search key Cmarne, bid,sirf) , we can
use the index to retrieve just the Sailors tuples that satisfy the condition
rnarne='Joe'l\ bid=5 1\ sid=3. The index matches the entire condition
77wme= 'Joe' 1\ bid=5 1\ sid= 3. On the other hand, if the selection con­
dition is rname= 'Joe' 1\ bid=5, or some condition on date, this index does
not match. That is, it cannot be used to retrieve just the tuples that satisfy
these conditions.

In contrast, if the index were a B+ tree, it would match both rname= 'Joe'
1\ bid=51\ 8id=3 and mame='Joe' 1\ bid=5. However, it would not match
bid=5 1\ sid=8 (since tuples are sorted primarily by rnarne).

• If we have an index (hash or tree) on the search key (bid,sid'; and the se­
lection condition 'rname= 'Joe' 1\ bid=5 1\ sid=3, we can use the index to
retrieve tuples that satisfy bid=51\ sid=3; these are the primary conjuncts.
The fraction of tuples that satisfy these conjuncts (and whether the index
is clustered) determines the number of pages that are retrieved. The ad­
ditional condition on Tna7ne must then be applied to each retrieved tuple
and will eliminate some of the retrieved tuples from the result.

1iI If we have an index on the search key (bid, si(~ and we also have a B+ tree
index on day, the selection condition day < 8/9/2002 1\ bid=5 1\ sid=3
offers us a choice. Both indexes match (part of) the selection condition,
and we can use either to retrieve Reserves tuples. \Vhichever index we use,
the conjuncts in the selection condition that are not matched by the index
(e.g., bid=51\ sid=3 if we use the B+ tree index on day) must be checked
for each retrieved tuple.

Selectivity of Access Paths

The selectivity of an access path is the number of pages retrieved (index pages
plus data pages) if we usc this access path to retrieve all desired tuples. If a
table contains an index that matches a given selection, there are at lea.st two
access paths: the index and a scan of the data file. Sometimes, of course, we
can scan the index itself (rather than scanning the data file or using the index
to probe the file), giving us a third ,'lccess path.
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The most selective access path is the one that retrieves the fewest pages;
using the most selective access path minimizes the cost of data retrieval. The
selectivity of an l:lCCeSS path depends on the primary conjuncts in the selection
condition (with respect to the index involved). Each conjunct acts as a filter
on the table. The fraction of tuples in the table that satisfy a given conjunct is
called the reduction factor. 'When there are several primary conjuncts, the
fraction of tuples that satisfy all of them can be approximated by the product
of their reduction factors; this effectively treats them as independent filters,
and while they may not actually be independent, the approximation is widely
used in practice.

Supose we have a hash index H on Sailors with search key (rname,bid,sid:), and
we are given the selection condition rname='Joe' 1\ bid=5 1\ sid=3. We can
use the index to retrieve tuples that satisfy all three conjuncts. The catalog
contains the number of distinct key values, N K eys(H), in the hash index, as
well as the number of pages, N Pages, in the Sailors table. The fraction of
pages satisfying the primary conjuncts is Npages(Sailors) . NI<e;s(H)'

If the index has search key (bid,sid:) , the primary conjuncts are bid=51\ sid=3.
If we know the number of distinct values in the bid column, we can estimate
the reduction factor for the first conjunct. This information is available in
the catalog if there is an index with bid as the search key; if not, optimizers
typically use a default value such as 1/10. Multiplying the reduction factors
for bid=5 and sid=3 gives us (under the simplifying independence assumption)
the fraction of tuples retrieved; if the index is clustered, this is also the fraction
of pages retrieved. If the index is not clustered, each retrieved tuple could be
on a different page. (Review Section 8.4 at this time.)

vVe estimate the reduction factor for a range condition such a.s day> 8/9/2002
by assuming that values in the column cLre uniformly distributed. If there is a
B t T 'th k d tl d t' ft' High(T) ~ value+ ree WI ey ay, 1e re uc IOn ac or IS H' ! (T) L· (T)'tg 1. - AJW

12.3 ALGORITHMS FOR RELATIONAL OPERATIONS

vVe now briefly discuss evaluation algorithms for the main relational operators.
~'hile the important idea.s are introduced here, a more in-depth treatment is
deferred to Chapter 14. As in Chapter 8, we consider only I/O costs and
mea.'mre I/O costs in terms of the number of page I/Os. In this chapter, we
use detailed examples to illustrate how to compute the cost of an algorithm.
Although we do not present rigorous cost formulas in this chapter, the reader
should be able to apply the underlying icleas to do cost calculations on other
similar examples.
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12.3.1 Selection

40)

The selection operation is a simple retrieval of tuples from a table, and its
implementation is essentially covered in our discussion of access paths. To
summarize, given a selection of the form erRattr op value(R), if there is no index
on R.attr, we have to scan R.

If one or more indexes on R match the selection, we can use the index to re­
trieve matching tuples, and apply any remaining selection conditions to further
restrict the result set. As an example, consider a selection of the form rname
< 'C%' on the Reserves table. Assuming that names are uniformly distributed
with respect to the initial letter, for simplicity, we estimate that roughly 10%
of Reserves tuples are in the result. This is a total of 10,000 tuples, or 100
pages. If we have a clustered B+ tree index on the rname field of Reserves, we
can retrieve the qualifying tuples with 100 l/Os (plus a few l/Os to traverse
from the root to the appropriate leaf page to start the scan). However, if the
index is unclustered , we could have up to 10,000 l/Os in the worst case, since
each tuple could cause us to read a page.

As a rule of thumb, it is probably cheaper to simply scan the entire table
(instead of using an unclustered index) if over 5% of the tuples are to be
retrieved.

Sec Section 14.1 for more details on implementation of selections.

12.3.2 Projection

The projection operation requires us to drop certain fields of the input, which
is easy to do. The expensive aspect of the operation is to ensure that no
duplicates appear in the result. For example, if we only want the sid and bid
fields from Reserves, we could have duplicates if a sailor has reserved a given
boat on several days.

If duplicates need not be eliminated (e.g., the DISTINCT keyword is not in­
cluded in the SELECT clause), projection consists of simply retrieving a subset
of fields from each tuple of the input table. This can be accomplished by simple
iteration on either the table or an index whose key contains all necessary fields.
(Note that we do not care whether the index is clustered, since the values we
want are in the data entries of the index itself!)

If we have to eliminate duplicates, we typically have to use partitioning. Sup­
pose we want to obtain (sid, bid') by projecting from Reserves. \Ve can partition
by (1) scanning H.eserves to obtain (sid, b'id'; pairs and (2) sorting these pairs
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using (s'id, bid) as the sort key. ""Ve can then scan the sorted pairs and easily
discard duplicates, which are now adjacent.

Sorting large disk-resident datasets is a very important operation in database
systems, and is discussed in Chapter 13. Sorting a table typically requires two
or three passes, each of which reads and writes the entire table.

The projection operation can be optimized by combining the initial scan of
Reserves with the scan in the first pass of sorting. Similarly, the scanning
of sorted pairs can be combined with the last pass of sorting. With such an
optimized implemention, projection with duplicate elimination requires (1) a
first pass in which the entire table is scanned, and only pairs (s'id, bid) are
written out, and (2) a final pass in which all pairs are scanned, but only one
copy of each pair is written out. In addition, there might be an intermediate
pass in which all pairs are read from and written to disk.

The availability of appropriate indexes can lead to less expensive plans than
sorting for duplicate elimination. If we have an index whose search key contains
all the fields retained by the projection, we can sort the data entries in the
index, rather than the data records themselves. If all the retained attributes
appear in a prefix of the search key for a clustered index, we can do even
better; we can simply retrieve data entries using the index, and duplicates are
easily detected since they are adjacent. These plans are further examples of~
'index-only evaluation strategies, which we discussed in Section 8.5.2.

See Section 14.3 for more details on implementation of projections.

12.3.3 Join

Joins are expensive operations and very common. Therefore, they have been
widely studied, and systems typically support several algorithms to carry out
joins.

Consider the join of Reserves and Sailors, with the join conclition Reserves.sid =
Sa'ilors.sid. Suppose that one of the tables, say Sailors, has an index on the
sid column. ""Ve can scan Reserves and, for each tuple, use the index to pTObe
Sailors for matGhing tuples. This approach is called index nested loops join.

Suppose that we have a ha.'3h-based index using Alternative (2) on the sid
attribute of Sailors and that it takes about 1.2 1/0s on average:J to retrieve
the appropriate page of the index. Since s'id is a key for Sailors, we have at

:IThis is a typical cost for hash-based indexes.
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most one matching tuple, Indeed, sid in Reserves is a foreign key referring
to Sailors, and therefore we have exactly one matching Sailors tuple for each
Reserves tuple, Let us consider the cost of scanning Reserves and using the
index to retrieve the matching Sailors tuple for each Reserves tuple, The cost of
scanning Reserves is 1000. There are 100 * 1000 tuples in Reserves. For each of
these tuples, retrieving the index page containing the rid of the matching Sailors
tuple costs 1.2 I/Os (on average); in addition, we have to retrieve the Sailors
page containing the qualifying tuple, Therefore, we have 100,000 * (1 + 1.2)
I/Os to retrieve matching Sailors tuples. The total cost is 221,000 I/Os. 4

If we do not have an index that matches the join condition on either table, we
cannot use index nested loops, In this case, we can sort both tables on the join
column, and then scan them to find matches. This is called sort-merge join..
Assuming that we can sort Reserves in two passes, and Sailors in two passes
as well, let us consider the cost of sort-merge join. Consider the join of the
tables Reserves and Sailors. Because we read and write Reserves in each pass,
the sorting cost is 2 * 2 * 1000 = 4000 I/Os. Similarly, we can sort Sailors at a
cost of 2 *2 *500 = 2000 I/Os. In addition, the second phase of the sort-merge
join algorithm requires an additional scan of both tables. Thus the total cost
is 4000 + 2000 + 1000 + 500 = 7500 I/Os.

Observe that the cost of sort-merge join, which does not require a pre-existing
index, is lower than the cost of index nested loops join, In addition, the result
of the sort-merge join is sorted on the join column(s). Other join algorithms
that do not rely on an existing index and are often cheaper than index nested
loops join are also known (block nested loops and hash joins; see Chapter 14).
Given this, why consider index nested loops at all?

Index nested loops has the nice property that it is incremental. The cost of our
example join is incremental in the number of Reserves tuples that we process.
Therefore, if some additional selection in the query allows us to consider only
a small subset of Reserves tuples, we can avoid computing the join of Reserves
and Sailors in its entirety. For instance, suppose that we only want the result
of the join for boat 101, and there are very few such reservations. for each
such Reserves tuple, we probe Sailors, and we are clone. If we use sort-merge
join, on the other hand, we have to scan the entire Sailors table at least once,
and the cost of this step alone is likely to be much higher than the entire cost
of index nested loops join.

Observe that the choice of index nested loops join is based on considering the
query as a whole, including the extra selection all Reserves, rather than just
-~~~~-~---~---

4 As an exercise, the reader should write formulas for the cost estimates in this example in terms
of the properties e.g.• NPages-of the tables and indexes involved.
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the join operation by itself. This leads us to our next topic, query optimization,
which is the process of finding a good plan for an entire query.

See Section 14.4 for more details.

12.3.4 Other Operations

A SQL query contains group-by and aggregation in addition to the basic re­
lational operations. Different query blocks can be combined with union, set­
difference, and set-intersection.

The expensive aspect of set operations such as union and intersection is du­
plicate elimination, just like for projection. The approach used to implement
projection is easily adapted for these operations a..s well. See Section 14.5 for
more details.

Group-by is typically implemented through sorting. Sometimes, the input table
has a tree index with a search key that matches the grouping attributes. In this
case, we can retrieve tuples using the index in the appropriate order without
an explicit sorting step. Aggregate operations are carried out using temporary
counters in main memory as tuples are retrieved. See Section 14.6 for more
details.

12.4 INTRODUCTION TO QUERY OPTIMIZATION

Query optimization is one of the most important tasks of a relational DBMS.
One of the strengths of relational query languages is the wide variety of ways in
which a user can express and thus the system can evaluate a query. Although
this flexibility makes it easy to write queries, good performance relies greatly
on the quality of the query optimizer···a given query can be evaluated in many
ways, and the difference in cost between the best and worst plans may be
several orders of magnitude. Realistically, we cannot exped to always find the
best plan, but we expect to consistently find a plan that is quite good.

A more detailed view of the query optimization and execution layer in the
DBMS architecture from Section 1.8 is shown in Figure 12.2. Queries are
parsed and then presented to a query optimizer, which is responsible for
identifying an efficient execution plan. The optimizer generates alternative
plans and chooses the plan wit.h the least estimated cost.

The space of plans considered by a typical relational query optimizer can be
understood by recognizing that a query is essentially treated as a a - Ii- CXJ

algebra c;r;prc88'lon, with the remaining operations (if any, in a given query)
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Figure 12.2 Query Parsing, Optimization, and Execution

CommercialOptimizers: Current relational DBMS optimizers are very
complex pieces of software with many closely guarded details, and they
typically represent 40 to 50 man-years of development effort!

carried out on the result of the (J" - 7f- [Xl expression. Optimizing such a
relational algebra expression involves two basic steps:

• Enumerating alternative plans for evaluating the expression. Typically, an
optimizer considers a subset of all possible plans because the number of
possible plans is very large.

• Estimating the cost of each enumerated plan and choosing the plan with
the lowest estimated cost.

In this section we lay the foundation for our discussion of query optimization
by introducing evaluation plans.

12.4.1 Query Evaluation Plans

A query evaluation plan (or simply plan) consists of an extended relational
algebra tree, with additional annotations at each node indicating the access
methods to use for each table and the implementation method to use for each
relational operator.

Consider the following SQL query:
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SELECT
FROM
WHERE

S.sname
Reserves R, Sailors S
R.sid = S.sid
AND R.bid = 100 AND S.rating > 5

CHAPTERi2

This query can be expressed in relational algebra as follows:

7fsname (O'bid=100/\mting>5 (ReservesMsid=sidSailor s))

This expression is shown in the form of a tree in Figure 12.3. The algebra
expression partially specifies how to evaluate the query-owe first compute the
natural join of Reserves and Sailors, then perform the selections, and finally
project the snarne field.

ITsname

I

0- bid=100 A rating> 5

I

Reserves Sailors

Figure 12.3 Query Expressed as a Relational Algebra Tree

To obtain a fully specified evaluation plan, we must decide on an implemen­
tation for each of the algebra operations involved. }or example, we can use
a page-oriented simple nested loops join with Reserves as the outer table and
apply selections and projections to each tuple in the result of the join as it is
produced; the result of the join before the selections and projections is never
stored in its entirety. This query evaluation plan is shown in Figure 12.4.

ITsname (Orl-/he-}7y)

I

I

O' bid=100 A rating> 5 (Oll-Ihe-fly)

[><.::J (Simple IIcslcd loops)

sid=sid

//~/

(File SCOII) Reserves Sailors (File ,,'um)

Figure 12.4 Query Evaluation Plan for Sample Query
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In drawing the query evaluation plan, we have used the convention that the
outer table is the left child of the join operator. vVe adopt this convention
henceforth.

12.4.2 Multi-operator Queries: Pipelined Evaluation

When a query is composed of several operators, the result of one operator is
sometimes pipelined to another operator without creating a temporary table
to hold the intermediate result. The plan in Figure 12.4 pipelines the output of
the join of Sailors and Reserves into the selections and projections that follow.
Pipelining the output of an operator into the next operator saves the cost of
writing out the intermediate result and reading it back in, and the cost sav­
ings can be significant. If the output of an operator is saved in a temporary
table for processing by the next operator, we say that the tuples are material­
ized. Pipelined evaluation has lower overhead costs than materialization and
is chosen whenever the algorithm for the operator evaluation permits it.

There are many opportunities for pipelining in typical query plans, even simple
plans that involve only selections.. Consider a selection query in which only
part of the selection condition matches an index. We can think of such a query
as containing two instances of the selection operator: The first contains the
primary, or matching, part of the original selection condition, and the second
contains the rest of the selection condition. We can evaluate such a query
by applying the primary selection and writing the result to a temporary table
and then applying the second selection to the temporary table. In contrast,
a pipelined evaluation consists of applying the second selection to each tuple
in the result of the primary selection as it is produced and adding tuples that
qualify to the final result. When the input table to a unary operator (e.g.,
selection or projection) is pipelined into it, we sometimes say that the operator
is applied on-the-fly.

As a second and more general example, consider a join of the form (A CXJ B) 1><1

C, shown in Figure 12.5 &'3 a tree of join operations.

Result tuples
of first join
pipelined into
join with C

Figure 12.5 A Query Tree Illustrating Pipelilling
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Both joins can be evaluated in pipelined fa.<;hion using some version of a nested
loops join. Conceptually, the evaluation is initiated from the root, and the node
joining A and B produces tuples as and when they are requested by its parent
node. 'When the root node gets a page of tuples from its left child (the outer
table), all the matching inner tuples are retrieved (using either an index or a
scan) and joined with matching outer tuples; the current page of outer tuples
is then discarded. A request is then made to the left child for the next page
of tuples, and the process is repeated. Pipelined evaluation is thus a control
strategy governing the rate at which different joins in the plan proceed. It has
the great virtue of not writing the result of intermediate joins to a temporary
file because the results are produced, consumed, and discarded one page at a
time.

12.4.3 The Iterator Interface

A query evaluation plan is a tree of relational operators and is executed by
calling the operators in some (possibly interleaved) order. Each operator has
one or more inputs and an output, which are also nodes in the plan, and tuples
must be pa.<;sed between operators according to the plan's tree structure.

To simplify the code responsible for coordinating the execution of a plan, the
relational operators that form the nodes of a plan tree (which is to be evaluated
using pipelining) typically support a uniform iterator interface, hiding the
internal implementation details of each operator. The iterator interface for
an operator includes the functions open, geLnext, and close. The open
function initializes the state of the iterator by allocating buffers for its inputs
and output, and is also used to pa.."s in arguments such ac; selection conditions
that modify the behavior of the operator. The code for the get-next function
calls the get-next function on each input node and calls operator-specific code
to process the input tuples. The output tuples generated by the processing
are placed in the output buffer of the operator, and the state of the iterator is
updated to keep track of how much input hac; been consumed. \i\1hen all output
tuples have been produced through repeated calls to get-ne:rt, the close function
is called (by the code that initiated execution of this operator) to deallocate
state information.

The iterator interface supports pipelining of results naturally: the decision to
pipeline or mat(~rialize input tuples is encapsulated in the operator-specific code
that processes input tuples. If the algorithm implemented for the operator
allows input tuples to be processed completely when they are received, input
tuples are not Inaterialized and the evaluation is pipelined. If the algorithm
examines the same input tuples several times, they are materialized. This
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decision, like other details of the operator's implementation, is hidden by the
iterator interface for the operator.

The iterator interface is also used to encapsulate access methods such as B+
trees and hash-ba."ied indexes. Externally, access methods can be viewed simply
as operators that produce a stream of output tuples. In this case, the open
function can be used to pass the selection conditions that match the access
path.

12.5 ALTERNATIVE PLANS: A MOTIVATING EXAMPLE

Consider the example query from Section 12.4. Let us consider the cost of
evaluating the plan shown in Figure 12.4. We ignore the cost of writing out
the final result since this is common to all algorithms, and does not affect
their relative costs. The cost of the join is 1000 + 1000 * 500 = 501,000 page
l/Os. The selections and the projection are done on-the-fly and do not incur
additional l/Os. The total cost of this plan is therefore 501,000 page l/Os.
This plan is admittedly naive; however, it is possible to be even more naive by
treating the join as a cross-product followed by a selection.

vVe now consider several alternative plans for evaluating this query. Each al­
ternative improves on the original plan in a different way and introduces some
optimization idea.<; that are examined in more detail in the rest of this chapter.

12.5.1 Pushing Selections

A join is a relatively expensive operation, and a good heuristic is to reduce
the sizes of the tables to be joined as much as possible. One approach is to
apply selections early; if a selection operator appears after a join operator, it is
worth examining whether the selection can be 'pushed' ahead of the join. As
an example, the selection bid=1()(} involves only the attributes of Reserves and
can be applied to Reserves befoTe the join. Similarly, the selection mting> 5
involves only attributes of Sailors and can be applied to Sailors before the join.
Let us suppose that the selections are performed using a simple file scan, that
the result of each selection is written to a temporary table on disk, and that
the temporary tables are then joined using a sort-merge join. The resulting
query evaluation plan is shown in Figure 12.6.

Let us assume that five buffer pages are available and estimate the cost of
this query evaluation plan. (It is likely that more buffer pages are available
in practice. vVe chose a small number simply for illustration in this example.)
The cost of applying bid=100 to Reserves is the cost of scanning Reserves
(1000 pages) plus the cost of writing the result to a temporary table, say Tl.
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TTsname (On-the-fly)

C><J (Sort-merge join)

sid=sid

(Scan;
U bid=100 Urating > 5

(Scan;
write to write to
temp Tl)

I I
temp 12)

File scan Reserves Sailors File scan

Figure 12.6 A Second Query Evaluation Plan

CHAPTER J2

(Note that the cost of writing the temporary table cannot be ignored-we can
ignore only the cost of writing out the final result of the query, which is the
only component of the cost that is the same for· all plans.) To estimate the
size of Tl, we require additional information. For example, if we assume that
the maximum number of reservations of a given boat is one, just one tuple
appears in the result. Alternatively, if we know that there are 100 boats, we
can assume that reservations are spread out uniformly across all boats and
estimate the number of pages in Tl to be 10. For concreteness, assume that
the number of pages in Tl is indeed 10.

The cost of applying rating > 5 to Sailors is the cost of scanning Sailors (500
pages) plus the cost of writing out the result to a temporary table, say, T2. If
we assume that ratings are uniformly distributed over the range 1 to 10, we
can approximately estimate the size of T2 as 250 pages.

To do a sort-merge join of Tl and T2, let us assume that a straightforward
implementation is used in which the two tables are first completely sorted and
then merged. Since five buffer pages are available, we C8Jl sort Tl (which ha..s
10 pages) in two pa..'3ses. Two runs of five pages each are produced in the first
pass and these are merged in the second pass. In each pass, we read and write
10 pages; thus, the cost of sorting Tl is 2 * 2 * 10 = 40 page l/Os. We need
four pa..'3ses to sort T2, which ha..s 250 pages. The cost is 2 * 4 * 250 = 2000
page l/Os. To, merge the sorted versions of Tl and T2, we need to scan these
tables, and the cost of this step is 10 + 250 = 260. The final projection is done
on-the-fly, and by convention we ignore the cost of writing the final result.

The total cost of the plan shown in Figure 12.6 is the sum of the cost of the
selection (1000+10+500+250 = 1760) and the cost of the join (40+2000+260 =
23(0), that is, 4060 page l/Os.
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Sort-merge join is one of several join methods. \Ve may be able to reduce the
cost of this plan by choosing a different join method. As an alternative, suppose
that \ve used block nested loops join instead of sort-merge join.. Using T1 as
the outer table, for every three-page block of T1, we scan all of T2; thus, we
scan T2 four times. The cost of the join is therefore the cost of scanning T1
(10) plus the cost of scanning T2 (4 * 250 = 1000). The cost of the plan is now
1760 + 1010 = 2770 page I/Os.

A further refinement is to push the projection, just like we pushed the selec­
tions past the join. Observe that only the sid attribute of T1 and the sid and
sname attributes of T2 are really required. As we scan Reserves and Sailors to
do the selections, we could also eliminate unwanted columns. This on-the-fly
projection reduces the sizes of the temporary tables T1 and T2. The reduction
in the size of T1 is substantial because only an integer field is retained. In fact,
T1 now fits within three buffer pages, and we can perform a block nested loops
join with a single scan of T2. The cost of the join step drops to under 250 page
I/Os, and the total cost of the plan drops to about 2000 I/Os.

12.5.2 Using Indexes

If indexes are available on the Reserves and Sailors tables, even better query
evaluation plans may be available. For example, suppose that we have a clus­
tered static hash index on the bid field of Reserves and another hash index on
the sid field of Sailors. We can then use the query evaluation plan shown in
Figure 12.7.

(Use hash
index; do
not write
result 10

Temp)

Hash index on bid

ITsname

(Jrating > 5

sid=sid

I
Reserves

(Oil-the-fly)

(OIl-the-f1y)

(Illdex Ilested loops.
with pipelilling )

Sailors Hash illdex all sid

Figure 12.7 A Query Evaluation Plan Using Indexes

The selection bid.=100 is performed on Reserves by using the hash index on
bid to retrieve only matching tuples. As before, if we know that 100 boats are
available and assume that reservations are spread out uniformly across all boats,
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\ve can estimate the number of selected tuples to be 100, 000/100 = lOOO. Since
the index on b'id is clustered, these 1000 tuples appear consecutively within the
same bucket; therefore, the cost is 10 page l/Os.

:For each selected tuple, we retrieve matching Sailors tuples using the hash index
on the sid field; selected Reserves tuples are not materialized and the join is
pipelined. For each tuple in the result of the join, we perform the selection
mting>5 and the projection of sname on-the-fly. There are several important
points to note here:

1. Since the result of the selection on Reserves is not materialized, the opti­
mization of projecting out fields that are not needed subsequently is un­
necessary (and is not used in the plan shown in Figure 12.7).

2. The join field sid is a key for Sailors. Therefore, at most one Sailors tuple
matches a given Reserves tuple. The cost of retrieving this matching tuple
depends on whether the directory of the hash index on the sid column of
Sailors fits in memory and on the presence of overflow pages (if any). How­
ever, the cost does not depend on whether this index is clustered because
there is at most one matching Sailors tuple and requests for Sailors tuples
are made in random order by sid (because Reserves tuples are retrieved by
bid and are therefore considered in random order by sid). For a hash index,
1.2 page l/Os (on average) is a good estimate of the cost for retrieving a
data entry. Assuming that the sid hash index on Sailors uses Alternative
(1) for data entries, 1.2 l/Os is the cost to retrieve a matching Sailors tu­
ple (and if one of the other two alternatives is used, the cost would be 2,2
l/Os).

3. vVe have chosen not to push the selection mt'ing>5 ahead of the join, and
there is an important reason for this decision. If we performed the selection
before the join, the selection would involve scanning Sailors, assuming that
no index is available on the mt'ing field of Sailors. Further, whether or
not such an index is available, once we apply such a selection, we have
no index on the sid field of the result of the selection (unless we choose
to build such an index solely for the sake of the subsequent join). Thus,
pushing selections ahead of joins is a good heuristic, but not always the
best strategy. Typically, as in this example, the existence of useful indexes
is the reason a selection is not pushed. (Otherwise, selections are pushed.)

Let us estimate the cost of the plan shown in Figure 12.7. The selection of
Reserves tuples costs 10 l/Os, as we saw earlier. There are 1000 such tuples,
and for each, the cost of finding the matching Sailors tuple is 1.2 l/Os, on
average. The cost of this step (the join) is therefore 1200 l/Os. All remaining
selections and projections are performed on~the-fly. The total cost of the plan
is 1210 l/Os.
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As noted earlier, this plan does not utilize clustering of the Sailors index. The
plan can be further refined if the index on the sid field of Sailors is clustered.
Suppose we materialize the result of performing the selection bid=100 on Re­
serves and sort this temporary table. This table contains 10 pages. Selecting
the tuples costs 10 page l/Os (as before), writing out the result to a temporary
table costs another 10 l/Os, and with five buffer pages, sorting this temporary
costs 2 * 2 * 10 = 40 l/Os. (The cost of this step is reduced if we push the
projection on sid. The sid column of materialized Reserves tuples requires only
three pages and can be sorted in memory with five buffer pages.) The selected
Reserves tuples can now be retrieved in order by 8'id.

If a sailor has reserved the same boat many times, all corresponding Reserves
tuples are now retrieved consecutively; the matching Sailors tuple will be found
in the bufFer pool on all but the first request for it. This improved plan also
demonstrates that pipelining is not always the best strategy.

The combination of pushing selections and using indexes illustrated by this
plan is very powerful. If the selected tuples from the outer table join with a
single inner tuple, the join operation may become trivial, and the performance
gains with respect to the naive plan in Figure 12.6 are even more dramatic.
The following variant of our example query illustrates this situation:

SELECT
FROM
WHERE

S.sname
Reserves R, Sailors S
Rsid = S.sid
AND R.bid = 100 AND S.rating > G
AND Rday = '8/9/2002'

A slight variant of the plan shown in Figure 12.7, designed to answer this query,
is shown in Figure 12.8. The selection day='8/9/2002' is applied on-the-fly to
the result of the selection bid=100 on the Reserves table.

Suppose that bid and day form a key for Reserves. (Note that this assumption
differs from the schema presented earlier in this chapter.) Let us estimate the
cost of the plan shown in Figure 12.8. The selection bid=100 costs 10 page
l/Os, as before, and the additional selection day='8j.9/2002' is applied on-the­
fly, eliminating all but (at most) one Reserves tuple. There is at most one
rnatching Sailors tuple, and this is retrieved in 1.2 l/Os (an average value).
The selection on rrding and the projection on sname are then applied on-the­
fly at no additional cost. The total cost of the plan in Figure 12.8 is thus about
11 I/Os. In contrast, if we modify the naive plan in Figure 12.6 to perform
the additional selection on day together with the selection bid=100, the cost
remains at 501,000 l/Os.
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(On·the-fly)
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f10twrite
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I
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Hash illdex 011 bid Reserves

Figure 12.8 A Query Evaluation Plan for the Second Example

12.6 WHAT A TYPICAL OPTIMIZER DOES

A relational query optimizer uses relational algebra equivalences to identify
many equivalent expressions for a given query. For each such equivalent ver­
sion of the query, all available implementation techniques are considered for the
relational operators involved, thereby generating several alternative queryeval­
uation plans. The optimizer estimates the cost of each such plan and chooses
the one with the lowest estimated cost.

12.6.1 Alternative Plans Considered

Two relational algebra expressions over the same set of input tables are said
to be equivalent if they produce the same result on all instances of the in­
put tables. Relational algebra equivalences playa central role in identifying
alternative plans.

Consider a basic SQL query consisting of a SELECT clause, a FROM clause, and
a WHERE clause, This is easily represented as an algebra expression; the fields
mentioned in the SELECT are projected from the cross-product of tables in
the FROM clause, after applying the selections in the WHERE clause. The use
of equivalences enable us to convert this initial representation into equivalent
expressions. In particular:

• Selections and cross-products can be combined into joins.

• Joins can be extensively reordered.
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• Selections and projections, which reduce the size of the input, can be
"pushed" ahead of joins.

The query discussed in Section 12.5 illustrates these points; pushing the selec­
tion in that query ahead of the join yielded a dramatically better evaluation
plan. \Ve discuss relational algebra equivalences in detail in Section 15.3.

Left-Deep Plans

Consider a query of the form A [Xl B [Xl C [Xl D; that is, the natural join of
four tables. Three relational algebra operator trees that are equivalent to this
query (based on algebra equivalences) are shown in Figure 12.9. By convention,
the left child of a join node is the outer table and the right child is the inner
table. By adding details such as the join method for each join node, it is
straightforward to obtain several query evaluation plans from these trees.

C><J

/~
C><J D

/~
C><J c

/~
A B

C><J

/~
I><J I><J

/~ /~
ABC D

Figure 12.9 Three Join Trees

The first two trees in Figure 12.9 are examples of linear trees. In a linear tree,
at least one child of a join node is a base table. The first tree is an example of
a left-deep tree-the right child of each join node is a base table. The third
tree is an example of a non-linear or bushy tree.

Optimizers typically use a dynamic-programming approach (see Section 15.4.2)
to efficiently search the class of aU left-deep plans. The second and third kinds
of trees are therefore never considered. Intuitively, the first tree represents a
plan in which we join A and B first, then join the result with C, then join
the result with D. There are 2~35 other left-deep plans that differ only in the
order that tables are joined. If any of these plans has selection and projection
conditions other than the joins themselves, these conditions are applied as early
as possible (consitent with algebra equivalences) given the choice of a join order
for the tables.

Of course, this decision rules out many alternative plans that may cost less
than the best plan using a left-deep tree; we have to live with the fact that

"The reader should think through the number 2:3 in this example.



416 CHAPTER ,12

the optimizer will never find such plans. There are two main reasons for this
decision to concentrate on left-deep plans, or plans ba.<;ed on left-deep trees:

1. As the number of joins increases, the number of alternative plans increa..:.;es
rapidly and it becomes necessary to prune the space of alternat.ive plans.

2. Left-deep trees allow us to generate all fully pipelined plans; that is,
plans in which all joins are evaluated using pipelining. (Inner tables must
always be materialized because we must examine the entire inner table for
each tuple of the outer table. So, a plan in which an inner table is the
result of a join forces us to materialize the result of that join.)

12.6.2 Estimating the Cost of a Plan

The cost of a plan is the sum of costs for the operators it contains. The cost
of individual relational operators in the plan is estimated using information,
obtained from the system catalog, about properties (e.g., size, sort order) of
their input tables. We illustrated how to estimate the cost of single-operator
plans in Sections 12.2 and 12.3, and how to estimate the cost of multi-operator
plans in Section 12.5.

If we focus on the metric of I/O costs, the cost of a plan can be broken down
into three parts: (1) reading the input tables (possibly rnultiple times in the
case of some join and sorting algorithms), (2) writing intermediate tables, and
(possibly) (3) sorting the final result (if the query specifies duplicate elimination
or an output order). The third part is common to all plans (unless one of the
plans happens to produce output in the required order), and, in the common
case that a fully-pipelined plan is chosen, no intermediate tables are written.

Thus, the cost for a fully-pipelined plan is dominated by part (1). This cost
depends greatly on the access paths used to read input tables; of course, access
paths that are used repeatedly to retrieve matching tuples in a join algorithm
are especially important.

For plans that are not fully pipelined, the cost of rnaterializing temporary tables
can be significant. The cost of materializing an intermediate result depends
on its size, and the size also infiuences the cost of the operator for which the
temporary is hn input table. The number of tuples in the result of a selection is
estimated by multiplying the input size by the reduction factor for the selection
conditions. The number of tuples in the result of a projection is the same as
the input, a.ssuming that duplicates are not eliminated; of course, each result
tuple is smaller since it contains fewer fields.
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The result size for a join can be estimated by multiplying the maximum result
size, which is the product of the input table sizes, by the reduction factor of the
join condition. The reduction factor for join condition columni = column2 can
be approximated by the formula ~(NJ{eY,~(~1),NKeys(I2)) if there are indexes
11 and 12 on columni and colwnn2, respectively. This formula assumes that
each key value in the smaller index, say 11, has a matching value in the other
index. Given a value for columni, we assume that each of the NKeys(I2)
values for column2 is equally likely. Thus, the number of tuples that have the
same value in column2 as a given value in columni is N K e~s(I2) .

12.7 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

II What is metadata? What metadata is stored in the system catalog? De­
scribe the information stored per relation, and per index. (Section 12.1)

II The catalog is itself stored as a collection of relations. Explain why. (Sec­
tion 12.1)

II What three techniques are commonly used in algorithms to evaluate rela­
tional operators? (Section 12.2)

II What is an access path? When does an index match a search condition?
(Section 12.2.2)

II What are the main approaches to evaluating selections? Discuss the use of
indexes, in particular. (Section 12.3.1)

II What are the main approaches to evaluating projections? What makes
projections potentially expensive? (Section 12.3.2)

II What are the main approaches to evaluating joins? Why are joins expen­
sive? (Section 12.3.3)

II What is the goal of query optimization? Is it to find the best plan? (Sec­
tion 12.4)

II How does a DBMS represent a relational query evaluation plan? (Sec­
tion 12.4.1)

II What is pipelined evaluation? What is its benefit? (Section 12.4.2)

II Describe the iterator interface for operators and access methods. 'What is
its purpose? (Section 12.4.3)
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• Discuss why the difference in cost between alternative plans for a query CI:Ul

be very large. Give specific examples to illustrate the impact of pushing
selections, the choice of join methods, and the availability of appropriate
indexes. (Section 12.5)

• What is the role of relational algebra equivalences in query optimization?
(Section 12.6)

• What is the space of plans considered by a typical relational query opti­
mizer? Justify the choice of this space of plans. (Section 12.6.1)

• How is the cost of a plan estimated? What is the role of the system catalog?
What is the selectivity of an access path, and how does it influence the cost
of a plan? Why is it important to be able to estimate the size of the result
of a plan? (Section 12.6.2)

EXERCISES

Exercise 12.1 Briefly answer the following questions:

1. Describe three techniques commonly used when developing algorithms for relational op­
erators. Explain how these techniques can be used to design algorithms for the selection,
projection, and join operators.

2. What is an access path? When does an index match an access path? What is a primar1J
conj1Lnct, and why is it important?

3. What information is stored in the system catalogs?

4. What are the benefits of making the system catalogs be relations?

5. What is the goal of query optimization? Why is optimization important?

6. Describe pipelining and its advantages.

7. Give an example query and plan in which pipelining cannot be used.

8. Describe the itemto1' interface and explain its advantages.

9. What role do statistics gathered from the database play in query optimization?

10. What were the important design decisions made in the System R optimizer?

11. Why do query optimizers consider only left-deep join trees? Give an example of a query
and a plan that would not be considered because of this restriction.

Exercise 12.2 Consider a relation R( a,b,e,.d,e) containing 5,000,000 records, where each data
page of the relation holds 10 records. R is organized as a sorted file with secondary indexes.
Assume that R.a is a candidate key for R, with values lying in the range 0 to 4,999,999, and
that R is stored in R.o, order. For each of the following relational algebra queries, state which
of the following three approaches is most likely to be the cheapest:

• Access the sorted file for R directly.

• Use a (clustered) B+ tree index on attribute R.o,.

• Usc a linear hashed index on attribute R.a..
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1. (7a<50,000(R)

2. (T a=50,OOO (R)

3. (Ta>50,000Ao<50,OlO (R)

4. (Ta;>'50,000 (R)
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Exercise 12.3 For each of the following SQL queries, for each relation involved, list the
attributes that must be examined to compute the answer. All queries refer to the following
relations:

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))

Dept(did: integer, dname: char(20), floor: integer, budget: real)

1. SELECT * FROM Emp

2. SELECT * FROM Emp, Dept

3, SELECT * FROM Emp E, Dept D WHERE E.did = D.did

4. SELECT E.eid, D,dname FROM Emp E, Dept D WHERE E.did = D.did

Exercise 12.4 Consider the following schema with the Sailors relation:

Sailors(sid: integer, sname: string, rating: integer, age: real)

For each of the following indexes, list whether the index matches the given selection conditions.
If there is a match, list the primary conjuncts.

1. A B+-tree index on the search key ( Sailors.sid ).

(a) (7Sailors.sid<50,OOO (Sailor s)

(b) (7Sailor.uid=f,o,ooo(Sailors)

2. A hash index on the search key ( Sailors.sid ).

(a) O'Sailo'·s.sid<50,OOO (Sailors)

(b) (7Sailon.S1d=5o,ooo(Sailors)

3. A B+-tree index on the search key ( Sailors.sid, Sailors.age ).

(a) O'Sallors.8icl<50,OOOASai.loT's.ag,,=21 (Sailors)

(b) O'Sailor.5.si.d=.SO,OOOASallors.age>21 (Sailors)

(c) (7Sai/oTS.sid=5o,ooo(Sailors)

(d) 0'!3ai/o·rs.ag('=21(Sailors)

4. A ha.'lh-tree hidex on the search key ( Sailors.sid, Sailors. age ).

(a) O'S"Il",·s.sid=50,OOOASo.ilors.ag,,=21 (Sailors)

(b) O'S",i/01·s ..,i.d=50,O(JOAS,,·i!or.,.age>21 (Sailors)

(c) O's'd{ors,,"d=5o,ooo(Sailors)

(d) O'S'''/01's.<l.()''=21 (Sa'ilors)

Exercise 12.5 Consider again the schema with the Sailors relation:
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Sailors(sid: integer, sname: string, mUng: integer, age: real)

CHAPTERfi12

Assume that each tuple of Sailors is 50 bytes long, that a page can hold 80 Sailors tuples, and
that we have 500 pages of such tuples. For each of the following selection conditions, estimate
the number of pages retrieved, given the catalog information in the question.

1. Assume that we have a B+-tree index 7' on the search key ( Sailors.sid ), and assume
that IHeight(T) = 4, INPages(T) = 50, Low(7') = 1, and High(T) = 100,000.

(a) aSailors.'id<5o,ooo(S'a'ilors)

(b) aSailorssid=50,OOO(Sa'ilors)

2. Assume that we have a hash index 7' on the search key ( Sailors.sid ), and assume that
IHeight(7') = 2, INPages(7') = 50, Low(7') = 1, and High(T) = 100,000.

(a) aSa'lor's.sid<50,OOo(Sailors)

(b) aSailor·s.sid=5o,ooo(5ailors)

Exercise 12.6 Consider the two join methods described in Section 12.3.3. Assume that we
join two relations Rand 5, and that the systems catalog contains appropriate statistics about
Rand S. Write formulas for the cost estimates of the index nested loops join and sort-merge
join using the appropriate variables from the systems catalog in Section 12.1. For index nested
loops join, consider both a B+ tree index and a hash index. (For the hash index, you can
assume that you can retrieve the index page containing the rid of the matching tuple with
1.2 l/Os on average.)

Note.' Additional exercises on the material covered in this chapter can be found in the exercises
for Chapters 14 and 15.

BIBLIOGRAPHIC NOTES

See the bibliograpic notes for Chapters 14 and 15.
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EXTERNAL SORTING

... Why is sorting important in a DBMS?

... Why is sorting data on disk different from sorting in-memory data?

... How does external merge-sort work?

... How do techniques like blockecl I/O and overlapped I/O affect the
design of external sorting algorithms?

... When can we use a B+ tree to retrieve records in sorted order?

.. Key concepts: motivation, bulk-loading, duplicate elimination, sort­
merge joins; external merge sort, sorted runs, merging runs; replace­
ment sorting, increasing run length; I/O cost versus number of I/Os,
blocked I/Os, double buffering; B+ trees for sorting, impact of clus­
tering.

Good order is the foundation of all things.

Edmund Burke

In this chapter, we consider a widely used and relatively expensive operation,
sorting records according to a search key. vVe begin by considering the lnany
uses of sorting In a database system in Section 13.1. \;Ye introduce the idea of
external sorting by considering a very simple algorithm in Section 1:3.2; using
repeated passes over the data, even very large datasets can be sorted with a
small amount of rnemory. This algol'ithrn is generalized to develop a realistic
external sorting algorithrn in Section 1:3.3. Three important refinements are

421
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discussed. The first, discussed in Section 13.3.1, enables us to reduce the num­
ber of passes. The next two refinements, covered in Section 13.4, require us
to consider a more detailed model of I/O costs than the number of page I/Os.
Section 13.4.1 discusses the effect of blocked I/O, that is, reading and writing
several pages at a time; and Section 13.4.2 considers how to use a technique
called double buffering to minimize the time spent waiting for an I/O operation
to complete. Section 13.5 discusses the use of B+ trees for sorting.

With the exception of Section 13.4, we consider only I/O costs, which we ap­
proximate by counting the number of pages read or written, as per the cost
model discussed in Chapter 8. Our goal is to use a simple cost model to convey
the main ideas, rather than to provide a detailed analysis.

13.1 WHEN DOES A DBMS SORT DATA?

Sorting a collection of records on some (search) key is a very useful operation.
The key can be a single attribute or an ordered list of attributes, of course.
Sorting is required in a variety of situations, including the following important
ones:

II Users may' want answers in some order; for example, by increa.."iing age
(Section 5.2).

II Sorting records is the first step in bulk loading a tree index (Section 10.8.2).

II Sorting is useful for eliminating duplicate copies in a collection of records
(Section 14.3).
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• A widely used algorithm for performing a very important relational algebra
operation, called jo'in, requires a sorting step (Section 14.4.2).

Although main memory sizes are growing rapidly the ubiquity of database
systems has lead to increasingly larger datasets as well. '\Then the data to
be sorted is too large to fit into available main memory, we need an external
sorting algorithm. Such algorithms seek to minimize the cost of disk accesses.

13.2 A SIMPLE TWO-WAY MERGE SORT

We begin by presenting a simple algorithm to illustrate the idea behind external
sorting. This algorithm utilizes only three pages of main memory, and it is
presented only for pedagogical purposes. In practice, many more pages of
memory are available, and we want our sorting algorithm to use the additional
memory effectively; such an algorithm is presented in Section 13.3. When
sorting a file, several sorted subfiles are typically generated in intermediate
steps. In this chapter, we refer to each sorted subfile as a run.

Even if the entire file does not fit into the available main memory, we can sort
it by breaking it into smaller subfiles, sorting these subfiles, and then merging
them using a minimal amount of main memory at any given time. In the first
pass, the pages in the file are read in one at a time. After a page is read in,
the records on it are sorted and the sorted page (a sorted run one page long) is
written out. Quicksort or any other in-memory sorting technique can be used
to sort the records on a page. In subsequent passes, pairs of runs from the
output of the previous pass are read in and merged to produce runs that are
twice as long. This algorithm is shown in Figure 13.1.

If the number of pages in the input file is 2k , for some k, then:

Pass 0 produces 2k sorted runs of one page each,
Pass 1 produces 2k~1 sortecl runs of two pages each,
Pass 2 produces 2k - 2 sortecl runs of four pages each,
and so on, until
Pass k produces one sorted run of 2k: pages.

In each pass, we read every page in the file, process it, and write it out.
Therefore we have two disk I/Os per page, per pass. The number of passes
is flog2Nl -+- 1, where N is the number of pages in the file. The overall cost is
2N( ilog2Nl + 1) l/Os.

The algorithm is illustrated on all example input file containing seven pages
in Figure 13.2. The sort takes four passes, and in each pass, we read and
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proc 2-'ulay_cxtsort (file)
/ / Oiven a file on disk) sorts it 'using three buffeT' pages
/ / Produce runs that are one page long: Pass 0
Read each page into memory, sort it, write it out.
/ / Merge pairs of runs to produce longer runs until only
/ / one run (containing all records of input file) is left
\Vhile the number of runs at end of previous pass is > 1:

/ / Pass i = 1, 2, ...
While there are runs to be merged from previous pass:

Choose next two runs (from previous pass).
Read each run into an input buffer; page at a time.
Merge the runs and write to the output buffer;
force output buffer to disk one page at a time.

endproc

Figure 13.1 Two-Way Merge Sort

write seven pages, for a total of 56 l/Os. This result agrees with the preceding
analysis because 2· 7( llo92 71 +1) = 56. The dark pages in the figure illustrate
what would happen on a file of eight pages; the number of passes remains at
four (llo9281 + 1 = 4), but we read and write an additional page in each pass
for a total of 64 l/Os. (Try to work out what would happen on a file with, say,
five pages.)

This algorithm requires just three buffer pages in lnain memory, Cl"S Figure 13.3
illustrates. This observation raises an important point: Even if we have more
buffer space available, this simple algorithm does not utilize it effectively. The
external merge sort algorithm that we discuss next addresses this problem.

13.3 EXTERNAL MERGE SORT

Suppose that 13 buffer pages are available in memory and that we need to sort
a large file with N pages. How can we improve on the t\vo-way merge sort
presented in the previous section? The intuition behind the generalized algo­
rithm that we now present is to retain the basic structure of making multiple
passes while trying to minimize the number of passes. There are two important
modifications to the two-way merge sort algorithm:

1. In Pass 0, read in 13 pages at a time and sort internally to produce IN/131
runs of 13 pages each (except for the last run, which lnay contain fewer
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Figure 13.2 Two-Way Merge Sort of a Seven-Page File
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Figure 13.3 Two-'Way Merge Sort with Three Buffer Pages
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pages). This modification is illustrated in Figure 13.4, using the input file
from Figure 13.2 and a buffer pool with four pages.

2. In passes i = 1,2, ... use B-1 buffer pages for input and use the remaining
page for output; hence, you do a (B - I)-way merge in each pass. The
utilization of buffer pages in the merging passes is illustrated in Figure
13.5.

2,3

8,9

2nd output run

4,4

6 , 7 1st output run

!
'2

3,5

6
Buffer pool with B:::4 pages

Input file

Figure 13.4 External Merge Sort with B Buffer Pages: Pass 0

¢ ¢ ¢

Disk

! ~UTl ~
I INPUT2 I > I~IOUTPUT

B main memory buffers

¢ ¢ ¢

Disk

Figure 13.5 External IVlerge Sort with B Buffer Pages: Pass 'i > 0

The first refinement reduces the number of runs produced by Pass 0 to NI
rN / Bl, versus N for the two-way merge. l The second refinement is even more
important. By doing a (B ~ I)-way merge, the number of passes is reduced
dramatically including the initial pass, it becomes rZ0.9B- 1NIl + 1 versus
[loY2Nl + 1 for the two-way merge algorithm presented earlier. Because B is

1 Note that the technique used for sorting data in buffer pages is orthogonal to external sorting.
You could use, say, Quicksort for sorting data in buffer pages.
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typically quite large, the savings can be substantial. The external merge sort
algorithm is shown is Figure 13.6.

proc extsort (file)
/ / Given a file on disk, sorts it using three buffer pages
/ / Produce runs that are B pages long: Pass 0
Read B pages into memory, sort them, write out a run.
/ / Merge B-1 runs at a time to produce longer runs until only
/ / one run (containing all records of input file) is left
While the number of runs at end of previous pass is > 1:

// Pass i = 1,2, ...
While there are runs to be merged from previous pass:

Choose next B ~ 1 runs (from previous pass).
Read each rUll into an input buffer; page at a time.
Merge the rUllS and write to the output buffer;
force output buffer to disk one page at a time.

endproc

Figure 13.6 External Merge Sort

As an example, suppose that we have five buffer pages available and want to
sort a file with lOS pages.

Pac'Ss 0 produces POS/51 = 22 sorted runs of five pages each, except
for the last run, which is only three pages long.
Pass 1 does a four-way merge to produce 122/41 = six sorted runs of
20 pages each, except for the iast run, which is only eight pages long.
Pass 2 produces 16/41 = two sorted runs; one with SO pages and one
with 28 pages.
Pass 3 merges the two runs produced in Pass 2 to produce the sorted
file.

In each pass we read and write 108 pages; thus the total cost is 2* 108*4 = 864
l/Os. Applying our formula, we have Nl 1108/51 22 and cost
2 * N * (llogB~lNll + 1) = 2 * 108 * (llog4221 + 1) = 864, &'3 expected.

To emphasize the potential gains in using all available buffers, in Figure 13.7,
we show the number of passes, computed using our formula., for several values
of Nand B. To obtain the cost, the number of passes should be multiplied
by 2N. In practice, one would expect to have more than 257 buffers, but this
table illustrates the importance of a high fan-in during merging.
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100 7 4 3 2 1 1
1000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

Figure 13.7 Number of Passes of External Merge Sort

Of course, the CPU cost of a multiway merge can be greater than that for
a two-way merge, but in general the I/O costs tend to dominate. In doing
a (B - I)-way merge, we have to repeatedly pick the 'lowest' record in the
B-1 runs being merged and write it to the output buffer. This operation can
be implemented simply by examining the first (remaining) element in each of
the B-1 input buffers. In practice, for large values of B, more sophisticated
techniques can be used, although we do not discuss them here. Further, as we
will see shortly, there are other ways to utilize buffer pages to reduce I/0 costs;
these techniques involve allocating additional pages to each input (and output)
run, thereby making the number of runs me,rged in each pass considerably
smaller than the number of buffer pages B.

13.3.1 Minimizing the Number of Runs

In Pass 0 we read in B pages at a time and sort them internally to produce
IN/Bl runs of B pages each (except for the la..'3t run, which may contain fewer
pages). With a more aggressive implementation, called replacement sort, we
can write out runs of approximately 2 . B internally sorted pages on average.
This improvement is achieved as follows. We begin by reading in pages of the
file of tuples to be sorted, say R, until the buffer is full, reserving (say) one
page for use a..'3 an input buffer and one page for use a.s an output buffer. vVe
refer to the B ~ 2 pages of R tuples that are not in the input or output buffer
as the CUT'TCnt set. Suppose that the file is to be sorted in ascending order on
some search key k. Tuples are appended to the output in ctscending order by k
value.

The idea is to repeatedly pick the tuple in the current set with the smallest
k value that is still greater than the largest k value in the output buffer and
append it to the output buffer. l:<cx the output buffer to remain sorted, the
chosen tuple must satisfy the condition that its k value be greater than or
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equal to the largest k value currently in the output buffer; of all tuples in
the current set that satisfy this condition, we pick the one with the smallest
k value and append it to the output buffer. Moving this tuple to the output
buffer creates some space in the current set, which 've use to add the next input
tuple to the current set. (\Ve assume for simplicity that all tuples are the same
size.) This process is illustrated in Figure 13.8. The tuple in the current set
that is going to be appended to the output next is highlighted, as is the most
recently appended output tuple.

11±-
L .. .• .... ..

INPUT CURRENT SET

~
L~_II

OUTPUT

Figure 13.8 Generating Longer Runs

When all tuples in the input buffer have been consumed in this manner, the
next page of the file is read in. Of course, the output buffer is written out
when it is full, thereby extending the current run (which is gradually built up
on disk).

The important question is this: When do we have to terminate the current run
and start a new run? As long as some tuple t in the current set has a bigger k:
value than the most recently appended output tuple, we can append t to the
output buffer and the current run can be extended.2 In Figure 13.8, although
a tuple (k = 2) in the current set has a smaller k value than the largest output
tuple (k = 5), the current run can be extended because the current set also has
a tuple (k = 8) that is larger than the largest output tuple.

When every tuple in the current set is smaller than the largest tuple in the
output buffer, the output buffer is written out and becomes the last page in
the current run. \Ve then start a new l'lm and continue the cycle of writing
tuples from the input buffer to the current set to the output buffer. It is known
that this algorithm produces runs that are about 2· B pages long, on average.

This refinement has not been implemented in commercial database systenls
because managing the main memory ava.ilable for sorting becOlnes difficult with

2If B is large, the CPU cost of finding such a tuple t can be significant unless appropriate in·
memory data structures are used to organize the tuples in the buffer pool. \lVe will not discuss this
issue further.
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replacement sort, especially in the presence of variable length records. Recent
work on this issue, however, shows promise and it could lead to the use of
replacement sort in commercial systems.

13.4 MINIMIZING I/O COST VERSUS NUMBER OF I/OS

We have thus far used the number of page 1/Os as a cost metric. This metric is
only an approximation of true I/O costs because it ignores the effect of blocked
I/O--issuing a single request to read (or write) several consecutive pages can
be much cheaper than reading (or writing) the same number of pages through
independent I/O requests, as discussed in Chapter 8. This difference turns out
to have some very important consequences for our external sorting algorithm.

Further, the time taken to perform I/O is only part of the time taken by the
algorithm; we must consider CPU costs as well. Even if the time taken to do
I/O accounts for most of the total time, the time taken for processing records is
nontrivial and definitely worth reducing. In particular, we can use a technique
called double buffeTing to keep the CPU busy while an I/O operation is in
progress.

In this section, we consider how the external sorting algorithm can be refined
using blocked I/O and double buffering. The motivation for these optimiza­
tions requires us to look beyond the number of I/Os as a cost metric. These
optimizations can also be applied to other I/O intensive operations such as
joins, which we study in Chapter 14.

13.4.1 Blocked I/O

If the number of page I/Os is taken to be the cost metric, the goal is clearly to
minimize the number of passes in the sorting algorithm because each page in
the file is read and written in each pa..ss. It therefore makes sense to maximize
the fan-in during merging by allocating just one buffer pool page per run (which
is to be merged) and one buffer page for the output of the merge. Thus, we
can merge B-1 runs, where B is the number of pages in the buffer pool. If we
take into account the effect of blocked access, which reduces the average cost
to read or write a .single page, we are led to consider whether it might be better
to read and write in units of more than one page.

Suppose we decide to read and write in units, which we call buffer blocks,
of b pages. We must now set aside one buffer block per input run and one
bufler block for the output of the merge, which means that we can merge at
most l B;)-b J runs in each pass. }-<or example, if we have 10 buffer pages, we
can either merge nine runs at a time with one-page input and output buffer



Krtcrnal SoTting 431

blocks, or we can merge four runs at a time with two-page input and output
buffer blocks. If we choose larger buffer blocks, however, the number of passes
increases, while we continue to read and write every page in the file in each
pass! In the example, each merging pass reduces the number of runs by a factor
of 4, rather than a factor of 9. Therefore, the number of page I/Os increa.'3es.
This is the price we pay for decreasing the per-page I/O cost and is a trade-off
we must take into account when designing an external sorting algorithm.

In practice, however, current main memory sizes are large enough that all
but the largest files can be sorted in just two passes, even using blocked I/O.
Suppose we have B buffer pages and choose to use a blocking factor of b pages.
That is, we read and write b pages at a time, and all our input and output
buffer blocks are b pages long. The first pass produces about N2 = IN/2Bl
sorted runs, each of length 2B pages, if we use the optimization described in
Section 13.3.1, and about N1 = IN/ Bl sorted runs, each of length B pages,
otherwise. For the purposes of this section, we assume that the optimization is
used.

In subsequent pa.'3ses we can merge F = LB /bJ - 1 runs at a time. The
number of pa.'3ses is therefore 1 + lZo9pN21, and in each pass we read and write
all pages in the file. Figure 13.9 shows the number of passes needed to sort files
of various sizes N, given B buffer pages, using a blocking factor b of 32 pages.
It is quite reasonable to expect 5000 pages to be available for sorting purposes;
with 4KB pages, 5000 pages is only 20MB. (With 50,000 buffer pages, we can
do 1561-way merges; with 10,000 buffer pages, we can do 311-way merges; with
5000 buffer pages, we can do 155-way merges; and with 1000 buffer pages, we
can do 30-way merges.)

IN I B = 1000 1.8=50001 E± 10,000 >1 B = 50,0001

100 1 1 1 1
1000 1 1 1 1
10,000 2 2 1 1
100,000 3 2 2 2
1,000,000 ~) 2 2 2
10,000,000 4 3 ~3 2
100,000,000 5 3 3 2
1,000,000,000 5 4 3 3

Figure 13.9 Number of Passes of External Merge Sort with Block Size b = 32

To compute the I/O cost, we need to calculate the number of 32-page blocks
read or written and multiply this number by the cost of doing a 32-page block
I/O. To find the number of block I/Os, we can find the total number of page
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l/Os (number of passes rnultiplied by the number of pages in the file) and
divide by the block size, 32. The cost of a 32-page block I/O is the seek time
and rotational delay for the first page, plus transfer time for all ~~2 pages, as
discussed in Chapter 8. The reader is invited to calculate the total I/O cost
of sorting files of the sizes mentioned in Figure 13.9 with 5000 buffer pages for
different block sizes (say, b = 1, 32, and 64) to get a feel for the benefits of
using blocked I/O.

13.4.2 Double Buffering

Consider what happens in the external sorting algorithm when all the tuples
in an input block have been consumed: An I/O request is issued for the next
block of tuples in the corresponding input run, and the execution is forced to
suspend until the I/O is complete. That is, for the duration of the time taken
for reading in one block, the CPU remains idle (assuming that no other jobs are
running). The overall time taken by an algorithm can be increased considerably
because the CPU is repeatedly forced to wait for an I/O operation to complete.
This effect becomes more and more important as CPU speeds increase relative
to I/O speeds, which is a long-standing trend in relative speeds. It is therefore
desirable to keep the CPU busy while an I/O request is being carried out;
that is, to overlap CPU and I/O processing. Current hardware supports such
overlapped computation, and it is therefore desirable to design algorithms to
take advantage of this capability.

In the context of external sorting, we can achieve this overlap by allocating
extra pages to each input buffer. Suppose a block size of b = 32 is chosen. The
idea is to allocate an additional 32-page block to every input (and the output)
buffer. Now, when all the tuples in a 32-page block have been consumed, the
CPU can process the next 32 pages of the run by switching to the second,
'double,' block for this run. Meanwhile, an I/O request is issued to fill the
empty block. Thus, assmning that the tirne to consume a block is greater
than the time to read in a block, the CPU is never idle! On the other hand,
the number of pages allocated to a buffer is doubled (for a given block size,
which means the total I/O cost stays the same). This technique, ca.lled double
buffering, ca.n considerably reduce the total time taken to sort a file. The use
of buffer pages is illustrated in Figure 1:3.10.

Note that although double buffering can considerably reduce the response tiule
for a given query, it may not have a significant impact on throughput, because
the CPU can be kept busy by working on other queries while waiting for one
query's I/O operation to complete.
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Figure 13.10 Double Buffering

13.5 USING B+ TREES FOR SORTING
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Suppose that we have a B+ tree index on the (search) key to be used for sorting
a file of records. Instead of using an external sorting algorithm, we could use
the B+ tree index to retrieve the records in search key order by traversing the
sequence set (i.e., the sequence of leaf pages). Whether this is a good strategy
depends on the nature of the index.

13.5.1 Clustered Index

If the B+ tree index is clustered, then the traversal of the sequence set is
very efficient. The search key order corresponds to the order in which the
data records are stored, and for each page of data records we retrieve, we can
read all the records on it in sequence. This correspondence between search
key ordering and data record ordering is illustrated in Figure 13.11, with the
a.ssumption that data entries are (key, ric!; pairs (i.e., Alternative (2) is used
for data entries).

The cost of using the clustered B+ tree index to retrieve the data records in
search key order is the cost to traverse the tree from root to the left-most leaf
(which is usually less than four IIOs) plus the cost of retrieving the pages in
the sequence set, plus the cost of retrieving the (say, N) pages containing the
data records. Note that no data page is retrieved twice, thanks to the ordering
of data entries being the same 1:18 the ordering of data records. The number of
pages in the sequence set is likely to be much smaller than the number of data
pages because data entries are likely to be smaller than typical data records.
Thus, the strategy of using a dusterecl B+ tree inclex to retrieve the records
in sorted order is a good one and should be used whenever such an index is

'::lilable.
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Figure 13.11 Clustered B+ Tree for Sorting

What if Alternative (1) is used for data entries? Then, the leaf pages would
contain the actual data records, and retrieving the pages in the sequence set
(a total of N pages) would be the only cost. (Note that the space utilization is
about 67% in a B+ tree; the number of leaf pages is greater than the number
of pages needed to hold the data records in a sorted file, where, in principle,
100% space utilization can be achieved.) In this case, the choice of the B+ tree
for sorting is excellent!

13.5.2 Unclustered Index

What if the B+ tree index on the key to be used for sorting is unclustered?
This is illustrated in Figure 13.12, with the assumption that data entries are
(key, rid).

In this case each rid in a leaf page could point to a different data page. Should
this happen, the cost (in disk l/Os) of retrieving all data records could equal
the number of data records. That is, the worst~case cost is equal to the number
of data records, because fetching each record could require a disk I/O. This
cost is in addition to the cost of retrieving leaf pages of the B+ tree to get the
data entries (which point to the data records).

If p is the average number of records per data page and there are N data pages,
the number of data records is p . N. If we take f to be the ratio of the size of a
data entry to the size of a data record, we can approximate the number of leaf
pages in the tree by f . N. The total cost of retrieving records in sorted order
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Figure 13.12 Unclustered B+ Tree for Sorting

using an unclustered B+ tree is therefore (J + p) . N. Since f is usually 0.1 or
smaller and p is typically much larger than 10, p . N is a good approximation.

In practice, the cost may be somewhat less because some rids in a leaf page
lead to the same data page, and further, some pages are found in the buffer
pool, thereby avoiding an I/O. Nonetheless, the usefulness of an unclustered
B+ tree index for sorted retrieval highly depends on the extent to which the
order of data entries corresponds and-·~this is just a matter of chance-to the
physical ordering of data records.

We illustrate the cost of sorting a file of records using external sorting and un­
clustered B+ tree indexes in Figure 13.13. The costs shown for the unclustered
index are worst-case numbers, based on the approximate formula p . N. For
comparison, note that the cost for a clustered index is approximately equal to
N, the number of pages of data records.

I Sorting I p=l Ip= 10 r p= foo
100 200 100 1000 10,000
1000 2000 1000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

Figure 13.13 Cost of External Sorting (13 = 1000, b = :32) versus Unclustered Index
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Keep in mind that p is likely to be doser to 100 and B is likely to be higher
than 1,000 in practice. The ratio of the cost of sorting versus the cost of using
an unclustered index is likely to be even 10\ver than indicated by Figure 13.13
because the I/O for sorting is in 32-page buffer blocks, whereas the I/O for the
undustered indexes is one page at a time. The value of p is determined by the
page size and the size of a data record; for p to be 10, with 4KB pages, the
average data record size must be about 400 bytes. In practice, p is likely to be
greater than 10.

For even modest file sizes, therefore, sorting by using an unclustered index is
clearly inferior to external sorting. Indeed, even if we want to retrieve only
about 10--20% of the data records, for example, in response to a range query
such as "Find all sailors whose rating is greater than 7," sorting the file may
prove to be more efficient than using an unclustered index!

13.6 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

II What database operations utilize sorting? (Section 13.1)

II Describe how the two-way merge sort algorithm can sort a file of arbitrary
length using only three main-memory pages at any time. Explain what
a run is and how runs are created and merged. Discuss the cost of the
algorithm in terms of the number of passes and the I/O cost per pass.
(Section 13.2)

II How does the general external merge SOT,t algorithm improve upon the two­
way merge sort? Discuss the length of initial runs, and how memory is
utilized in subsequent merging passes. Discuss the cost of the algorithm in
terms of the number of pa.'3ses and the I/O cost per pa.ss. (Section 13.3)

II Discuss the use of r'cplacement sort to increase the average length of initial
runs and thereby reduce the number of runs to be merged. How does this
affect the cost of external sorting? (Section 13.3.1)

III \\That is blocked I/O? Why is it cheaper to read a sequence of pages using
blocked I/O than to read them through several independent requests? How
does the use of blocking affect the external sorting algorithm, and how does
it change the cost formula'? (Section 13.4.1)

.. What is double buffering? \\That is the motivation for using it? (Sec­
tion 13.4.2)

II If we want to sort a file and there is a B-1- tree with the same search key, we
have the option of retrieving records in order through the index. Compa.re
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the cost of this approach to retrieving the records in random order and then
sorting them. Consider both clustered and unclustered B+ trees. ~What

conclusions can you draw from your comparison? (Section 13.5)

EXERCISES

Exercise 13.1 Suppose you have a file with 10,000 pages and you have three buffer pages.
Answer the following questions for each of these scenarios, assuming that our most general
external sorting algorithm is used:

(a) A file with 10,000 pages and three available buffer pages.

(b) A file with 20,000 pages and five available buffer pages.

(c) A file with 2,000,000 pages and 17 available buffer pages.

1. How many runs will you produce in the first pass?

2. How many passes will it take to sort the file completely?

3. What is the total I/O cost of sorting the file?

4. How many buffer pages do you need to sort the file completely in just two passes?

Exercise 13.2 Answer Exercise 13.1 assuming that a two-way external sort is used.

Exercise 13.3 Suppose that you just finished inserting several records into a heap file and
now want to sort those records. Assume that the DBMS uses external sort and makes efficient
use of the available buffer space when it sorts a file. Here is some potentially useful information
about the newly loaded file and the DBMS software available to operate on it:

The number of records in the file is 4500. The sort key for the file is 4 bytes long.
You can assume that rids are 8 bytes long and page ids are 4 bytes long. Each
record is a total of 48 bytes long. The page size is 512 bytes. Each page has 12
bytes of control information on it. Four buffer pages are available.

1. How many sorted subfiles will there be after the initial pass of the sort, and how long
will each subtile be?

2. How many passes (including the initial pass just considered) are required to sort this
file?

:3. What is the total I/O cost for sorting this file?

4. What is the largest file, in terms of the number of records, you can sort with just four
buffer pages in two passes? How would your answer change if you had 257 buffer pages?

5. Suppose that you have a B+ tree index with the search key being the same as the desired
sort key. Find the cost of USiIlg the index to retrieve the records in sorted order for each
of the following cases:

lllI The index uses Alternative (1) for data entries.

lllI The index uses Alternative (2) and is unclustered. (You can compute the worst-case
cost in this case.)
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How would the costs of using the index change if the file is the largest that you
can sort in two passes of external sort with 257 buffer pages? Give your answer for
both clustered and unclustered indexes.

Exercise 13.4 Consider a disk with an average seek time of lOms, average rotational delay
of 5ms, and a transfer time of 1ms for a 41< page. Assume that the cost of reading/writing
a page is the sum of these values (i.e., 16ms) unless a sequence of pages is read/written. In
this case, the cost is the average seek time plus the average rotational delay (to find the first
page in the sequence) plus 1ms per page (to transfer data). You are given 320 buffer pages
and asked to sort a file with 10,000,000 pages.

1. Why is it a bad idea to use the 320 pages to support virtual memory, that is, to 'new'
10,000,000 41< bytes of memory, and to use an in-memory sorting algorithm such as
Quicksort?

2. Assume that you begin by creating sorted runs of 320 pages each in the first pass.
Evaluate the cost of the following approaches for the subsequent merging passes:

(a) Do 31g-way merges.

(b) Create 256 'input' buffers of 1 page each, create an 'output' buffer of 64 pages, and
do 256-way merges.

(c) Create 16 'input' buffers of 16 pages each, create an 'output' buffer of 64 pages,
and do 16-way merges.

(d) Create eight 'input' buffers of 32 pages each, create an 'output' buffer of 64 pages,
and do eight-way merges.

(e) Create four 'input' buffers of 64 pages each, create an 'output' buffer of 64 pages,
and do four-way merges.

Exercise 13.5 Consider the refinement to the external sort algorithm that produces runs of
length 2B on average, where B is the number of buffer pages. This refinement was described
in Section 11.2.1 under the assumption that all records are the same size. Explain why this
assumption is required and extend the idea to cover the case of variable-length records.

PROJECT-BASED EXERCISES

Exercise 13.6 (Note to i,nstnu:t01'S: Add~t'ional deta'ils must be pmvided if this exercise is
assigned; see Appendi:r: SO.) Implement external sorting in Minibase.

BIBLIOGRAPHIC NOTES

Knuth's text [442] is the classic reference for sorting algorithms. I\Jemory management for
replacement sort is discussed in [471]. A number of papers discuss parallel external sorting
algorithms, including [66, 71, 223,494, 566, 647].
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EVALUATING RELATIONAL

OPERATORS

... What are the alternative algorithms for selection? Which alterna­
tives are best under different conditions? How are complex selection
conditions handled?

... How can we eliminate duplicates in projection? How do sorting and
hashing approaches -compare?

... What are the alternative join evaluation algorithms? Which alterna­
tives are best under different conditions?

... How are the set operations (union, inter;section, set-difference, cross­
product) implemented?

... How are aggregate operations and grouping handled?

... How does the size of the buffer pool and the buffer replacement policy
affect algorithms for evaluating relational operators?

.. Key concepts: selections, CNF; projections, sorting versus hash­
ing; joins, block nested loops, index nested loops, sort-merge, hash;
union, set-difference, duplicate elimination; aggregate operations, run­
ning information, partitioning into groups, using indexes; buffer man­
agement, concurrent execution, repeated access patterns

Now, 'here, you see, it takes all the running you can do, to keep in the same
place. If you want to get somewhere else, you must run at least twice 3..<; fast as
that!

-----Lewis Carroll, Throngh the Looking Glass
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In this chapter, we consider the implementation of individual relational op­
erators in sufficient detail to understand how DBMSs are implemented. The
discussion builds on the foundation laid in Chapter 12. vVe present implemen­
tation alternatives for the selection operator in Sections 14.1 and 14.2. It is
instructive to see the variety of alternatives and the wide variation in per'for­
manee of these alternatives, for even such a simple operator. In Section 14.:3,
we consider the other unary operator in relational algebra, projection.

\iVe then discuss the implementation of binary operators, beginning with joins
in Section 14.4. Joins are among the most expensive operators in a relational
database system, and their implementation has a big impact on performance.
After discussing the join operator, we consider implementation of the binary
operators cross-product, intersection, union, and set-difference in Section 14.5.
We discuss the implementation of grouping and aggregate operators, which are
extensions of relational algebra, in Section 14.6. We conclude with a discussion
of how buffer management affects operator evaluation costs in Section 14.7.

The discussion of each operator is largely independent of the discussion of other
operators. Several alternative implementation techniques are presented for each
operator; the reader who wishes to cover this material ill less depth can skip
some of these alternatives without loss of continuity.

Preliminaries: Examples and Cost Calculations

We present a number of example queries using the same schema as in Chapter
12:

Sailors(sid: integer, sname: string, rating: integer, age: real)
ReservesC'iid: ~_nteger, bid: integer, day: dates, rname: string)

This schema is a variant of the one that we used in Chapter 5; we added a
string field rname to Reserves. Intuitively, this field is the name of the person
who made the reservation (and may be different from the name of the sailor .sid
for whom the reservation wa." made; a reservation may be made by a person
who is not a sailor on behalf of a sailor). The addition of this field gives us
more flexibility in choosing illustrative examples. We assume that each tuple
of Reserves is 40 bytes lOllg, that a page can hold 100 Reserves tuples, alld
that we have 1000 pages of such tuples. Similarly, we assume that each tuple
of Sailors is 50 bytes long, that a page can hold 80 Sailors tuples, and that we
have 500 pages of such tuples.

Two points must be kept in Inind to understancl our discussion of costs:
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• As discussed in Chapter 8, we consider only I/O costs and measure I/O
cost in terms of the number of page l/Os. vVe also use big-O notation to
express the complexity of an algorithm in terms of an input parameter mId
assume that the reader is familiar with this notation. For example, the
cost of a file scan is O(Jlv1), where Ai is the size of the file.

• vVe discuss several alternate algorithms for each operation. Since each
alternative incurs the same cost in writing out the result, should this be
necessary, we uniformly ignore this cost in comparing alternatives.

14.1 THE SELECTION OPERATION

In this section, we describe various algorithms to evaluate the selection opera­
tor. To motivate the discussion, consider the selection query shown in Figure
14.1, which has the selection condition rno:me='Joe'.

SELECT *
FROM Reserves R
WHERE R.rname='Joe'

Figure 14.1 Simple Selection Query

We can evaluate this query by scanning the entire relation, checking the condi­
tion on each tuple, and adding the tuple to the result if the condition is satisfied.
The cost of this approach is 1000 l/Os, since Reserves contains 1000 pages. If
only a few tuples have rnarne= 'Joe', this approach is expensive because it does
not utilize the selection to reduce the number of tuples retrieved in any way.
How can we improve on this approach? The key is to utilize information in the
selection condition and use an index if a suitable index is available. For exam­
ple, a B+ tree index on 'marne could be used to answer this query considerably
faster, but an index on bid would not be useful.

In the rest of this section. we consider various situations with respect to the file
organization used for the relation and the availability of indexes and discuss
appropriate algorithms for the selection operation. We discuss only simple
selection operations of the form eJR.attr op lw!ue(R) until Section 14.2, where
we consider general selections. In terms of the general techniques listed in
Section 12.2~ the algorithms for selection use either iteration or indexing.

14.1.1 No Index, Unsorted Data

Given a selection of the form eJRattT op value (R), if there is no index on R. attT

and R is not sorted on R. aUT, we have to scan the entire relation. Therefore,



442 CHAPTER 14,

the most selective access path is a file scan. For each tuple, we must test the
condition R.attr op vaz'ue and add the tuple to the result if the condition is
satisfied.

14.1.2 No Index, Sorted Data

Given a selection of the form O'R.attr op value(R), if there is no index on R.attr,
but R is physically sorted on R.attr, we can utilize the sort order by doing
a binary search to locate the first tuple that satisfies the selection condition.
Further, we can then retrieve all tuples that satisfy the selection condition
by starting at this location and scanning R until the selection condition is
no longer satisfied. The access method in this case is a sorted-file scan with
selection condition O'R.attr op value(R).

For example, suppose that the selection condition is R.aUr! > 5, and that R is
sorted on attr1 in ascending order. After a binary search to locate the position
in R corresponding to 5, we simply scan all remaining records.

The cost of the binary search is O(l092M). In addition, we have the cost of the
scan to retrieve qualifying tuples. The cost of the scan depends on the number
of such tuples and can vary from zero to M. In our selection from Reserves
(Figure 14.1), the cost of the binary search is [0921000 ~ 10 I/Os.

In practice, it is unlikely that a relation will be kept sorted if the DBMS sup­
ports Alternative (1) for index data entries; that is, allows data records to be
stored as index data entries. If the ordering of data records is important, a
better way to maintain it is through a B+ tree index that uses Alternative (1).

14.1.3 B+ Tree Index

If a clustereel B+ tree index is available on R.attr, the best strategy for selection
conditions O'R.attr op value(R) in which op is not equality is to use the index.
This strategy is also a good access path for equality selections, although a hash
index on R.attr would be a little better. If the B+ tree index is not clustered,
the cost of using the index depends on the number of tuples that satisfy the
selection, as discussed later.

We can use the index as follows: We search the tree to find the first index
entry that points to a qualifying tuple of R. Then we scan the leaf pages of the
index to retrieve all entries in which the key value satisfies the selection condi­
tion. For each of these entries, we retrieve the corresponding tuple of R. (for
concreteness in this discussion, we a.<;sume that data entries use Alternatives
(2) or (3); if Alternative (1) is used, the data entry contains the actual tuple
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and there is no additional cost~beyond the cost of retrieving data entries-cfor
retrieving tuples.)

The cost of identifying the starting leaf page for the scan is typically two or
three I/Os. The cost of scanning the leaf level page for qualifying data entries
depends on the number of such entries. The cost of retrieving qualifying tuples
from R depends on two factors:

• The number of qualifying tuples.

• Whether the index is clustered. (Clustered and unclustered B+ tree indexes
are illustrated in Figures 13.11 and 13.12. The figures should give the
reader a feel for the impact of clustering, regardless of the type of index
involved.)

If the index is clustered, the cost of retrieving qualifying tuples is probably
just one page I/O (since it is likely that all such tuples are contained in a
single page). If the index is not clustered, each index entry could point to a
qualifying tuple on a different page, and the cost of retrieving qualifying tuples
in a straightforward way could be one page I/O per qualifying tuple (unless we
get lucky with buffering). We can significantly reduce the number of I/Os to
retrieve qualifying tuples from R by first sorting the rids (in the index's data
entries) by their page-id component. This sort ensures that, when we bring in
a page of R, all qualifying tuples on this page are retrieved one after the other.
The cost of retrieving qualifying tuples is now the number of pages of R that
contain qualifying tuples.

Consider a selection of the form rnarne < 'C%' on the Reserves relation. As­
suming that names are uniformly distributed with respect to the initial letter,
for simplicity, we estimate that roughly 10% of Reserves tuples are in the result.
This is a total of 10,000 tuples, or 100 pages. If we have a clustered B+ tree
index on the marne field of Reserves, we can retrieve the qualifying tuples with
100 I/Os (plus a few I/Os to traverse from the root to the appropriate leaf page
to start the scan). However, if the index is unclustered, we could have up to
10,000 I/Os in the worst case, since each tuple could cause us to read a page. If
we sort the rids of Reserves tuples by the page number and then retrieve pages
of Reserves, we avoid retrieving the same page multiple times; nonetheless, the
tuples to be retrieved are likely to be scattered across many more than 100
pages. Therefc)re, the use of an unclusterecl index for a range selection could
be expensive; it might be cheaper to simply scan the entire relation (which is
lOOn pages in our example).
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14.1.4 Hash Index, Equality Selection

If a hash index is available on R.attr and op is equality, the best way to imple­
ment the selection CTR.attr opualue(R) is obviously to use the index to retrieve
qualifying tuples.

The cost includes a few (typically one or two) l/Os to retrieve the appropriate
bucket page in the index, plus the cost of retrieving qualifying tuples from
R. The cost of retrieving qualifying tuples from R depends on the number of
such tuples and on whether the index is clustered. Since op is equality, there
is exactly one qualifying tuple if R.attr is a (candidate) key for the relation.
Otherwise, we could have several tuples with the same value in this attribute.

Consider the selection in Figure 14.1. Suppose that there is an unclustered
hash index on the marne attribute, that we have 10 buffer pages, and that
100 reservations were made by people named Joe. The cost of retrieving the
index page containing the rids of such reservations is one or two l/Os. The cost
of retrieving the 100 Reserves tuples can vary between 1 and 100, depending
on how these records are distributed across pages of Reserves and the order
in which we retrieve these records. If these 100 records are contained in, say,
some five pages of Reserves, we have just five additional l/Os if we sort the
rids by their page component. Otherwise, it is possible that we bring in one of
these five pages, then look at some of the other pages, and find that the first
page has been paged out when we need it again. (Remember that several users
and DBMS operations share the buffer pool.) This situation could cause us to
retrieve the same page several times.

14.2 GENERAL SELECTION CONDITIONS

In our discussion of the selection operation thus far, we have considered selec­
tion conditions of the form CT R.attr op vall1e (R). In general, a selection condition
is a Boolean combination (Le., an expression using the logical connectives 1\

and V) of terms that have the form attribute op constant or attributel op
attrilmte2. For example, if the WHERE clause in the query shown in Figure 14.1
contained the condition R.rnarne='Joe' AND R.bid=r, the equivalent algebra
expression would be CTR.rname='Joe'l\R.bid=r(R).

In Section 14.2.1, we provide a more rigorous definition of CNF, which we
introduced in Section 12.2.2. We consider algorithms for applying selection
conditions without disjunction in Section 14.2.2 and then discuss conditions
with disjunction in Section 14.2.3.
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14.2.1 CNF and Index Matching
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To process a selection operation with a general selection condition, we first
express the condition in conjunctive normal form (CNF), that is, &9 a
collection of conjunets that are connected through the use of the 1\ operator.
Each conjunct consists of one or more terms (of the form described previously)
connected by V. 1 Conjuncts that contain V are said to be disjunctive or to
contain disjunction.

As an example, suppose that we have a selection on Reserves with the condition
(day < 8/9/02 1\ r-rwme = 'Joe ') V bid=5 V sid=3. ",re can rewrite this in
conjunctive normal form as (day < 8/9/02 V bid=5 V s'id=3) 1\ (marne =
'Joe'V bid=5 V sid=3).

Vve discussed when an index matches a CNF selection in Section 12.2.2 and in­
troduced selectivity of access paths. The reader is urged to review that mate~ial

now.

14.2.2 Evaluating Selections without Disjunction

When the selection does not contain disjunction, that is, it is a conjunction of
terms, we have two evaluation options to consider:

11II \iVe can retrieve tuples using a file scan or a single index that matches
some conjuncts (and which we estimate to be the most selective access
path) and apply all nonprimary conjuncts in the selection to each retrieved
tuple. This approach is very similar to how we use indexes for simple
selection conditions, and we do not discuss it further. (We emphasize that
the number of tuples retrieved depends on the selectivity of the primary
conjuncts in the selection, and the remaining conjuncts only reduce the
cardinality of the result of the selection.)

II We can try to utilize several indexes. vVe examine this approach in the rest
of this section.

If several indexes containing data entries with rids (i.e., Alternatives (2) or (3))
match conjuncts in the selection, we can use these indexes to compute sets of
rids of candidate tuples. "1e can then intersect these sets of rids, typically by
first sorting them, then retrieving those records whose rids are in the intersec­
tion. If additional conjuncts are present in the selection, we can apply these
conjuncts to discard some of the candidate tuples from the result.

1 Every selection conditioll Olfl be expressed in CNF. V·/e refer the reader to any standard text on
mathematical logic for the details.
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I Intersecting rid Sets: Oracle 8 uses several techniques to do rid set in­
tersection for selections with .AND. One is to ANDbitIl1aps.Another is to
do a hash join of.indexes. For example, gi,,811 sal <5/\ If'ice > 30 and
indexes on sal and price, we can join the indexes on the ri(1 column1 con­
sidering only entries that satisfy the given selection conditions. Microsoft
SQL Server imPlements rid set intersection through index joins. IBN!.~p2
implements intersection of rid sets using Bloom filters (\I,'hjch are disy~§§~d

in Section 22.10.2). Sybase ASE does not do rid set intersection for AND
selections; Sybase ASIQ does it using bitmap operations. Informix also
does rid set intersection.

As an example, given the condition day < 8/9/02 A bid=5 A sid=,'J, we can
retrieve the rids of records that meet the condition day < 8/9/02 by using a
B+ tree index on day, retrieve the rids of records that meet the condition sid=,'J
by using a hash index on sid, and intersect these two sets of rids. (If we sort
these sets by the page id component to do the intersection, a side benefit is
that the rids in the intersection are obtained in sorted order by the pages that
contain the corresponding tuples, which ensures that we do not fetch the same
page twice while retrieving tuples using their rids.) We can now retrieve the
necessary pages of Reserves to retrieve tuples and check bid=5 to obtain tuples
that meet the condition day < 8/9/02 A bid=5/\ sid=,'J.

14.2.3 Selections with Disjunction

Now let us consider that one of the conjuncts in the selection condition is a
disjunction of terms. If even one of these terms requires a file scan because
suitable indexes or sort orders are unavailable, testing this conjunct by itself
(I.e., without taking advantage of other conjuncts) requires a file scan. For
example, suppose that the only available indexes are a hash index on marne
and a hash index on sid, and that the selection condition contains just the
(disjunctive) conjunct (day < 8/9/02 V rnarne='Joe'). We can retrieve tuples
satisfying the condition marne= 'Joe' by using the index on rnarne. However,
day < 8/9/02 requires a file scan. So we might as well do a file scan and
check the condition marne= 'Joe' for each retrieved tuple. Therefore, the most
selective access path in this example is a file scan.

On the other hand, if the selection condition is (day < 8/9/02 V mame='Joe')
A sid=,'J, the index on sid matches the conjunct sid=S. We can use this index
to find qualifying tuples and apply day < 8/9/02 V marne='Joe' to just these
tuples. The best access path in this example is the index on sid with the
primary conjunct sid=S.
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Disjunctions: Microsoft SQL Server considers the use of unions and
bitmaps for dealing with disjunctive conditions. Oracle.8 considers four
ways to handle disjunctive conditions: (1) Convert the query into a union
of queries without OR. (2) If the cOllditions involve the same attribute, such
as sal < 5 V sal > 30, use a nested query with an IN list and an index on
the attribute to retrieve tuples matching a valUe in the list. (3) Use bitmap
operations, e.g., evaluate sal <5 V sal> 30 by generating bitmaps for the
values 5. and 30 and OR the bitmaps to find the tuples that satisfy one of
the conditions. (We discuss bitmaps in Chapter 25.) (4) Simply apply the
disjunctive condition as a filter on the set of retrieved tuples. Syba.'3e ASE
considers the use of unions for dealing with disjunctive queries and Sybase
ASIQ uses bitmap operations.

Finally, if every term in a disjunction has a matching index, we can retrieve
candidate tuples using the indexes and then take the union. For example, if the
selection condition is the conjunct (day < 8/9/02 V rname='Joe') and we have
B+ tree indexes on day and rname, we can retrieve all tuples such that day <
8/9/02 using the index on day, retrieve all tuples such that rname= 'Joe' using
the index on rname, and then take the union of the retrieved tuples. If all the
matching indexes use Alternative (2) or (3) for data entries, a better approach
is to take the union of rids and sort them before retrieving the qualifying data
records. Thus, in the example, we can find rids of tuples such that day <
8/9/02 using the index on day, find rids of tuples such that rname= 'Joe' using
the index on rname, take the union of these sets of rids and sort them by page
number, and then retrieve the actual tuples from Reserves. This strategy can
be thought of as a (complex) access path that matches the selection condition
(day < 8/9/02 V rname='Joe').

Most current systems do not handle selection conditions with disjunction effi­
ciently and concentrate on optimizing selections without disjunction.

14.3 THE PROJECTION OPERATION

Consider the query shown in Figure 14.2. The optimizer translates this query
into the relational algebra expression 7rsid,bidReserves. In general the projection
operator is of the form 7rattTl,attr2, ... ,attrm (R). To implement projection, we have

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Figure 14.2 Simple Projection Query



448

to do the following:

CHAPTER l4

1. Remove unwanted attributes (i.e., those not specified in the projection).

2. Eliminate any duplicate tuples produced.

The second step is the difficult one. There are two basic algorithms, one based
on sorting and one based on hashing. In terms of the general techniques listed in
Section 12.2, both algorithms are instances of partitioning. While the technique
of using an index to identify a subset of useful tuples is not applicable for
projection, the sorting or hashing algorithms can be applied to data entries
in an index, instead of to data records, under certain conditions described in
Section 14.3.4.

14.3.1 Projection Based on Sorting

The algorithm based on sorting has the following steps (at least conceptually):

1. Scan R and produce a set of tuples that contain only the desired attributes.

2. Sort this set of tuples using the combination of all its attributes as the key
for sorting.

3. Scan the sorted result, comparing adjacent tuples, and discard duplicates.

If we use temporary relations at each step, the first step costs IvI l/Os to scan
R, where 111 is the number of pages of R, and T l/Os to write the temporary
relation, where T is the number of pages of the temporary; T is a (J'v1). (The
exact value of T depends on the number of fields retained and the sizes of these
fields.) The second step costs O(TlogT) (which is also 0(MlogA1), of course).
The final step costs T. The total cost is O(II;flogIvI). The first and third steps
are straightforward and relatively inexpensive. (As noted in the chapter on
sorting, the cost of sorting grows linearly with data..<;et size in practice, given
typical data"iet sizes and main memory sizes.)

Consider the projection on Reserves shown in Figure 14.2. \iVe can scall Re­
serves at a cos,t of 1000 I/Os. If we assume that each tuple in the temporary
relation created in the first step is 10 bytes long, the cost of writing this tem­
porary relation is 250 l/Os. Suppose we have 20 buffer pages. \Ve um sort the
temporary relation in two pa"ises at a cost of 2 . 2 . 250 = 1000 l/Os. The scan
required in the third step costs an additional 250 I/Os. The total cost is 2500
l/Os.
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This approach can be improved on by modifying the sorting algorithm to do
projection with duplicate elimination. Recall the structure of the external sort­
ing algorithm presented in Chapter 13. The very first pass (Pass 0) involves
a scan of the records that are to be sorted to produce the initial set of (in­
ternally) sorted runs. Subsequently, one or more passes merge runs. Two
important modifications to the sorting algorithm adapt it for projection:

• 'We can project out unwanted attributes during the first pass (Pass 0) of
sorting. If B buffer pages are available, we can read in B pages of Rand
write out (T/!vI) . B internally sorted pages of the temporary relation. In
fact, with a more aggressive implementation, we can write out approxi­
mately 2 . B internally sorted pages of the temporary relation on average.
(The idea is similar to the refinement of external sorting discussed in Sec­
tion 13.3.1.)

• We can eliminate duplicates during the merging passes. In fact, this modifi­
cation reduces the cost of the merging passes since fewer tuples are written
out in each pa.'3S. (Most of the duplicates are eliminated in the very first
merging pass.)

Let us consider our example again. In the first pass we scan Reserves, at a cost
of 1000 I/Os and write out 250 pages. With 20 buffer pages, the 250 pages
are written out as seven internally sorted runs, each (except the last) about 40
pages long. In the second pass we read the runs, at a cost of 250 I/Os, and
merge them. The total cost is 1,500 I/Os, which is much lower than the cost
of the first approach used to implement projection.

14.3.2 Projection Based on Hashing

If we have a fairly large number (say, B) of buffer pages relative to the number
of pages of R, a hash-based approach is worth considering. There are two
phases: partitioning and duplicate elimination.

In the partitioning phase, we have one input buffer page and B-1 output buffer
pages. The relation R is read into the input buffer page, one page at a time.
The input page is processed a.'3 follows: For each tuple, we project out the
unwanted attributes and then apply a hash function h to the combination of
all remaining.attributes. The function h is chosen so that tuples are distributed
uniformly to one of B-1 partitions; there is one output page per partition.
After the projection the tuple is written to the output buffer page that it is
hashed to by h.

At the end of the partitioning phase, we have B-1 partitions, each of which
contains a collection of tuples that share a common hash value (computed by
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applying h to all fields), and have only the desired fields. The partitioning
phase is illustrated in Figure 14.3.

Original relation

Disk B main memory buffers

Partitions

Disk

2

B-1

Figure 14.3 Partitioning Phase of Hash-Based Projection

Two tuples that belong to different partitions are guaranteed not to be dupli­
cates because they have different hash values. Thus, if two tuples are duplicates,
they are in the same partition. In the duplicate elimination phase, we read in
the B-1 partitions one at a time to eliminate duplicates. The basic idea
is to build an in-memory hash table as we process tuples in order to detect
duplicates.

For each partition produced in the first phase:

1. Read in the partition one page at a time. Hash each tuple by applying
hash function h2 (1= h) to the combination of all fields and then insert it
into an in-memory hash table. If a new tuple hashes to the same value as
some existing tuple, compare the two to check whether the new tuple is a
duplicate. Discard duplicates as they are detected.

2. After the entire partition has been read in, write the tuples in the hash table
(which is free of duplicates) to the result file. Then clear the in-memory
hash table to prepare for the next partition.

Note that h2 is intended to distribute the tuples in a partition across many
buckets to minimize collisions (two tuples having the same h2 values). Since
all tuples in a given partition have the same h value, h2 cannot be the same as
h!

This ha.'3h-based projection strategy will not work well if the size of the ha.'3h
table for a partition (produced in the partitioning phase) is greater than the
number of available buffer pages B. One way to handle this paTtit'ion oveT­
flow problem is to recursively apply the hash-based projection technique to
eliminate the duplicates in each partition that overflows. That is, we divide
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an overflowing partition into subpartitions, then read each subpartition into
memory to eliminate duplicates.

If we assume that h distributes the tuples with perfect uniformity and that the
number of pages of tuples after the projection (but before duplicate elimination)
is T, each partition contains B~l pages. (Note that the number of partitions
is B-1 because one of the buffer pages is used to read in the relation during
the partitioning phase.) The size of a partition is therefore B~l' and the size

of a hash table for a partition is B~l . f; where f is a fudge factor used to
capture the (small) increase in size between the partition and a hash table for
the partition. The number of buffer pages B must be greater than the partition
size B~l . f to avoid partition overflow. This observation implies that we require
approximately B > j"J-:r buffer pages.

Now let us consider the cost of hash-based projection. In the partitioning
phase, we read R, at a cost of M I/Os. We also write out the projected tuples,
a total of T pages, where T is some fraction of M, depending on the fields that
are projected out. The cost of this phase is therefore M +T l/Os; the cost of
hashing is a CPU cost, and we do not take it into account. In the duplicate
elimination phase, we have to read in every partition. The total number of
pages in all partitions is T. We also write out the in-memory hash table for
each partition after duplicate elimination; this hash table is part of the result
of the projection, and we ignore the cost of writing out result tuples, as usual.
Thus, the total cost of both phases is M + 2T. In our projection on Reserves
(Figure 14.2), this cost is 1000 + 2 . 250 = 1500 l/Os.

14.3.3 Sorting Versus Hashing for Projections

The sorting-based approach is superior to hashing if we have many duplicates
or if the distribution of (hash) values is very nonuniform. In this case, some
partitions could be much larger than average, and a hash table for such a par­
tition would not fit in memory during the duplicate elimination phase. Also,
a useful side effect of using the sorting-based approach is that the result is
sorted. Further, since external sorting is required for a variety of reasons, most
database systems have a sorting utility, which can be used to implement pro­
jection relatively easily. For these rea..-;ons, sorting is the standard approach
for projection. And perhaps due to a simplistic use of the sorting utility, un­
wanted attribute removal and duplicate elimination are separate steps in many
systems (i.e., the basic sorting algorithm is often used without the refinements
we outlined).

We observe that, if we have B > IT buffer pages, where T is the size of
the projected relation before duplicate elimination, both approaches have the
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Projection in Commercial Systems: InfotmLxuses hashing. IBMDB2,
Oracle 8, and Sybase ASE use sorting. Microsoft SQL Server and Sybase
ASIQ implement both hash-based and sort-based algorithms.

same I/O cost. Sorting takes two passes. In the first pass, we read AI pages
of the original relation and write out T pages. In the second pa<;s, we read
the T pages and output the result of the projection. Using hashing, in the
partitioning pha<;e, we read M pages and write T pages' worth of partitions.
In the second phase, we read T pages and output the result of the projection.
Thus, considerations such as CPU costs, desirability of sorted order in the
result, and skew in the distribution of values drive the choice of projection
method.

14.3.4 Use of Indexes for Projections

Neither the hashing nor the sorting approach utilizes any existing indexes.
An existing index is useful if the key includes all the attributes we wish to
retain in the projection. In this case, we can simply retrieve the key values
from the index-without ever accessing the actual relation-and apply our
projection techniques to this (much smaller) set of pages. This technique,
called an index-only scan, and wa<; discussed in Sections 8.5.2 and 12.3.2. If
we have an ordered (i.e., a tree) index whose search key includes the wanted
attributes as a prefix, we can do even better: Just retrieve the data entries
in order, discarding unwanted fields, and compare adjacent entries to check
for duplicates. The index-only scan technique is discussed further in Section
15.4.1.

14.4 THE JOIN OPERATION

Consider the following query:

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

This query can be expressed in relational algebra using the join operation:
R [Xl S. The join operation, one of the most useful operations in relational
algebra, is the primary means of combining information from two or more
relations.
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Joins in Commercial Systems: Syba..<;eASE suppodsindex nested loop
and sort-merge join. Sybase ASIQ supports page-oriented nested loop, in­
dex nested loop, simple hash, and sort-merge join, in addition to join in­
dexes (which we discuss in Chapter 25). Ol'acle8stippoitspage-oriented
nested loops join, sort-merge join, and a variant of hybrid hash join. IBM
DB2 supports block nested loop, sort-merge, and hybrid hash join. Mi­
crosoft SQL Server supports block nested loops, index' nested loops, 80rt­
merge, hash join, and a technique called ha.sh team.s. Informix supports
block nested loops, index nested loops, and hybrid hash join.

Although a join can be defined as a cross-product followed by selections and pro­
jections, joins arise much more frequently in practice than plain cross-products.
Further, the result of a cross-product is typically much larger than the result of
a join, so it is very important to recognize joins and implement them without
materializing the underlying cross-product. Joins have therefore received a lot
of attention.

We now consider several alternative techniques for implementing joins. We
begin by discussing two algorithms (simple nested loops and block nested loops)
that essentially enumerate all tuples in the cross-product and discard tuples
that do not meet the join conditions. These algorithms are instances of the
simple iteration technique mentioned in Section 12.2.

The remaining join algorithms avoid enumerating the cross-product. They
are instances of the indexing and partitioning techniques mentioned in Section
12.2. Intuitively, if the join condition consists of equalities, tuples in the two
relations can be thought of &'3 belonging to partitions, such that only tuples in
the same partition can join with each other; the tuples in a partition contain
the same values in the join columns. Index nested loops join scans one of the
relations and, for each tuple in it, uses an index on the (join columns of the)
second relation to locate tuples in the same partition. Thus, only a subset of
the second relation is compared with a given tuple of the first relation, and the
entire cross-product is not enumerated. The last two algorithms (sort-merge
join and hash join) also take advantage of join conditions to partition tuples in
the relations to be joined and compare only tuples in the same partition while
computing the join, but they do not rely on a pre-existing index. Instead, they
either sort or hash the relations to be joined to achieve the partitioning.

We discuss the join of two relations Rand S, with the join condition R i = Sj,
using positional notation. (If we have more complex join conditions, the basic
idea behind each algorithm remains essentially the same. \Ve discuss the details
in Section 14.4.4.) vVe assmne AI pages in R with PI? tuples per page and N
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pages in S with PS tuples per page. \;Ve use R and S in our presentation of the
algorithms, and the Reserves and Sailors relations for specific examples.

14.4.1 Nested Loops Join

The simplest join algorithm is a tuple-at-a-time nested loops evaluation. We
scan the outer relation R, and for each tuple r E R, we scan the entire inner
relation S. The cost of scanning R is M l/Os. We scan S a total of PR . Iv!
times, and each scan costs N l/Os. Thus, the total cost is M + PR . Iv! . N.

f oreach tuple r E R do
foreach tuple s E S do

if ri==Sj then add (r, s) to result

Figure 14.4 Simple Nested Loops Join

Suppose we choose R to be Reserves and S to be Sailors. The value of M
is then 1,000, PR is 100, and N is 500. The cost of simple nested loops join
is 1000 + 100 . 1000 . 500 page l/Os (plus the cost of writing out the result;
we remind the reader again that we uniformly ignore this component of the
cost). The cost is staggering: 1000 + (5· 107

) I/Os. Note that each I/O costs
about lams on current hardware, which means that this join will take about
140 hours!

A simple refinement is to do this join page-at-a-time: For each page of R, we
can retrieve each page of S and write out tuples (r, s) for all qualifying tuples
r E R-page and S E S-page. This way, the cost is M to scan R, as before.
However, S is scanned only M times, and so the total cost is M + Iv! . N.
Thus, the page-at-a-time refinement gives us an improvement of a factor of PRo
In the example join of the Reserves and Sailors relations, the cost is reduced
to 1000 + 1000 . 500 = 501, 000 I/Os and would take about 1.4 hours. This
dramatic improvement underscores the importance of page-oriented operations
for minimizing disk I/O.

From these cost formulas a straightforward observation is that we should choose
the outer relation R to be the smaller of the two relations (R [XJ B = B [XJ R,
as long as we keep track of field names). This choice does not change the costs
significantly, however. If we choose the smaller relation, Sailors, as the outer
relation, the cost of the page-at-a-time algorithm is 500 + 500 ·1000 = 500,500
I/Os, which is only marginally better than the cost of page-oriented simple
nested loops join with Reserves as the outer relation.
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The simple nested loops join algorithm does not effectively utilize buffer pages.
Suppose we have enough memory to hold the smaller relation, say, R, with
at least two extra buffer pages left over. \Ve can read in the smaller relation
and use one of the extra buffer pages to scan the larger relation S. For each
tuple S E 5, we check R and output a tuple (1', s) for qualifying tuples s (i.e.,
ri = Sj). The second extra buffer page)s used as an output buffer. Each
relation is scanned just once, for a total I/O cost of 1\1 + N, which is optimal.

If enough memory is available, an important refinement is to build an in­
memory hash table for the smaller relation R. The I/O cost is still M + N, but
the CPU cost is typically much lower with the hash table refinement.

What if we have too little memory to hold the entire smaller relation? We can
generalize the preceding idea by breaking the relation R into blocks that can
fit into the available buffer pages and scanning all of 5 for each block of R. R
is the outer relation, since it is scanned only once, and S is the inner relation,
since it is scanned multiple times. If we have B buffer pages, we can read in
B-2 pages of the outer relation R and scan the inner relation S using one of
the two remaining pages. We can write out tuples (1', s), where r E R-block,
S E S-page, and ri = Sj, using the last buffer page for output.

An efficient way to find matching pairs of tuples (i.e., tuples satisfying the
join condition ri = Sj) is to build a main-memory hash table for the block of R.
Because a hash table for a set of tuples takes a little more space than just the
tuples themselves, building a hash table involves a trade-off: The effective block
size of R, in terms of the number of tuples per block, ~s reduced. Building a hash
table is well worth the effort. The block nested loops algorithm is described in
Figure 14.5. Buffer usage in this algorithm is illustrated in Figl.lre 14.6.

foreach block of B-2 pages of R do

foreach page of 5 do {

for all matching in-memory tuples T E R-block and s E S-page,
add (1', s) to result

}

Figure 14.5 Block Nested Loops Join

The cost of this strategy is !vI 1/0s for reading in R (which is scanned only
once). 5 is scanned a total of r:~21times-ignoring the extra space required
per page due to the in-memory hash table--·and each scan costs N l/Os. The
total cost is thus I\1J + N . rrf!2 1·
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Figure 14.6 Buffer Usage in Block Nested Loops Join

Consider the join of the Reserves and Sailors relations. Let us choose Reserves
to be the outer relation R and assume we have enough buffers to hold an in­
memory hash table for 100 pages of Reserves (with at least two additional
buffers, of course). We have to scan Reserves, at a cost of 1000 l/Os. For each
lOa-page block of Reserves, we have to scan Sailors. Therefore, we perform
10 scans of Sailors, each costing 500 l/Os. The total cost is 1000 + 10 . 500 =
6000 l/Os. If we had only enough buffers to hold 90 pages of Reserves, we
would have to scan Sailors flOOO/90l = 12 times, and the total cost would be
1000 + 12·500 = 7000 l/Os,

Suppose we choose Sailors to be the outer relation R instead. Scanning Sailors
costs 500 l/Os. We would scan Reserves f500/100l = 5 times. The total cost
is 500 + 5 . 1,000 = 5500 l/Os. If instead we have only enough buffers for 90
pages of Sailors, we would scan Reserves a total of f500/901 = 6 times. The
total cost in this case is 500 + 6 . 1000 = 6500 l/Os. We note that the block
nested loops join algorithm takes a little over a minute on our running example,
a.ssuming lOms per I/O as before.

Impact of Blocked Access

If we consider the effect of blocked access to several pages, there is a funda­
mental change in the way we allocate buffers for block nested loops. Rather
than using just one buffer page for the inner relation, the best approach is to
split the buffer pool evenly between the two relations. This allocation results
in more pa.sses over the inner relation, leading to more page fetches. However,
the time spent on seeking for pages is dramatically reduced.

The technique of double buffering (discussed in Chapter 13 in the context of
sorting) can also be used, but we do not discuss it further.
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If there is an index on one of the relations on the join attribute(s), we can take
advantage of the index by making the indexed relation be the inner relation.
Suppose we have a suitable index on S; Figure 14.7 describes the index nested
loops join algorithm.

foreach tuple r E R do

foreach tuple s E S where ri == Sj

add (1', s) to result

Figure 14.7 Index Nested Loops Join

For each tuple T E R, we use the index to retrieve matching tuples of S.
Intuitively, we compare r only with tuples of S that are in the same partition,
in that they have the same value in the join column. Unlike the other nested
loops join algorithms, therefore, the index nested loops join algorithm does not
enumerate the cross-product of Rand S. The cost of scanning R is M, as
before. The cost of retrieving matching S tuples depends on the kind of index
and the number of matching tuples; for each R tuple, the cost is a..s follows:

1. If the index on S is a B+ tree index, the cost to find the appropriate leaf
is typically 2---4 l/Os. If the index is a hash index, the cost to find the
appropriate bucket is 1-2 1/Os.

2. Once we find the appropriate leaf or bucket, the cost of retrieving matching
S tuples depends on whether the index is clustered. If it is, the cost per
outer tuple r E R is typically just one more I/O. If it is not clustered, the
cost could be one I/O per matching S-tuple (since each of these could be
on a different page in the worst case).

As an example, suppose that we have a hash-based index using Alternative (2)
on the sid attribute of Sailors and that it takes about 1.2 l/Os on average2

to retrieve the appropriate page of the index. Since sid is a key for Sailors,
we have at most one matching tuple. Indeed, .sid in Reserves is a foreign key
referring to Sailors, and therefore we have exactly one matching Sailors tuple
for each Reserves tuple. Let us consider the cost of scanning Reserves and
using the index to retrieve the matching Sailors tuple for each Reserves tuple.
The cost of scanning Reserves is 1000. There are 100 . 1000 tuples in Reserves.
For each of these tuples, retrieving the index page containing the rid of the
matching Sailors tuple costs 1.2 l/Os (on average); in addition, we have to
retrieve the Sailors page containing the qualifying tuple. Therefore, we have

2This is a typical cost for hash-ba.~ed indexes,
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100,000 ·(1 + 1.2) l/Os to retrieve matching Sailors tuples. The total cost is
221,000 l/Os.

As another example, suppose that we have a hash-based index using Alternative
(2) on the sid attribute of Reserves. Now we can scan Sailors (500 l/Os),
and for each tuple, use the index to retrieve matching Reserves tuples. We
have a total of 80 . 500 Sailors tuples, and each tuple could match with either
zero or more Reserves tuples; a sailor may have no reservations or several.
For each Sailors tuple, we can retrieve the index page containing the rids of
matching Reserves tuples (assuming that we have at most one such index page,
which is a reasonable guess) in 1.2 l/Os on average. The total cost thus far is
500 + 40,000 . 1.2 = 48,500 l/Os.

In addition, we have the cost of retrieving matching Reserves tuples. Since we
have 100,000 reservations for 40,000 Sailors, assuming a uniform distribution
we can estimate that each Sailors tuple matches with 2.5 Reserves tuples on
average. If the index on Reserves is clustered, and these matching tuples are
typically on the same page of Reserves for a given sailor, the cost of retrieving
them is just one I/O per Sailor tuple, which adds up to 40,000 extra l/Os.
If the index is not clustered, each matching Reserves tuple may well be on
a different page, leading to a total of 2.5 . 40,000 l/Os for retrieving qualify­
ing tuples. Therefore, the total cost can vary from 48,500+40,000=88,500 to
48,500+100,000=148,500 l/Os. Assuming 10ms per I/O, this would take about
15 to 25 minutes.

So, even with an unclustered index, if the number of matching inner tuples for
each outer tuple is small (on average), the cost of the index nested loops join
algorithm is likely to be much less than the cost of a simple nested loops join.

14.4.2 Sort-Merge Join

The basic idea behind the sort-merge join algorithm is to SOTt both relations
on the join attribute and then look for qualifying tuples T E Rand s E S
by essentially TneTging the two relations. The sorting step groups all tuples
with the same value in the join column and thus makes it easy to identify
partitions, or groups of tuples with the same value, in the join column. We
exploit this partitioning by comparing the R tuples in a partition with only the
S tuples in the same partition (rather than with all S tuples), thereby avoiding
enumeration of the cross-product of Rand S. (This partition-ba.<-;ed approach
works only for equality join conditions.)

The external sorting algorithm discussed in Chapter 13 can be used to do the
sorting, and of course, if a relation is already sorted on the join attribute, we
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need not sort it again. vVe now consider the merging step in detail: vVe scan
the relations Rand S) looking for qualifying tuples (i.e., tuples Tr in Rand
Ts in S such that Tri = Ts j ). The two scans start at the first tuple in each
relation. vVe advance the scan of R as long as the current R tuple is less than
the current S tuple (with respect to the values in the join attribute). Similarly,
we advance the scan of S as long as the current S tuple is less than the current
R tuple. \Ve alternate between such advances until we find an R tuple Tr and
a S tuple Ts with Tri = TSj'

When we find tuples Tr and Ts such that Tri = Ts j , we need to output the
joined tuple. In fact, we could have several R tuples and several S tuples with
the same value in the join attributes as the current tuples Tr and Ts. We
refer to these tuples as the current R partition and the current S partition. For
each tuple r in the current R partition, we scan all tuples s in the current S
partition and output the joined tuple (r, s). We then resume scanning Rand
S, beginning with the first tuples that follow the partitions of tuples that we
just processed.

The sort-merge join algorithm is shown in Figure 14.8. We assign only tuple
values to the variables Tr, Ts, and Gs and use the special value eof to denote
that there are no more tuples in the relation being scanned. Subscripts identify
fields, for example, Tri denotes the ith field of tuple Tr. If Tr has the value
eof, any comparison involving Tri is defined to evaluate to false.

We illustrate sort-merge join on the Sailors and Reserves instances shown in
Figures 14.9 and 14.10, with the join condition being equality on the sid at­
tributes.

These two relations are already sorted on sid, and the merging phase of the
sort-merge join algorithm begins with the scans positioned at the first tuple of
each relation instance. We advance the scan of Sailors, since its sid value, now
22, is less than the sid value of Reserves, which is now 28. The second Sailors
tuple h&<; sid = 28, which is equal to the sid value of the current Reserves tuple.
Therefore, we now output a result tuple for each pair of tuples, one from Sailors
and one from Reserves, in the current partition (i.e., with sid = 28). Since we
have just one Sailors tuple with sid = 28 and two such Reserves tuples, we
write two result tuples. After this step, we position the scan of Sailors at the
first tuple after the partition with sid = 28, which ha.<; sid = 31. Similarly, we
position the scan of Reserves at the first tuple with sid = 31. Since these two
tuples have the same sid values, we have found the next matching partition,
and we must write out the result tuples generated from this partition (there
are three such tuples). After this, the Sailors scan is positioned at the tuple
with sid = 36, and the Reserves scan is positioned at the tuple with sid = 58.
The rest of the merge phase proceeds similarly.
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proc smjoin(R, B, 'Hi = By)

if R not sorted on attribute i, sort it;
if B not sorted on attribute j, sort it;

Tr = first tuple in R;
Ts = first tuple in B;
Gs = first tuple in S;

while Tr i= eo! and Gs -I=- eo! do {

while Tri < GSj do

Tr = next tuple in Rafter Tr;

while Tri > GSj do

Gs = next tuple in S after Gs

/ / ranges over R
/ / ranges over S

/ / start of current S-partition

/ / continue scan of R

/ / continue scan of B

Ts = Gs; / / Needed in case Tri i= GS j

while Tri == GS j do { / / process current R partition
Ts = Gs; / / reset S partition scan
while TS j == Tri do { / / process current R tuple

add (Tr, Ts) to result; / / output joined tuples
Ts = next tuple in S after Ts;} / / advance S partition scan

Tr = next tuple in Rafter Tr; / / advance scan of R
} / / done with current R partition

Gs = Ts;

}

/ / initialize search for next S partition

Figure 14.8 Sort-Merge Join

~ snarrw mUng~ ~day

22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
36 lubber 6 36.0
44 guppy 5 35.0
58 rusty 10 35.0

Figure 14.9 An Instance of Sailors

28 103 12/04/96 guppy
28 103 11/03/96 }'uppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Figure 14.10 An Instance of Reserves
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In general, we have to scan a partition of tuples in the second relation as often
as the number of tuples in the corresponding partition in the first relation.
The first relation in the example, Sailors, ha.', just one tuple in each partition.
(This is not happenstance but a consequence of the fact that sid is a key~~~

this example is a key-foreign key join.) In contra."t, suppose that the join
condition is changed to be sname=7'name. Now, both relations contain more
than one tuple in the partition with sname=mame='lubber'. The tuples with
rname= 'lubber' in Reserves have to be scanned for each Sailors tuple with
sname='lubber'.

Cost of Sort~Merge Join

The cost of sorting R is O(/vlloglv1) ancl the cost of sorting S is O(NlogN).
The cost of the merging phase is /vI + N if no S partition is scanned multiple
times (or the necessary pages are found in the buffer after the first pass). This
approach is especially attractive if at least one relation is already sorted on the
join attribute or has a clustered index on the join attribute.

Consider the join of the relations Reserves and Sailors. Assuming that we have
100 buffer pages (roughly the same number that we assumed were available
in our discussion of block nested loops join), we can sort Reserves in just two
passes. The first pass produces 10 internally sorted runs of 100 pages each.
The second pass merges these 10 runs to produce the sorted relation. Because
we read and write Reserves in each pass, the sorting cost is 2·2 . 1000 = 4000
l/Os. Similarly, we can sort Sailors in two passes, at a cost of 2 . 2 . 500 = 2000
l/Os. In addition, the seconcl phase of the sort-merge join algorithm requires
an additional scan of both relations. Thus the total cost is 4000 + 2000 +
1000 + 500 = 7500 l/Os, which is similar to the cost of the block nested loops
algorithm.

Suppose that we have only 35 buffer pages. \Ve can still sort both Reserves and
Sailors in two passes, and the cost of the sort-merge join algorithm remains at
7500 l/Os. However, the cost of the block nested loops join algorithm is more
than 15,000 l/Os. On the other hand, if we have ~300 buffer pages, the cost
of the sort~merge join remains at 7500 I/Os, whereas the cost of the block
nested loops join drops to 2500 l/Os. (We leave it to the reader to verify these
numbers. )

\Ve note that multiple scans of a partition of the second relation are potentially
expensive. In our example, if the number of Reserves tuples in a repeatedly
scanned partition is small (say, just a few pages), the likelihood of finding the
entire partitiOli in the buffer pool on repeated scans is very high, and the I/O
cost remains essentially the same as for a single scan. However, if many pages



462 CHAPTER 14

of Reserves tuples are in a given partition, the first page of such a partition
may no longer be in the buffer pool when we request it a second time (after
first scanning all pages in the partition; remember that each page is unpinned
a'3 the scan moves past it). In this ca.se, the I/O cost could be as high as the
number of pages in the Reserves partition times the number of tuples in the
corresponding Sailors partition!

In the worst-case scenario, the merging phase could require us to read the
complete second relation for each tuple in the first relation, and the number of
l/Os is O(M . N) l/Os! (This scenario occurs when all tuples in both relations
contain the same value in the join attribute; it is extremely unlikely.)

In practice, the I/O cost of the merge phase is typically just a single scan of
each relation. A single scan can be guaranteed if at least one of the relations
involved has no duplicates in the join attribute; this is the case, fortunately,
for key~foreign key joins, which are very common.

A Refinement

We assumed that the two relations are sorted first and then merged in a distinct
pass. It is possible to improve the sort-merge join algorithm by combining the
merging phase of sorting with the merging phase of the join. First, we produce
sorted runs of size B for both Rand 5. If B > VI, where L is the size of the
larger relation, the number of runs per relation is less than VI. Suppose that
the number of buffers available for the merging pha.<;e is at lea'3t 2 VI; that
is, more than the total number of runs for Rand 5. We allocate one buffer
page for each run of R and one for each run of 5. We then merge the runs of
R (to generate the sorted version of R), merge the runs of 5, and merge the
resulting Rand 5 streams a'3 they are generated; we apply the join condition
as we merge the Rand S streams and discard tuples in the cross--product that
do not meet the join condition.

Unfortunately, this idea increa<;es the number of buffers required to 2JI. How­
ever, by using the technique discussed in Section 13.3.1 we can produce sorted
runs of size approximately 2· B for both Rand 5. Consequently, we have fewer
than VI/2 runs of each relation, given the assumption that B > VI. Thus,
the total number of runs is less than VI, that is, less than B, and we can
combine the merging pha.ses with no need for additional buffers.

This approach allows us to perform a sort-merge join at the cost of reading and
writing Rand S in the first pa.ss and reading Rand 5 in the second pass. The
total cost is thus ~1 . (At + N). In our example, the cost goes down from 7500
to 4500 l/Os.
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Blocked Access and Double-Buffering

The blocked I/O and double-buffering optimizations, discussed in Chapter 13
in the context of sorting, can be used to speed up the merging pass as well as
the sorting of the relations to be joined; we do not discuss these refinements.

14.4.3 Hash Join

The hash join algorithm, like the sort-merge join algorithm, identifies par­
titions in Rand S in a partitioning phase and, in a subsequent probing
phase, compares tuples in an R partition only with tuples in the correspond­
ing 5 partition for testing equality join conditions. Unlike sort-merge join, hash
join uses hashing to identify partitions rather than sorting. The partitioning
(also called building) pha.."Je of hash join is similar to the partitioning in hash­
based projection and is illustrated in Figure 14.3. The probing (sometimes
called matching) phase is illustrated in Figure 14.11.

Disk

o 0 0

Output buffer

Hash table for partition Ri
(k < B-1 pages)

B main memory bulTers
Disk

Partitions of Rand S Join result

~

Figure 14.11 Probing Phase of Hash Join

The idea is to hash both relations on the join attribute, using the same hash
function h. If we ha..'3h each relation (ideally uniformly) into k partitions, we
are assured that R tuples in partition i can join only with S tuples in the same
partition i. This observation can be used to good effect: We can read in a
(complete) partition of the smaller relation R and scan just the corresponding
partition of S for matches. \iVe never need to consider these Rand S tuples
again. Thus, once Rand S are partitioned, we can perform the join by reading
in Rand 5 just once, provided enough memory is available to hold all the
tuples in any given partition of R.

In practice we build an in-memory hash table for the R partition, using a ha..'3h
function h2 that is different from h (since h2 is intended to distribute tuples
in a partition based on h), to reduce CPU costs. \Ne need enough memory to
hold this hash table, which is a little larger than the R partition itself.
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The hash join algorithm is presented in Figure 14.12. (There are several variants
on this idea; this version is called Grace hash join in the literature.) Consider
the cost of the hash join algorithm. In the partitioning phase, we have to
scan both Rand S once and write them out once. The cost of this phase
is therefore 2(l'vi + N). In the second phase, we scan each partition once,
assuming no partition overflows, at a cost of .M + N I/Os. The total cost is
therefore 3(AI + N), given our assumption that each partition fits into memory
in the second phase. On our example join of Reserves and Sailors, the total
cost is 3 . (500 + 1000) = 4500 I/Os, and assuming lOms per I/O, hash join
takes under a minute. Compare this with simple nested loops join, which took
about 140 houTs--this difference underscores the importance of using a good
join algorithm.

/ / Partition R into k partitions
foreach tuple r E R do

read T and add it to buffer page h(ri);

/ / Partition S into k partitions
foreach tuple s E S do

read s and add it to buffer page h(sj);

/ / Probing phase
for I = 1, ... ,k do {

/ / flushed as page fills

/ / flushed as page fills

/ / Build in-memory hash table for Rz, using h2
foreach tuple T E partition Rz do

read r and insert into hash table using h2(ri) ;

/ / Scan Sz and probe for matching Rz tuples
foreach tuple s E partition Sz do {

read s and probe table using h2(sj);
for matching R tuples T, output (7', s) };

clear hash table to prepare for next partition;
}

Figure 14.12 Hash Join

Memory Requirements and Overflow Handling

To increase the chances of a given partition fitting into available memory in
the probing phase, we must minimize the size of a partition by maximizing
the number of partitions. In the partitioning phase, to partition R (similarly,
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8) into k partitions, we need at least k output buffers and one input buffer.
Therefore, given B buffer pages, the maximum number of partitions is k =

B - 1. Assuming that partitions are equal in size, this means that the size of
each R partition is t!l (a'3 usual, Ai is the number of pages of R). The number
of pages in the (in-memory) hash table built during the probing phase for a
partition is thus ~'~'i, where f is a fudge factor used to capture the (small)
increase in size between the partition and a hash table for the partition.

During the probing phase, in addition to the hash table for the R partition,
we require a buffer page for scanning the 8 partition and an output buffer.
Therefore, we require B > -k'~~ + 2. We need approximately B > J f . AI for
the hash join algorithm to perform well.

Since the partitions of R are likely to be close in size but not identical, the
largest partition is somewhat larger than t!l' and the number of buffer pages

required is a little more than B > J f . AI. There is also the risk that, if the
hash function h does not partition R uniformly, the hash table for one or more
R partitions may not fit in memory during the probing phase. This situation
can significantly degrade performance.

As we observed in the context of hash-based projection, one way to handle this
partition overflow problem is to recursively apply the hash join technique to the
join of the overflowing R partition with the corresponding 8 partition. That
is, we first divide the Rand 8 partitions into subpartitions. Then, we join the
subpartitions pairwise. All subpartitions of R probably fit into memory; if not,
we apply the hash join technique recursively.

Utilizing Extra Memory: Hybrid Hash Join

The minimum amount of memory required for ha.'3h join is B > Jf . AI. If
more memory is available, a variant of ha.'3h join called hybrid hash join
oHers better performance. Suppose that B > f· (lYI/k) , for some integer k.
This means that, if we divide R into k partitions of size AI/k, an in-memory
hash table can be built for each partition. To partition R (similarly, 5) into k
partitions, we need k output buHers and one input buHer: that is, k + 1 pages.
This leaves us with B - (k + 1) extra pages during the partitioning pha.<;e.

Suppose that B - (k + 1) > f . (1'.,1/k). That is, we have enough extra memory
during the partitioning phase to hold an in-memory hash table for a partition
of R. The idea behind hybrid hash join is to build an in-memory ha.<;h table
for the first partition of R during the partitioning pha.se, which means that
we do not write this partition to disk. Similarly, while partitioning 8, rather
than write out the tuples in the first partition of 5, we can directly probe the
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in-memory table for the first R partition and write out the results. At the end
of the partitioning phase, we have completed the join of the first partitions of
Rand S, in addition to partitioning the two relations; in the probing phase,
we join the remaining partitions as in hash join.

The savings realized through hybrid hash join is that we avoid writing the first
partitions of Rand S to disk during the partitioning phase and reading them
in again during the probing phase. Consider our example, with 500 pages in
the smaller relation Rand 1000 pages in S. 3 If we have B = 300 pages, we can
easily build an in-memory hash table for the first R partition while partitioning
R into two partitions. During the partitioning phase of R, we scan R and write
out one partition; the cost is 500 + 250 if we assume that the partitions are of
equal size. We then scan S and write out one partition; the cost is 1000 + 500.
In the probing phase, we scan the second partition of R and of S; the cost is
250 + 500. The total cost is 750 + 1500 + 750 = 3000. In contrast, the cost of
hash join is 4500.

If we have enough memory to hold an in-memory hash table for all of R, the
savings are even greater. For example, if B > f . N + 2, that is, k = 1, we can
build an in-memory hash table for all of R. This llleans that we read R only
once, to build this hash table, and read S once, to probe the R hash table. The
cost is 500 + 1000 = 1500.

Hash Join Versus Block Nested Loops Join

While presenting the block nested loops join algorithm, we briefly discussed
the idea of building an in-memory hash table for the inner relation. We now
compare this (more CPU-efficient) version of block nested loops join with hybrid
hash join.

If a hash table for the entire smaller relation fits in memory, the two algorithms
are identical. If both relations are large relative to the available buffer size, we
require several passes over one of the relations in block nested loops join; hash
join is a more effective application of hashing techniques in this case. The I/O
saved in this case by using the hash join algorithm in comparison to a block
nested loops join is illustrated in Figure 14.13. In the latter, we read in all of
S for each block of R; the I/O cost corresponds to the whole rectangle. In the
hash join algorithm, for each block of R, we read only the corresponding block
of S; the I/0 cost corresponds to the shaded areas in the figure. This difference
in I/O due to scans of S is highlighted in the figure.

3It is unfortunate, that in our running example, the smaller relation, which we denoted by the
variable R in our discussion of hash join, is in fact the Sailors relation, which is more naturally
denoted by 8!
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81 82 S3 54 S5

Figure 14.13 Hash Join Vs. Block Nested Loops for Large Relations
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We note that this picture is rather simplistic. It does not capture the costs
of scanning R in the block nested loops join and the partitioning phase in the
hash join, and it focuses on the cost of the probing phase ..

Hash Join Versus Sort-Merge Join

Let us compare hash join with sort-merge join. If we have B > VM buffer
pages, where M is the number of pages in the smaller relation and we assume
uniform partitioning, the cost of hash join is 3(M + N) l/Os. If we have
B > VN buffer pages, where N is the number of pages in the larger relation,
the cost of sort-merge join is also 3(NI + N), as discussed in Section 14.4.2. A
choice between these techniques is therefore governed by other factors, notably:

II If the partitions in hash join are not uniformly sized, hash join could cost
more. Sort-merge join is less sensitive to such data skew.

II If the available number of buffers falls between -1M andVN, hash join
costs less than sort-merge join, since we need only enough memory to hold
partitions of the smaller relation, wherea'3 in sort-merge join the memory
requirements depend on the size of the larger relation. The larger the
difference in size between the two relations, the more important this factor
becomes.

II Additional considerations include the fact that the result is sorted in sort­
merge join.

14.4.4 General Join Conditions

We have discussed several join algorithms for the case of a simple equality
join condition. Other important cases include a join condition that involves
equalities over several attributes and inequality conditions. To illustrate the
ca.'3C of several equalities, we consider the join of Reserves R and Sailors 8 with
the join condition R.sid=S.s'id 1\ R.rname=S.sname:
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• For index nested loops join, we can build an index on Reserves on the
combination of fields (R.sid, R.rname) and treat Reserves as the inner
relation. vVe can also use an existing index on this combination of fields,
or on R.s'id, or on R.marne. (Similar remarks hold for the choice of Sailors
as the inner relation, of course.)

• For sort-merge join, we sort Reserves on the combination of fields (sid,
marne) and Sailors on the combination of fields (sid, snarne). Similarly,
for hash join, we partition on these combinations of fields.

• The other join algorithms we discussed are essentially unaffected.

If we have an {nequality comparison, for example, a join of Reserves Rand
Sailors 5 with the join condition R.rnarne < S.sname:

• We require a B+ tree index for index nested loops join.

• Hash join and sort-merge join are not applicable.

• The other join algorithms we discussed are essentially unaffected.

Of course, regardless of the algorithm, the number of qualifying tuples in an
inequality join is likely to be much higher than in an equality join.

We conclude our presentation of joins with the observation that no one join
algorithm is uniformly superior to the others. The choice of a good algorithm
depends on the sizes of the relations being joined, available access methods,
and the size of the buffer pool. This choice can have a considerable impact on
performance because the difference between a good and a bad algorithm for a
given join can be enormous.

14.5 THE SET OPERATIONS

We now briefly consider the implementation of the set operations R n 5, R x S,
R u 5, and R - S. From an implementation standpoint, intersection and cr08S­
product can be seen as special cases of join (with equality on all fields &'S the
join condition for intersection, and with no join condition for cross-product).
Therefore, we will not discuss them further.

The main point to acldress in the implementation of union is the elimination
of duplicates. Set-difference can also be implemented using a variation of the
techniques for duplicate elimination. (Union and difference queries on a sin­
gle relation can be thought of as a selection query with a complex selection
condition. The techniques discussecl in Section 14.2 are applicable for such
queries.)
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There are two implementation algorithms for union and set-difference, again
based 011 sorting and hashing. Both algorithms are instances of the partitioning
technique mentioned ill Section 12.2.

14.5.1 Sorting for Union and Difference

To implement R uS:

1. Sort R using the combination of all fields; similarly, sort S.

2. Scan the sorted Rand S in parallel and merge them, eliminating duplicates.

As a refinement, we can produce sorted runs of Rand S and merge these
runs in parallel. (This refinement is similar to the one discussed in detail for
projection.) The implementation of R- S is similar. During the merging pass,
we write only tuples of R to the result, after checking that they do not appear
in S.

14.5.2 Hashing for Union and Difference

To implement R U S:

1. Partition Rand S using a hash function h.

2. Process each partition I as follows:

• Build an in-memory hash table (using hash function h2 i= h) for SI.

• Scan RI. For each tuple, probe the hash table for SI. If the tuple is in
the ha.,,>h table, discard it; otherwise, add it to the table.

• Write out the ha.'3h table and then dear it to prepare for the next
partition.

To implement R - S, we proceed similarly. The difference is in the processing
of a partition. After building an in-memory ha.,,>h table for SI, we scan Rz. For
each Rz tuple, we probe the hcl.,')h table; if the tuple is not in the table, we write
it to the result.

14.6 AGGREGATE OPERATIONS

The SQL query shown in Figure 14.14 involves an aggregate opemtion, AVG.
The other aggregate operations supported in SQL-92 are MIN, MAX, SUM, and
COUNT.
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SELECT AVG(S.age)
FROM Sailors S

Figure 14.14 Simple Aggregation Query

CHAPTER 14

The basic algorithm for aggregate operators consists of scanning the entire
Sailors relation and maintaining some running information about the scanned
tuples; the details are straightforward. The running information for each ag­
gregate operation is shown in Figure 14.15. The cost of this operation is the
cost of scanning all Sailors tuples.

I Aggregate Operation I Running Inforrniation

SUM Total of the values retrieved
AVG (Total, Count) of the values retrieved
COUNT Count of values retrieved.
MIN Smallest value retrieved
MAX Largest value retrieved

Figure 14.15 Running Information for Aggregate Operations

Aggregate operators can also be used in combination with a GROUP BY clause.
If we add GROUP BY rating to the query in Figure 14.14, we would have to
compute the average age of sailors for each rating group. For queries with
grouping, there are two good evaluation algorithms that do not rely on an
existing index: One algorithm is based on sorting and the other is based on
hashing. Both algorithms are instances of the partitioning technique mentioned
in Section 12.2.

The sorting approach is simple-we sort the relation on the grouping attribute
(rating) and then scan it again to compute the result of the aggregate operation
for each group. The second step is similar to the way we implement aggregate
operations without grouping, with the only additional point being that we have
to watch for group boundaries. (It is possible to refine the approach by doing
aggregation as part of the sorting step; we leave this as an exercise for the
reader.) The I/O cost of this approach is just the cost of the sorting algorithm.

In the hashing approach we build a hash table (in main memory, if possible)
on the grouping attribute. The entries have the form (gTOuping-value, running­
info). The running information depends on the aggregate operation, as per the
discussion of aggregate operations without grouping. As we scan the relation,
for each tuple, we probe the hash table to find the entry for the group to which
the tuple belongs and update the running information. 'When the h&'3h table
is cOlnplete, the entry for a grouping value can be used to compute the answer
tuple for the corresponding group in the obvious way. If the hash table fits in
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memory, which is likely because each entry is quite small and there is only one
entry per grouping value, the cost of the hashing approach is O(.iV1), where 1V!
is the size of the relation.

If the relation is so large that the hash table does not fit in memory, we can
partition the relation using a hash function h on gTOuping-value. Since all tuples
with a given grouping value are in the same partition, we can then process each
partition independently by building an in-memory hash table for the tuples in
it.

14.6.1 Implementing Aggregation by Using an Index

The technique of using an index to select a subset of useful tuples is not ap­
plicable for aggregation. However, under certain conditions, we can evaluate
aggregate operations efficiently by using the data entries in an index instead of
the data records:

• If the search key for the index includes all the attributes needed for the
aggregation query, we can apply the techniques described earlier in this
section to the set of data entries in the index, rather than to the collection
of data records and thereby avoid fetching data records.

• If the GROUP BY clause attribute list forms a prefix of the index search
key and the index is a tree index, we can retrieve data entries (and data
records, if necessary) in the order required for the grouping operation and
thereby avoid a sorting step.

A given index may support one or both of these techniques; both are examples
of index-only plans. We discuss the use of indexes for queries with grouping and
aggregation in the context of queries that also include selections and projections
in Section 15.4.1.

14.7 THE IMPACT OF BUFFERING

In implementations of relational operators, effective use of the buffer pool is
very important, and we explicitly considered the size of the buffer pool in de­
termining algorithm parameters for several of the algorithms discussed. There
are three main points to note:

1. If several operations execute concurrently, they share the buffer pool. This
effectively reduces the number of buffer pages available for each operation.

2. If tuples are accessed using an index, especially an unclustered index, the
likelihood of finding a page in the buffer pool if it is requested multiple
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times depends (in a rather unpredictable way, unfortunately) on the size of
the buffer pool and the replacement policy. Further, if tuples are accessed
using an unclustered index, each tuple retrieved is likely to require us to
bring in a new page; therefore, the buffer pool fills up quickly, leading to a
high level of paging activity.

3. If an operation has a pattern of repeated page accesses, we can increa..<;e
the likelihood of finding a page in memory by a good choice of replacement
policy or by reseTving a sufficient number of buffers for the operation (if the
buffer manager provides this capability). Several examples of such patterns
of repeated access follow:

• Consider a simple nested loops join. :For each tuple of the outer re­
lation, we repeatedly scan all pages in the inner relation. If we have
enough buffer pages to hold the entire inner relation, the replacement
policy is irrelevant. Otherwise, the replacement policy becomes criti­
cal. With LRU, we will never find a page when it is requested, because
it is paged out. This is the sequential flooding problem discussed in
Section 9.4.1. With MRU, we obtain the best buffer utilization~the

first B-2 pages of the inner relation always remain in the buffer pool.
(B is the number of buffer pages; we use one page for scanning the
outer relation4 and always replace the la..'3t page used for scanning the
inner relation.)

• In a block nested loops join, for each block of the outer relation, we
scan the entire inner relation. However, since only one unpinned page
is available for the scan of the inner rel~tion, the replacement policy
makes no difference.

11III In an index nested loops join, for each tuple of the outer relation, we
use the index to find matching inner tuples. If several tuples of the
outer relation have the same value in the join attribute, there is a
repeated pattern of access on the inner relation; we can maximize the
repetition by sorting the outer relation on the join attributes.

14.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

IIIIJ Consider a simple selection query of the form (JR.attr op 1)aluAR). What
are the alternative access paths in each of these cases: (i) there is no
index and the file is not sorted, (ii) there is no index but the file is sorted.
(Section 14.1)

4Think about the sequence of pins and unpins used to achieve this.
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• If a B+ tree index matches the selection condition, how does clustering
affect the cost? Discuss this in terms of the selectivity of the condition.
(Section 14.1)

• Describe conjunctive normal form for general selections. Define the terms
conjunct and disfunct. Under what conditions does a general selection
condition match an index? (Section 14.2)

• Describe the various implementation options for general selections. (Sec­
tion 14.2)

• Discuss the use of sorting versus hashing to eliminate duplicates during
projection. (Section 14.3)

• When can an index be used to implement projections, without retrieving
actual data records? ~Then does the index additionally allow us to elimi­
nate duplicates without sorting or hashing? (Section 14.3)

• Consider the join of relations Rand 5. Describe simple nested loops join
and block nested loops join. What are the similarities and differences? How
does the latter reduce I/O costs? Discuss how you would utilize buffers in
block nested loops. (Section 14.4.1)

• Describe index nested loops join. How does it differ from block nested loops
join? (Section 14.4.1)

• Describe sort-merge join of Rand 5. What join conditions are supported?
What optimizations are possible beyond sorting both Rand 5 on the join
attributes and then doing a merge of the two? In particular, discuss how
steps in sorting can be combined with the merge P&<;s. (Section 14.4.2)

• What is the idea behind hash join? What is the additional optimization in
hybrid hash join? (Section 14.4.3)

• Discuss how the choice of join algorithm depends on the number of buffer
pages available, the sizes of Rand 5, and the indexes available. Be spe­
cific in your discussion and refer to cost formulas for the I/O cost of eae:h
algorithm. (Sections 14.12 Section 14.13)

• How are general join conditions handled? (Section 14.4.4)

• \Vhy are the set operations R n 5 and R x S special cases of joins? What is
the similarity between the set operations Ru 5 and R - 5? (Section 14.5)

• Discuss the use of sorting versus hashing in implementing Ru 5 and R - S.
Compare this with the ilnplementation of projection. (Section 14.5)

• Discuss the use of running injomwtion in implementing aggregate opera­
tions. Discuss the use of sorting versus hashing for dealing with grouping.
(Section 14.6)
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• Under what conditions can we use an index to implement aggregate oper­
ations without retrieving data records? Under what conditions do indexes
allow us to avoid sorting or ha.~hing? (Section 14.6)

• Using the cost formulas for the various relational operator evaluation algo­
rithms, discuss which operators are most sensitive to the number of avail­
able buffer pool pages. How is this number influenced by the number of
operators being evaluated concurrently? (Section 14.7)

• Explain how the choice of a good buffer pool replacement policy can in­
fluence overall performance. Identify the patterns of access in typical rela­
tional operator evaluation and how they influence the choice of replacement
policy. (Section 14.7)

EXERCISES

Exercise 14.1 Briefly answer the following questions:

1. Consider the three basic techniques, iteration, indexing, and partitioning, and the rela­
tional algebra operators selection, projection, and join. For each technique-operator pair,
describe an algorithm based on the technique for evaluating the operator.

2. Define the term most selective access path for a query.

3. Describe conjunctive normal form, and explain why it is important in the context of
relational query evaluation.

4. When does a general selection condition match an index? What is a primary term in a
selection condition with respect to a given index?

5. How does hybrid hash join improve on the basic hash join algorithm?

6. Discuss the pros and cons of hash join, sort-merge join, and block nested loops join.

7. If the join condition is not equality, can you use sort-merge join? Can you use hash join?
Can you use index nested loops join? Can you use block nested loops join?

8. Describe how to evaluate a grouping query with aggregation operator MAX using a sorting­
based approach.

9. Suppose that you are building a DBMS and want to add a new aggregate operator called
SECOND LARGEST, which is a variation of the MAX operator. Describe how you would
implement it.

10. Give an example of how buffer replacement policies can affect the performance of a join
algorithm.

Exercise 14.2 Consider a relation R( a, b, c, d, e) containing 5,000,000 records, where each data
page of the relation holds 10 records. R is organized as a sorted file with secondary indexes.
Assume that R.a is a candidate key for R, with values lying in the range 0 to 4,999,999, and
that R is stored in R.a order. For each of the following relational algebra queries, state which
of the following approaches (or combination thereof) is most likely to be the cheapest:

• Access the sorted file for R directly.
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• Use a clustered B+ tree index on attribute R.a.

• Use a linear hashed index on attribute R.a.

• Use a clustered B+ tree index on attributes (R.a, R.b).

• Use a linear hashed index on attributes (R.a, R.b).

• Use an unclustered B+ tree index on attribute R.b.

1. O"u<50,OOOAb<50,ooo(R)

2. 0"u=50,OOOAb<50,OOO (R)

3. O"u>50,OOOAb=50,ooo(R)

4. 0"u=50,OOOi\a=50,OlO (R)

5. O"a#50,OOOi\b=50,Ooo(R)

6. 0"a<50,OOOvb=50,OOO (R)

Exercise 14.3 Consider processing the following SQL projection query:

SELECT DISTINCT E.title, E.ename FROM Executives E

You are given the following information:

Executives has attributes ename, title, dname, and address; all are string fields of
the same length.
The ename attribute is a candidate key.
The relation contains 10,000 pages,
There are 10 buffer pages.
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Consider the optimized version of the sorting-based projection algorithm: The initial sorting
pass reads the input relation and creates sorted runs of tuples containing only attributes ename
and title. Subsequent merging passes eliminate duplicates while merging the initial runs to
obtain a single sorted result (as opposed to doing a separate pass to eliminate duplicates from
a sorted result containing duplicates).

1. How many sorted runs are produced in the first pass? What is the average length of
these runs? (Assume that memory is utilized well and any available optimization to
increase run size is used.) What is the I/O cost of this sorting pass?

2. How many additional merge passes are required to compute the final result of the pro­
jection query? What is the I/O cost of these additional passes?

3. (a) Suppose that a clustered B+ tree index on tWe is available. Is this index likely to
offer a cheaper alternative to sorting? Would your answer change if the index were
unclustered? Would your answer change if the index were a hash index?

(b) Suppose that a clustered B+ tree index on ename is available. Is this index likely
to offer a cheaper alternative to sorting? Would your answer change if the index
were unclustered? Would your answer change if the index were a hash index?

(c) Suppose that a clustered B+ tree index on (ename, title) is available. Is this index
likely to offer a cheaper alternative to sorting? Would your answer change if the
index were unclustered? Would your answer change if the index were a hash index?

4. Suppose that the query is as follows:

SELECT E.title, E.ename FROM Executives E
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That is, you are not required to do duplicate elimination. How would your answers to
the previous questions change?

Exercise 14.4 Consider the join RiXJR.a=SbS, given the following information about the
relations to be joined. The cost metric is the number of page l/Os unless otherwise noted,
and the cost of writing out the result should be uniformly ignored.

Relation R contains 10,000 tuples and has 10 tuples per page.
Relation S contains 2000 tuples and also has 10 tuples per page.
Attribute b of relation S is the primary key for S.
Both relations are stored as simple heap files.
Neither relation has any indexes built on it.
52 buffer pages are available.

1. What is the cost of joining Rand S using a page-oriented simple nested loops join? What
is the minimum number of buffer pages required for this cost to remain unchanged?

2. What is the cost of joining Rand S using a block nested loops join? What is the minimum
number of buffer pages required for this cost to remain unchanged?

3. What is the cost of joining Rand S using a sort-merge join? What is the minimum
number of buffer pages required for this cost to remain unchanged?

4. What is the cost of joining Rand S using a hash join? What is the minimum number of
buffer pages required for this cost to remain unchanged?

5. What would be the lowest possible I/O cost for joining Rand S using any join algorithm,
and how much buffer space would be needed to achieve this cost? Explain briefly.

6. How many tuples does the join of R. and S produce, at most, and how many pages are
required to store the result of the join back on disk?

7. Would your answers to any of the previous questions in this exercise change if you were
told that R.a is a foreign key that refers to S.b?

Exercise 14.5 Consider the join of R. and S described in Exercise 14.1.

1. With 52 buffer pages, if unclustered B+ indexes existed on R.a and S.b, would either
provide a cheaper alternative for performing the join (using an index nested loops join)
than a block nested loops join? Explain.

(a) Would your answer change if only five buffer pages were available?

(b) vVould your answer change if S contained only 10 tuples instead of 2000 tuples?

2. vVith 52 buffer pages, if clustered B+ indexes existed on R.a and S.b, would either provide
a cheaper alternative for performing the join (using the index nested loops algorithm)
than a block nested loops join? Explain.

(a) Would your answer change if only five buffer pages were available?

(b) Would your answer change if S contained only 10 tuples instead of 2000 tuples?

3. If only 15 buffers were available, what would be the cost of a sort-merge join? What
would be the cost of a hash join?

4. If the size of S were increased to also be 10,000 tuples, but only 15 buffer pages were
available, what would be the cost of a sort-merge join? What would be the cost of a
hash join?
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5. If the size of S \vere increased to also be 10,000 tuples, and 52 buffer pages were available,
what would be the cost of sort-merge join? \Vhat would be the cost of hash join?

Exercise 14.6 Answer each of the questions~ifsome question is inapplicable, explain why-­
in Exercise 14.1 again but using the following information about Rand S:

Relation R contains 200,000 tuples and has 20 tuples per page.
Relation S contains 4,000,000 tuples and also ha." 20 tuples per page.
Attribute a of relation R is the primary key for R.
Each tuple of R joins with exactly 20 tuples of S.
1,002 buffer pages are available.

Exercise 14.7 We described variations of the join operation called olLter joinB in Section 5.6.4
. One approach to implementing an outer join operation is to first evaluate the corresponding
(inner) join and then add additional tuples padded with null values to the result in accordance
with the semantics of the given outer join operator.. However, this requires us to compare
the result of the inner join with the input relations to determine the additional tuples to be
added. The cost of this comparison can be avoided by modifying the join algorithm to add
these extra tuples to the result while input tuples are processed during the join. Consider the
following join algorithms: block nested loops join, index nested loops join, sort-merge join, and
hash join. Describe how you would modify each of these algorithms to compute the following
operations on the Sailors and Reserves tables discussed in this chapter:

1. Sailors NATURAL LEFT OUTER JOIN Reserves

2. Sailors NATURAL RIGHT OUTER JOIN Reserves

3. Sailors NATURAL FULL OUTER JOIN Reserves

PROJECT-BASED EXERCISES

Exercise 14.8 (Note to instructors: Additional details m71st be provided if this exen:ise is
assigned; see AppendiJ: SO.) Implement the various join algorithms described in this chapter
in Minibase. (As additional exercises, you Inay want to implement selected algorithms for the
other operators as well.)

BIBLIOGRAPHIC NOTES

The implementation techniques used for relational operators in System R are discussed in
[101]. The implementation techniques used in PRTV, which utilized relational algebra trans­
formations and a form of multiple-query optimization, are discussed in [358]. The techniques
used for aggregate operations in Ingres are described in [246]. [324] is an excellent survey of
algorithms for implementing relational operators and is recommended for further reading.

Hash-based techniques are investigated (and compared with sort-based techniques) in [1 10],
[222], [:325], and [677]. Duplicate elimination is discussed in [99]. [277] discusses secondary
storage access patterns arising in join implementations. Parallel algorithms for implementing
relational operations are discussed in [99, 168,220.224,2:3:3, 293,534].
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A TYPICAL RELATIONAL

QUERY OPTIMIZER

.. How are SQL queries translated into relational algebra? As a conse­
quence, what class of relation algebra queries does a query optimizer
concentrate on?

.. What information is stored in the system catalog of a DBMS and how
is it used in query optimization?

.. How does an optimizer estimate the cost of a query evaluation plan?

.. How does an optimizer generate alternative plans for a query? What
is the space of plans considered? What is the role of relational algebra
equivalences in generating plans?

.. How are nested SQL queries optimized?

.. Key concepts: SQL to algebra, query block; system catalog, data
dictionary, metadata, system statistics, relational representation of
catalogs; cost estimation, size estimation, reduction factors; his­
tograms, equiwidth, equidepth, compressed; algebra equivalences,
pushing selections, join ordering; plan space, single-relation plans,
multi-relation left-deep plans; enumerating plans, dynamic program­
ming approach, alternative approaches

Life is what happens while you're busy making other plam.

-John Lennon

In this chapter, we present a typical relational query optimizer in detail. We
begin by discussing how SQL queries are converted into units called blocks
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and how blocks are translated into (extended) relational algebra expressions
(Section 15.1). The central task of an optimizer is to find a good plan for
evaluating such expressions. Optimizing a relational algebra expression involves
two basic steps:

• Enumerating alternative plans for evaluating the expression. Typically, an
optimizer considers a subset of all possible plans because the number of
possible plans is very large.

• Estimating the cost of each enumerated plan and choosing the plan with
the lowest estimated cost.

We discuss how to use system statistics to estimate the properties of the result
of a relational operation, in particular result sizes, in Section 15.2. After dis­
cussing how to estimate the cost of a given plan, we describe the space of plans
considered by a typical relational query optimizer in Sections 15.3 and 15.4.
We discuss how nested SQL queries are handled in Section 15.5. We briefly
discuss some of the influential choices made in the System R query optimizer
in Section 15.6. We conclude with a short discussion of other approaches to
query optimization in Section 15.7.

We consider a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats( bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: dates, mame: string)

As in Chapter 14, we assume that each tuple of Reserves is 40 bytes long, that a
page can hold 100 Reserves tuples, and that we have 1000 pages of such tuples.
Similarly, we assume that each tuple of Sailors is 50 bytes long, that a page
can hold 80 Sailors tuples, and that we have 500 pages of such tuples.

15.1 TRANSLATING SQL QUERIES INTO ALGEBRA

SQL queries are optimized by decomposing them into a collection of smaller
units, called blocks. A typical relational query optimizer concentrates on op~

timizing a single block at a time. In this section, we describe how a query
is decomposed into blocks and how the optimization of a single block can be
understood in tenus of plans composed of relational algebra operators.

15.1.1 Decomposition of a Query into Blocks

vVhen a user submits an SQL query, the query is parsed into a collection of
query blocks and then passed on to the query optimizer. A query block
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SELECT
FROM
WHERE

CHAPTER 15

S.siel, MIN (Relay)
Sailors S, Reserves R, Boats B
S.siel = Rsiel AND Rbid = B.bid AND Rcolor = 'red' AND
S.rating = ( SELECT MAX (S2.rating)

FROM Sailors S2 )
GROUP BY S.sid
HAVING COUNT (*) > 1

Figure 15.1 Sailors Reserving Red Boats

(or simply block) is an SQL query with no nesting and exactly one SELECT
clause and one FROM clause and at most one WHERE clause, GROUP BY clause,
and HAVING clause. The WHERE clause is assumed to be in conjunctive normal
form, as per the discussion in Section 14.2. We use the following query 8.'3 a
running example:

FaT each 8ailor' with the highe8t mting (oveT all sailors) and at least two Teser­
vat'lons faT Ted boats, find the sailoT id and the earliest date on which the sailor
IULS a TeseTvat:ion faT a Ted boat.

The SQL version of this query is shown in Figure 15.1. This query has two
query blocks. The nested block is:

SELECT MAX (S2.rating)
FROM Sailors S2

The nested block computes the highest sailor rating. The outer block is shown
in Figure 15.2. Every SQL query can be decomposed into a collection of query
blocks without nesting.

SELECT

FROM
WHERE

GROUP BY
HAVING

S.sid, MIN (Rday)
Sailors S, Reserves R, Boats B
S.sid = Rsiel AND Rbicl = B.bid AND
S.rating = RefeTence to nested block
S.sid
COUNT (*) > 1

Rcolor = 'red' AND

Figure 15.2 Outer Block of Red Boats Query

The optimizer examines the system catalogs to retrieve information about the
types and lengths of fields, statistics about the referenced relations, and the
access paths (indexes) available for them. The optimizer then considers each
query block and chooses a query evaluation plan for that block. \Ve focus 1nostly
on optimizing a single query block and defer a discussion of nested queries to
Section 15.5.
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15.1.2 A Query Block as a Relational Algebra Expression
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The first step in optimizing a query block is to express it as a relational algebra
expression. For uniformity, let us a.<;sume that GROUP BY and HAVING are also
operators in the extended algebra used for plans and that aggregate operations
are allowed to appear in the argument list of the projection operator. The
meaning of the operators should be clear from our discussion of SQL. The SQL
query of Figure 15.2 can be expressed in the extended algebra as:

1rS. s id,M I N(R.day) (

HAVINGcoUNT(*»2(
GROUP BYs. sid (

0"S. sid= R.sidAR. bid= B .bidAB.coloT='Ted' AS.Tating=valuc_Irom_nested_block (

Sailors x Reserves x Boats))))

For brevity, we used S, R, and B (rather than Sailors, Reserves, and Boats)
to prefix attributes. Intuitively, the selection is applied to the cross-product of
the three relations. Then the qualifying tuples are grouped by S.sid, and the
HAVING clause condition is used to discard some groups. For each remaining
group, a result tuple containing the attributes (and count) mentioned in the
projection list is generated. This algebra expression is a faithful summary of
the semantics of an SQL query, which we discussed in Chapter 5.

Every SQL query block can be expressed as an extended algebra expression
having this form. The SELECT clause corresponds to the projection operator,
the WHERE clause corresponds to the selection operator, the FROM clause corre­
sponds to the cross-product of relations, and the remaining clauses are mapped
to corresponding operators in a straightforward manner.

The alternative plans examined by a typical relational query optimizer can be
understood by recognizing that a query is essentially tT'cated as a 0"1r x algebm
e;cpression, with the remaining operations (if any, in a given query) carried
out on the result of the 0'1r x expression. The enr x expression for the query in
Figure 15.2 is:

1rS. sid,R.day(

a S.sid=R.sidAR.b'id= B .bidAB.coloT='n:d' AS'.1'atlTl.g=value_fTO/lLTlcste(Lblock (

Sailors x Reserves x Boats))

To make sure that the GROUP BY and HAVING operations in the query can be
carried out, the attributes mentioned in these clauses are added to the projec­
tion list. Further, since aggregate operations in the SELECT cla.use, such a.s the
MIN (R.day) operation in our example, are computed after first computing the
CJ1r x part of the query, aggregate expressions in the projectioll list are replaced
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by the names of the attributes to which they refer. Thus, the optimization of
the a1r x part of the query essentially ignores these aggregate operations.

The optimizer finds the best plan for the a1r x expression obtained in this
manner from a query. This plan is evaluated and the resulting tuples are
then sorted (alternatively, hashed) to implement the GROUP BY clause. The
HAVING clause is applied to eliminate some groups, and aggregate expressions
in the SELECT clause are computed for each remaining group. This procedure
is summarized in the following extended algebra expression:

1rS. s id,MI N(R.day) (

H AVI NGcouNT(*»2(

GROUP BYS.sid(

1rS.sid,R.day (

a S.sid=R. sid/\R.bid=B.bid/\ B .color='red' /\S. rating=value_fro1n_nested_block (

Sailors x Reserves x Boats)))))

Some optimizations are possible if the FROM clause contains just one relation
and the relation has some indexes that can be used to carry out the grouping
operation. We discuss this situation further in Section 15.4.1.

To a first approximation therefore, the alternative plans examined by a typical
optimizer can be understood in terms of the plans considered for a1r x queries.
An optimizer enumerates plans by applying several equivalences between rela­
tional algebra expressions, which we present in Section 15.3. We discuss the
space of plans enumerated by an optimizer in Section 15.4.

15.2 ESTIMATING THE COST OF A PLAN

For each enumerated plan, we have to estimate its cost. There are two parts
to estimating the cost of an evaluation plan for a query block:

1. For each node in the tree, we must estimate the cost of performing the corre­
sponding operation. Costs are affected significantly by whether pipelining
is used or temporary relations are created to pass the output of an operator
to its parent.

2. For each node in the tree, we must estimate the size of the result and
whether it is sorted. This result is the input for the operation that corre­
sponds to the parent of the current node, and the size and sort order in
turn affect the estimation of size, cost, and sort order for the panmt.

"\Te discussed the cost of implementation techniques for relational operators in
Chapter 14. As we saw there, estimating costs requires knowledge of various
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parameters of the input relations, such as the number of pages and available
indexes. Such statistics are maintained in the DBMS's system catalogs. In this
section, we describe the statistics maintained by a typical DBMS and discuss
how result sizes are estimated. As in Chapter 14, we use the number of page
l/Os as the metric of cost and ignore issues such as blocked access, for the sake
of simplicity.

The estimates used by a DBMS for result sizes and costs are at best approx­
imations to actual sizes and costs. It is unrealistic to expect an optimizer to
find the very best plan; it is more important to avoid the worst plans and find
a good plan.

15.2.1 Estimating Result Sizes

We now discuss how a typical optimizer estimates the size of the result com­
puted by an operator on given inputs. Size estimation plays an important role
in cost estimation as well because the output of one operator can be the input
to another operator, and the cost of an operator depends on the size of its
inputs.

Consider a query block of the form:

SELECT attTibute list
FROM Telation list
WHERE teTml 1\ teTm2 1\ .. . 1\ teTmn

The maximum number of tuples in the result of this query (without duplicate
elimination) is the product of the cardinalities of the relations in the FROM
clause. Every term in the WHERE clause, however, eliminates some of these po­
tential result tuples. We can model the effect of the WHERE clause on the result
size by associating a reduction factor with each term, which is the ratio of the
(expected) result size to the input size considering only the selection represented
by the term. The actual size of the result can be estimated as the maximum size
times the product of the reduction factors for the terms in the WHERE clause.
Of course, this estimate reflects the unrealistic but simplifying a.ssurnption
that the conditions tested by each term are statistically independent.

\Ve now consider how reduction factors can be computed for different kinds of
terms in the WHERE clause by using the statistics available in the catalogs:

III column = value: For a term of this form. the reduction factor can be
approximated by Nf{ C~1js(I) if there is H11 ind~x I on column for the relation
in question. This formula assumes uniform distribution of tuples among the
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index key values; this uniform distribution assumption is frequently made
in arriving at cost estimates in a typical relational query optimizer. If there
is no index on col'umn, the System R optimizer arbitrarily assumes that the
reduction factor is rlJ. Of course, it is possible to maintain statistics such
as the number of distinct values present for any attribute whether or not
there is an index on that attribute. If such statistics are maintained, we
can do better than the arbitrary choice of It.
columni = column2: In this case the reduction factor can be approximated
by MAX (NKeys(~1),NKeys(I2)) if there are indexes Il and 12 on colmnnl and
column2, respectively. This formula assumes that each key value in the
smaller index, say, Il, has a matching value in the other index. Given
a value for columnl, we assume that each of the N J(eys(I2) values for
col'U'mn2 is equally likely. Therefore, the number of tuples that have the
same value in column2 as a given value in columni is N K ets(I2)' If only
one of the two columns has an index I, we take the reduction factor to
be NKe~1Js(I); if neither column has an index, we approximate it by the

ubiquitous rlJ. These formulas are used whether or not the two columns
appear in the same relation.

, l I o' TI . ) 1 . f 't' . d b High (I) - valueCO umn > va,ue. 1e Iec uctlOn ac or IS apprOXImate y High(I) ~ Low(I)

if there is an index 1 on column. If the column is not of an arithmetic type
or there is no index, a fraction less than half is arbitrarily chosen. Similar
formulas for the reduction factor can be derived for other range selections.

column IN (list of values): The reduction factor is taken to be the reduction
factor for column = value multiplied by the number of items in the list.
However, it is allowed to be at most half, reflecting the heuristic belief that
each selection eliminates at least half the candidate tuples.

These estimates for reduction factors are at best approximations that rely on <l..'3­

sumptions such as uniform distribution of values and independent distribution
of values in different columns. In recent years more sophisticated techniques
ba"sed on storing more detailed statistics (e.g., histograms of the values in a
column, which we consider later in this section) have been proposed and are
finding their way into commercial systems.

Reduction factors can also be approximated for terms of the form column IN

suhquery (ratio of the estimated size of the subquery result to the number
of distinct values in column in the outer relation); NOT condition (I-reduction
factor for condition); valuei< column< value2; the disjunction of two conditions;
and so on, but \ve will not discuss such reduction factors.

To summarize, regardless of the plan chosen, we can estimate the size of the
final result by taking the product of the sizes of the relations in the FROM clause
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Estimating Query Characteristics: IBM DB2~ Informix, Nlicrosoft
SQL Server, Oracle 8, and Sybase ASE all usehistograms to estimate query
characteristics such as result size and cost. As an example, Sybase ASE
uses one-dimensional, equidepth histograms with some special attention
paid to high frequency values, so that their count is estimated accurately.
ASE also keeps the average count of duplicates for each prefix of an index
to estimate correlations between histograms for composite keys (although
it does not maintain such histograms). ASE also maintains estimates of
the degree of clustering in tables and indexes. IBM DB2, Informix, and Or­
acle also use one-dimensional equidepth histograms; Oracle automatically
switches to maintaining a count of duplicates for each value when there
are few values in a column. Microsoft SQL Server uses one-dimensional
equiarea histograms with some optimizations (adjacent buckets with sim­
ilar distributions are sometimes combined to compress the histogram). In
SQL Server, the creation and maintenance of histograms is done automat­
ically with no need for user input.
Although sampling techniques have been studied for estimating result sizes
and costs, in current systems, sampling is used only by system utilities to
estimate statistics or build histograms but not directly by the optimizer
to estimate query characteristics. Sometimes, sampling is used to do load
balancing in parallel implementations.

and the reduction factors for the terms in the WHERE clause. We can similarly
estimate the size of the result of each operator in a plan tree by using reduction
factors, since the subtree rooted at that operator's node is itself a query block.

Note that the number of tuples in the result is not affected by projections if du­
plicate elimination is not performed. However, projections reduce the number
of pages in the result because tuples in the result of a projection are smaller
than the original tuples; the ratio of tuple sizes can be used as a reduction
factor for projection to estimate the result size in pages, given the size of
the input relation.

Improved Statistics: Histograms

Consider a relation with N tuples and a selection of the form colu:rnn > value
on a column with ,,),II index I. The reduction factor T is approximated by

I~:.~·~I~W_~ I:~:;)l(;), and the size of the result is estimated a"s TN. This estimate
relies on the assumption that the distribution of values is uniform.
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Estimates can be improved considerably by maintaining more detailed statistics
than just the low and high values in the index I. Intuitively, we want to
approximate the distribution of key values I as accurately as possible. Consider
the two distributions of values shown in Figure 15.3. The first is a nonuniform
distribution D of values (say, for an attribute called age). The frequency of a
value is the number of tuples with that age value; a distribution is represented
by showing the frequency for each possible age value. In our example, the lowest
age value is 0, the highest is 14, and all recorded age values are integers in the
range 0 to 14. The second distribution approximates D by assuming that each
age value in the range a to 14 appears equally often in the underlying collection
of tuples. This approximation can be stored compactly because we need to
record only the low and high values for the age range (0 and 14 respectively)
and the total count of all frequencies (which is 45 in our example).

Distribution D

3 3

Unifonn distribution approximating D

333333333333333

o I 3 4 5 6 7 8 9 10 II 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 15.3 Uniform vs. Nonuniform Distributions

Consider the selection age> 13. Fl'om the distribution D in Figure 15.3, we
see that the result has 9 tuples. Using the uniform distribution approximation,
on the other hand, we estimate the result size as fs ·45 = 3 tuples. Clearly,
the estimate is quite inaccurate.

A histogram is a data structure maintained by a DBMS to approximate a data
distribution. In Figure 15.4, we show how the data distribution from Figure
15.3 can be approximated by dividing the range of age values into subranges
called buckets, and for each bucket, counting the number of tuples with age
values within that bucket. Figure 15.4 shows two different kinds of histograms,
called equiwidth and equidepth, respectively.

Consider the s~lection query age > 13 again and the first (equiwidth) his­
togram. We can estimate the size of the result to be 5 because the selected
range includes a third of the range for Bucket 5. Since Bucket 5 represents a
total of 15 tuples, the selected range corresponds to ~ . 15 = 5 tuples. As this
example shows, we a..ssume that the distribution within a histogram bucket is
uniform. Therefore, when we simply maintain the high and low values for index
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Equiwidlh
50

I I
5.0

Equideplh

2.25 2.5

lilli/II

5.0

Buckel I Bucket 2 Buckel 3 Bucket 4 Buckel 5

Count;::):\ C()unt~ Count::::: 15 COllnC;:::) Counl-::::: 15

Bucket 1

Coullt=9

Bucket 2 Bucket 3 Bucket 4 Bucket 5

Counl:::::10 Count-",IO Counl=7 Counl'"l9

Figure 15.4 Histograms Approximating Distribution D

I, we effectively use a 'histogram' with a single bucket. Using histograms with
a small number of buckets instead leads to much more accurate estimates, at
the cost of a few hundred bytes per histogram. (Like all statistics in a DBMS,
histograms are updated periodically rather than whenever the data is changed.)

One important question is how to divide the value range into buckets. In an
equiwidth histogram, we divide the range into subranges of equal size (in
terms of the age value range). We could also choose subranges such that the
number of tuples within each subrange (i.e., bucket) is equal. Such a histogram,
called an equidepth histogram, is also illustrated in Figure 15.4. Consider
the selection age > 13 again. Using the equidepth histogram, we are led to
Bucket 5, which contains only the age value 15, and thus we arrive at the exact
answer, 9. While the relevant bucket (or buckets) generally contains more
than one tuple, equidepth histograms provide better estimates than equiwidth
histograms. Intuitively, buckets with very frequently occurring values contain
fewer values, and thus the uniform distribution &'isumption is applied to a
smaller range of values, leading to better approximations. Conversely, buckets
with mostly infrequent values are approximated less accurately in an equidepth
histogram, but for good estimation, the frequent values are important.

Proceeding further with the intuition about the importance of frequent values,
another alternative is to maintain separate counts for a small number of very
frequent values, say the age values 7 and 14 in our example, and maintain an
equidepth (or other) histogram to cover the remaining values. Such a histogram
is called a compressed histogram. Most commercial DB1\1Ss currently use
equidepth histograms, and some use compressed histograms.
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15.3 RELATIONAL ALGEBRA EQUIVALENCES

In this section, we present several equivalences among relational algebra expres­
sions; and in Section 15.4, we discuss the space of alternative plans considered
by a optimizer.

Our discussion of equivalences is aimed at explaining the role that such equiva­
lences play in a System R style optimizer. In essence, a basic SQL query block
can be thought of as an algebra expression consisting of the cross-product of
all relations in the FROM clause, the selections in the WHERE clause, and the
projections in the SELECT clause. The optimizer can choose to evaluate any
equivalent expression and still obtain the same result. Algebra equivalences
allow us to convert cross-products to joins, choose different join orders, and
push selections and projections ahead of joins. For simplicity, we assume that
naming conflicts never arise and we need not consider the renaming operator
p.

15.3.1 Selections

Two important equivalences involve the selection operation. The first one in­
volves cascading of selections:

Going from the right side to the left, this equivalence allows us to combine sev­
eral selections into one selection. Intuitively, we can test whether a tuple meets
each of the conditions C1 ... Cn. at the same time. In the other direction, this
equivalence allows us to take a selection condition involving several conjuncts
and replace it with several smaller selection operations. Replacing a selection
with several smaller selections turns out to be very useful in combination with
other equivalences, especially commutation of selections with joins or cross­
products, which we discuss shortly. Intuitively, such a replacement is useful in
cases where only part of a complex selection condition can be pushed.

The second equivalence states that selections are commutative:

In other words,' we can test the conditions C1 and C2 in either order.

15.3.2 Projections

The rule for cascading projections says that successively elilninating columns
from a relation is equivalent to sirnply eliminating all but the columns retained
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by the final projection:
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Each ai is a set of attributes of relation R, and ai ~ aHl for i = 1 ... n ­
1. This equivalence is useful in conjunction with other equivalences such as
commutation of projections with joins.

15.3.3 Cross-Products and Joins

Two important equivalences involving cross-products and joins. ~re present
them in terms of natural joins for simplicity, but they hold for general joins as
well.

First, assuming that fields are identified by name rather than position, these
operations are commutative:

Rx8

RN8

8xR

This property is very important. It allows us to choose which relation is to be
the inner and which the outer in a join of two relations.

The second equivalence states that joins and cross-products are associative:

R x (8 x T)

RN (8NT)

(R x 8) x T

(R N 8) NT

Thus we can either join Rand 8 first and then join T to the result, or join 8
and T first and then join R to the result. The intuition behind associativity
of cross-products is that, regardless of the order in which the three relations
are considered, the final result contains the same columns. Join associativity is
based on the same intuition, with the additional observation that the selections
specifying the join conditions can be cascaded. Thus the same rows appear in
the final result, regardless of the order in which the relations are joined.

Together with commutativity, associativity essentially says that we can choose
to join any p<l:ir of these relations, then join the result with the third relation,
and always obtain the same final result. For example, let us verify that

R N (8 N T) ~ (T,C><] R) N 8

From commutativity, we have:

RN (8NT) RN (TN 8)
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From associativity, we have:

RM (TM S)

Using commutativity again, we have:

(R fxJ T) M S

CHAPTER .15

In other words, when joining several relations, we are free to join the relations
in any order we choose. This order-independence is fundamental to how a query
optimizer generates alternative query evaluation plans.

15.3.4 Selects, Projects, and Joins

Some important equivalences involve two or more operators.

We can commute a selection with a projection if the selection operation in­
volves only attributes retained by the projection:

Every attribute mentioned in the selection condition c must be included in the
set of attributes a.

We can combine a selection with a cross-product to form a join, as per the
definition of join:

We can commute a selection with a cross-product or a join if the selection
condition involves only attributes of one of the arguments to the cross-product
or join:

oAR x S)

ac(R fxJ S)

ac(R) x S

ac(R) fxJ S

The attributes mentioned in c must appear only in R and not in S. Similar
equivalences hold if c involves only attributes of S and not R, of course.

In general, a selection a c on R x S can be replaced by a ca<;cade of selections
ac], aC2 , and aC;J such that Cl involves attributes of both Rand S, C2 involves
only attributes of R, and C;:l involves only attributes of S:

Using the ca...<;cading rule for selections, this expression is equivalent to
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Using the rule for commuting selections and cross-products, this expression is
equivalent to

CTC1 (CTC2 (R) x CTC3 (S))

Thus we can push part of the selection condition c ahead of the cross-product.
This observation also holds for selections in combination with joins. of course.

\Ve can commute a projection with a cross-product:

where al is the subset of attributes in a that appear in R, and a2 is the subset
of attributes in a that appear in S. We can also commute a projection with
a join if the join condition involves only attributes retained by the projection:

where al is the subset of attributes in a that appear in R, and a2 is the subset
of attributes in a that appear in S. Further, every attribute mentioned in the
join condition c must appear in a.

Intuitively, we need to retain only those attributes of Rand S that are either
mentioned in the join condition c or included in the set of attributes a retained
by the projection. Clearly, if a includes all attributes mentioned in c, the
previous commutation rules hold. If a does not include all attributes mentioned
in C, we can generalize the commutation rules by first projecting out attributes
that are not mentioned in c or a, performing the join, and then projecting out
all attributes that are not in a:

Now, (Ll is the subset of attributes of R that appear in either a or c, and a2 is
the subset of attributes of S that appear in either a or c.

We can in fact derive the more general commutation rule by using the rule for
cascading projections and the simple commutation rule, and we leave this a.s
an exercise for the reader.

15.3.5 Oth,er Equivalences

Additional equivalences hold when we consider operations such as set-difference,
union, and intersection. Union and intersection are associative and commuta­
tive. Selections and projections can be commuted with each of the set opera­
tions (set-difference, union, and intersection). \Ve do not discuss these equiva­
lences further.
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SELECT
FROM
WHERE
GROUP BY
HAVING

S.rating, COUNT (*)
Sailors S
S.rating > 5 AND S.age = 20
S.rating
COUNT DISTINCT (S.sname) > 2

Figure 15.5 A Single-Relation Query

CHAPTER 15

15.4 ENUMERATION OF ALTERNATIVE PLANS

We now come to an issue that is at the heart of an optimizer, namely, the space
of alternative plans considered for a given query. Given a query, an optimizer
essentially enumerates a certain set of plans and chooses the plan with the
least estimated cost; the discussion in Section 12.1.1 indicated how the cost
of a plan is estimated. The algebraic equivalences discussed in Section 15.3
form the basis for generating alternative plans, in conjunction with the choice
of implementation technique for the relational operators (e.g., joins) present
in the query. However, not all algebraically equivalent plans are considered,
because doing so would make the cost of optimization prohibitively expensive
for all but the simplest queries. This section describes the subset of plans
considered by a typical optimizer.

There are two important cases to consider: queries in which the FROM clause
contains a single relation and queries in which the FROM clause contains two or
more relations.

15.4.1 Single-Relation Queries

If the query contains a single relation in the FROM clause, only selection, pro­
jection, grouping, and aggregate operations are involved; there are no joins. If
we have just one selection or projection or aggregate operation applied to a re­
lation, the alternative implementation techniques and cost estimates discussed
in Chapter 14 cover all the plans that must be considered. We now consider
how to optimize queries that involve a combination of several such operations,
using the following query as an example:

For each rating greater than 5, print the rating and the nurnber' of 20-year'-old
sailors with that rating, provided that there are at least two such sailors with
different names.

The SQL version of this query is shown in Figure 15.5. Using the extended
algebra notation introduced in Section 15.1.2, we can write this query as:

7fS. m ling,C'OUNT(*) (
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H AVINGCOUNTDISTINCT(8.snume»2(

GROUP BYS.rating(

7iS.rating .5'.sname (

(lS.raling>5AS.age=20 (

Sailors)))))
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Notice that S.sname is added to the projection list, even though it is not in the
SELECT clause, because it is required to test the HAVING clause condition.

We are now ready to discuss the plans that an optimizer would consider. The
main decision to be made is which access path to use in retrieving Sailors
tuples. If we considered only the selections, we would simply choose the most
selective access path, based on which available indexes match the conditions in
the WHERE clause (as per the definition in Section 14.2.1). Given the additional
operators in this query, we must also take into account the cost of subsequent
sorting steps and consider whether these operations can be performed without
sorting by exploiting some index. We first discuss the plans generated when
there are no suitable indexes and then examine plans that utilize some index.

Plans without Indexes

The basic approach in the absence of a suitable index is to scan the Sailors
relation and apply the selection and projection (without duplicate elimination)
operations to each retrieved tuple, as indicated by the following algebra expres­
sion:

7iS.1'ating,S.8'l!ame (

(lS.Ta[ing>5AS.age=20 (

Sailors))

The resulting tuplE~s are then sorted according to the GROUP BY clause (in the
example query, on mting) , and one answer tuple is generated for each group that
meets the condition in the HAVING clause. The computation of the aggregate
functions in the SELECT and HAVING clauses is done for each group, using one
of the techniques described in Section 14.6.

The cost of this approach consists of the costs of each of these steps:

1. Perfonning a file scan to retrieve tuples and apply the selections and pro-·
jections.

2. 'Writing out tuples after the selections and projectiolls.

3. Sorting these tuples to implement the GROUP BY clause.
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Note that the HAVING clause does not cause additional I/O. The aggregate
computations can be done on-the-fiy (with respect to I/O) as we generate the
tuples in each group at the end of the sorting step for the GROUP BY clause.

In the example query the cost includes the cost of a file scan on Sailors plus
the cost of writing out (S. rating, S.sname) pairs plus the cost of sorting as per
the GROUP BY clause. The cost of the file scan is NPages(Sailors), which is 500
I/Os, and the cost of writing out (S. rating, S.sname) pairs is NPages(Sailors)
times the ratio of the size of such a pair to the size of a Sailors tuple times the
reduction factors of the two selection conditiolls. In our example, the result
tuple size ratio is about 0.8, the mting selection has a reduction factor of 0.5,
and we use the default factor of 0.1 for the age selection. Therefore, the cost
of this step is 20 l/Os. The cost of sorting this intermediate relation (which
we call Temp) can be estimated as 3*NPages(Temp), which is 60 I/Os, if we
assume that enough pages are available in the buffer pool to sort it in two
passes. (Relational optimizers often a.'3sume that a relation can be sorted in
two passes, to simplify the estimation of sorting costs. If this assumption is not
met at run-time, the actual cost of sorting may be higher than the estimate.)
The total cost of the example query is therefore 500 + 20 + 60 = 580 l/Os.

Plans Utilizing an Index

Indexes can be utilized in several ways and can lead to plans that are signifi­
cantly faster than any plan that does not utilize indexes:

1. Single-Index Access Path: If several indexes match the selection condi­
tions in the WHERE clause, each matching index offers an alternative access
path. An optimizer can choose the access path that it estimates will result
in retrieving the fewest pages, apply any projections and nonprimary se­
lection terms (i.e., parts of the selection condition that do not match the
index), and proceed to compute the grouping and aggregation operations
(by sorting on the GROUP BY attributes).

2. Multiple-Index Access Path: If several indexes using Alternatives (2)
or (3) for data entries match the selection condition, each such index can
be used to retrieve a set of rids. vVe can intersect these sets of rids, then
sort the result by page id (a."lsuming that the rid representation includes
the page id) and retrieve tuples that satisfy the primary selection terms of
all the matching indexes. Any projections and nonprimary selection terms
can then be applied, followed by gTC)l1ping and aggregation operations.

3. Sorted Index Access Path: If the list of grouping attributes is a prefix
of a trec index, the index can be used to retrieve tuples in the order required
by the GROUP BY clause. All selection conditions can be applied on each
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retrieved tuple, unwanted fields can be removed, and aggregate operations
computed for each gTOUp. This strategy works well for clustered indexes.

4. Index-Only Access Path: If all the attributes mentioned in the query
(in the SELECT, WHERE, GROUP BY, or HAVING clauses) are included in the
search key for some dense index on the relation in the FROM clause, an
index-only scan can be used to compute answers. Because the data
entries in the index contain all the attributes of a tuple needed for this
query and there is one index entry per tuple, we never neep to retrieve
actual tuples from the relation. Using just the data entries from the index,
we can carry out the following steps as needed in a given query: Apply
selection conditions, remove unwanted attributes, sort the result to achieve
grouping, and compute aggregate functions within each group. This index­
only approach works even if the index does not match the selections in the
WHERE clause. If the index matches the selection, we need examine only
a subset of the index entries; otherwise, we must scan all index entries.
In either case, we can avoid retrieving actual data records; therefore, the
cost of this strategy does not depend on whether the index is clustered. In
addition, if the index is a tree index and the list of attributes in the GROUP
BY clause forms a prefix of the index key, we can retrieve data entries in
the order needed for the GROUP BY clause and thereby avoid sorting!

We now illustrate each of these four cases, using the query shown in Figure
15.5 as a running example. We assume that the following indexes, all using
Alternative (2) for data entries, are available: a B+ tree index on rating, a
hash index on age, and a B+ tree index on (rating. sname, age). For brevity,
we do not present detailed cost calculations, but the reader should be able to
calculate the cost of each plan. The steps in these plans are scans (a file scan,
a scan retrieving tuples by using an index, or a scan of only index entries),
sorting, and writing temporary relations; and we have already discussed how
to estimate the costs of these operations.

As an example of the first C<1se, we could choose to retrieve Sailors tuples such
that S. age=20 using the hash index on age. The cost of this step is the cost
of retrieving the index entries plus the cost of retrieving the corresponding
Sailors tuples, which depends on whether the index is clustered. vVe can then
apply the condition S.mting > 5 to each retrieved tuple; project out fields not
mentioned in ~he SELECT, GROUP BY, and HAVING clauses; and write the result
to a temporary relation. In the example, only the rating and sname fields need
to be retained. The temporary relation is then sorted on the rating field to
identify the groups, and some groups are eliminated by applying the HAVING
conclitioIl.
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Utilizing Indexes: All of the main RDBMSs recognize the importance
of index-only plans and look for such plans whenever possible. In IBM
DD2, when creating an index a user can specify ia set of 'include' "alumns
that are to be kept in the index but are not part of the index key. This
allows a richer set of index-only queries to be handled, because columns
frequently a.ccessed are included in the index even if they are ;notpart of
the key. In Microsoft SQL Server, an interesting class of index-only plans
is considered: Consider a query that selects attributes sal and~age from a
table, given an index on sal and another index on age. SQL Server uses
the indexes by joining the entries on the rid of data records to identify
(sal, age) pairs that appear in the table.

As an example of the second case, we can retrieve rids of tuples satisfying
mting>5 using the index on rating, retrieve rids of tuples satisfying age=20 us­
ing the index on age, sort the retrieved rids by page number, and then retrieve
the corresponding Sailors tuples. We can retain just the rating and name fields
and write the result to a temporary relation, which we can sort on mting to
implement the GROUP BY clause. (A good optimizer might pipeline the pro­
jected tuples to the sort operator without creating a temporary relation.) The
HAVING clause is handled as before.

As an example of the third case, we can retrieve Sailors tuples in which S. mting
> 5, ordered by rating, using the B+ tree index on rating. We can compute
the aggregate functions in the HAVING and SELECT clauses on-the-fly because
tuples are retrieved in rating order.

As an example of the fourth case, we can retrieve data entT'ies from the (mting,
sname, age) index in which mting > 5. These entries are sorted by rating (and
then by snarne CLnJ age, although this additional ordering is not relevant for
this query). vVe can choose entries with age=20 and compute the aggregate
functions in the HAVING and SELECT clauses on-the-fly because the data entries
are retrieved in rating order. In this case, in contrast to the previous case, we
do not retrieve any Sailors tuples. This property of not retrieving data records
makes the index-only strategy especially valuable with unclusterecl indexes.

15.4.2 Multiple-Relation Queries

Query blocks that contain two or more relations in the FROM clause require joins
(or cross-products). Finding a good plan for such queries is very important
because these queries can be quite expensive. Regardless of the plan chosen,
the size of the final result can be estimated by taking the product of the sizes
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of the relations in the FROM clause and the reduction factors for the terms in
the WHERE clause. But, depending on the order in which relations are joined,
intermediate relations of widely varying sizes can be created, leading to plans
with very different costs.

Enumeration of Left-Deep Plans

As we saw in Chapter 12, current relational systems, following the lead of the
System R optimizer, only consider left-deep plans. \;Ye now discuss how this
dass of plans is efficiently searched using dynamic programming.

Consider a query block of the form:

SELECT attribute list
FROM relation list
WHERE teT1nl 1\ term2 1\ ... 1\ ter1nn

A System R style query optimizer enumerates all left-deep plans, with selections
and projections considered (but not necessarily applied!) as early as possible.
The enumeration of plans can be understood &'3 a multiple-pass algorithm in
which we proceed as follows:

Pass 1: We enumerate all single-relation plans (over some relation in the
FROM clause). Intuitively, each single-relation plan is a partial left-deep plan
for evaluating the query in which the given relation is the first (in the linear
join order for the left-deep plan of which it is a part). When considering
plans involving a relation A, we identify those selection terms in the WHERE
clause that mention only attributes of A. These are the selections that can
be performed when first accessing A, before any joins that involve A. We also
identify those attributes of A not mentioned in the SELECT clause or in terms
in the WHERE clause involving attributes of other relations. These attributes
can be projected out when first accessing A, before any joins that involve A.
We choose the best access method for A to carry out these selections and
projections, &'3 per the discussion in Section 15.4.1.

For each relation, if we find plans that produce tuples in different orders, we
retain the cheapest plan for each such ordering of tuples. An ordering of tuples
could prove useful at a subsequent step, say, for a sort-merge join or imple­
menting a GROUP BY or ORDER BY clause. Hence, for a single relation, we may
retain a file scan (&'3 the cheapest overall plan for fetching all tuples) and a B+
tree index (I:LS the cheapest plan for fetching all tuples in the search key order).

Pass 2: We generate all two-relation plans by considering each single-relation
plan retained after Pass 1 &'3 the outer relation and (successively) every other
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relation as the inner relation. Suppose that A is the outer relation and B
the inner relation for a particular two-relation plan. We examine the list of
selections in the WHERE clause and identify:

1. Selections that involve only attributes of B and can be applied before the
join.

2. Selections that define the join (i.e., are conditions involving attributes of
both A and B and no other relation).

3. Selections that involve attributes of other relations and can be applied only
after the join.

The first two groups of selections can be considered while choosing an access
path for the inner relation B. We also identify the attributes of B that do not
appear in the SELECT clause or in any selection conditions in the second or
third group and can therefore be projected out before the join.

Note that our identification of attributes that can be projected out before the
join and selections that can be applied before the join is based on the relational
algebra equivalences discussed earlier. In particular, we rely on the equivalences
that allow us to push selections and projections ahead of joins. As we will see,
whether we actually perform these selections and projections ahead of a given
join depends on cost considerations. The only selections that are really applied
befor"e the join are those that match the chosen access paths for A and B. The
remaining selections and projections are done on-the-fly as part of the join.

An important point to note is that tuples generated by the outer plan are as­
sumed to be pipelined into the join. That is, we avoid having the outer plan
write its result to a file that is subsequently read by the join (to obtain outer
tuples). For SOlne join methods, the join operator rnight require materializing
the outer tuples. For example, a hash join would partition the incoming tuples,
and a sort-merge join would sort them if they are not already in the appropri­
ate sort order. Nested loops joins, however, can use outer tuples H,"i they are
generated and avoid materializing them. Similarly, sort-merge joins can use
outer tuples as they are generated if they are generated in the sorted order
required for the join. We include the cost of materializing the outer relation,
should this be necessary, in the cost of the join. The adjustments to the join
costs discussed in Chapter 14 to reflect the use of pipelining or materialization
of the outer are straightforward.

For each single-relation plan for A retained after Pa."iS 1, for each join method
that we consider, we must determine the best access lnethod to llse for B. The
access method chosen for B retrieves, in general, a subset of the tuples in B,
possibly with some fields eliminated, as discllssed later. Consider relation B.
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\Ve have a collection of selections (some of which are the join conditions) and
projections on a single relation, and the choice of the best access method is
made a<; per the discussion in Section 15.4.1. The only additional consideration
is that the join method might require tuples to be retrieved in some order. For
example, in a sort-merge join, we want the inner tuples in sorted order on the
join column(s). If a given access method does not retrieve inner tuples in this
order, we must add the cost of an additional sorting step to the cost of the
access method.

Pass 3: We generate all three-relation plans. We proceed as in Pass 2, except
that we now consider plans retained after Pass 2 as outer relations, instead of
plans retained after Pass 1.

Additional Passes: This process is repeated with additional passes until we
produce plans that contain all the relations in the query. We now have the
cheapest overall plan for the query as well as the cheapest plan for producing
the answers in some interesting order.

If a multiple-relation query contains a GROUP BY clause and aggregate functions
such as MIN, MAX, and SUM in the SELECT clause, these are dealt with at the
very end. If the query block includes a GROUP BY clause, a set of tuples is
computed based on the rest of the query, as described above, and this set is
sorted as per the GROUP BY clause. Of course, if there is a plan according to
which the set of tuples is produced in the desired order, the cost of this plan
is compared with the cost of the cheapest plan (a<;smning that the two are
different) plus the sorting cost. Given the sorted set of tuples, partitions are
identified and any aggregate functions in the SELECT clause are applied on a
per-partition basis, as per the discussion in Chapter 14.

Examples of Multiple-Relation Query Optimization

Consider the query tree shown in Figure 12.~~. Figure 15.6 shows the same
query, taking into account how selections and projections are considered early.

In looking at this figure, it is worth ernphc1...sizing that the selections shown on
the leaves are not necessarily done in a distinct step that precedes the .ioin~H

rather, (:1...<; we have seen, they are considered as potential matching predicates
when considerIng the available access paths on the relations.

Suppose that we have the following indexes, all unclustered and using Alter­
native (2) for data entries: a B+ tree index on the rating field of Sailors, a
hash index on the sid field of Sailors, and a B+ tree index on the bid field of
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Optimization in Commercial Syst~ms: IBM DB2, Informix, Microsoft
SQL Server, Oracle 8, and Sybase ASE all search for left-deep trees using
dynamic programming, as described here, with several variations. For ex­
ample, Oracle always considers interchanging the two relations in a hash
join, which could lead to right-deep trees or hybrids. DB2 gene'rates some
bushy trees as well. Systems often use a variety of strategies for generating
plans, going beyond the systematic bottom-up enumeration that we de­
scribed, in conjunction with a dynamic programming strategy for costing
plans and remembering interesting plans (to avoid repeated analysis of the
same plan). Systems also vary in the degree of control they give users.
Sybase ASE and Oracle 8 allow users to force the choice of join orders
and indexes--Sybase ASE even allows users to explicitly edit the execu­
tion plan-whereas IBM DB2 does not allow users to direct the optimizer
other than by setting an 'optimization level,' which influences how many
alternative plans the optimizer considers.

II sname

I
Reserves

Urating > 5

I
Sailors

Figure 15.6 A Query Tree
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Reserves. In addition, we a'Ssume that we can do a sequential scan of both
Reserves and Sailors. Let us consider how the optimizer proceeds.

In Pch<;S 1, we consider three access methods for Sailors (B+ tree, hash index,
and sequential scan), taking into account the selection IJrating>5' This selection
matches the B+ tree on rating and therefore reduces the cost for retrieving
tuples that satisfy this selection. The cost of retrieving tuples using the hash
index and the sequential scan is likely to be much higher than the cost of using
the B+ tree. So the plan retained for Sailors is access via the B+ tree index, and
it retrieves tuples in sorted order by rating. Similarly, we consider two access
methods for Reserves taking into account the selection IJbid=100. This selection
matches the B+ tree index on Reserves, and the cost of retrieving matching
tuples via this index is likely to be much lower than the cost of retrieving tuples
using a sequential scan; access through the B+ tree index is therefore the only
plan retained for Reserves after Pass 1.

In Pass 2, we consider taking the (relation computed by the) plan for Reserves
and joining it (as the outer) with Sailors. In doing so, we recognize that now,
we need only Sailors tuples that satisfy crrating>5 and IJsid=value, where value
is some value from an outer tuple. The selection IJsid=value matches the hash
index on the sid field of Sailors, and the selection crrating>5 matches the B+
tree index on the rating field. Since the equality selection has a much lower
reduction factor, the hash index is likely to be the cheaper access method.
In addition to the preceding consideration of alternative access methods, we
consider alternative join methods. All available join methods are considered.
For example, consider a sort-merge join. The inputs must be sorted by sid;
since neither input is sorted by sid or has an access method that can return
tuples in this order, the cost of the sort-merge join in this case must include
the cost of storing the two inputs in tempora.ry relations and sorting them. A
sort-merge join provides results in sorted order by sid, but this is not a useful
ordering in this example because the projection 7fsname is applied (on-the-fly)
to the result of the join, thereby eliminating the sid field from the answer.
Therefore, the plan using sort-merge join is retained after Pch<;S 2 only if it is
the least expensive plan involving Reserves and Sailors.

Similarly, we also consider taking the plan for Sailors retained after Pass 1 and
joining it (as the outer relation) with Reserves. Now we recognize that we need
only Reserves tuples that satisfy IJhid=100 and IJsid=val'lU~' where value is some
value from an outer tuple. Again, we consider all available join methods.

vVe finally retain the cheapest plan overall.

As another example, illustrating the ca<;e when more than two relations are
joined, consider the following query:
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SELECT S.sid, COUNT(*) AS numres
FROM Boats B, Reserves R, Sailors S
WHERE R.sid = S.sid AND B.bid=R.bid AND Rcolor = 'red'
GROUP BY S.sid

This query finds the number of red boats reserved by each sailor. This query
is shown in the form of a tree in Figure 15.7.

ITsid. COUNT(') AS numras

I

GROUPB)' ~id

I

"'<I Sailors
bid~bld

(Jcolor';:::. 'red' Reserves

Boats

Figure 15.7 A Query Tree

Suppose that the following indexes are available: for Reserves, a B+ tree on the
sid field and a clustered B+ tree on the bid field; for Sailors, a B+ tree index on
the sid field and a hash index on the sid field; and for Boats, a B+ tree index
on the color field and a ha'3h index on the color field. (The list of available
indexes is contrived to create a relatively simple, illustrative example.) Let us
consider how this query is optimized. The initial focus is on the SELECT, FROM,
and WHERE clauses.

In Pass 1, the best plan is found for accessing each relation, regarded as the
first relation in an execution plan. :For Reserves and Sailors, the best plan is
obviously a. file scan because no selections match an available index. The best
plan for Boats is to use the hash index on color, which matches the selection
B. coloT = 'T'(~d '. The B+ tree on color also matches this selection and is retained
even though the hash index is cheaper, because it returns tuples in sorted order
by color.

In Pass 2, for each of the plans generated in Pass 1, taken as the outer relation,
we consider joining another rela.tion a'3 the inner one. Hence, we consider each
of the following joins: file scan of Reserves (outer) with Boats (inner), file scan
of lleserves (outer) with Sailors (inner), file scan of Sailors (outer) with Boats
(inner), file scan of Sailors (outer) with Reserves (inner), Boats accessed via
B+ tree index on color (outer) with Sailors (inner) 1 Boats accessed via ha'3h
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index on color (outer) with Sailors (inner), Boats accessed via B+ tree index
on color (outer) with Reserves (inner), and Boats accessed via hash index on
color (outer) with RE'.3erves (inner).

For each such pair, we consider every join method, and for each join method,
we consider every available access path for the inner relation. For each pair
of relations, we retain the cheapest of the plans considered for every sorted
order in which the tuples are generated. For example, with Boats accessed
via the hash index on coloT as the outer relation, an index nested loops join
accessing Reserves via the B+ tree index on bid is likely to be a good plan;
observe that there is no ha."h index on this field of Reserves. Another plan for
joining Reserves and Boats is to access Boats using the hash index on coloT,
access Reserves using the B+ tree on bid, and use a sort-merge join; this plan,
in contrast to the previous one, generates tuples in sorted order by bid. It
is retained even if the previous plan is cheaper, unless an even cheaper plan
produces the tuples in sorted order by bid. However, the previous plan, which
produces tuples in no particular order, would not be retained if this plan is
cheaper.

A good heuristic is to avoid considering cross-products if possible. If we apply
this heuristic, we would not consider the following 'joins' in Pass 2 of this
example: file scan of Sailors (outer) with Boats (inner), Boats accessed via B+
tree index on color (outer) with Sailors (inner), and Boats accessed via hash
index on color (outer) with Sailors (inner).

In Pass 3, for each plan retained in Pass 2, taken as the outer relation, we
consider how to join the remaining relation as the inner one. An example of a
plan generated at this step is the following: Access Boats via the hash index
on coloT, access Reserves via the B+ tree index on bid, and join them using
a sort-merge join, then take the result of this join as the outer and join with
Sailors using a sort-merge join, accessing Sailors via the B+ tree index on the
sid field. Note that, since the result of the first join is produced in sorted order
by bid, wherea." the second join requires its inputs to be sorted by s'id, the result
of the first join must be sorted by sid before being used in the second join. The
tuples in the result of the second join are generated in sorted order by sid.

The GROUP BY clause is considered after all joins, and it requires sorting on
the sid field. For each plan retained in Pass 3, if the result is not sorted on
sid, we add the cost of sorting on the sid field. The sample plan generated in
Pass 3 produces tuples in sid order; therefore, it may be the cheapest plan for
the query even if a cheaper plan joins all three relations but does not produce
tuples in sid order.
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15.5 NESTED SUBQUERIES

The unit of optimization in a typical system is a query block, and nested queries
are dealt with using some form of nested loops evaluation. Consider the fol­
lowing nested query in SQL: Find the names of sailors with the highest rating:

SELECT
FROM
WHERE

S.sname
Sailors S
S.rating = ( SELECT MAX (S2.rating)

FROM Sailors S2 )

In this simple query, the nested subquery can be evaluated just once, yielding
a single value. This value is incorporated into the top-level query as if it had
been part of the original statement of the query. For example, if the highest
rated sailor has a rating of 8, the WHERE clause is effectively modified to WHERE
S. rating = 8.

However, the subquery sometimes returns a relation, or more precisely, a table
in the SQL sense (i.e., possibly with duplicate rows). Consider the following
query: Find the names of sailors who have Teserved boat number 103:

SELECT
FROM
WHERE

S.sname
Sailors S
S.sid IN ( SELECT

FROM
WHERE

Rsid
Reserves R
Rbid = 103 )

Again, the nested subquery can be evaluated just once, yielding a collection
of sids. For each tuple of Sailors, we must now check whether the sid value
is in the computed collection of sids; this check entails a join of Sailors and
the computed collection of sids, and in principle we have the full range of join
methods to choose from. For example, if there is an index on the sid field
of Sailors, an index nested loops join with the computed collection of sid", as
the outer relation and Sailors as the inner one might be the most efficient join
method. However, in many systems, the query optimizer is not smart enough
to find this strategy a common approach is to always do a nested loops join
in which the inner relation is the collection of sid" computed from the subquery
(and this colle(~tion may not be indexed).

The motivation for this approach is that it is a simple variant of the technique
used to deal with condated ([neTics such as the following version of the previous
query:

SELECT S.snallle
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FROM
~lHERE

Sailors S
EXISTS ( SELECT *

FROM Reserves R
WHERE R. bid = 103

AND S.sid = R.sid )

This query is correlated-"the tuple variable S from the top-level query appears
in the nested subquery. Therefore, we cannot evaluate the subquery just once.
In this case the typical evaluation strategy is to evaluate the nested subquery
for each tuple of Sailors.

An important point to note about nested queries is that a typical optimizer
is likely to do a poor job, because of the limited approach to nested query
optimization. This is highlighted next:

• In a nested query with correlation, the join method is effectively index
nested loops, with the inner relation typically a subquery (and therefore
potentially expensive to compute). This approach creates two distinct
problems. First, the nested subquery is evaluated once per outer tuple;
if the same value appears in the correlation field (S.sid in our example) of
several outer tuples, the same subquery is evaluated many times. The sec­
ond problem is that the approach to nested subqueries is not set-oriented.
In effect, a join is seen as a scan of the outer relation with a selection on
the inner subquery for each outer tuple. This precludes consideration of
alternative join methods, such as a sort-merge join or a hash join, that
could lead to superior plans.

• Even if index nested loops is the appropriate join method, nested query
evaluation may be inefficient. For example, if there is an index on the sid
field of Reserves, a good strategy might be to do an index nested loops join
with Sailors as the outer relation and Reserves &'3 the inner relation and
apply the selection on bid on-the-fly. However, this option is not considered
when optimizing the version of the query that uses IN, because the nested
subquery is fully evaluated as a first step; that is, Reserves tuples that
meet the bid selection are retrieved first.

• Opportunities for finding a good evaluation plan may also be missed be­
cause of the implicit ordering imposed by the nesting. For example, if there
is an index. on the sid field of Sailors, an index nested loops join with Re­
serves a,s the outer relation and Sailors as the inner one might be the most
efficient plan for our example correla,ted query. However, this join ordering
is never considered by an optimizer.

A nested query often has an equivalent query without nesting, and a correlated
query often he1.<; an equivalent query without correlation. vVe already saw cor-
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Nested Queries: IBM DB2, Informix, Microsoft SQL Server, Orade 8,
and Sybase ASE all use some version of correlated evaluation to handle
nested queries, which are an important part qf tbe TPC-D benchmark;
IBM and Informix support a version in which the results of subqueries are
stored in a 'memo' table and the same subquery is not executed multiple
times. All these RDBMSs consider decqrrelation and "flattening" of nested
queries as an option. Microsoft SQL Server, Oracle 8 and IBM DB2 also
use rewriting techniques, e.g., Magic Sets (see Chapter 24) or variants, in
conjunction with decorrelation.

related and uncorrelated versions of the example nested query. There is also
an equivalent query without nesting:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid=103

A typical SQL optimizer is likely to find a much better evaluation strategy if it is
given the unnested or 'decOlTelated' version of the example query than if it were
given either of the nested versions of the query. Many current optimizers cannot
recognize the equivalence of these queries and transform one of the nested
versions to the nonnested form. This is, unfortunately, up to the educated user.
From an efficiency standpoint, users are advised to consider such alternative
formulations of a query.

We conclude our discussion of nested queries by observing that there could be
several levels of nesting. In general, the approach we sketched is extended by
evaluating such queries from the innermost to the outermost levels, in order, in
the absence of correlation. A correlated subquery must be evaluated for each
candidate tuple of the higher-level (sub)query that refers to it. The basic idea
is therefore similar to the case of one-level nested queries; we omit the details.

15.6 THE SYSTEM R OPTIMIZER

Current relational query optimizers have been greatly influenced by choices
made in the qesign of IBM's System R query optimizer. Important design
choices in the System R optimizer include:

1. The use of statistics about the databa'3e instance to estiInate the cost of a
query evaluation plan.

2. A decision to consider only plans with binary joins in which the inner
relation is a base relation (i.e., not a telnporary relation). This heuristic
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reduces the (potentially very large) number of alternative plans that must
be considered.

3. A decision to focus optimization on the class of SQL queries without nesting
and treat nested queries in a relatively ad hoc way.

4. A decision not to perform duplicate elimination for projections (except as
a final step in the query evaluation when required by a DISTINCT clause).

5. A model of cost that accounted for CPU costs as well as I/O costs.

Our discussion of optimization reflects these design choices, except for the last
point in the preceding list, which we ignore to retain our simple cost model
based on the number of page l/Os.

15.7 OTHER APPROACHES TO QUERY OPTIMIZATION

We have described query optimization based on an exhaustive search of a large
space of plans for a given query. The space of all possible plans grows rapidly
with the size of the query expression, in particular with respect to the number
of joins, because join-order optimization is a central issue. Therefore, heuristics
are used to limit the space of plans considered by an optimizer. A widely used
heuristic is that only left-deep plans are considered, which works well for most
queries. However, once the number of joins becomes greater than about 15,
the cost of optimization using this exhaustive approach becomes prohibitively
high, even if we consider only left-deep plans.

Such complex queries are becoming important in decision-support environ­
ments, and other approaches to query optimization have been proposed. These
include rule-based optimizers, which use a set of rules to guide the gen­
eration of candidate plans, and randomized plan generation, which uses
probabilistic algorithms such as simulated annealing to explore a large space of
plans quickly, with a reasonable likelihood of finding a good plan.

Current research in this area also involves techniques for estimating the size
of intermediate relations more accurately; parametric query optimization,
which seeks to find good plans for a given query for each of several different
conditions that might be encountered at run-time; and multiple-query opti­
mization, in which the optimizer takes concurrent execution of several queries
into account.

15.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.
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• \Vhat is an SQL qlleTJJ block? \Vhy is it important in the context of query
optimization? (Section 15.1)

• Describe how a query block is translated into extended relational algebra.
Describe and motivate the extensions to relational algebra. VVhy are a'Tr x
expressions the focus of an optimizer? (Section 15.1)

• \Vhat are the two parts to estimating the cost of a query plan? (Sec­
tion 15.2)

• How is the result size estimated for a (nrx expression? Describe the use of
reduction factors, and explain how they are calculated for different kinds
of selections? (Section 15.2.1)

• ~What are histograms? How do they help in cost estimation? Explain
the differences between the different kinds of histograms, with particular
attention to the role of frequent data values. (Section 15.2.1)

• VVhen are two relational algebra expressions considered equivalent? How is
equivalence used in query optimization? What algebra equivalences that
justify the common optimizations of pushing selections ahead of joins and
re-ordering join expressions? (Section 15.3)

• Describe left-deep plans and explain why optimizers typically consider only
such plans. (Section 15.4)

• What plans are considered for (sub)queries with a single relation? Of
these, which plans are retained in the dynamic programming approach to
enumerating left-deep plans? Discuss access methods and output order
in your answer. In particular, explain index-only plans and why they are
attractive. (Section 15.4)

• Explain how query plans are generated for queries with multiple relations.
Discuss the space and time complexity of the dynamic programming ap­
proach, and how the plan generation process incorporates heuristics like
pushing selections and join ordering. How are index-only plans for multiple­
relation queries identified? How are pipelining opportunities identified?
(Section 15.4)

• How are nested subqueries optimized and evaluated? Discuss correlated
queries and the additional optimization challenges they present. \Vhy are
plans produced for nested queries typically of poor quality? VVhat is the
lesson for application programmers? (Section 15.5)

• Discuss some of the influential design choices made in the System R opti­
mizer. (Section 15.6)

• Briefly survey optimization techniques that go beyond the dynamic pro­
gramming framework discussed in this chapter. (Section 15.7)
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EXERCISES

Exercise 15.1 Briefly answer the following questions:

5q9

1. In the context of query optimization, what is an SQL query block?

2. Define the term redw:t'i.on factor.

3. Describe a situation in which projection should precede selection in processing a project­
select query, and describe a situation where the opposite processing order is better.
(Assume that duplicate elimination for projection is done via sorting.)

4. If there are unclustered (secondary) B+ tree indexes on both R.a and S.b, the join
R [Xla=bS could be processed by doing a sort-merge type of join-without doing any
sorting-by using these indexes.

(a) Would this be a good idea if Rand S each has only one tuple per page or would it
be better to ignore the indexes and sort Rand S? Explain.

(b) What if Rand S each have many tuples per page? Again, explain.

5. Explain the role of interesting orders in the System R optimizer.

Exercise 15.2 Consider a relation with this schema:

Ernployees(eid: integer, ename: string, sal: integer, title: string, age: integer)

Suppose that the following indexes, all using Alternative (2) for data entries, exist: a hash
index on eid, a B+ tree index on sal, a hash index on age, and a clustered B+ tree index
on (age, sal). Each Employees record is 100 bytes long, and you can assume that each index
data entry is 20 bytes long. The Employees relation contains 10,000 pages.

1. Consider each of the following selection conditions and, assuming that the reduction
factor (RF) for each term that matches an index is 0.1, compute the cost of the most
selective access path for retrieving all Employees tuples that satisfy the condition:

(a) sol> 100

(b) age. = 25

(c) age> 20

(d) eid = 1, 000

(e) sal> 200 1\ age> 30

(f) sal> 2001\ age = 20

(g) sal> 2001\ title ='CFO'

(h) sal> 200 II age> 301\ hUe ='CFO'

2. Suppose that, for each of the preceding selection conditions, you want to retrieve the
average salary of qualifying tuples. For each selection condition, describe the least ex­
pensive evalwltion method and state its cost.

:3. Suppose that, for each of the preceding selection conditions, you want to compute the av-­
erage salary for each age group. For each selection condition, describe the least expensive
evaluation method and state its cost.

4. Suppose that, for each of the preceding selection conditions, you want to compute the
average age for each sa/level (Le.) group by sal). For each selection condition, describe
the least expensive evaluation method and state its cost.
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5. For each of the following selection conditions, describe the best evaluation method:

(a) sal> 200 V age = 20

(b) sal> 200 V title ='CFO'

(c) title ='CFO' 1\ ename ='Joe'

Exercise 15.3 For each of the following SQL queries, for each relation involved, list the
attributes that must be examined to compute the answer. All queries refer to the following
relations:

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))

Dept( did: integer, dname: char(20), floor: integer, budget: real)

1. SELECT COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did

2. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did

3. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did AND D.floor = 5

4. SELECT E.did, COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did GROUP BY D.did

5. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.tloor HAVING COUNT(*) > 2

6. SELECT D.tloor, AVG(D.budget) FROM Dept D GROUP BY D.floor ORDER BY D.floor

Exercise 15.4 You are given the following information:

Executives has attributes ename, title, dname, and address; all are string fields of
the same length.
The ename attribute is a candidate key.
The relation contains 10,000 pages.
There are 10 buffer pages.

1. Consider the following query:

SELECT E.title, E.ename FROM Executives E WHERE E.title='CFO'

Assume that only 10% of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What
is the cost of the best plan? (In this and subsequent questions, be sure to describe
the plan you have in mind.)

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.
What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on enarne is (the only index) available.
What is the cost of the best plan?

(d) Suppo$e that a clustered B+ tree index on address is (the only index) available.
What is the cost of the best pian?

(e) Suppose that a clustered B+ tree index on (ename, title) is (the only index) avail­
able. What is the cost of the best plan?

2. Suppose that the query is as follows:

SELECT E.ename FROM Executives E WHERE E.title='CFO' AND E.dname='Toy'
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Assume that only 10% of Executives tuples IIleet the condition E.title =' C FO', only
10% meet E.dname ='Toy', and that only 5% meet both conditions.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What
is the cost of the best plan?

(b) Suppose that a clustered B+ tree index on dname is (the only index) available.
What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on (title, dname) is (the only index) avail­
able. What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on (title, ename) is (the only index) avail­
able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on (dname, title, ename) is( the only index)
available. What is the cost of the best plan?

(f) Suppose that a clustered B+ tree index on (ename, title, dname) is (the only index)
available. What is the cost of the best plan?

3. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E GROUP BY E.title

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What
is the cost of the best plan?

(b) Suppose that an unclustered B+ tree index on t'ltle is (the only index) available.
What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on ename is (the only index) available.
What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on (ename, title) is (the only index) avail­
able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on (title, ename) is (the only index) avail­
able. What is the cost of the best plan?

4. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E
WHERE E.dname > 'W%' GROUP BY E.title

Assume that only 10% of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What
is the cost of the best plan? If an additional index (on any search key you want) is
available, would it help produce a better plan?

(b) Suppose that an unclustered B+ tree index OIl title is (the only index) available.
What is the cost of the best plan?

(c) Suppose. that a clustered B+ tree index on dname is (the only index) available.
What is the cost of the best plan? If an additional index (on any search key you
want) is available, would it help to produce a better plan'?

(d) Suppose that a clustered B+ tree index on (dname, title) is (the only index) avail­
able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on (title,dname) is (the only index) avail­
able. What is the cost of the best plan?
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Exercise 15.5 Consider the query 7rA.B,C,D(R CXlA=CS). Suppose that the projection routine
is based on sorting and is smart enough to eliminate all but the desired attributes during the
initial pass of the sort and also to toss out duplicate tuples on-the-fly while sorting, thus
eliminating two potential extra pa.'ises. Finally, assume that you know the following:

R is 10 pages long, and R tuples are aoo bytes long.
S is 100 pages long, and S tuples are 500 bytes long.
C is a key for S, and A is a key for R.
The page size is 1024 bytes.
Each S tuple joins with exactly one R tuple.
The combined size of attributes A, B, G, and D is 450 bytes.
A and B are in R and have a combined size of 200 bytes; C and D are in S.

L '''''hat is the cost of writing out the final result? (As usual, you should ignore this cost
in answering subsequent questions.)

2. Suppose that three buffer pages are available, and the only join method that is imple­
mented is simple (page-oriented) nested loops.

(a) Compute the cost of doing the projection followed by the join.

(b) Compute the cost of doing the join followed by the projection.

(c) Compute the cost of doing the join first and then the projection on-the-fly.

(d) Would your answers change if 11 buffer pages were available?

Exercise 15.6 Briefly answer the following questions:

L Explain the role of relational algebra equivalences in the System R optimizer.

2. Consider a relational algebra expression of the form Uc(-lq (R X S)). Suppose that the
equivalent expression with selections and projections pushed as much as possible, taking
into accollnt only relational algebra equivalences, is in one of the following forms. In
each case give an illustrative example of the selection conditions and the projection Iitits
(c, I, el, 11, etc.).

(a) Equivalent mm:imally pushed form: rrl1(u,dR) X S),

(b) Equivalent mal:imally pushed form: rrll(ucl(R) x U c2(S)).

(c) Equivalent maximally Tn/shed f07'771: CT e (rrll (n12 (R) x 8)).

(d) Equivalent maximally pushed fONT!: Uc1 (rrll (u,drrdR)) x 8)).

(e) Equivalent ma:rimally pushed fO'l'17L' Ucl (nil (rr12 (CTC 2(R)) x S)).

(f) Equi~}(tlent rnaximally pushed fOT1n: 71"1 (0'" 1(71"1l (71"12 (Uc2(R)) x 8))).

Exercise 15.7 Consider the following relational schema and SQL query. The schema cap­
tureti information about employees, departments, and company finances (organized on a per
department basis).

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))

Dept(did: integer, dn07ne: char(20), floor: integer, phone: char(10))

Finance( did: integer, budget: real, sales: real, e:r:penses: real)

Consider t.he following query:
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SELECT
FRON
WHERE

D.dname, F.budget
Emp E, Dept D, Finance F
E.did=D.did AND D.did=F.did AND D.floor=l
AND E.sal ~ 59000 AND E.hobby = 'yodeling'

1. Identify a relational algebra tree (or a relational algebra expression if you prefer) that
reflects the order of operations a decent query optimizer would choose.

2. List the join orders (i.e., orders in which pairs of relations can be joined to compute the
query result) that a relational query optimizer will consider. (Assume that the optimizer
follows the heuristic of never considering plans that require the computation of cross­
products.) Briefly explain how you arrived at your list.

3. Suppose that the following aclditional information is available: lJnclustered B+ tree
indexes exist on Ernp.did, Ernp.sal, Dept.floor, Dept. did, and Finance. did. The system's
statistics indicate that employee salaries range from 10,000 to 60,000, employees enjoy
200 different hobbies, and the company owns two floors in the building. There are
a total of 50,000 employees and 5,000 departments (each with corresponding financial
information) in the database. The DBMS used by the company has just one join method
available, index nested loops.

(a) For each of the query's base relations (Emp, Dept, and Finance) estimate the
number of tuples that would be initially selected from that relation if all of the
non-join predicates on that relation were applied to it before any join processing
begins.

(b) Given your answer to the preceding question, which of the join orders considered
by the optimizer has the lowest estimated cost?

Exercise 15.8 Consider the following relational schema and SQL query:

Suppliers(sid: integer, snarne: char(20), city: char(20»)
Supply( sid: integer, pid: integer)
Parts(pid: integer, pnarne: char (20), price: real)

SELECT
FROM
WHERE

S.sname, P.pname
Suppliers S, Parts P, Supply Y
S.sid = Y.sid AND Y.pid = P.pid AND
S.city = 'Madison' AND P.price :s: 1,000

1. What information abollt these relations does the query optimizer need to select a good
query execution plan for the given query?

2. How many different join orders, assuming that cross-products are disallowed, does a
System R. style query optimizer consider whcn deciding how to process the given query?
List each of thcse join orders.

3. \\-That indexes' might be of help in processing this query? Explain briefly.

4. How does adding DISTINCT to the SELECT clause affect the plans produced?

5. How does adding ORDER BY sname to the query affect the plans produced?

G. How does adding GROUP BY .marne to the query affect the plans produced?

Exercise 15.9 Consider the following scenario:
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Emp( eid: integer, sal: integer, age: real, did: integer)
Dept( did: integer, pTOJid: integer, budget: real, status: char (10))

Proj(Tlf"ojid: integer, code: integer, report: varchar)

CHAPTER 15

Assume that each Emp record is 20 bytes long, each Dept record is 40 bytes long, and each
Proj record is 2000 bytes long on average. There are 20,000 tuples in Emp, 5000 tuples in
Dept (note that did is not a key), and 1000 tuples in Proj. Each department, identified by
did, has 10 projects on average. The file system supports 4000 byte pages, and 12 buffer
pages are available. All following questions are based on this information. You can assume
uniform distribution of values. State any additional assumptions. The cost metric to use is
the number of page 1/005. Ignore the cost of writing out the final result.

1. Consider the following two queries: "Find all employees with age = 30" and "Find all
projects with code = 20," Assume that the number of qualifying tuples is the same
in each case. If you are building indexes on the selected attributes to speed up these
queries, for which query is a clustered index (in comparison to an unclustered index) more
important?

2. Consider the following query: "Find all employees with age> 30." Assume that there is
an unclustered index on age. Let the number of qualifying tuples be N. For what values
of N is a sequential scan cheaper than using the index?

3. Consider the following query:

SELECT *
FROM Emp E, Dept D
WHERE E.did=D.did

(a) Suppose that there is a clustered hash index on did on Emp. List all the plans that
are considered and identify the plan with the lowest estimated cost.

(b) Assume that both relations are sorted on the join column. Lis.t all the plans that
are considered and show the plan with the lowest estimated cost.

(c) Suppose that there is a clustered B+ tree index on did on Emp and Dept is sorted
on did. List all the plans that are considered and identify the plan with the lowest
estimated cost.

4. Consider the following query:

SELECT
FROM
WHERE
GROUP BY

D.dicl, COUNT(*)
Dept D, Proj P
D.projid=P.projid
D.clid

(a) Suppose that no indexes are available. Show the plan with the lowest estimated
cost.

(b) If there is a hash index OIl P.projid what is the plan with lowest estimated cost?

(c:) If there is a hash index on D.pmjid what is the plan with lowest estimated cost?

(d) If there is a hash index on D-JiTojid and P.projid what is the plan with lowest
estimated cost?

(e) Suppose that there is a clustered B+ tree index on D.did and a hash index on
P.]Jmjid. Show the plan with the lowest estimated cost.

(f) Suppose that there is a clustered B+ tree index on D.did, a lUh<:h index OIl D.]JT'O)id,
and a hash index on P.pmjid. Show the plan with the lowest estimated cost.
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(g) Suppose that there is a clustered B+ tree index on (D. did, D.pmjidj and a ha..,h
index on P.pmjid. Show the plan with the lowest estimated cost.

(h) Suppose that there is a clustered B+ tree index on (D.pmjid, D.did> and a h&<;h
index on P.pmjid. Show the plan with the lowest estimated cost.

5. Consider the following query:

SELECT
FROM
WHERE
GROUP BY

D.did, COUNT(*)
Dept D, Proj P
D.projid=P.projid AND D.budget>99000
D.did

Assume that department budgets are uniformly distributed in the range 0 to 100,000.

(a) Show the plan with lowest estimated cost if no indexes are available.

(b) If there is a hash index on P.pmjid show the plan with lowest estimated cost.

(c) If there is a hash index on D. budget show the plan with lowest estimated cost.

(d) If there is a hash index on D.pmjid and D.budget show the plan with lowest esti~

mated cost.

(e) Suppose that there is a clustered B+ tree index on (D.did,D.budget) and a hash
index on P.projid. Show the plan with the lowest estimated cost.

(f) Suppose there is a clustered B+ tree index on D.did, a hash index on D.b1ldget,
and a hash index on P.projid. Show the plan with the lowest estimated cost.

(g) Suppose there is a clustered B+ tree index on (D. did, D.budgct, D.projid> and a
hash index on P.pmjid. Show the plan with the lowest estimated cost.

(h) Suppose there is a clustered B+ tree index on (D. did, D.projid, D.budget) and a
hash index on P.pmjid. Show the plan with the lowest estimated cost.

6. Consider the following query:

SELECT
FROM
WHERE

E.eid, D.did, P.projid
Emp E, Dept D, Proj P
E.sal=50,000 AND D.budget>20,000
E.did=D.did AND D.projid=P.projid

Assume that employee salaries are uniformly distributed in the range 10,009 to 110,008
and that project budgets are uniformly distributed in the range 10,000 to 30,000. There
is a clustered index on sal for Emp, a clustered index on did for Dept, and a clustered
index on pmjid for Proj.

(a) List all the one-relation, two--relation, and three~relation subplans considered in
optimizing this query.

(b) Show the plan with the lowest estimated cost for this query.

(c) If the index on Proj wel'(" unclustered, would the cost of the preceding plan change
substant:ially? What if the index on Emp or on Dept were unclllstered?
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BIBLIOGRAPHIC NOTES

CHAPTER 15

Query optimization is critical in a relational DBMS, and it has therefore been extensivElly
studied. 'Ve concentrate in this chapter on the approach taken in System R, as described
in [668], although our discussion incorporates subsequent refinements to the approach. [78,1]
describes query optimization in Ingres. Good surveys can be found in [41OJ and [399J. [434]
contains several articles on query processing and optimization.

From a theoretical standpoint, [155] shows that determining whether two conjunctive q'ueT'ies
(queries involving only selections, projections, and cross-products) are equivalent is an NP­
complete problem; if relations are mv,ltisets, rather than sets of tuples, it is not known whether
the problem is decidable, although it is IT:zP hard. The equivalence problem is shown to be
decidable for queries involving selections, projections, cross-products, and unions in [643];
surprisingly, this problem is undecidable if relations are multisets [404]. Equivalence of con­
junctive queries in the presence of integrity constraints is studied in [30], and equivalence of
conjunctive queries with inequality selections is studied in [440].

An important problem in query optimization is estimating the size of the result of a query
expression. Approaches based on sampling are explored in [352, 353, 384, 481, 569]. The
use of detailed statistics, in the form of histograms, to estimate size is studied in [405, 558,
598]. Unless care is exercised, errors in size estimation can quickly propagate and make cost
estimates worthless for expressions with several operators, This problem is examined in [400].
[512] surveys several techniques for estimating result sizes and correlations between values in
relations. There are a number of other papers in this area; for example, [26, 170, 594, 725],
and our list is far from complete,

Semantic qnery optimization is based on transformations that preserve equivalence only when
certain integrity constraints hold. The idea was introduced in [437] and developed further in
[148,682, 688].

In recent years, there has been increasing interest in complex queries for decision support
applications. Optimization of nested SQL queries is discussed in [298, 426, /130, 557, 760].
The use of the Magic Sets technique for optimizing SQL queries is studied in [55:3, 554, 555,
670, 67:3]. Rule-based query optimizers are studiecl in [287, 326, 490, 539, 596]. Finding it

good join order for queries with it large number of joins is studied in [401, 402, 453, 726].
Optimization of multiple queries for simultaneous execution is considerecl in [585, 633, 669].
Determining query plans at run-time is discussed in [327, 403]. Re-optimization of running
queries based on statistics gathered during query execution is considered by Kabra and DeWitt
[413]. Probabilistic optimization of queries is proposed in [183, 229].
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16
OVERVIEW OF TRANSACTION

MANAGEMENT

... What four properties of transactions does a DBMS guarantee?

... Why does a DBMS interleave transactions?

... What is the correctness criterion for interleaved execution?

... What kinds of anomalies can interleaving transactions cause?

... How does a DBMS use locks to ensure correct interleavings?

... What is the impact of locking on performance?

... What SQL commands allow programmers to select transaction char­
acteristics and reduce locking overhead?

... How does a DBMS guarantee transaction atomicity and recovery from
system crashes?

.. Key concepts: ACID properties, atomicity, consistency, isolation,
durability; schedules, serializability, recoverability, avoiding cascading
aborts; anomalies, dirty reads, unrepeatable reads, lost updates; lock­
ing protocols, exclusive and shared locks, Strict Two-Phase Locking;
locking performance, thrashing, hot spots; SQL transaction charac­
teristics, savepoints, rollbacks, phantoms, access mode, isolation level;
transaction manager, recovery manager, log, system crash, media fail­
ure; stealing frames, forcing pages; recovery phases, analysis, redo and
undo.

---~~--_....~------_._~---._._._..•_----_....

I always say, keep a diary and someday it'11 keep you.

·fvlae West
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In this chapter, we cover the concept of a lm'nsacl£on, 'iNhich is the founda~

tion for concurrent execution and recovery from system failure in a DBMS. A
transaction is defined as anyone e;recut£on of a user program in a DBMS and
differs from an execution of a program outside the DBMS (e.g., a C program
executing on Unix) in important ways. (Executing the same program several
times generates several transactions.)

For performance reasons, a DBJ'vlS lul.'> to interleave the actions of several trans­
actions. (vVe motivate interleaving of transactions in detail in Section 16.3.1.)
However, to give users a simple way to understand the effect of running their
programs, the interleaving is done carefully to ensure that the result of a con­
current execution of transactions is nonetheless equivalent (in its effect on the
database) to some serial, or one-at-a-time, execution of the same set of transac­
tions, How the DBMS handles concurrent executions is an important a"spect of
transaction management and the subject of concurrency control. A closely r&­
lated issue is how the DBMS handles partial transactions, or transactions that
are interrupted before they run to normal completion, The DBMS ensures that
the changes made by such partial transactions are not seen by other transac­
tions. How this is achieved is the subject of crash r'ecovery. In this chapter,
we provide a broad introduction to concurrency control and crash recovery in
a. DBMS, The details are developed further in the next two chapters.

In Section 16.1, we discuss four fundamental properties of database transactions
and how the DBMS ensures these properties. In Section 16.2, we present an ab­
stract way of describing an interleaved execution of several transactions, called
a schedule. In Section 16,3, we discuss various problems that can arise due to
interleaved execution, \Ve introduce lock-based concurrency control, the most
widely used approach, in Section 16.4. We discuss performance issues associ­
ated with lock-ba'ied concurrency control in Section 16.5. vVe consider locking
and transaction properties in the context of SQL in Section 16.6, Finally, in
Section 16.7, we present an overview of how a clatabase system recovers from
crashes and what steps are taken during normal execution to support crash
recovery.

16.1 THE ACID PROPERTIES

vVe introduced the concept of database trans;:Lctions in Section 1.7, To reca­
pitulate briefly, a transaction is an execution of a user program, seen by the
DBMS as a series of read and write operations.

A DBJ\iIS must ensure four important properties of transactions to maintain
data in the face of concurrent a.ccess and system failures:
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1. Users should be able to regard the execution of each transaction as atomic:
Either all actions are carried out or none are. Users should not have to
worry about the effect of incomplete transactions (say, when a system crash
occurs).

2. Each transaction, run by itself with no concurrent execution of other trans­
actions, lnust preserve the consistency of the datab&c;e. The DBMS as­
sumes that consistency holds for each transaction. Ensuring this property
of a transaction is the responsibility of the user.

3. Users should be able to understand a transaction without considering the
effect of other concurrently executing transactions, even if the DBMS in­
terleaves the actions of several transactions for performance reasons. This
property is sometimes referred to &'3 isolation: Transactions are isolated,
or protected, from the effects of concurrently scheduling other transactions.

4. Once the DBMS informs the user that a transaction has been successfully
completed, its effects should persist even if the system crashes before all
its changes are reflected on disk. This property is called durability.

The acronym ACID is sometimes used to refer to these four properties of trans­
actions: atomicity, consistency, isolation and durability. We now consider how
each of these properties is ensured in a DBMS.

16.1.1 Consistency and Isolation

Users are responsible for ensuring transaction consistency. That is, the user
who submits a transaction must ensure that, when run to completion by itself
against a 'consistent' database instance, the transaction will leave the databa.,se
in a 'consistent' state. For example, the user may (naturally) have the consis­
tency criterion that fund transfers between bank accounts should not change
the total amount of money in the accounts. To transfer money from one ac­
count to another, a transaction must debit one account, temporarily leaving the
database inconsistent in a global sense, even though the new account balance
may satisfy any integrity constraints with respect to the range of acceptable
account balances. The user's notion of a consistent database is preserved when
the second account is credited with the transferred amount. If a faulty trans­
fer program always credits the second account with one dollar less than the
alllount debited frOlll the first account, the DBMS cannot be expected to de­
tect inconsistencies due to such errors in the user program's logic.

The isolation property is ensured by guaranteeing that, even though actions
of several transactions rnight be interleaved, the net effect is identical to ex­
ecuting all transactions one after the other in sorne serial order. (vVe discuss
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hm'll the DBMS implements this guarantee in Section 16.4.) For example, if
two transactions T1 and T2 are executed concurrently, the net effect is guar­
anteed to be equivalent to executing (all of) T1 followed by executing T2 or
executing T2 followed by executing Tl. (The DBIvIS provides no guarantees
about which of these orders is effectively chosen.) If each transaction maps a
consistent database instance to another consistent database instance, execut­
ing several transactions one after the other (on a consistent initial database
instance) results in a consistent final database instance.

Database consistency is the property that every transaction sees a consistent
database instance. Database consistency follows from transaction atomicity,
isolation, and transaction consistency. Next, we discuss how atomicity and
durability are guaranteed in a DBMS.

16.1.2 Atomicity and Durability

Transactions can be incomplete for three kinds of reasons. First, a transaction
can be aborted, or terminated unsuccessfully, by the DBMS because some
anomaly arises during execution. If a transaction is aborted by the DBMS for
SOlne internal reason, it is automatically restarted and executed anew. Second,
the system may crash (e.g., because the power supply is interrupted) while one
or more transactions are in progress. Third, a transaction may encounter an
unexpected situation (for example, read an unexpected data value or be unable
to access some disk) and decide to abort (i.e., terminate itself).

Of course, since users think of transactions &<; being atomic, a transaction that
is interrupted in the middle may leave the database in an inconsistent state.
Therefore, a DBMS must find a way to remove the effects of partial transactions
from the database. That is, it must ensure transaction atomicity: Either all of a
transaction's actions are carried out or none are. A DBMS ensures transaction
atomicity by vindoing the actions of incomplete transactions. This means that
users can ignore incomplete transactions in thinking about how the database is
modified by transactions over time. To be able to do this, the DBMS maintains
a record, called the log. of all writes to the database. The log is also used to
ensure durability: If the system crashes before the changes made by a completed
transaction are written to disk, the log is used to remember and restore these
changes when th~ systenl restarts.

The DBMS component that ensures atomicity and durability, called the r'ec;ov­
cry rnanagcr', is discussed further in Section 16.7.
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16.2 TRANSACTIONS AND SCHEDULES

A transaction is seen by the DBMS a'l a series, or list, of actions. The actions
that can be executed by a transaction include reads and writes of database
objects. To keep our notation simple, we a'Jsume that an object 0 is always
read into a program variable that is also named O. 'Ne can therefore denote
the action of a transaction T reading an object 0 as RT(O); similarly, we can
denote writing as HTT(O). When the transaction T is clear from the context,
we omit the subscript.

In addition to reading and writing, each transaction must specify as its final
action either commit (i.e., complete successfully) or abort (i.e., terminate
and undo all the actions carried out thus far). AbortT denotes the action of T
aborting, and CommitT denotes T committing.

We make two important assumptions:

1. Transactions interact with each other only via databa'Je read and write
operations; for example, they are not allowed to exchange messages.

2. A database is a fiJ;ed collection of independent objects. When objects are
added to or deleted from a database or there are relationships between
database objects that we want to exploit for performance, some additional
issues arise.

If the first assumption is violated, the DBMS has no way to detect or prevent
inconsistencies cause by such external interactions between transactions, and it
is upto the writer of the application to ensure that the program is well-behaved.
We relax the second assumption in Section 16.6.2.

A schedule is a list of actions (reading, writing, aborting, or committing)
from a set of transactions, and the order in which two actions of a transaction
T appear in a schedule must be the same as the order in which they appear in T.
Intuitively, a schedule represents an actual or potential execution sequence. For
example, the schedule in Figure 16.1 shows an execution order for actions of two
transactions T1 and T2. \eVe move forward in time as we go down from one row
to the next. \Ve emphasize that a schedule describes the actions of transactions
as seen by the DBMS. In addition to these actions, a transaction rnay carry out
other actions, such as reading or writing from operating system files, evaluating
arithmetic expressions, and so on; however, we a:ssume that these actions do
not affect other transactions; that is, the effect of a transaction on another
transaction can be understood solely in terms of the cornmon database objects
that they read and write.
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T1 T2
R(A)
Hl(A)

R(B)
IV(B)

R(C)
W"(C)

Figure 16.1 A Schedule Involving Two Transactions
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Note that the schedule in Figure 16.1 does not contain an abort or commit ac­
tion for either transaction. A schedule that contains either an abort or a commit
for each transaction whose actions are listed in it is called a complete sched­
ule. A complete schedule must contain all the actions of every transaction
that appears in it. If the actions of different transactions are not interleaved­
that is, transactions are executed from start to finish, one by one-we call the
schedule a serial schedule.

16.3 CONCURRENT EXECUTION OF TRANSACTIONS

Now that we have introduced the concept of a schedule, we have a convenient
way to describe interleaved executions of transactions. The DBMS interleaves
the actions of different transactions to improve performance, but not all inter­
leavings should be allowed. In this section, we consider what interleavings, or
schedules, a DBMS should allow.

16.3.1 Motivation for Concurrent Execution

The schedule shown in Figure 16.1 represents an interleaved execution of the
two transactions. Ensuring transaction isolation while permitting such concur··
rent execution is difficult lnlt necessary for performance reasons. First, while
one transa.etion is waiting for a page to be read in from disk, the CPU can
process another transaction. This is because I/O activity can be done in par­
allel with CPU activity in a computer. Overlapping I/O and CPU activity
reduces the amount of time disks and processors are idle and increases system
throughput (the average number of transactions completed in a given time).
Second, interleaved execution of a short transaction with a long transaction
usually allows the short transaction to complete quickly. In serial execution,
a short transaction could get stuck behind a long transaction, leading to un­
predictable delays in response time, or average time taken to complete a
transaction.
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16.3.2 SerializabHity

A serializable schedule over a set S of cormnitted transactions is a schedule
whose effect on any consistent database instance is guaranteed to be identical
to that of some complete serial schedule over S. That is, the databa..<;e instance
that results from executing the given schedule is identical to the database in­
stance that results frOlIl executing the transactions in some serial order. 1

As an example, the schedule shown in Figure 16.2 is serializable. Even though
the actions of T1 and T2 are interleaved, the result of this schedule is equivalent
to running T1 (in its entirety) and then running T2. Intuitively, T1 's read and
write of B is not influenced by T2's actions on A, and the net effect is the same
if these actiolls are 'swapped' to obtain the serial schedule Tl; T2.

Tl T2
R(A)
vV(A)

R(A)
W(A)

R(B)
vV(B)

R(B)
W(B)
Commit

Commit

Figure 16.2 A Serializable Schedule

Executing transactions serially in different orders may produce different results,
but all are presumed to be acceptable: the DBMS makes no guarantees ahout
which of them will be the outcome of an interleaved execution. To see this,
note that the two example transactions from Figure 16.2 can be interleaved a.s
shown in Figure 16.:3. This schedule, also serializable, is equivalent to the serial
schedule T2; Tl. If T1 and T2 are submitted concurrently to a DBMS, either
of these schedules (among others) could be chosen.

The preceding definition of a serializable schedule does not cover the case of
schedules containing aborted transactions. We extend the definition of serial­
izable schedules to cover aborted transactions in Section 16.3.4.

llf a transaction prints a value to the screen, this 'effed' is not directly captured in the database.
For simplicity, we assume that such values are abo written into the database.
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Tl T2
R(A)
vV(A)

R(A)
R(B)
vV(B)

vV(A)
R(B)
vV(B)

Commit
Commit

Figure 16.3 Another Serializable Schedule
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Finally, we note that a DBMS might sometimes execute transactions in a way
that is not equivalent to any serial execution; that is, using a schedule that is
not serializable. This can happen for two reasons. First, the DBMS might use
a concurrency control method that ensures the executed schedule, though not
itself serializable, is equivalent to some serializable schedule (e.g., see Section
17.6.2). Second, SQL gives application programmers the ability to instruct the
DBMS to choose non-serializable schedules (see Section 16.6).

16.3.3 Anomalies Due to Interleaved Execution

We now illustrate three main ways in which a schedule involving two consistency
preserving, committed transactions could run against a consistent database and
leave it in an inconsistent state. Two actions on the same data object conflict if
at least one of them is a write. The three anomcllous situations can be described
in terms of when the actions of two transactions Tl and T2 conflict with each
other: In a write-read (WR) conflict, T2 reads a data object previously
written by Tl; we define read-write (RW) and write-write (WW) conflicts
similarly.

Reading Uncommitted Data (WR Conflicts)

The first source of anomalies is that a transaction T2 could read a database
object A that has been modified by another transaction Tl, which ha"i not yet
committed. Such a read is called a dirty read. A simple example illustrates
how such a schedule could lead to an inconsistent database state. Consider
two transactions Tl and T2. each of which, run alone, preserves datal)a"ie
consistency: Tl transfers 8100 from A to B, and T2 increments both A and
B by G% (e.g., annual interest is deposited into these two accounts). Suppose
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that the actions are interleaved so that (1) the account transfer program Tl
deducts $100 from account A, then (2) the interest deposit program T2 reads
the current values of accounts A and B and adds 6% interest to each, and then
(3) the account transfer program credits $100 to account B. The corresponding
schedule, which is the view the DBMS has of this series of events, is illustrated
in Figure 16.4. The result of this schedule is different from any result that we
would get by running one of the two transactions first and then the other. The
problem can be traced to the fact that the value of A written by TI is read by
T2 before TI has completed all its changes.

Tl T2
R(A)
vV(A)

R(A)
W(A)
R(B)
liV(B)
Commit

R(B)
W(B)
Commit

Figure 16.4 Reading Uncommitted Data

The general problem illustrated here is that Tl may write some value into A
that makes the databa..':le inconsistent. As long as TI overwrites this value with
a 'correct' value of A before committing, no harm is done if TI and T2 run in
some serial order, because T2 would then not see the (temporary) inconsistency.
On the other hetnel, interleaved execution can expose this inconsistency and lead
to an inconsistent final database state.

Note that although a transaction must leave a database in a consistent state
after it completes, it is not required to keep the database consistent while it is
still in progress. Such a requirement would be too restrictive: To transfer money
from one account to another, a transaction rn1l8t debit one account, temporarily
leaving the database inconsistent, and then credit the second account, restoring
consistency.
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Unrepeatable Reads (RW Conflicts)

CHAPTERd.6

The second way in which anomalous behavior could result is that a transaction
T2 could change the value of an object A that has been read by 1:1, transaction
Tl, while Tl is still in progress.

IfTl tries to read the value of A again, it will get a different result, even though
it has not modified A in the meantime. This situation could not arise in a serial
execution of two transactions; it is called an unrepeatable read.

To see why this can cause problems, consider the following example. Suppose
that A is the number of available copies for a book. A transaction that places
an order first reads A, checks that it is greater tha,n 0, and then decrements it.
Transaction Tl reads A and sees the value 1. Transaction T2 also reads A and
sees the value 1, decrements A to 0 and commits. Transaction Tl then tries to
decrement A and gets an error (if there is an integrity constraint that prevents
A from becoming negative).

This situation can never arise in a serial execution of Tl and T2; the second
transaction would read A and see 0 and therefore not proceed with the order
(and so would not attempt to decrement A).

Overwriting Uncommitted Data (WW Conflicts)

The third source of anomalous behavior is that a transaction T2 could overwrite
the value of an object A, which has already been modified by a transaction Tl,
while Tl is still in progress. Even if T2 does not read the value of A written
by Tl, a potential problem exists as the following example illustrates.

Suppose that Harry and Larry are two employees, and their salaries must be
kept equal. Transaction Tl sets their salaries to $2000 and transaction T2 sets
their salaries to $1000. If we execute these in the serial order Tl followed by
T2, both receive the salary $1000: the serial order T2 followed by Tl gives each
the salary $2000. Either of these is acceptable from a consistency standpoint
(although Harry and Larry may prefer a higher salary!). Note that neither
transaction reads a salary value before writing it----such a write is called a
blind write, t:or obvious rea.sons.

Now, consider the following interleaving of the actions of 1'1 and T2: T2 sets
Harry's salary to $1000, Tl sets Larry's salary to $2000, T2 sets La.rry's salary
to $1000 and commits, and finally Tl sets Harry's salary to $2000 and connnits.
The result is not identical to the result of either of the two possible serial
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executions, and the interleaved schedule is therefore not serializable. It violates
the desired consistency criterion that the two salaries must be equal.

The problem is that we have a lost update. The first transaction to commit,
T2, overwrote Larry's salary as set by Tl. In the serial order T2 followed by
T1, Larry's salary should reflect Tl's update rather than T2's, but Tl's update
is 'lost'.

16.3.4 Schedules Involving Aborted Transactions

We now extend our definition of serializability to include aborted trallsactions. 2

Intuitively, all actions of aborted transactions are to be undone, and we can
therefore imagine that they were never carried out to begin with. Using this
intuition, we extend the definition of a serializable schedule as follows: A se­
rializable schedule over a set S of transactions is a schedule whose effect on
any consistent database instance is guaranteed to be identical to that of some
complete serial schedule over the set of committed transactions in S.

This definition of serializability relies on the actions of aborted transactions
being undone completely, which may be impossible in some situations. For
example, suppose that (1) an account transfer program T1 deducts $100 from
account A, then (2) an interest deposit program T2 reads the current values of
accounts A and B and adds 6% interest to each, then commits, and then (3)
T1 is aborted. The corresponding schedule is shown in Figure 16..5.

Tl T2
R(A)
W(A)

R(A)
vV(A)
R(B)
Hl(B)
Commit

Abort

Figure 16.5 An Unrecoverable Schedule

2 Vie must also consider incomplete transactions for a rigorous discussion of system failures, because
transactions that are active when the system fails are neither aborted nor committed. However, system
recovery usually begins by aborting all active transactions. and for our informal discussion, considering
schedules involving committed and aborted transactions is sufficient.
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Now, T2 has read a value for A that should never have been there. (Recall
that aborted transactions' effects are not supposed to be visible to other trans­
actions.) If T2 had not yet committed, we could deal with the situation by
cascading the abort of TI and also aborting T2; this process recursively aborts
any transaction that read data written by T2, and so on. But T2 has already
committed, and so we cannot undo its actions. \Ve say that such a schedule
is unrecoverable. In a recoverable schedule, transactions commit only after
(and if!) all transactions whose changes they read commit. If transactions read
only the changes of committed transactions, not only is the schedule recover­
able, but also aborting a transaction can be accomplished without cascading
the abort to other transactions. Such a schedule is said to avoid cascading
aborts.

There is another potential problem in undoing the actions of a transaction.
Suppose that a transaction T2 overwrites the value of an object A that has been
modified by a transaction TI, while TI is still in progress, and Tl subsequently
aborts. All of Tl's changes to database objects are undone by restoring the
value of any object that it modified to the value of the object before Tl's
changes. (We look at the details of how a transaction abort is handled in
Chapter 18.) When Tl is aborted and its changes are undone in this manner,
T2's changes are lost as well, even if T2 decides to commit. So, for example, if
A originally had the value 5, then WetS changed by T1 to 6, and by T2 to 7, if
T1 now aborts, the value of A becomes 5 again. Even if T2 commits, its change
to A is inadvertently lost. A concurrency control technique called Strict 2PL,
introduced in Section 16.4, can prevent this problem (as discussed in Section
17.1) .

16.4 LOCK-BASED CONCURRENCY CONTROL

A DBMS must be able to ensure that only serializable, recoverable schedules
are allowed and that no actions of committed transactions are lost while undo­
ing aborted transactions. A DBl'vlS typically uses a locking protocol to achieve
this. A lock is a small bookkeeping object CL.ssociated with a database object.
A locking protocol is a set of rules to be followed by each transaction (and en­
forced by the DBlVIS) to ensure that, even though actions of several transactions
might be interleaved, the net effect is identical to executing all transactions in
sOlne serial or~ler. Different locking protocols use different types of locks, such
as shared locks or exclusive locks, as we see next, when we discuss the Strict
2PL protocol.
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16.4.1 Strict Two-Phase Locking (Strict 2PL)
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The most widely used locking protocol, called Strict Two-Phase Locking, or
Strict 2PL, has two rules. The first rule is

1. If a transaction T wants to read (respectively, rnodify) an object, it
first requests a shared (respectively, exclusive) lock on the object.

Of course, a transaction that has an exclusive lock can also read the object;
an additional shared lock is not required. A transaction that requests a lock is
suspended until the DBMS is able to grant it the requested lock. The DBMS
keeps track of the locks it has granted and ensures that if a transaction holds
an exclusive lock on an object, no other transaction holds a shared or exclusive
lock on the same object. The second rule in Strict 2PL is

2. All locks held by a transaction are relea.'3ed when the transaction is
completed.

Requests to acquire and release locks can be automatically inserted into trans­
actions by the DBMS; users need not worry about these details. eWe discuss
how application programmers can select properties of transactions and control
locking overhead in Section 16.6.3.)

In effect, the locking protocol allows only 'safe' interleavings of transactions.
If two transactions access completely independent parts of the database, they
concurrently obtain the locks they need and proceed merrily on their ways. On
the other band, if two transactions access the same object, and one wants to
modify it, their actions are effectively ordered serially·all actions of one of
these transactions (the one that gets the lock on the common object first) are
completed before (this lock is released and) the other transaction can proceed.

We denote the action of a transaction T requesting a shared (respectively, exclu­
sive) lock on object 0 as 5T(0) (respectively, XT(O)) and omit the subscript
denoting the tn1l1saction when it is clear from the context. As an example,
consider the schedule shown in Figure 16.4. This interleaving could result in a
state that cannot result from any serial execution of the three transactions. For
instance, T1 could change A from 10 to 20, then T2 (which reads the value 20
for A) could change B from 100 to 200, and then T1 would read the value 200
for B. If run serially, either Tl or T2 would execute first, and read the values
10 for A and 100 for B: Clearly, the interleaved execution is not equivalent to
either serial execution.

If the Strict 2PL protocol is used, such interleaving is disallowed. Let us see
why. Assuming that the transactions proceed <tt the same relative speed as
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before, T1 would obtain an exclusive lock on A first and then read and write
A (Figure 16.6). Then, 1'2 would request a lock on A. However, this request

1'1 T2
X(A)
R(A)
lV(A)

Figure 16.6 Schedule Illustrating Strict 2PL

cannot be granted until 1'1 releases its exclusive lock on A, and the DBMS
therefore suspends 1'2. 1'1 now proceeds to obtain an exclusive lock on B,
reads and writes B, then finally commits, at which time its locks are released.
T2's lock request is now granted, and it proceeds. In this example the locking
protocol results in a serial execution of the two transactions, shown in Figure
16.7.

T1 T2
X(A)
R(A)
W(A)
X(B)
R(B)
W(B)
Commit

X(A)
R(A)
W(A)
X(B)
R(B)
H'(B)
Commit

Figure 16.7 Schedule Illustrating Strict 2PL with Serial Execution

In general, however, the actions of different transactions could be interleaved.
As an example, consider the interleaving of two transactions shown in Figure
16.8, which is permitted by the Strict 2PL protocol.

It can be shown that the Strict 2PL algorithm allows only serializable sched­
ules. None of the anomalies discussed in Section 16.3.:3 can arise if the DBMS
implements Strict 2PL.
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Tl T2
8(A)
R(A)

8(A)
R(A)
X(B)
R(B)
vV(B)
Conllnit

X(C)
R(C)
W(C)
Commit

Figure 16.8 Schedule Following Strict 2PL with Interleaved Actions

16.4.2 Deadlocks
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Consider the following example. Transaction T1 sets an exclusive lock on object
A, T2 sets an exclusive lock on B, T1 requests an exclusive lock on B and is
queued, and T2 requests an exclusive lock on A and is queued. Now, T1 is
waiting for T2 to release its lock and T2 is waiting for T1 to release its lock.
Such a cycle of transactions waiting for locks to be released is called a deadlock.
Clearly, these two transactions will make no further progress. Worse, they
hold locks that may be required by other transactions. The DBMS must either
prevent or detect (and resolve) such deadlock situations; the common approach
is to detect and resolve deadlocks.

A simple way to identify deadlocks is to use a timeout mechanism. If a trans­
action has been waiting too long for a lock, we can a'3sume (pessimistically)
that it is in a deadlock cycle and abort it. We discuss deadlocks in more detail
in Section 17.2.

16.5 PERFORMANCE OF LOCKING

Lock-b"l.'sed schqmes are designed to resolve conflicts between transactions and
use two ba'3ic mechanisms: blocking and aborting. Both mechanisrns involve
a performance penalty: Blocked transactions may hold locks that force other
transactions to wait, and aborting and restarting a transaction obviously wa..'3tes
the work done thus far by that transaction. A deadlock represents an extreme
instance of blocking in which a set of transactions is forever blocked unless one
of the deadlocked transactions is aborted by the DBMS.
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In practice, fewer than 1% of transactions are involved in a deadlock, (uId there
are relatively few aborts. Therefore, the overhead of locking comes primarily
from delays due to blocking.3 Consider how blocking delays affect throughput.
The first few transactions are unlikely to conflict, and throughput rises in pro­
portion to the number of active transactions. As more and more transactions
execute concurrently on the same number of database objects, the likelihood of
their blocking each other goes up. Thus, delays due to blocking increase with
the number of active transactions, and throughput increases more slowly than
the number of active transactions. In fact, there comes a point when adding
another active transaction actually reduces throughput; the new transaction is
blocked and effectively competes with (and blocks) existing transactions. We
say that the system thrashes at this point, which is illustrated in Figure 16.9.

Thrashing

# Active transactions

Figure 16.9 Lock Thrashing

If a database system begins to thrash, the database administrator should reduce
the number of transactions allowed to run concurrently. Empirically, thrashing
is seen to occur when 30% of active transactions are blocked, and a DBA should
monitor the fraction of blocked transactions to see if the system is at risk of
thrashing.

Throughput can be increa..c;ed in three ways (other than buying a fa..'3ter system):

IIll By locking the smallest sized objects possible (reducing the likelihood that
two transactions need the same lock).

.. By reducing the time that transaction hold locks (so that other transactions
are blocked for a shorter time).

3Ivlany common deadlocks can be avoided using a technique called lock downgrade8, implemented
in most cOlnmercial systems (Section 17.3).
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• By reducing hot spots. A hot spot is a databa.ge object that is frequently
accessed and modified, and causes a lot of blocking delays. Hot spots can
significantly affect performance.

The granularity of locking is largely determined by the databa..<;;e system's im­
plementation of locking, and application programmers and the DBA have little
control over it. We discuss how to improve performance by minimizing the
duration locks are held and using techniques to deal with hot spots in Section
20.10.

16.6 TRANSACTION SUPPORT IN SQL

We have thus far studied transactions and transaction management using an
abstract model of a transaction as a sequence of read, write, and abort/commit
actions. We now consider what support SQL provides for users to specify
transaction-level behavior.

16.6.1 Creating and Terminating Transactions

A transaction is automatically started when a user executes a statement that
accesses either the database or the catalogs, such as a SELECT query, an UPDATE
command, or a CREATE TABLE statement.4

Once a transaction is started, other statements can be executed as part of this
transaction until the transaction is terminated by either a COMMIT command
or a ROLLBACK (the SQL keyword for abort) command.

In SQL:1999, two new features are provided to support applications that involve
long-running transactions, or that must run several transactions one after the
other. To understand these extensions, recall that all the actions of a given
transaction are executed in order, regardless of how the actions of different
transactions are interleaved. We can think of each transaction as a sequence of
steps.

The first feature, called a savepoint, allows us to identify a point in a trans­
action and selectively roll back operations carried out after this point. This
is especially useful if the transaction carries out what-if kinds of operations,
and wishes to undo or keep the changes based on the results. This can be
accomplished by defining savepoints.

4Some SQL statements·..·····e.g., the CONNECT statement, which connects an application program to a
database server do not require the creation of a transaction.
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I SQL:1999 Nested Transactions: The concept of atn,msactioll as an I

I,

atomic sequence of actions has been extended in SQL:1999 thrQugh the i
• introduction of the savepo'int feature. This allows parts of a transaction to

be selectively rolled back. The introduction of savepoints represents the
first SQL support for the concept of nested transactions, which have
been extensively studied in the research community. The idea is that a I
transaction can have several nested subtransactions, each of which can I

be selectively rolled back. Savepoints snpport a simple form of one-level i

nesting.
'--------------, .. " , -

In a long-running transaction, we may want to define a series of savepoints.
The savepoint command allows us to give each savepoint a name:

SAVEPDINT (savepoint name)

A subsequent rollback command can specify the savepoint to roll back to

ROLLBACK TO SAVEPDINT (savepoint name)

If we define three savepoints A, B, and C in that order, and then rollback to
A, all operations since A are undone, including the creation of savepoints B
and C. Indeed, the savepoint A is itself undone when we roll hack to it, and
we must re-establish it (through another savepoint conunand) if we wish to be
able to roll back to it again. From a locking standpoint, locks obtained after
savepoint A can be released when we roll back to A.

It is instructive to compare the use of savepoints with the alternative of execut­
ing a series of transactions (i.e., treat all operations in between two consecutive
savepoints as a new transaction). The savepoint mechanism offers two ad­
vantages. First, we can roll back over several savepoints. In the alternative
approach, we can roll back only the most recent transaction, which is equiv­
alent to rolling back to the most recent savepoint, Second, the overhead of
initiating several transactions is avoided.

Even with the use of savepoints, certain applications might require us to run
several transactions one after the other. To minimize the overhead in such
situations, SQL:1999 introduces another feature, called chained transactions,
\Ve can cornmit or roll back a transaction and immediately initiate another
transaction, This is done by using the optional keywords AND CHAIN in the
COMMIT and ROLLBACK statements.
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16.6.2 What Should We Lock?

537

Until now, we have discussed transactions and concurrency control in tenus of
an abstract model in which a database contains a fixed collection of objects, and
each transaction is a series of read and write operations on individual objects.
An important question to consider in the context of SQL is what the DBMS
should treat as an object when setting locks for a given SQL statement (that is
part of a transaction).

Consider the following query:

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.rating = 8

Suppose that this query runs as part of transaction T1 and an SQL statement
that modifies the age of a given sailor, say Joe, with rating=8 runs a-s part of
transaction T2. What 'objects' should the DBMS lock when executing these
transactions? Intuitively, we must detect a conflict between these transactions.

The DBMS could set a shared lock on the entire Sailors table for T1 and set
an exclusive lock on Sailors for T2, which would ensure that the two transac­
tions are executed in a serializable manner. However, this approach yields low
concurrency, and we can do better by locking smaller objects, reflecting what
each transaction actually accesses. Thus, the DBMS could set a shared lock
on every row with mting=8 for transaction T1 and set an exclusive lock on
just the row for the modified tuple for transaction T2. Now, other read-only
transactions that do not involve nding=8 rows can proceed without waiting for
T1 or T2.

As this example illustrates, the DBMS can lock objects at different granular­
ities: \~re can lock entire tables or set row-level locks. The latter approach is
taken in current systems because it offers much better performance. In practice,
while row-level locking is generally better, the choice of locking granularity is
complicated. For example, a transaction that examines several rows and mod­
ifies those tha1 satisfy some condition might be best served by setting shared
locks on the entire table and setting exclusive locks on those rows it wants to
lllodify. vVe diseuss this issue further in Section 17.5.3.

A second point to note is that SQL statements conceptually access a collection
of rows described by a .selection predicate. In the prf~cedingexample, transaction
T1 accesses all rows with mting=8. vVe suggested that this could be dealt with
by setting shared locks on all rows in Sailors that had rating=8. Unfortunately,
this is a little too silnplistic. To sec why, consider an SQL statelnent that inserts
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a new sailor with mting=8 and runs as transaction T3. (Observe that this
example violates our assumption of a fixed number of objects in the database,
but we must obviously deal with such situations in practice.)

Suppose that the DBJ\iIS sets shared locks on every existing Sailors row with
mting=8 for Tl. This does not prevent transaction T3 from creating a brand
new row with mting=8 and setting an exclusive lock on this row. If this new row
has a smaller age value than existing rows, Tl returns an answer that depends
on when it executed relative to T2. However, our locking scheme imposes no
relative order on these two transactions.

This phenomenon is called the phantom problem: A transaction retrieves
a collection of objects (in SQL terms, a collection of tuples) twice and sees
different results, even though it does not modify any of these tuples itself. To
prevent phantoms, the DBMS must conceptually lock all possible rows with
mting=8 on behalf of Tl. One way to do this is to lock the entire table, at
the cost of low concurrency. It is possible to take advantage of indexes to do
better, as we will see in Section 17.5.1, but in general preventing phantoms can
have a significant impact on concurrency.

It may well be that the application invoking T1 can accept the potential inac­
curacy due to phantoms. If so, the approach of setting shared locks on existing
tuples for Tl is adequate, and offers better performance. SQL allows a pro­
grammer to make this choice---and other similar choices'--explicitly, as we see
next.

16.6.3 Transaction Characteristics in SQL

In order to give programmers control over the locking overhead incurred by
their transactions, SQL allows them to specify three characteristics of a trans­
action: access mode, diagnostics size, and isolation level. The diagnostics
size determines the number of error conditions that can be recorded; we will
not discuss this feature further.

If the access mode is READ ONLY, the transaction is not allowed to modify
the databclse. Thus, INSERT, DELETE, UPDATE, and CREATE comlnands cannot
be executed. If we have to execute one of these commands, the access mode
should be set to READ WRITE. 1<or transactions with READ ONLY access mode.
only shared locks need to be obtained, thereby increasing concurrency.

The isolation level controls the extent to which a given transaction is ex­
posed to the actions of other transactions executing concurrently. By choosing
one of four possible isolation level settings, a user can obtain greater concur-
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rencyat the cost of increasing the transaction's exposure to other transactions'
uncommitted changes.

Isolation level choices are READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ, and SERIALIZABLE. The effect of these levels is summarized in Figure
16.10. In this context, dirty read and unrepeatable read are defined as usuaL

Level
READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

Dirty Read
Maybe
No
No
No

Unrepeatable Read
Maybe
Maybe
No
No

Maybe
Maybe
Maybe
No

Figure 16.10 Transaction Isolation Levels in SQL-92

The highest degree of isolation from the effects of other transactions is achieved
by setting the isolation level for a transaction T to SERIALIZABLE. This isolation
level ensures that T reads only the changes made by committed transactions,
that no value read or written by T is changed by any other transaction until T
is complete, and that if T reads a set of values based on some search condition,
this set is not changed by other transactions until T is complete (i.e., T avoids
the phantom phenomenon).

In terms of a lock-based implementation, a SERIALIZABLE transaction obtains
locks before reading or writing objects, including locks on sets of objects that
it requires to be unchanged (see Section 17.5.1) and holds them until the end,
according to Strict 2PL.

REPEATABLE READ ensures that T reads only the changes made by commit­
ted transactions and no value read or written by T is changed by any other
transaction until T is complete. However, T could experience the phantom
phenomenon; for example, while T examines all Sailors records with rating= 1,
another transaction might add a new such Sailors record, which is missed by
T.

A REPEATABLE READ transaction sets the same locks a'S a SERIALIZABLE trans­
action, except that it does not do index locking; that is, it locks only individual
objects, not sets of objects. vVe discuss index locking in detail in Section 17.5.1.

READ COMMITTED ensures that T reads only the changes made by committed
transactions, and that no value written by T is changed by any other transaction
until T is complete. However, a value read by T may well be modified by
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another transaction while T is still in progress, and T is exposed to the phantom
problem.

A READ COMMITTED transaction obtains exclusive locks before writing objects
and holds these locks until the end. It also obtains shared locks before read­
ing objects, but these locks are released immediately; their only effect is to
guarantee that the transaction that last modified the object is complete. (This
guarantee relies on the fact that every SQL transaction obtains exclusive locks
before writing objects and holds exclusive locks until the end.)

A READ UNCOMMITTED transaction T can read changes made to an object by an
ongoing transaction; obviously, the object can be changed further while T is in
progress, and T is also vulnerable to the phantom problem.

A READ UNCOMMITTED transaction does not obtain shared locks before reading
objects. This mode represents the greatest exposure to uncommitted changes
of other transactions; so much so that SQL prohibits such a transaction from
making any changes itself-a READ UNCOMMITTED transaction is required to have
an access mode of READ ONLY. Since such a transaction obtains no locks for
reading objects and it is not allowed to write objects (and therefore never
requests exclusive locks), it never makes any lock requests.

The SERIALIZABLE isolation level is generally the safest and is recommended for
most transactions. Some transactions, however, can run with a lower isolation
level, and the smaller number of locks requested can contribute to improved sys­
tem performance. For example, a statistical query that finds the average sailor
age can be run at the READ COMMITTED level or even the READ UNCOMMITTED
level, because a few incorrect or missing values do not significantly affect the
result if the number of sailors is large.

The isolation level and access mode can be set using the SET TRANSACTION com~

mand. For example, the following command declares the current transaction
to be SERIALIZABLE and READ ONLY:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE READ ONLY

When a transaction is started, the default is SERIALIZABLE and READ WRITE.

16.7 INTRODUCTION TO CRASH RECOVERY

The recovery manager of a DBMS is responsible for ensuring transaction
atomicity and durability. It ensures atomicity by undoing the actions of trans­
actions that do not commit, and durability by making sure that all actions of
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committed transactions survive systenl crashes, (e.g., a core dump caused by
a bus error) and media failures (e.g., a disk is corrupted).

\\Then a DB]\,IS is restarted after crashes. the recovery manager is given control
and must bring the databa.'le to a consistent state. The recovery manager is
also responsible for undoing the actions of an aborted transaction. To see what
it takes to implement a recovery manager, it is necessary to understand what
happens during normal execution.

The transaction manager of a DBMS controls the execution of transactions.
Before reading and writing objects during normal execution, locks must be ac­
quired (and released at some later time) according to a chosen locking protocol. 5

For simplicity of exposition, we make the following assumption:

Atomic Writes: Writing a page to disk is an atomic action.

This implies that the system does not crash while a write is in progress and is
unrealistic. In practice, disk writes do not have this property, and steps must
be taken during restart after a crash (Section 18.6) to verify that the most
recent write to a given page was completed successfully, and to deal with the
consequences if not.

16.7.1 Stealing Frames and Forcing Pages

\Vith respect to writing objects, two additional questions arise:

1. Can the changes made to an object 0 in the buffer pool by a transaction T
be written to disk before T commits? Such writes are executed when an­
other transaction wants to bring in a page and the buffer manager chooses
to replace the frame containing 0; of course, this page must have been
unpinned by T. If such writes are allowed, we say that a steal approach
is used. (Informally, the second transaction 'steals' a frame from T.)

2. \\"hen a transaction cOl1units, must we ensure that all the changes it has
made to objects in the buffer pool are immediately forced to disk? If so.
we say that a force approach is used.

From the standpoint of implementing a recovery manager, it is simplest to use
a buffer manager with a no-steaL force approach. If a no-steal approach is used,
we do not have to undo the changes of an aborted transaction (because these
dumges have not been written to disk) l and if a force approach is used, we do

S A concurrency control technique that does not involve locking could be used instead, but we
a.ssul1lc t hat locking is llsed.
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not have to redo the changes of a committed transaction if there is a subsequent
crash (because all these changes are guaranteed to have been written to disk
at commit time).

However, these policies have important drawbacks. The no-steal approach as­
sumes that all pages modified by ongoing transactions can be accommodated
in the buffer pool, and in the presence of large transactions (typically run in
batch mode, e.g., payroll processing), this assumption is unrealistic. The force
approach results in excessive page I/O costs. If a highly used page is updated
in succession by 20 transactions, it would be written to disk 20 times. With a
no-force approach, on the other hand, the in-memory copy of the page would
be successively modified and written to disk just once, reflecting the effects
of all 20 updates, when the page is eventually replaced in the buffer pool (in
accordance with the buffer manager's page replacement policy).

For these reasons, most systems use a steal, no-force approach. Thus, if a
frame is dirty and chosen for replacement, the page it contains is written to
disk even if the modifying transaction is still active (steal); in addition, pages in
the buffer pool that are modified by a transaction are not forced to disk when
the transaction commits (no-force).

16.7.2 Recovery-Related Steps during Normal Execution

The recovery manager of a DBMS maintains some information during normal
execution of transactions to enable it to perform its task in the event of a
failure. In particular, a log of all modifications to the database is saved on
stable storage, which is guaranteed6 to survive crashes and media failures.
Stable storage is implemented by maintaining multiple copies of information
(perhaps in different locations) on nonvolatile storage devices such as disks or
tapes.

As discussed earlier in Section 16.7, it is important to ensure that the log
entries describing a change to the database are written to stable storage before
the change is made; otherwise, the system might crash just after the change,
leaving us without a record of the change. (Recall that this is the Write-Ahead
Log, or WAL, property.)

The log enables the recovery manager to undo the actions of aborted and
incomplete transactions and redo the actions of committed transactions. For
example, a transaction that committed before the crash may have made updates

(jNothing in life is really guaranteed except death and taxes. However, we can reduce the chance
of log failure to be vanishingly small by taking steps such as duplexing the log and storing the copies
in different secure locations.
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Tuning the Recovery Subsystem: DBMS performance can be greatly
affected by the overhead imposed by the recoverysubsystem. A DBA can
take several steps to tune this subsystem1 such at> correctly sizing the log
and how it is managed on disk l controlling the rate at which buffer pages
are forced to disk, choosing a good frequency for checkpointing, and so
forth.

to a copy (of a database object) in the buffer pool, and this change may not have
been written to disk before the crash, because of a no-force approach. Such
changes must be identified using the log and written to disk. Further, changes
of transactions that did not commit prior to the crash might have been written
to disk because of a steal approach. Such changes must be identified using the
log and then undone.

The amount of work involved during recovery is proportional to the changes
made by committed transactions that have not been written to disk at the time
of the crash. To reduce the time to recover from a crash, the DBMS period­
ically forces buffer pages to disk during normal execution using a background
process (while making sure that any log entries that describe changes these
pages are written to disk first, i.e., following the WAL protocol). A process
called checkpointing, which saves information about active transactions and
dirty buffer pool pages, also helps reduce the time taken to recover from a
crash. Checkpoints are discussed in Section 18.5.

16.7.3 Overview of ARIES

ARIES is a recovery algorithm that is designed to work with a steal, no-force
approach. When the recovery manager is invoked after a crash, restart proceeds
in three pha.'Ses. In the Analysis phase, it identifies dirty pages in the buffer
pool (i.e., changes that have not been written to disk) and active transactions
at the time of the cra.'Sh. In the Redo pha.'Se, it repeats all actions, starting
from an appropriate point in the log, and restores the databa.'Se state to what it
wa.'S at the time of the crash. Finally, in the Undo phase, it undoes the actions
of transactions that did not commit, so that the database reflects only the
actions of committed transactions. The ARIES algorithm is discussed further
in Chapter 18.,

16.7.4 Atomicity: Implementing Rollback

It is important to recognize that the recovery subsystem is also responsible for
executing the ROLLBACK command, which aborts a single transaction. Indeed,
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the logic (and code) involved in undoing a single transaction is identical to that
used during the Undo phase in recovering from a system crash. All log records
for a given transctction are organized in a linked list and can be efficiently
accessed in reverse order to facilitate transaction rollback.

16.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

III What are the ACID properties? Define atomicity, consistency, isolation,
and durability and illustrate them through examples, (Section 16.1)

III Define the terms transaction, schedule, complete schedule, and seTial sched­
ule. (Section 16.2)

III Why does a DBMS interleave concurrent transactions? (Section 16.3)

III When do two actions on the same data object conflict? Define the anoma­
lies that can be caused by conflicting actions (dirty reads, unrepeatable
reads, lost updates). (Section 16.3)

III What is a serializable schedule? What is a Tecoverable schedule? What
is a schedule that avoids cascading abor'ts? What is a strict schedule?
(Section 16.3)

III What is a locking pmtocol:? Describe the Strict Two-Phase Locking (StTict
2PL) protocol. What can you say about the schedules allowed by this
protocol? (Section 16.4)

III What overheads are associated with lock-based concurrency control? Dis­
cuss blocking and abo7,ting overheads specifically and explain which is more
important in practiee. (Section 16.5)

III What is thrashing? What should a DBA do if the system thrashes? (Sec­
tion 16.5)

III How can throughput be increased? (Section 16.5)

III How are transactions created and terminated in SQL? What are save­
points? What are chained transactions? Explain why savepoints and
chained tninsactions are useful. (Section 16.6)

III What are the considerations in determining the locking granularity when
executing SQL statements? \Nhat is the phantom problem? \\That irnpact
does it have on performance? (Section 16.6.2)
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• vVhat transaction characteristics can a programmer control in SQL? Dis­
cuss the different access modes and isolat'ion levels in particular. vVhat
issues should be considered in selecting an access mode and an isolation
level for a transaction? (Section 16.6.3)

• Describe how different isolation levels are implemented in terms of the locks
that are set. 'What can you say about the corresponding locking overheads?
(Section 16.6.3)

• vVhat functionality does the recovery manager of a DBMS provide? What
does the transaction manager do? (Section 16.7)

• Describe the steal and force policies in the context of a buffer manager.
What policies are used in practice and how does this affect recovery? (Sec­
tion 16.7.1)

• What recovery-related steps are taken during normal execution? What
can a DBA control to reduce the time to recover from a crash? (Sec­
tion 16.7.2)

• How is the log used in transaction rollback and crash recovery? (Sec­
tions 16.7.2, 16.7.3, and 16.7.4)

EXERCISES

Exercise 16.1 Give brief answers to the following questions:

1. What is a transaction? In what ways is it different from an ordinary program (in a
language such as C)?

2. Define these terms: atomicity, consistency, isolation, durability, schedule, blind write,
dirty read, unrepeatable read, serializable schedule, recoverable schedule, avoidsvcascading­
aborts schedule.

3. Describe Strict 2PL.

4. What is the phantom problem? Can it occur in a database where the set of database
objects is fixed and only the values of objects can be changed?

Exercise 16.2 Consider the following actions taken by transaction 1'1 on database objects
X and Y:

R(X), W(X),R(Y), W(Y)

1. Give an example of another transaction 1'2 that, if run concurrently to transaction l'
without some form of concurrency control, could interfere with 1'1.

2. Explain how the use of Strict 2PL would prevent interference between the two transac­
tions.

:1. Strict 2PL is lIsed in many database systems. Give two reasons for its popularity.
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Exercise 16.3 Consider a database with objects X and Y and assume that there are two
transactions Tl and T2. Transaction T1 reads objects X and Y and then writes object X.
Transaction T2 reads objects X and Y and then writes objects X and Y.

1. Give an example schedule with actions of transactions T1 and T2 on objects X and Y
that results in a write-read conflict.

2. Give an example schedule with actions of transactions T1 and T2 on objects X and Y
that results in a read-write conflict.

3. Give an example schedule with actions of transactions T1 and T2 on objects X and Y
that results in a write-write conflict.

4. For each of the three schedules, show that Strict 2PL disallows the schedule.

Exercise 16.4 We call a transaction that only reads database object a read-only transac­
tion, otherwise the transaction is called a read-write transaction. Give brief answers to the
following questions:

1. What is lock thrashing and when does it occur?

2. What happens to the database system throughput if the number of read-write transac­
tions is increased?

3. What happens to the datbase system throughput if the number of read-only transactions
is increased?

4. Describe three ways of tuning your system to increase transaction throughput.

Exercise 16.5 Suppose that a DBMS recognizes increment, which increments an integer­
valued object by 1, and decrement as actions, in addition to reads and writes. A transaction
that increments an object need not know the value of the object; increment and decrement
are versions of blind writes. In addition to shared and exclusive locks, two special locks are
supported: An object must be locked in I mode before incrementing it and locked in D mode
before decrementing it. An I lock is compatible with another I or D lock on the same object,
but not with 5 and X locks.

1. Illustrate how the use of I and D locks can increase concurrency. (Show a schedule
allowed by Strict 2PL that only uses 5 and X locks. Explain how the use of I and D
locks can allow more actions to be interleaved, while continuing to follow Strict 2PL.)

2. Informally explain how Strict 2PL guarantees serializability even in the presence of I
and D locks. (Identify which pairs of actions conflict, in the sense that their relative
order can affect the result, and show that the use of 5, X, I, and D locks according
to Strict 2PL orders all conflicting pairs of actions to be the same as the order in some
serial schedule.)

Exercise 16.6 Answer the following questions: SQL supports four isolation-levels and t.wo
access-modes, for a total of eight combinations of isolation-level and access-mode. Each
combination impiicitly defines a class of transactions; the following questions refer to these
eight classes:

1. Consider the four SQL isolation levels. Describe which of the plHmomena can occur at
each of these isolation levels: dirty read, unrepeatable read, phantom problem.

2. For each of the four isolation levels, give examples of transactions that could be run
safely at that level.

:.3. Why does the access mode of a transaction matter?



Overview of Transaction Manage'm,ent

Exercise 16.7 Consider the university enrollment database schema:
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Student(snurn: integer, snarne: string, majoT: string, level: string, age: integer)
Class( name: string, meets_at: time, Toom: string, fid"' integer)
Enrolled(snum: integer, cname: string)
Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

For each of the following transactions, state the SQL isolation level you would use and explain
why you chose it.

1. Enroll a student identified by her snum into the class named 'Introduction to Database
Systems'.

2. Change enrollment for a student identified by her snum from one class to another class,

3. Assign a new faculty member identified by his fid to the class with the least number of
students.

4. For each class, show the number of students enrolled in the class.

Exercise 16.8 Consider the following schema:

Suppliers(sid: integer, sname: string, addTess: string)
Parts(pid: integer, pname: string, coloT: string)
Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

For each of the following transactions, state the SQL isolation level that you would use and
explain why you chose it.

1. A transaction that adds a new part to a supplier's catalog.

2. A transaction that increases the price that a supplier charges for a part.

3. A transaction that determines the total number of items for a given supplier.

4. A transaction that shows, for each part, the supplier that supplies the part at the lowest
price.

Exercise 16.9 Consider a database with the following schema:

Suppliers(sid: integer, sname: string, addTess: string)
Parts(pid: integer, pname: string, coloT: string)
Catalog( sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

Consider three transactions 1'1,1'2, and 1'3; 1'1 always h8.o.'3 SQL isolation level SERIALIZABLE.

We first run 1'1 concurrently with 1'2 and then we run 1'1 concurrently with 1'2 but we change
the isolation level of 1'2 as specified below. Give a database instance and SQL statements for
1'1 and 1'2 such that result of running 1'2 with the first SQL isolation level is different from
running 1'2 with the second SQL isolation level. Also specify the common schedule of 1'1 and
1'2 and explain why the results are different.
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1. SERIALIZABLE versus REPEATABLE READ.

2. REPEATABLE READ versus READ COHMITTED.

3. READ COMHITTED versus READ UNCOMHITTED.
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CONCURRENCY CONTROL

.. How does Strict 2PL ensure serializability and recoverability?

.. How are locks implemented in a DBMS?

.. What are lock conversions and why are they important?

.. How does a DBMS resolve deadlocks?

.. How do current systerns deal with the phantom problerrl?

.. Why are specialized locking techniques used on tree indexes?

.. How does multiple-granularity locking work?

.. What is Optimistic concurrency control?

.. What is Timestarrlp-Ba..')ed concurrency control?

.. What is Multiversion concurrency control?

.. Key concepts: Two-phase locking (2PL), serializability, recoverabil­
ity, precedence graph, strict schedule, view equivalence, view seri­
alizable, lock nlanager, lock table, transaction table, latch, convoy,
lock upgrade, deadlock, waits-for graph, conservative 2PL, index lock­
ing, predicate locking, multiple-granularity locking, lock escalation,
SQL isolation level, phantom problerrl, optirnistic concurrency con­
trol, Thornas Write Rule, recoverability

Pooh was sitting in his house one day, counting his pots of honey,
when there carne a knock on the door.
"!'''ourteen,'' said Pooh. "Corne in. Fourteen. Or 'wa.c:; it fifteen? Bother.
T'hat's rnuddled rnc."

549
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'~Hallo, Pooh/' said Rabbit. "Halla, R,abbit. Fourteen, wasn't it?"
"What was?" "lVly pots of honey what I was counting."
"Fourteen, that's right."
"Are you sure?"
"No," said Rabbit. "Does it matter?"

"--",,---A.A. Milne, The House at Pooh Comer

In this chapter, we look at concurrency control in more detail. We begin by
looking at locking protocols and how they guarantee various irnportant proper­
ties of schedules in Section 17.1. Section 17.2 is an introduction to how locking
protocols are implemented in a DBMS. Section 17.3 discusses the issue of lock
conversions, and Section 17.4 covers deadlock handling. Section 17.5 discusses
three specialized locking protocols---for locking sets of objects identified by some
predicate, for locking nodes in tree-structured indexes, and for locking collec­
tions of related objects. Section 17.6 examines some alternatives to the locking
approach.

17.1 2PL, SERIALIZABILITY, AND RECOVERABILITY

In this section, we consider how locking protocols guarantee some important
properties of schedules; namely, serializability and recoverability. Two sched­
ules are said to be conflict equivalent if they involve the (sarne set of) actions
of the same transactions and they order every pair of conflicting actions of two
committed transactions in the sanle way.

As we saw in Section 16.3.3, two actions conflict if they operate on the same
data object and at least one of them is a write. The outcome of a schedule
depends only on the order of conflicting operations; we can interchange any
pair of nonconflicting operations without altering the effect of the schedule on
the database. If two schedules are conflict equivalent, it is easy to see that
they have the same effect on a database. Indeed, because they order all pairs
of conflicting operations in the same way, we can obtain one of thern frorn
the other by repeatedly swapping pairs of nonconflicting actions, that is, by
swapping pairs of actions whose relative order does not alter the outcome.

A schedule is conflict serializable if it is conflict equivalent to some serial
schedule. Every conflict serializable schedule is serializable, if we assurne that
the set of items in the databa"se does not grow or shrink; that is, values can
be nlodified but items are not added or deleted. We lllake this assurnption for
now and consider its consequences in Section 17.5.1. However, sonle serializ­
able schedules are not conflict serializable, as illustrated in Figure 17.1. This
schedule is equivalent to executing the transactions serially in the order TI, ~r2,
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T1 T2 T3
R(A)

W(A)
COllirnit

VV(A)
COllirnit

W(A)
Commit

Figure 1.7.1 Serializable Schedule That Is Not Conflict Serializable

T3, but it is not conflict equivalent to this serial schedule because the writes of
T1 and T2 are ordered differently.

I t is useful to capture all potential conflicts between the transactions in a sched­
ule in a precedence graph, also called a serializability graph. The prece­
dence graph for a schedule S contains:

• A node for each comnlitted transaction in S.

• An arc franl Ti to Tj if an action of Ti precedes and conflicts with one of
Tj's actions.

The precedence graphs for the schedules shown in Figures 16.7, 16.8, and 17.1
are shown in Figure 17.2 (parts a, b, and c, respectively).

(a) (b)

Figure 17.2 Examples of Precedence Graphs

'I'he Strict 2PL protocol (introduced in Section 16.4) allows only conflict seri­
alizable schedules, as is seen frcHu the following two results:
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1. A schedule S' is conflict serializable if and only if its precedence graph is
acyclic. (An equivalent serial schedule in this C'k'3e is given by any topolog­
ical sort over fhe precedence graph.)

2. Strict 2PL ensures t.hat the precedence graph for any schedule that it a11o\vs
is acyclic.

A widely studied variant of Strict 2PL, called Two-Phase Locking (2PL),
relaxes the second rule of Strict 2PL to allow transactions to release locks before
the end, that is, before the comnlit or abort action. For 2PL, the second rule
is replaced by the following rule:

(2PL) (2) A transaction cannot request additional locks once it re­
leases any lock.

Thus, every transaction h3.-" a 'growing' phase in which it acquires locks, fol­
lowed by a 'shrinking' phase in which it releases locks.

It can be shown that even nonstrict 2PL ensures acyclicity of the precedence
graph and therefore allows only conflict serializable schedules. Intuitively, an
equivalent serial order of transactions is given by the order in which transactions
enter their shrinking phase: If T2 reads or writes an object written by Tl, Tl
IllUSt have released its lock on the object before 7 12 requested a lock on this
object. ~rhus, Tl precedes T2. (A sirnilar argulnent shows that Tl precedes
T2 if 7'2 writes an object previously read by Tl. A forIllal proof of the claim
would have to show that there is no cycle of transactions that 'precede' each
other by this argurnent.)

A schedule is said to be strict if a value written by a transaction T is not
read or overwritten by other transactions until T either aborts or eOlnrnits.
Strict schedules are recoverable, do not require cascading aborts, and actions of
aborted transactions can be undone by restoring the original values of lnodified
objects. (See the last exaInple in Section 16.::~.4.) Strict 2PL irnproves on
2PL by guaranteeing that every allowed schedule is strict in addition to being
conflict serializable. The reason is that when a transaction 'T writes an object
under Strict 2PL, it holds the (exclusive) lock until it conunits or aborts. Thus,
no other transaction can see or rnodify this object until T is cornplete.

]'he reader is invited to revisit the exarnples in Section 16.:~.3 to see how the
corresponding schedules are disallowed by Strict 2PL and 2PL. Sirnilarly, it
would be instructive to \vork out how the schedules for the exarnples in Section
16.~3.4 are disallc)\ved by Strict 2PL but not by 2PL.



17.1.1 View Serializability

Conflict serializability is sufficient but not necessary for serializability. A 1n01'e
general sufficient condition is vievv serializability. Two schedules 81 and 82 over
the saIne set of transactions"------any transaction that appears in either 81 or 82
rnust also appear in the other-----------are view equivalent under these conditions:

1. If fTi reads the initial value of object A in 81, it Blust also read the initial
value of A in 82.

2. If Ti reads a value of A written by Tj in 81, it IIlUst also read the value of
A written by Tj in 82.

3. For each data object A, the transaction (if any) that perforlns the final
write on A in 81 must also perform the final write on A in 82.

A schedule is view serializable if it is view equivalent to SaIne serial schedule.
Every conflict serializable schedule is view serializable, although the converse
is not true. ~or example, the schedule shown in Figure 17.1 is view serializable,
although it is not conflict serializable. Incidentally, note that this exalnple
contains blind writes. This is not a coincidence; it can be shown that any view
serializable schedule that is not conflict serializable contains a blind write.

As we saw in Section 17.1, efficient locking protocols allow us to ensure that
only conflict serializable schedules are allowed. Enforcing or testing vie\v seri­
alizability turns out to be lIluch lnore expensive, and the concept therefore has
little practical use, although it increases our understanding of serializability.

17.2 INTRODUCTION TO LOCK MANAGEMENT

The part of the I)Bl\1S that keeps track of the locks issued to transactions is
called the lock manager. The lock lnanager rnaintains a lock table, which
is a ha"sh table with the data object identifier (4S the key. The DBNIS also
Inaintains a descriptive entry for each transaction in a transaction table,
and alIlong other things, the entry contains a pointer to a list of locks held b:y
the transaction. This list is checked before requesting a lock, to ensure that a
transaction does not request the saIne lock twice.

A lock table entry for an object-u--which can be a page, a record, and so
on, depending on the DBMS---contains the following inforrnation: the nurnber
of transactions currently holding a. lock on the object (this can be rnore than
one if the object is locked in shared rnode), the nature of the lock (shared or
exclusive), and a pointer to (1, queue of lock requests.
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17.2.1 Implementing Lock and Unlock Requests

According to the Strict 2PL protocol, before a transaction T reads or writes a
database object 0, it must obtain a shared or exclusive lock on 0 and Inust
hold on to the lock until it commits or aborts. When a transaction needs a
lock on an object, it issues a lock request to the lock manager:

1. If a shared lock is requested, the queue of requests is ernpty, and the object
is not currently locked in exclusive mode, the lock manager grants the lock
and updates the lock table entry for the object (indicating that the object
is locked in shared mode, and incrernenting the number of transactions
holding a lock by one).

2. If an exclusive lock is requested and no transaction currently holds a lock
on the object (which also implies the queue of requests is empty), the lock
rnanager grants the lock and updates the lock table entry.

3. Otherwise, the requested lock cannot be immediately granted, and the
lock request is added to the queue of lock requests for this object. The
transaction requesting the lock is suspended.

When a transaction aborts or comrnits, it releases all its locks. When a lock
on an object is released, the lock manager updates the lock table entry for the
object and exarnines the lock request at the head of the queue for this object.
If this request can now be granted, the transaction that made the request is
woken up and given the lock. Indeed, if several requests for a shared lock on the
object are at the front of the queue, all of these requests can now be granted
together.

Note that if TI has a shared lock on 0 and 1'2 requests an exclusive lock,
T2's request is queued. Now, if T3 requests a shared lock, its request enters
the queue behind that of T2, even though the requested lock is cornpatible
with the lock held by TI. This rule ensures that T2 does not starve, that is,
wait indefinitely while a stream of other transactions acquire shared locks and
thereby prevent T2 frorn getting the exclusive lock for which it is waiting.

Atomicity of Locking and Unlocking

The irnplernentation of lock and l1nlock cornrnands rnust ensure that these are
atomic operations. To ensure atornicity of these operations when several in­
stances of the lock rnanager code can exccute concurrently, access to the lock
table has to be guarded by an operating systern synchronization rnechanisrn
such a..s a sernaphore.



Co'nc'UT'rency (}onlToI 5~5

To understand why, suppose that a transaction requests an exclusive lock.
The lock manager checks and finds that no other transaction holds a lock on
the object and therefore decides to grant the request. But, in the 11leantirne,
another transaction rnight have requested and received a conflicting lock. To
prevent this, the entire sequence of actions .in a lock request call (checking
to see if the request can be granted, updating the lock table, etc.) must be
irnplernented as an atornic operation.

Other Issues: Latches, Convoys

In addition to locks, which are held over a long duration, a DBMS also supports
short-duration latches. Setting a latch before reading or writing a page ensures
that the physical read or write operation is atomic; otherwise, two read/write
operations rnight conflict if the objects being locked do not correspond to disk
pages (the units of I/O). Latches are unset immediately after the physical read
or write operation is cOlnpleted.

We concentrated thus far on how the DBMS schedules transactions based on
their requests for locks. This interleaving interacts with the operating system's
scheduling of processes' access to the CPU and can lead to a situation called
a convoy, where most of the CPU cycles are spent on process switching. The
problem is that a transaction T holding a heavily used lock may be suspended
by the operating system. UntH T is resurned, every other transaction that
needs this lock is queued. Such queues, called convoys, can quickly become
very long; a convoy, once forrned, tends to be stable. Convoys are one of the
drawbacks of building a DB~lS on top of a general-purpose operating system
with preeruptive scheduling.

17.3 LOCK CONVERSIONS

A transaction rnay need to acquire an exclusive lock on an object for which it
already holds a shared lock. For exarnple, a SQL update statenlent could result
in shared locks being set on each row in a table. If a row satisfies the condition
(in the WHERE clause) for being updated, an exclusive lock must be obtained
for that row.

Such a lock upgrade request lnust be handled specially by granting the exclu­
sive lock illunediately if no other transaction holds a shared lock on the object
and inserting the request at the front of the queue other\vise. The rationale
for favoring the transaction thus is that it already 1101ds a shared lock on the
object and queuing it behind. another tretnsaction that wants an exclusive lock
on thf~ SeHne object causes both a deadlock. UnfortunatelY,while favoring lock
upgrades helps, it does not prevent deadlocks caused by two conflicting upgrade
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requests. For exalnplc, if two transactions that hold a shared lock on an object
both request an upgrade to an exclusive lock, this leads to a deadlock.

A better approach is to avoid the need for lock upgrades altogether by obtaining
exclusive locks initially, and downgrading to a shared lock once it is clear that
this is sufficient. In our exalnple of an SQL update statelnent, rows in a table
are locked in exclusive rnode first. If a row does not satisfy the condition for
being updated, the lock on the row is dnwngraded to a shared lock. Does the
dovvngrade approach violate the 2PL requirernent? On the surface, it does,
because downgrading reduces the locking privileges held by a transaction, and
the transaction Illay go on to acquire other locks. However, this is a special case,
because the transaction did nothing but read the object that it downgraded,
even though it conservatively obtained an exclusive lock. We can safely expand
our definition of 2PL from Section 17.1 to allow lock downgrades in the growing
phase, provided that the transaction has not lnodified the object.

The downgrade approach reduces concurrency by obtaining write locks in some
cases where they are not required. On the whole, however, it irnproves through­
put by reducing deadlocks. This approach is therefore widely used in current
commercial systems. Concurrency can be increased by introducing a new kind
of lock, called an update lock, that is cornpatible with shared locks but not
other update and exclusive locks. By setting an update lock initially, rather
than exclusive locks, we prevent conflicts with other read operations. Once we
are sure we need not update the object, we can downgrade to a shared lock. If
we need to update the object, we rnust first upgrade to an exclusive lock. This
upgrade does not lead to a deadlock because no other transaction can have an
upgrade or exclusive lock on the object.

17.4 DEALING WITH DEADLOCKS

Deadlocks tend to be rare and typically involve very few transactions. In prac­
tice, therefore, databa.'3c systerns periodically check for deadlocks. 'Vhen a
transaction Ti is suspended because a lock that it requests cannot be granted,
it rnust wa,it until all transactions Tj that currently hold conflicting locks re­
lea,'3e thcrn. The lock rnanager rnaintains a structure called a waits-for graph
to detect deadlock cycles. The nodes corr(~spond to active transactions, and
there is an arc frolnTi to 'Tj if (and only if)Ti is \vaiting for 1) to release a
lode The lock rnanagcr adds edges to this graph when it queues lock requests
and rernoves edges \vhcn it gra,nts lock requests.

Consider the schedule shown in F'igure 17.:3, The last step, sho\vn belovv the
line, creates a cycle in the \vaits-for graph. Figure 17.4 shovvs the ·waits-for
graph before and after this step.
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Figure 17.3 Schedule Illustrating Deadlock
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Figure 17.4 \\!aits-for Graph Before and After Deadlock
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Observe that the \vaits-for graph describes all active transactions, some of which
eventually abort. If there is an edge froIn Ti to T'j in the 'N~aits-for graph, and
both Ti and Tj eventually commit, there is an edge in the opposite direc­
tion (froIn l'j to Ti) in the precedence graph (which involves only cOlluuitted
transactions) .

The waits-for graph is periodically checked for cycles, which indicate deadlock.
A deadlock is resolved by aborting a transaction that is on a cycle and releasing
its locks; this action allows SOlne of the waiting transactions to proceed. The
choice of which transaction to abort can be made using several criteria: the
one with the fewest locks, the one that has done the least work, the one that is
farthest from completion, and so all. FUrther, a transaction might have been
repeatedly restarted; if so, it should eventually be favored during deadlock
detection and allowed to complete.

A silnple alternative to maintaining a waits-for graph is to identify deadlocks
through a timeout mechanism: If a transaction has been waiting too long for
a lock, we assume (pessiruistically) that it is in a deadlock cycle and abort it.

17.4.1 Deadlock Prevention

Elnpirical results indicate that deadlocks are relatively infrequent, and detection­
based schemes work well in practice. However, if there is a high level of con­
tention for locks and therefore an increased likelihood of deadlocks, prevention­
based schelnes could perform better. We can prevent deadlocks by giving each
transaction a priority and ensuring that lower-priority transactions are not
allowed to wait for higher-priority transactions (or vice versa). One way to
assign priorities is to give each transaction a timestamp when it starts up.
The lower the timestamp, the higher is the transaction's priority; that is, the
oldest transaction has the highest priority.

If a transaction Ti requests a lock and transaction Tj holds a conflicting lock,
the lock lnanager can use one of the following two policies:

II Wait-die: If Ti has higher priority, it is allowed to wait; otherwise, it is
aborted.

II Wound-wait: If Ti has higher priority, abort 7); otherwise, l"1i waits.

In the \vait-die scherne, lower-priority transactions can never wait for higher­
priority transactions. In the wound-wait scherne, higher-priority transactions
never wait for lower-priority transactions. In either ease, no deadlock cyc.le
develops.
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A subtle point is that we nlust also ensure that no transaction is perennially
aborted because it never has a sufficiently high priority. (Note that, in both
schernes, the higher-priority transaction is never aborted.) When a transac­
tion is aborted and restarted, it should be given the same timestamp it had
originally. Reissuing timestarnps in this way ensures that each transaction
will eventually becorne the oldest transaction, and therefore the one with the
highest priority, and will get all the locks it requires.

The wait-die scheme is nonpreemptive; only a transaction requesting a lock can
be aborted. As a transaction grows older (and its priority increases), it tends
to wait for more and rnore younger transactions. A younger transaction that
conflicts with an older transaction may be repeatedly aborted (a disadvantage
with respect to wound-wait), but on the other hand, a transaction that has
all the locks it needs is never aborted for deadlock reasons (an advantage with
respect to wound-wait, which is preemptive).

A variant of 2PL, called Conservative 2PL, can also prevent deadlocks. Un­
der Conservative 2PL, a transaction obtains all the locks it will ever need when
it begins, or blocks waiting for these locks to become available. This scheme
ensures that there will be no deadlocks, and, perhaps lllore important, that a
transaction that already holds some locks will not block waiting for other locks.
If lock contention is heavy, Conservative 2PL can reduce the time that locks
are held on average, because transactions that hold locks are never blocked.
The trade-off is that a transaction acquires locks earlier, and if lock contention
is low, locks are held longer under Conservative 2PL. From a practical per­
spective, it is hard to know exactly what locks are needed ahead of time, and
this approach leads to setting more locks than necessary. It also has higher
overhead for setting locks because a transaction has to release all locks and try
to obtain thern all over if it fails to obtain even one lock that it needs. This
approach is therefore not used in practice.

17.5 SPECIAI-JIZED LOCKING TECHNIQUES

Thus far we have treated a database as a fixed collection of independent data
objects in our presentation of locking protocols. We now relax each of these
restrictions and discuss the consequences.

If the collection of databa.se objects is not fixed, but can grow and shrink
through the insertion and deletion of objects, we must deal with a subtle cOlnpli­
cation known a'3 the phantom, problem, which was illustrated in Section 16.6.2.
We discuss this problern in Section 17.5.1.
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Although treating a database H",S an independent collection of objects is ade­
quate for a discussion of serializability and recoverability, luuch better perfc)l'­
rnance can sOlnetilnes be obtained using protocols that recognize and exploit
the relationships between objects. vVe discuss two such C<l"ses, nalnely, locking
in tree-structured indexes (Section 17.5.2) and locking a collection of objects
with contairnnent relationships between the1n (Section 17.5.3).

17.5.1 Dynamic Databases and the Phantom Problem

Consider the following exarnple: rrransaction Tl scans the Sailors relation to
find the oldest sailor for each of the rating levels 1 and 2. First, Tl identifies
and locks all pages (assurning that page-level locks are set) containing sailors
vvith rating 1 and then finds the age of the oldest sailor, which is, say, 71.
Next, transaction T2 inserts a new sailor with rating 1 and age 96. Observe
that this new Sailors record can be inserted onto a page that does not contain
other sailors with rating 1; thus, an exclusive lock on this page does not conflict
with any of the locks held by Tl. T2 also locks the page containing the oldest
sailor with rating 2 and deletes this sailor (whose age is, say, 80). T2 then
comrnits and releases its locks. Finally, transaction T1 identifies and locks
pages containing (all remaining) sailors with rating 2 and finds the age of the
oldest such sailor, which is, say, 63.

The result of the interleaved execution is that ages 71 and 63 are printed in
response to the query. If T1 had run first, then T2, we would have gotten the
ages 71 and 80; if T2 had run first, then T1, we would have gotten the ages
96 and 63. Thus, the result of the interleaved execution is not identical to any
serial exection of Tl and 1'2, even though both transactions follow Strict 2PL
and cOlnmit. The problem is that T1 assurnes that the pages it has locked
include all pages containing Sailors records with rating 1, and this assurnption
is violated when rT2 inserts a new such sailor on a different page.

'rhe Haw is not in the Strict 2PL protocol. R,ather, it is in T1 's irnplicit as­
surnption that it has locked the set of all Sailors n~cordswith rating value 1.
T1 's sernantics requires it to identify all such records, but locking pages that
contain such records at a given tirne does not prevent new "phantorn" records
frorn being added on other pages. ]"'1 has th~refore not locked the set of desired
Sailors records,

Strict 2PL guarantees conflict serializability; indeed, there are no cycles in the
precedence graph for this exarnple because conflicts are defined with respect
to objects (in this excunple, pages) read/written by the traJlsactions. However,
because the set of objects that shrndd have been locked by Tl was altered by
the actions ofT2, the olltcorne of the schedule differed frolll the outcorne of any
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serial execution. 1~his exalllple brings out an irnportant point about conflict
serializability: If new itenls are added to the databa'ie, conflict serializability
does not guarantee serializability.

.i\ closer look at how a transaction identifies pages containing Sailors records
vvith rating 1 suggests hovv the problenl can be handled:

• If there is no index and all pages in the file rnust be scanned, T1 IUUSt
someho\v ensurf~ that no new pages are added to the file, in addition to
locking all existing pages.

• If there is an index on the rating field, T1 can obtain a lock on the index
page~again, assurning that physical locking is done at the page level-that
contains a data entry with rating= 1. If there are no such data entries, that
is, no records with this rating value, the page that would contain a data
entry for rating=l is locked to prevent such a record from being inserted.
Any transaction that tries to insert a record with rating=-l into the Sailors
relation 11lUSt insert a data entry pointing to the new record into this index
page and is blocked until T1 releases its locks. This technique is called
index locking.

Both techniques effectively give T1 a lock on the set of Sailors records with rat­
ing=l: Each existing record with rating=l is protected frolll changes by other
transactions, and additionally, new records with rating=l cannot be inserted.

An independent issue is how transaction 7'1 can efficiently identify and lock
the index page containing rating=1. We discuss this issue for the case of tree­
structured indexes in Section 17.5.2.

\Ve note that index locking is a special ca..se of a luore general concept called
predicate locking. In our exalnple, the lock on the index page irnplieitly
locked all Sailors records that satisfy the logical predicate rating= 1. 1V101'e
generally, we cn]} support irnplicit locking of all records that rnatch an arbitra,ry
predicate. General predicate locking is expensive to irnplenlent and therefore
not cOllullonly used.

17.5.2 Concurrency Control in B+ Trees

A straightforward approach to concurrency control for B+ trees and ISA~iI

indexes is to ignore the index structure, treat each page as a data object, and
use senne version of 2PL. This siInplistic locking strategy vvould lead to very high
lock contention in the higher levels of the tree~ because every tree search begins
at the root and proceeds along sorne path to a leaf node. Fortunately, Innch
Inore efficient locking protocols that exploit the hierarchical structure of a tree
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index are known to reduce the locking overhead while ensuring seriaIizability
and recoverability.We discuss sorne of these approaches briefly, concentrating
on the search and insert operations.

Two observations provide the necessary insight:

1. The higher levels of the tree only direct searches. All the 'real' data is
in the leaf levels (in the forrnat of one of the three alternatives for data
entries).

2. For inserts, a node must be locked (in exclusive rnode, of course) only if a
split can propagate up to it frorn the modified leaf.

Searches should obtain shared locks on nodes, starting at the root and pro­
ceeding along a path to the desired leaf. The first observation suggests that a
lock on a node can be released as soon as a lock on a child node is obtained,
because searches never go back up the tree.

A conservative locking strategy for inserts would be to obtain exclusive locks on
all nodes as we go down from the root to the leaf node to be modified, because
splits can propagate all the way from a leaf to the root. However, once we lock
the child of a node, the lock on the node is required only in the event that a
split propagates back to it. In particular, if the child of this node (on the path
to the modified leaf) is not full when it is locked, any split that propagates up
to the child can be resolved at the child, and does not propagate further to the
current node. Therefore, when we lock a child node, we can release the lock on
the parent if the child is not full. The locks held thus by an insert force any
other transaction following the sarne path to wait at the earliest point (i.e., the
node nearest the root) that rnight be affected by the insert. The technique of
locking a child node and (if possible) releasing the lock on the parent is called
lock-coupling, or crabbing (think of how a crab walks, and cornpare it to
how we proceed down a tree, alternately releasing a lock on a parent and setting
a lock on a child).

We illustrate B-t- tree locking using the tree in Figure 17.5. To search for data
entry 38*, a transaction T'i rnust obtain an S lock on node A, read the contents
and deterrnine that it needs to examine node B, obtain an S lock on node B
and release the lock on A, then obtain an S lock on node C1 and relea.'3e the
lock on B, then obtain an S lock on nodeD and release the lock on ().

Ti always rnaintains a lock all one node in the path, to force new transactions
that want to read or nlodify nodes on the sarne path to wait until the current
transaction is done. If transaction 7) wants to delete 38*, for exarnple, it rnust
also traverse the path fro111 the root to node D and is forced to wait until 1 1i
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Figure 17.5 B+ 'Thee Locking Example

is done. Of course, if SOl11e transaction Tk holds a lock on, say, node C before
Ti reaches this node, Ti is similarly forced to wait for Tk to complete.

To insert data entry 45*, a transaction 111USt obtain an S lock on node A, obtain
an 8 lock on node B and release the lock on A, then obtain an S lock on node
C (observe that the lock on B is not released, because C is full), then obtain
an X lock on node E and release the locks on C and then B. Because node E
has space for the new entry, the insert is accomplished by modifying this node.

In contrast, consider the insertion of data entry 25*. Proceeding as for the
insert of 45*, we obtain an X lock on node H. Unfortunately, this node is full
and must be split. Splitting H requires that we also rnodify the parent, node F,
but the transaction ha..., only an S lock on F. Thus, it must request an upgrade
of this lock to an X lock. If no other tra,nsaction holds an S lock on F, the
upgrade is granted, and since F has space, the split does not propagate further
and the insertion of 25* can proceed (by splitting If and locking G to modify
the sibling pointer in I to point to the newly created node). However, if another
transaction holds an 8 lock on node F, the first transaction is suspended until
this transaction relea.ses its Slack.

Observe that if another transaction holds an 8 lock on }' and also wants to
access node H, we have a deadlock because the first transaction has an X lock
on If. The preceding exarnple also illustrates an interesting point about sibling
pointers: When \ve split leaf node If, the new node rn'Ust be added to the left
of Ii, since otherwise the node whose sibling pointer is to be changed would
be node 1, which ha"-,, a different parent. To rnodify a sibling pointer on I, we
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'would have to lock its parent, node C: (and possibly ancestors of C:, in order to
lock en.
Except for the locks on int(~rrnediatenodes that we indicated could be released
early, senne variant of 2PL HUlst be used to govern when locks can be released,
to ensure serializability and recoverability.

T'his approach irllproves considerably on the naive use of 2PL, but several ex­
clusive locks are still set unnecessarily and, although they are quickly released,
affect perfon.nance substantially. One way to iInprove perforlllance is for inserts
to obtain shared locks instead of exclusive locks, except for the leaf, which is
locked in exclusive 11lode. In the vast rnajority of cases, a split is not required
and this approach works very well. If the leaf is full, however, we Blust upgrade
from shared locks to exclusive locks for all nodes to which the split propagates.
Note that such lock upgrade requests can also lead to deadlocks.

The tree locking idea'3 that we describe illustrate the potential for efficient
locking protocols in this very important special case, but they are not the
current state of the art. The interested reader should pursue the leads in the
bibliography.

17.5.3 Multiple-Granularity Locking

Another specialized locking strategy, called multiple-granularity locking,
allows us to efficiently set locks on objects that contain other objects.

For instance, a database contains several files, a file is a collection of pages,
and a page is a collection of records. A transaction that expects to access rnost
of the pages in a file should probably set a lock on the entire file, rather than
locking individual pages (or reeords) when it needs thern. Doing so reduces
the locking overhead considerably. On the other hand, other tra,nsactions that
require access to parts of the file....·....·-even parts not needed by this transaction··-·..·­
are blocked. If a transaction accesses relatively few pages of the file, it is better
to lock only those pages. Sirnilarly, if a transaction accesses several records on
a page, it should lock the entire page, and if it accesses just a few records, it
should lock just those records.

The question to be addressed is h(nv a lock rnanager can efficiently ensure that
a page, for exaruple, is not locked by a transaction while another transaction
holds a conflicting lock on the file containing the page (a.nd therefore, irnplicitly,
on the page).
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The idea is to exploit the hierarchical nature of the 'contains~ relationship. A
dat.abase contains a set of files, each file contains a set of pages, and each page
contains a set of records. This contairunent hierarchy can be thought of as
a tree of objects, \vhere each node contains all its children. (The approach
can easily be extended to cover hierarchies that are not trees, but we do not
discuss this extension.) A lock on a node locks that node and, irnplicitly, all its
descendants. (Note that this interpretation of a lock is very different fron1 B+
tree locking, where locking a node does not lock any descendants ilnplicitly.)

In addition to shared (8) and exclusive (XO) locks, rnultiple-granularity locking
protocols also use two new kinds of locks, called intention shared (18) and
intention exclusive (IX) locks. 18 locks conflict only with X locks. IX
locks conflict with 8 and X locks. To lock a node in S (respectively, X) luode,
a transaction must first lock all its ancestors in 18 (respectively, 1X) rllode.
Thus, if a transaction locks a node in 8 rIlode, no other transaction can have
locked any ancestor in X rnode; siInilarly, if a transaction locks a node in X
mode, no other transaction can have locked any ancestor in 8 or X mode. This
ensures that no other transaction holds a lock on an ancestor that conflicts
with the requested 8 or X lock on the node.

A common situation is that a transaction needs to read an entire file and modify
a few of the records in it; that is, it needs an 8 lock on the file and an 1X lock
so that it can subsequently lock sorne of the contained objects in X mode. It
is useful to define a new kind of lock, called an 81X lock, that is logically
equivalent to holding an 8 lock and an I X lock. A transaction can obtain a
single 81X lock (which conflicts with any lock that conflicts with either S or
I X) instead of an 8 lock and an I X lock.

A subtle point is that locks rnust be relea..sed in leaf-to-root order for this proto­
col to work correctly. Tb see this, consider what happens when a transaction Ti
locks all nodes on a path frolH the root (corresponding to the entire database)
to the node corresponding to sorne page p in 18 rnode, locks p in 8 rHode, and
then relea..ses the lock on the root node. Another transaction T j could now
obtain an X lock on the root. This lock iInplicitly gives Tj an .£Y lock on page
p, which conflicts with the 8 lock currently held by Ti.

lIIultiple-granularity locking lllust be used with 2PL to ensure serializability.
The 2PL protocol dictates when locks can be rele(ksed. At that tirne, locks ob­
tained using rIlultiple-granularity locking can be released and IIlUSt be relcclsed
in leaf-to-root order.

Finally, there is the question of hO\\I to decide what granularity of locking is
appropriate for a given transaction. One approach is to begin by obtaining fine
granularity locks (e.g., at the record level) and, after the transaction requests



566 CHAPTER 107

-~",,_._ ..-_ _._.._.._.._ _--_.--_._._..-- _ _-~." _ _._-_ _........ .. _-_._-~.,,"

Lock Granularity: SOfie database systeIlls allow programmers to over­
ride the default mechanisllt for choosing a lock granularity. For exalnple,
Microsoft SQL Server allows users to select page locking instead of table
locking, using the keyword PAGLOCK. IBrvf'sDB2 UDB allows for explicit
table-level locking.

a certain nUlnber of locks at that granularity, to start obtaining locks at the
next higher granularity (e.g., at the page level). This procedure is called lock
escalation.

17.6 CONCURRENCY CONTROL WITHOUT LOCKING

Locking is the most widely used approach to concurrency control in a DBMS,
but it is not the only one. We now consider some alternative approaches.

17.6.1 Optimistic Concurrency Control

Locking protocols take a pessimistic approach to conflicts between transactions
and use either transaction abort or blocking to resolve conflicts. In a systenl
with relatively light contention for data objects, the overhead of obtaining locks
and following a locking protocol must nonetheless be paid.

In optimistic concurrency control, the basic premise is that most transactions
do not conflict with other transactions, and the idea is to be as permissive
as possible in allowing transactions to execute. Transactions proceed in three
phases:

1. Read: The transaction executes, reading values froIn the database and
writing to a private workspace.

2. Validation: If the transaction decides that it wants to c0l111uit, the DBIvIS
checks whether the transaction could possibly have conflicted with any
other concurrently executing transaction. If there is a possible conflict, the
transaction is aborted; its private workspace is cleared and it is restarted.

:3. Write: If validation deterrnines that there are no possible confliets, the
changes to data objects 111ade by the transaction in its private workspace
are copied into the databa.se.

If, indeed, there are few confiicts, and validation can be done efficiently, this
approach should lead to better' performance than locking. If there are rnany
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conflicts, the cost of repeatedly restarting transactions (thereby wasting the
,york they've done) hurts perfornlance significantly.

Each transaction Ti is assigned a thnestamp TS(T'i) at the beginning of its
validation pha.':ie, and the validation criterion checks whether the tiITlestalnp­
ordering of transactions is an equivalent serial order. For every pair of transac­
tions Ti and Tj such that TS(l"1i) < TS(Tj), one of the following validation
conditions ITIUSt hold:

1. Ti completes (all three phases) before Tj begins.

2. Ti completes before Tj starts its Write phase, and Ti does not write any
database object read by Tj.

3. Ti completes its Read phase before Tj completes its Read phase, and Ti
does not write any database object that is either read or written by T j.

To validate T j, we must check to see that one of these conditions holds with
respect to each comlnitted transaction Ti such that TS(Ti) < TS(Tj). Each
of these conditions ensures that Tj's modifications are not visible to Ti.

Further, the first condition allows Tj to see some of Ti's changes, but clearly,
they execute completely in serial order with respect to each other. The second
condition allows Tj to read objects while Ti is still modifying objects, but there
is no conflict because Tj does not read any object rnodified by T'i. Although
Tj might overwrite some objects written by Ti, all of Ti's writes precede all of
Tj's writes. The third condition allows Ti and Tj to write objects at the same
time and thus have even IT10re overlap in time than the second condition, but
the sets of objects written by the two transactions cannot overlap. Thus, no
RW, WR, or WW conflicts are possible if any of these three conditions is met.

Checking these validation criteria requires us to maintain lists of objects read
and written by each transaction. Further, while one transaction is being vali­
dated, no other transaction can be allowed to commit; otherwise, the validation
of the first transaction might miss conflicts with respect to the newly com­
mitted transaction. The Write phase of a validated transaction rnust also be
completed (so that its effects are visible outside its private workspace) before
other transactions can be validated.

A synchronization rnechanisrn such as a critical section can be used to ensure
that at most one transaction is in its (colllbined) Validation/Write phases at
any tirne. (When a process is executing a critical section in its code, the
systern suspends all other processes.) Obviously, it is irnportant to keep these
pha~es ~lS short H.S possible in order to rniniruize the irnpact on concurrency. If
copies of rnodified objects have to be copied frorn the private workspace, this
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can rnake the \Vrite phase long. An alternative approach (which carries the
penalty of poor physical locality of objects, such as B·+· tree leaf pages, that
rnust be clustered) is to use a level of indirection. In this schernc, every object
is accessed via a logical pointer, and in the \Vrite phase, we sirnply switch the
logical pointer to point to the version of the object in the private workspace,
instead of copying the 0 bject.

Clearly, it is not the ca.sc that optiInistic concurrency control has no overheads;
rather, the locking overheads of lock-based approaches are replaced with the
overheads of recording read-lists and write-lists for transactions, checking for
conflicts, and copying changes frorn the private workspace. Sirnilarly, the irn­
plicit cost of blocking in a lock-based approach is replaced by the implicit cost
of the work wasted by restarted transactions.

Improved Conflict Resolution1

Optirnistic Concurrency Control using the three validation conditions described
earlier is often overly conservative and unnecessarily aborts and restarts trans­
actions. In particular, according to the validation conditions, T'i cannot write
any object read by Tj. IIowever, since the validation is airned at ensuring that
Ti logically executes before Tj, there is no harm if Ti writes all data items
required by Tj before 7) reads theIn.

The problerIl arises because we have no way to tell when Ti wrote the object
(relative to Tj's reading it) at the tirne we validate Tj, since all we have is the
list of objects written by T'i and the list read by T j. Such false conflicts can be
alleviated by a finer-grain resolution of data conflicts, using rnechanisrI1s very
sinlilar to locking.

The basic idea is that each transaction in the R,cacl pha.se tells the DBMS about
iteIIls it is reading, and ·when a transaction Ti is cornrnitted (and its writes are
accepted), the DBMS checks whether any of the iterns written by Ti are being
read by any (yet to be validated) transaction T j. If so, we kno\v thatTj 's
validation rnust eventually fail. vVe can either allow T,i to discover this when
it is validated (the die policy) or kill it and restart it innnediately (the kill
policy).

rfhe details are c1.,) follo\vs. Before reading a data iterrl, (1, transaction Tenters
an access entry in a h::lSh table. The access entry contains the transact'ion
id, a data object id, and a rn..odified flag (initially set to false), and entries are
hashed on the data object id. A terl1porary exclusive lock is obtained on the

1 "\Ve thank Alexander Thoma..sian for writing this section.
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hash bucket containing the entry, and the lock is held \vhile the read data iteIIl
is copied frolll the datab<:lSe bufIer into the private 'workspace of the transactioll.

During validation of ~T the hash buckets of all data objects accessed by T
are again locked (in exclusive 11lode) to check if T has encountered any data
conflicts. ~r has encountered a conflict if the rnodified flag is set to true in one
of its access entries. (This &')SUIIles that the 'die' policy is being used; if the
'kill' policy is used, 'T is restarted when the flag is set to true.)

If T is successfully validated, we lock the hash bucket of each object lnodified
by T, retrieve all access entries for this object, set the rnodified flag to true,
and release the lock on the bucket. If the 'kill' policy is used, the transactions
that entered these access entries are restarted. We then cornplete~r's Write
phase.

It seems that the 'kill' policy is always better than the 'die' policy, because it
reduces the overall response time and wasted processing. However, executing
T to the end has the advantage that all of the data items required for its
execution are prefetched into the database buffe~r, and restarted executions of
T will not require disk I/O for reads. This assumes that the database buffer
is large enough that prefetched pages are not replaced, and, 1nore irnportant,
that access invariance prevails; that is, successive executions of T require
the same data for execution. When T is restarted its execution tirne is nluch
shorter than before because no disk I/O is required, and thus its chances of
validation are higher. (Of course, if a transaction has already completed its
Read phase once, subsequent conflicts should be handled using the 'kill' policy
because all its data objects are already in the buffer pool.)

17.6.2 Timestamp-Based Concurrency Control

In lock-ba'3ed concurrency control, conflicting actions of different transactions
are ordered by the order in which locks are obtained, and the lock protocol ex­
tends this ordering on actions to transactions, thereby ensuring serializability.
In optirrlistic concurrency control, a tiInestanlp ordering is irnposed on trans­
actions and validation checks that all conflicting actions occurred in the saIne
order.

Tinlcstarnps can also be used in another \vay: Each transaction can be assigned
a tirnestanlp at startup, and we can ensure, at execution tirne, that if action
a'i of transaction T'i conflicts \vith action aj of transaction Tj, a'i occurs before
aj if'1'8(T'i) < TS(Tj). If an action violates this ordering, the transaction is
aborted and restarted.
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To irnplernent this concurrency control schellH~l every database object 0 is given
a read tirnestampRTS (0) and a write timestamp v~lTS (0). If transaction
T wants to read object 0, and TS(T) < ~VTS(O), the order of this read
with respect to the most recent write on 0 would violate the timestamp order
between this transaction and the writer. Therefore, T is aborted and restarted
with a new, larger timestarnp. If TS(T) > WTS(O), Treads 0, and l~TS(O)

is set to the larger of RTS(O) and TS(T). (Note that a physical change--the
change to RTS(O)-is written to disk and recorded in the log for recovery
purposes, even on reads. This write operation is a significant overhead.)

Observe that if T is restarted with the same timestamp, it is guaranteed to be
aborted again, due to the saIne conflict. Contrast this behavior with the use of
timestamps in 2PL for deadlock prevention, where transactions are restarted
with the same timestarnp as before to avoid repeated restarts. This shows that
the two uses of timestamps are quite different and should not be confused.

Next, consider what happens when transaction T wants to write object 0:

1. If TS(T) < RTS(O), the write action conflicts with the most recent read
action of 0, and T is therefore aborted and restarted.

2. If TS(T) < WTS(O), a naive approach would be to abort T because
its write action conflicts with the most recent write of 0 and is out of
timestamp order. However, we can safely ignore such writes and continue.
Ignoring outdated writes is called the Thomas Write Rule.

3. Otherwise, T writes 0 and WTS(O) is set to TS(T).

The Thomas Write Rule

We now consider the justification for the TholIlas Write Rule. If TS(T) <
WTS(O), the current write action has, in effect, been made obsolete by the
rnost recent write of 0, which follows the current write according to the tirnes­
talnp ordering. We can think of T's write action as if it had occurred irnrnedi­
ately before the rnost recent write of 0 and was never read by anyone.

If the Thoma') vVrite Rule is not used, that is, T is aborted in case (2), the
tirnestamp protocol, like 2PL, allows only conflict serializable schedules. If the
Tho1l1aS '\Trite R,ule is used, S(Hne schedules are perrnitted that are not conflict
serializable, fl.'3 illustrated by the schedule in Figure 17.6.2 Because T2's \vrite
follows Tl's read and precedes Tl's write of the sanle object, this schedule is
not conflict serializable.

21n the other direction, 2PL pennits some schedules that are not allowed by the timestamp algo­
rithm with the Thomas Write Rule; see Exercise 17.7.
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T1
R(A)

W(A)
COlnmit

T2

l{T(A)
Cornrnit
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Figure 17.6 A Serializable Schedule 'rhat Is Not Conflict Serializable

l'he Thomas Write Rule relies on the observation that T2's write is never seen
by any transaction and the schedule in Figure 17.6 is therefore equivalent to
the serializable schedule obtained by deleting this write action, which is shown
in Figure 17.7.

T1 T2
R(A)

Commit
W(A)
Commit

Figure 17.7 A Conflict Serializable Schedule

Recoverability

Unfortunately, the timestamp protocol just presented permits schedules that
are not recoverable, as illustrated by the schedule in Figure 17.8. If T S(T1) :::::: 1
and T8(T2) = 2, this schedule is permitted by the timestalnp protocol (with
or without the 1"ho111as \\Trite Rule). The tiInestalnp protocol can be modified
to disallow such schedules by buffering all write actions until the transaction
COIDlnits. In the example, when Tl wants to write A, WTS(A) is updated to
reflect this action, but the change to A. is not carried out irrllnediately; instead,
it is recorded in a private workspace, or buffer. When T2 wants to read A
subsequently, its thnestamp is cornpared with l¥TS(A), and the read is seen
to be perrnissible. However, ~r2 is blocked until T1 cornpletes. If T1 cornrnits,
its change to A is copied fro111 the buffer; other\vise, the changes in the buffer
are discarded. ~r2 is then allowed to read A.

This blocking of T2 is sinlilar to the effect of T1 obtaining an exclusive lock on
A. Nonetheles8, even with this modification, the tirnestarnp protocol perrnits
sorne schedules not perrnitted by 2PL; the two protocols are not quite the senne.
(See Exercise 17.7.)
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Figure 17.8 An Unrecoverable Schedule

Because recoverability is essential, such a modification must be used for the
timestamp protocol to be practical. Given the added overhead this entails, on
top of the (considerable) cost of maintaining read and write tilnestamps, thnes­
tamp concurrency control is unlikely to beat lock-based protocols in centralized
systems. Indeed, it has been used mainly in the context of distributed database
systems (Chapter 22).

17.6.3 Multiversion Concurrency Control

This protocol represents yet another way of using timestamps, assigned at
startup time, to achieve serializability. The goal is to ensure that a transac­
tion never has to wait to read a database object, and the idea is to maintain
several versions of each database object, each with a write timestamp, and let
transaction Ti read the most recent version whose timestarnp precedes TS(Ti).

If transaction 1'i wants to write an object, we must ensure that the object
has not already been read by sonle other transaction T j such that T S (Ti) <
1'S(Tj). If we allow Ti to write such an object, its change should be seen by
Tj for serializability, but obviously Tj, which read the object at SaIne tinle in
the past, will not see ~r'i's change.

To check this condition, every object also has an associated read timestarnp,
and whenever a transaction reads the object, the read timestamp is set to
the maxhuuru of the current read tilnestarnp and the reader's tirnestarnp. If 7',t
wants to write an object 0 and TS(Ti) < RTS(O), Ti is aborted and restarted
with a new, larger timestamp. Otherwise, Ti creates a new version of 0 and
sets the read and write tirnestarnps of the new version to 7'S(Ti).

The drawbacks of this sehenle are similar to those of tirnestarnp concurrency
control, and in addition, there is the cost of rnaintaining versions. On the
other hand, reads are never blocked, which can be irnportant for workloads
dorninated by transactions that only read values frorn the database.



C:onC7LTr'ency C}ontTol r.::""3,';j(

I-;~t Do Real-;~ms Do? ~~~-~~;, Informix, Microsoft-~~
~ Server, and Sybase ABE use Strict 2PL or variants (if a transaction re­
I quests a lower than SERIALIZABLE SQL isolation level; see Section 16.6).

IVlicrosoft SQL Server also supports rnodifieation timestamps so that a
transaction can run ""vithout setting locks and validate itself (do-it-yourself
OptirnisticConC1:1rrency Control!). Oracle 8 uses a lllultiversion concur­
rency control scherne in ""vhich readers never wait; in fact, readers never
get locks and detect conflicts by checking if a block changed since they
read it. All these systerlls support rnultiple-granu1arity locking, with sup­
port for table, page, and row level locks. All deal with deadlocks using
waits-for graphs. Sybase ASIQ supports only table-level locks and aborts
a transaction if a lock request fails-·--updates (and therefore conflicts) are
rare in a data warehouse, and this simple scheme suffices.

________. .",".1

17.7 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• When are two schedules conflict equivalent? What is a conflict serializable
schedule? What is a strict schedule? (Section 17.1)

• What is a precedence graph or serializability graph? Ilow is it related to con­
flict serializability? How is it related to two-phase locking? (Section 17.1)

• What does the lock manager do? Describe the lock table and transaction
table data structures and their role in lock management. (Section 17.2)

II Discuss the relative nH.~rits of lock upgrades and lock downgrades. (Sec­
tion 17.3)

lIlI Describe and cornpare deadlock detection a,nd deadlock prevention schernes.
\Vhy are detection schernes rnore cornrnonly used? (Section 17.4)

II If the collection of database objects is not fixed, but can gro\v and shrink
through insertion and deletion of objects, we lnust deal with a subtle corll­
plication known as the phantorn problern. Describe this problern and the
index locking approach to solving the probleln. (Section 17.5.1)

II In tree index structures, locking higher levels of the tree can becorne a per­
forrnanee bottleneck. Explain why. I)escribe specialized locking techniques
that address the problenl, and explain why they work correctly despite not
lJeing two-phase. (Section 17.5.2)

II AI71lt'iple-granldaT'ity locki'ng enables us to set locks on objects that contain
other objects, thus iInplicitly locking all contained objects. \Vhy is this
approach irnportant and how does it work? (Section 17.5.3)
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• In optirrtistic conClLrrency control, no locks are set and transactions read
and rnodify data objects in a private workspace. How are conflicts between
transactions detected and resolved in this approach? (Section 17.6.1)

• In tirnestamp- based concurrency control, transactions are assigned a times­
tarnp at startup; how is it used to ensure serializability? How does the
Thomas Write Rule improve concurrency? (Section 17.6.2)

• Explain why tinlestamp-based concurrency control allows schedules that
are not recoverable. Describe how it can be modified through buffering to
disallow such schedules. (Section 17.6.2)

• Describe multiversion concurrency control. What are its benefits and dis­
advantages in comparison to locking? (Section 17.6.3)

EXERCISES

Exercise 17.1 Answer the following questions:

1. Describe how a typical lock manager is implemented. Why must lock and unlock be
atomic operations? What is the difference between a lock and a latch? What are convoys
and how should a lock manager handle them?

2. Compare lock downgrades with upgrades. Explain why downgrades violate 2PL but
are nonetheless acceptable. Discuss the use of update locks in conjunction with lock
downgrades.

3. Contrast the timestamps assigned to restarted transactions when tinwstanlps are used
for deadlock prevention versus when timestamps are used for concurrency control.

4. State and justify the Thomas Write Rule.

5. Show that, if two schedules are conflict equivalent, then they are view equivalent.

6. Give an example of a serializable schedule that is not strict.

7. Give an example of a strict schedule that is not serialiable.

8. ~1otivate and describe the use of locks for improved conflict resolution in Optinlistic
Concurrency Control.

Exercise 17.2 Consider the following cla..'3ses of schedules: ser'ializable l confiict-serializable,
1..J'iew-ser'ializable, recoverable, avoids-cascading-aborts, and strict. For each of the following
schedules, state which of the preceding cla.'3ses it belongs to. If you cannot decide whether a
schedule belongs in a certain class ba.'3ed on the listed actions, explain briefly.

The actions are listed in the order they are scheduled and prefixed with the transaction name.
If a commit or abort is not shown, the schedule is incomplete; assurne that abort or cornrnit
lllust follow all the listed actions.

1. Tl:R(X), T2:R(X), Tl:W(X), T2:\iV(X)

2. Tl:W(X), T2:R(Y), Tl:R(Y), T2:R(X)
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3. Tl:R(X), T2:R(Y), T~3:\V(X), T2:R(X), Tl:R(Y)

4. Tl:R(X), T1:R(Y), T1:W(X), T2:R(Y), T:3:\¥CY), Tl:W(X), T2:R(Y)

5. Tl:R(X), T2:W(X), Tl:W(X), T2:Abort, Tl:Cmnmit

6. Tl:R(X), T2:W(X), Tl:\V(X), T2:Comrnit, Tl:Comm.it

7. T1:W(X), T2:R(X), 1'l:W(X), 1'2:Abort, T.1:COllllllit

8. Tl:W(X), T2:R(X), Tl:W(X), T2:Conunit, Tl:Col1unit

9. Tl:W(X), T2:R(X), Tl:W(X), T2:Commit, Tl:Abort

10. 1'2: R(X), 1'3:W(X), T3:Cmnrnit, Tl:W(Y), Tl:Commit, T2:R(Y),
T2:W(Z), T2:Colllmit

11. Tl:R(X), T2:W(X), T2:Cornrnit, Tl:W(X), Tl:Colllmit, T:3:R(X), T3:Collnnit

12. Tl:R(X), T2:W(X), Tl:W(X), T3:R(X), Tl:Comlllit, T2:Corn111it, 1'3:Comlnit
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Exercise 17.3 Consider the following concurrency control protocols: 2PL, Strict 2PL, Con­
servative 2PL, Optimistic, Tilnestamp without the Thomas Write Rule, 1'ilnestamp with the
Thomas Write Rule, and Multiversion. l'or each of the schedules in Exercise 17.2, state which
of these protocols allows it, that is, allows the actions to occur in exactly the order shown.

For the timestamp-based protocols, assurne that the timestamp for transaction Ti is i and
that a version of the protocol that ensures recoverability is used. Further, if the Thomas
Write Rule is used, show the equivalent serial schedule.

Exercise 17.4 Consider the following sequences of actions, listed in the order they are sub­
mitted to the DBMS:

• Sequence 81: Tl:R(X), T2:W(X), T2:W(Y), T3:W(Y), Tl:W(Y),
Tl:Commit, T2:Commit, T3:Commit

• Sequence 82: Tl:R(X), T2:W(Y), T2:W(X), T3:W(Y), Tl:W(Y),
Tl:C0111mit, T2:Commit, T3:Commit

!<or each sequence and for each of the following concurrency control rnechanislns, describe
how the concurrency control mechanislll handles the sequence.

Assurne that the tirnestarnp of transaction Ti is 'i. Fbr lock-based concurrency control rnech­
aniS111S, add lock and unlock requests to the previous sequence of actions as per the locking
protocol. The DB"NIS processes actions in the order shown. If a transaction is blocked, a%Ulne
that all its actions are queued until it is reslllned; the I)B11S continues with the next action
(according to the listed sequence) of an unblocked transaction.

1. Strict 2PL with tiluestamps used for deadlock prevention.

2. Strict 2PL with deadlock detection. (Show the waits-for graph in C(l.se of deadlock.)

~3. Conservative (and Strict, i.e., with locks held until end-of-transaction) 2PL.

4. Optimistic concurrency control.

5. Tiruestarup concurrency control with buffering of reads and writes (to ensure recover­
ability) and the Tholnas Write Rule.

6. rvluitiversioll concurrency control.
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Figure 17.9 Venn Dia,gram for Classes of Schedules

Exercise 17.5 For each of the following locking protocols, assulning that every transaction
follows that locking protocol, state which of these desirable properties are ensured: serializ­
ability, conflict-·serializability, recoverability, avoidance of cascading aborts.

1. Always obtain an exclusive lock before writing; hold exclusive locks until end-of-transaction.
No shared locks are ever obtained.

2. In addition to (1), obtain a shared lock before reading; shared locks can be released at
any time.

3. As in (2), and in addition, locking is two-phase.

4. As in (2), and in addition, all locks held until end-of-transaction.

Exercise 17.6 The Venn diagranl (frorn [76]) in Figure 17.9 shows the inclusions between
several classes of schedules. Give one exaulple schedule for each of the regions Sl through
S12 in the diagrarn.

Exercise 17.7 Briefly answer the following questions:

1. Draw a Venn diagnnll that ShO\V8 the inclusions between the classes of schedules perulit­
tccl by the following concurrency control protocols: 2PL, 8tr'ict 2PL, Conscr1.Jauve 2PL,
Optirni.stic, Timestamp without the Thorna8~Vr'ite Rule, Tirne8tam.p with the ThonHt8
Write R1J,lc~ and Ah.tlt'll,)(:T.'Fion.

2. Give one ex<:'unple schedule for each region in the diagrarIl.

:3. Extend the Venn diagranl to include serializable and conflict-serializable schedules.

Exercise 17.8 Answer each of the follmving questions briefly. The questions are based on
the following relational schern.a:

Ernp( C'id: integer) cnarne: string, age: integer, salary: real, did: integer)

Dept(~~~~~_~_~:.~.~::,drunne: string, flooT: integer)

(mel on the fc)llowing update cornrnand:

replace (salary = 1.1 *F]\{P.salary) where .KtvlP.enarne = 'Santa'
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1. Give an exaruple of a query that would conflict with this comrnand (in a concurrency
control sense) if both were run at the s::.une tim.e. Explain what could go wroIlg~ and how
locking tuples would solve the probleIll.

2. Give an exarnple of a query or a cOHlInand that would conflict with this cOIl1ruand, such
that the conflict could not be resolved by just locking individual tuples or pages but
requires index locking.

~). Explain what index locking is and how it resolves the preceding conflict.

Exercise 17.9 SQL supports four isolation-levels and two access-rllodes, for a total of eight
cornbinations of isolation-level and access-rnode. Each corubinatioll inlplicitly defines a class
of transactions; the follO\ving questions refer to these eight classes:

1. For each of the eight classes, describe a locking protocol that allows only transactions in
this class. Does the locking protocol for a given class make any assurnptiolls about the
locking protocols used for other classes? Explain briefly.

2. Consider a schedule generated by the execution of several SQL transactions. Is it guar­
anteed to be conflict-serializable? to be serializable'? to be recoverable?

3. Consider a schedule generated by the execution of several SQL transactions, each of
which has READ ONLY access-mode. Is it guaranteed to be conflict-serializable? to be
serializable? to be recoverable?

4. Consider a schedule generated by the execution of several SQL transactions, each of
which has SERIALIZABLE isolation-level. Is it guaranteed to be conflict-serializable? to
be serializable? to be recoverable?

5. Can you think of a tinlCstarup-based concurrency control scheme that can support the
eight classes of SQL transactions?

Exercise 17.10 Consider the tree shown In Figure 19.5. Describe the steps involved in
executing each of the following operations according to the tree-index concurrency control
algorithm discussed in Section 19.3.2, in terms of the order in which nodes are locked, un­
locked, read, and written. Be specific about the kind of lock obtained and answer each part
independently of the others, always starting with the tree shown in Figure 19.5.

1. Search for data entry 40*.

2. Search for all data entries k* with k ~ 40.

3. Insert data entry 62*.

4. Insert data entry 40*.

5. Insert data entries 62* and 75*.

Exercise 17.11 Consider a database organized in tenns of the following hierarachy of ob­
jects: The database itself is an object (D), and it contains two files (Fl (lud F'2), each of
which contains 1QOO p<.Lges (PI . .. PlOOO ancl Pl()()l ... P2000, respectively). Each page con­
tains 100 records, and records aTe identified as p : i, where]J is the page identifier and i is the
slot of the record on that page.

I'vlultiple-granularity locking is used, with 5', .i\{) 15',#1 X and S'IX locks, and datah<Lse-level,
file-level, page-level ;111<1 record-level locking. For each ()f the foll()\ving operations, indicaJ;e
the sequence of lock requests that 1nust be generated by a transctction that wants to carry
out (just) these operations:
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1. Read record P1200 : 5.

(~HAPTER 1;:7

2. Reacl recorclsP1200 : 98 through P1205 : 2.

ii. Read aU (records on all) pages in file }'l.

4. 'Read pages P500 through P520.

5. Read pages PIO through P980.

6. Read all pages in PI and (ba..ged on the values read) rnodify 10 pages.

7. Delete record P1200 : 98. (This is a blind write.)

8. Delete the first record frorn each page. (Again~ these are blind writes.)

9. Delete all records.

Exercise 17.12 Suppose that we have only two types of transactions, Tl and T2. Transac­
tions preserve database consistency when run individually. We have defined several integrity
constnLiTtts such that the DBNIS never executes any SQL statenwnt that brings the database
into an inconsistent state. Assunle that the DBlVIS does not perform any concurrency control.
Give an exarllple schedule of two transactions Tl and T2 that satisfies all these conditions,
yet produces a database instance that is not the result of any serial execution of 7'1 and T2.
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CRASH RECOVERY

(,... What steps are taken in the ARIES method to recover fronl a DBl\1S
crash?

... How is the log rnaintained during nonnal operation?

.. How is the log used to recover frorn a crash?

(",.. What infonnation in addition to the log is used during recovery?

"'What is a checkpoint and why is it used?

... W'hat happens if repeated crashes occur during recovery?

... How is media failure handled?

... How does the recovery algorithnl interact with concurrency control?

.. Key concepts: steps in recovery, analysis, redo, undo; ARIES,
repeating history; log, LSN, forcing pages, WAL; types of log
records, update, cornrnit, abort, end, cOlnpensation; transaction ta-·
ble, lastLSN; dirty page table, recLSN; checkpoint, fuzzy checkpoint­
ing, rnao;;;ter log record; rnedia recovery; interaction with concurrency
control; shadow paging

Hurnpty Durnpty sat on a \vall.
lIurnpty Durnpty h(1,(1 a great fall.
A.ll the King's horses and all the King's tnen
Could not put lIllrnpty together again.

-~~~()ld nursery rhyrne
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The recovery manager of aDB~/[S is responsible for ensuring tvvo irnportant
properties of transactions: Atornicity and durability. It ensures ato'Tn:icity by
undoing the actions of transactions that do not conlIllit and durab'il'ity by rnak­
ing sure that all actions of conunitted transactions survive system crashes
(e.g., a core durnp caused by a bus error) and Inedia failures (e.g., a disk is
corrupted).

1"'he recovery rnanager is one of the hardest cOlllponents of a DBlViS to design
and inlplernent. It rnust deal 'with a wide va,riety of database states because
it is called on during systenl failures. In this chapter, "\Ive present the ARIES
recovery algorithnl, which is conceptually sinlple, works well with a wide range
of concurrency control rnechanisrns, and is being used in an incre&sing number
of database syterns.

We begin with an introduction to ARIES in Section 18.1. We discuss the
log, which a central data structure in recovery, in Section 18.2, and other
recovery-related data structures in Section 18.3. We complete our coverage
of recovery-related activity during normal processing by presenting the Write­
Ahead Logging protocol in Section 18.4, and checkpointing in Section 18.5.

We discuss recovery frorn a crash in Section 18.6. Aborting (or rolling back)
a single transaction is a special case of Undo, discussed in Section 18.6.3. We
discuss media failures in Section 18.7, and conclude in Section 18.8 with a
discussion of the interaction of concurrency control and recovery and other ap­
proaches to recovery. In this chapter, we consider recovery only in a centralized
DBMS; recovery in a distributed DBMS is discussed in Chapter 22.

18.1 INTRODUCTION TO ARIES

ARIES is a recovery algorithrn designed to work with a steal, no-force ap­
proach. When the recovery rnanager is invoked after a, craBh: restart proceeds
in thn~e phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have
not been written to disk) and active transactions at the tiITle of the crash.

2. Redo: H,epeats all actions, starting frOID an appropriate point in the log,
and restores the database state to what it was at the tirne of the e1'a8h.

~). lJndo: lJndoes the actions of transactions that did not cOllunit, so tlU:l,t
the databa,se reflects only the actions of cornrnitted transactions.

Consider the sirnple execution history illustrated in Figure 18.1. '\\7hen the
systeIIl is restarted, the A,nalysis phase identifies 'Tl H.nd ~r:3 as transactions



CrYlBh Recovery

LSN L()(;

10 - update: T1 writes P5

20 --- update: T2 writes P3

30 - T2 comnlit

40 --- T2end

50 - update: T3 writes PI

60 - update: T3 writes P3

X CRASH, RESTART

Figure 18.1 Execution History with a Crash

h&l,.'a

active at the time of the crash and therefore to be undone; T2 as a corrnuitted
transaction~ and all its actions therefore to be written to disk; and PI ~ P3, and
P5 as potentially dirty pages. All the updates (including those of TI and T3)
are reapplied in the order shown during the Redo phase. Finally, the actions
of TI and T;-3 are undone in reverse order during the Undo phase; that is, T3's
write of P3 is undone, 7"3's write of PI is undone, and then TI ~s write of P5
is undone.

Three Inain principles lie behind the ARIES recovery algoritlun:

!II Write-Ahead Logging: Any change to a database object is first recorded
in the log; the record in the log lllUst be written to stable storage before
the change to the database object is written to disk.

!II Repeating History During Redo: On restart following a crash, ,AllIES
retraces all actions of the DBlVlS before the crash and brings the systern
back to the exact state that it wa,s in at the tilne of the crash. Then,
it undoes the actions of transactions still active at the tirne of the cra..sh
(effectively aborting theln).

11II Logging Changes During Undo: Changes lnada to the databa.se '.vhile
undoing a transaction are logged to ensure such an action is not repeated
in the event of repeated (failures causing) restarts.

The second point distinguishes AllIES frorn other recovery algorithrns and is
the basis for rnuch of its sirnplicity and flexibility. In particular, ABIES can
support conCUlTcnc:Jl control protocols that involve locks of finer granularity
than a page (e.g., record-level loc:ks). T1he SeCO]lc! and third points are also
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---.....,.------_._...._..._._._-_._._---

Crash Recovery: IB~1 DB2, Inforrnix, Iv1icrosoft SQL Server, Oracle 8,
and Sybase l\SE all use a WAL seherue for recovery. IBIvI DB2 uses ARIES,

I
!
I
i
I

and the others use seherues that are actually quite sinlilar to ARIES (e.g., I
all changes are re-applied, not just the changes made by transactions that I
are 'winners') although there are several variations.

------- ~ .. - ...................._. . ---- ~

important in dealing with operations where redoing and undoing the opera­
tion are not exact inverses of each other. We discuss the interaction between
concurrency control and crash recovery in Section 18.8, where we also discuss
other approaches to recovery briefly.

18.2 THELOG

The log, SOlnetirnes called the trail or journal, is a history of actions executed
by the DBMS. Physically, the log is a file of records stored in stable storage,
which is assumed to survive crashes; this durability can be achieved by main­
taining two or more copies of the log on different disks (perhaps in different
locations), so that the chance of all copies of the log being sinlultaneously lost
is negligibly small.

The most recent portion of the log, called the log tail, is kept in nlain Inemory
and is periodically forced to stable storage. This way, log records and data
records are written to disk at the same granularity (pages or sets of pages).

Every log record is given a unique id called the log sequence number
(LSN). As with any record id, we can fetch a log record with one disk access
given the LSN. Further, LSNs should be assigned in ruonotonically increasing
order; this property is required for the ARIES recovery algorithrn. If the log is
a sequential file, in principle growing indefinitely, the LSN can sirllply be the
address of the first byte of the log record'!

For recovery purposes, every page in the databa':lc contains the LSN of the rnost
recent log record that describes a change to this page. This LSN is called the
pageLSN.

A log record is\vritten for each of the following actions:
--_._--_.._...._._---------

1 In practice, various techniques are used to identify portions of the log that are 'too old' to be
needed again to bound the amount of stable storage used for the log. Given such a bound, the log may
be implemented a...<; a 'circular' file, in which case the I..ISN may be the log record id plus a "UYm,p-count.
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• Updating a Page: After rTlodifying the page, an 'npdate type record (dt:~

scribed later in this section) is appended to the log tail. Tlhe pageLSN of
the page is then set to the LSN of the update log record. (The page Blust
be pinned in the buffer pool while these actions are carried out.)

III Conl1nit: vVhen a transaction decides to conunit, it force-writes a conk
'{nit type log record containing the transaction id. That is, the log record
is appended to the log, and the log tail is written to stable storage, up to
and including the cOllunit record.2 The transaction is considered to have
cOIlnnitted at the instant that its cOlnmit log record is written to stable
storage. (Solne additional steps rnust be taken, e.g., reilloving the transac­
tion's entry in the transaction table; these follow the 'writing of the cOlInnit
log record.)

• Abort: When a transaction is aborted, an abort type log record containing
the transaction id is appended to the log, and Undo is initiated for this
transaction (Section 18.fL3).

• End: As noted above, when a transaction is aborted or comrnitted, some
additional actions rnust be taken beyond writing the abort or COlllIllit log
record. After all these additional steps are c()lnpleted, an end type log
record containing the transaction id is appended to the log.

III Undoing an update: When a transaction is rolled back (because the
transaction is aborted, or during recovery frorn a crash), its updates are
undone. When the action described by an update log record is undone, a
cornpensation log Teconl, or CLR, is written.

Ev(~ry log record has certain fields: prevLSN, transID, and type. The set of
all log records for a given transaction is rnaintained as a linked list going back
in tirne, using thE~ prevLSN field; this list HUlst be updated whenever a log
record is added. The transII) field is the id of the transaction generating the
log record, and the type field obviously indicates the type of the log record.

Additional fields depend on the type of the log record. vVe already rnentioned
the additional contents of the various log record types, with the exception of
the update EtIId cornpensa>tion log r(~cord types, \\Thieh we describe next.

Update Log Records

The fields in an update log record are illustrated in Figure 18.2. frhe pageID
field is the page iel of the Inodified page; the length in bytes and the offset of the

'2 Note that this step requires the buffer manager to be able to selectively force pages to stabl(~

storage.
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prevLloiN traa".iID type pageIJ.) length offset

C~HAPTERfl8

before~image after-image

Fields common to all log records Additional fi.elds for update log records

Figure 18.2 Contents of an Update Log Record

change are also included. The before-image is the value of the changed bytes
before the change; the after-image is the value after the change. An update
log record that contains both before- and after-images can be used to redo
the change and undo it. In certain contexts, which we do not discuss further,
we can recognize that the change will never be undone (or, perhaps, redone).
A redo-only update log record contains just the after-iluage; similarly an
undo-only update record contains just the before-iluage.

Compensation Log Records

A compensation log record (CLR) is written just before the change recorded
in an update log record U is undone. (Such an undo can happen during nor­
rnal system execution when a transaction is aborted or during recovery froIn a
crash.) A cOlnpensation log record C describes the action taken to undo the
actions recorded in the corresponding update log record and is appended to
the log tail just like any other log record. 'fhe cornpensation log record C also
contains a field called undoNextLSN, which is the LSN of the next log record
that is to be undone for the transaction that wrote 11pdate record lJ; this field
in C is set to the value of prevLSN in [J.

As an exarllple, consider the fourth update log reeord shown in Figure 18.3.
If this update is undone, a CLIl \vould be written, and the inforrnation in it
would include the transII), pageID, length, offset, and before-iInage fields froln
the update record. Notice that the CLH, records the (undo) action of changing
the affected bytes back to the before-irnage value; thus, this value and the
location of the affected bytes constitute the redo infonnation for the action
described by the CLH,. r-Ihe undoNextLSN field is set to the LSN of the first
log record in Figure 18.:3.

lJnlike an update log record, a CLIl describes an action that \vill never be
tlndone, that is, \ve never undo an undo action. '1'he rea,son is sirnple: An update
log record describes a change lnade by a transaction during nonnal execution
and the transaction rnay subsequently be aborted, whereas a (:LH, describes
elll a,ctiol1 tak.en to rollback a transaction for \vllich the decision to abort has
alrea.lJy been rnade. Therefore, the transaction rnust be rolled back, and the
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undo action described by the CLIl is definitely required. This observation is
very useful because it bounds the a1nount of space needed for the log during
restart froin a crash: 1'he nUlnber of CLHs that ca,n be vvritten during LJndo is
no 1nore than the nurnber of update log records for active transactions at the
tirne of the crash.

A CLR. II1ay be 'written to stable stora,ge (follo\ving \iVAL, of course) but the
undo action it describes rIlay not yet been vvrittcn to disk when the systenl
crashes again. In this case, the undo action described in the CLR is reapplied
during the Itedo phase, just like the action described in update log records.

For these re&'3ons, a CLIl contains the infonnation needed to reapply, 01' redo,
the change described but not to reverse it.

18.3 OTHER RECOVERY..REI.JATED STRU'CTURES

In addition to the log, the following two tables contain important recovery­
related infornlation:

II Transaction Table: This table contains one entry for each active trans­
action. 'The entry contains (arnong other things) the transaction id, the
status, and a field called lastLSN, which is the LSN of the rnost recent log
record for this transaction. The status of a transaction can be that it is in
progress, corunlitted, or aborted. (In the latter two cases, the transaction
will be rernoved fro1l1 the table once certain 'clean up' steps are c(nupleted.)

II Dirty page table: This table contains one entry for each dirty page in
thE:~ buffer pool, that is, each page with changes not yet reflected on disk.
The entry contains a field recLSN, vvhich is tlH~ LSN of the first log record
that caused the page to becorne dirty. Note that this LSN identifies the
earliest log record that lnight have to be redone for this page during restart
fronl a cr<:1,sh.

I)uring norrnal operation, these cLre rnainta..ined by the transa,ction rnanager and
the buffer rnanager, respectively, and during restart after a crash, these ta,bles
are reconstructed in the Analysis phase of restart.

Consider the follc)\ving silupic exarnple. 11:ansaction TIOOO changes the value of
bytes 21 to 2:3 011 page P500 frorn 'ABC' to '!)EF', transaction 'T2000 changes
'lII.r to 'I<IJ\;1' on page P600, transaction 1~2000 changes bytes 20 through 22
fronl 'C;rJE' to 'QRS' on page ])50(\ then transaction T1000 changes 'TlTV'
to '-\,VXY' on pageP505. I'he dirty page table, the transaction table':~ ;:lnd
_ _ ---------_.__.__.__.---

3The status field is not shown in the figure for space reasons; all transactions are in progress.
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pageID recLSN

P500
length offset hefore-image after-image

P600

P505

DIRTY PAGE

TRANSACTION TABLE

prcyl..-.."iN transID type pagelD

'1'1000 update P500

'1'2000 update P600

'1'2000 update PSOO

TlOOO update P505

LOG

3

3

2\ ABC DEF

4\ HU KLM

20 CiDE QRS

2\ TUV

Figure 18.3 Instance of Log and Ttansaction Table

the log at this instant are shown in Figure 18.3. ()bserve that the log is shown
growing froni top to bottorn; older records are at the top. Although the records
for each transaction are linked using the prevLSN field, the log as a whole also
has a sequential order that is iInportant---for exarnple, T2000's change to page
P500 follows TIOOO's change to page P500, and in the event of a crash, these
changes nUlst be redone in the sanle order.

18.4 THE WRITE-AHEAD LOG PROTOCOI.J

Before writing a page to disk, every update log record that describes a change
to this page rnust be forced to stable storage. This is accornplished by forcing
all log records up to and including the one with LSN equal to the pageLSN to
stable storage before \vriting the page to disk.

The irnportance of the "TAl" protocol carulot be overerl1phasized- --\VAL is the
fundarnentaJ rule that ensures that a record of every change to the database
is available while atternpting to recover froni a cra"sh. If a.· transaction rnade (l.

change and corIllnitted j the no-force approa,(:h Incans that SOlne of these changes
rnay not have been vvrittcn to disk at the tirne of a sulJsequent cTcu,h. \\Tithout a
record of these changes, there would be no wa.y to erlsurc that the changes of a
cornl11.itted transaction survive crashes. Note that the definition of a cortun'itted
tTnn.sacf'ion is effectivel,Y 'a transa,ction all of whose log records j including a
conunit record j have l)een \vritten to stcl,ble storage'.

\Vhen a txctnsc.tction is cornrnitted, the log U.til is forced to stabl(~ storage, even
if a no-force appro;J,ch is being used. It is '.1l1orth contrasting this operation with
the a,ctions taken under a forc(~ approach: If a., force approach is used, all the
pages rIlodified by the transaction, rather than a portion of the log that includes
all its records, IHllS!, be forced to disk Vl1herl the transaction conllIlits. The set of
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all changed pages is typically 11luch larger than the log tajl because the size of
an update log record is close to (tvvice) the size of the changed bytes, ·which is
likely to be Inuch s1na11er than the page size. Further, the log is 1naintained as a
sequential file, and all \\Trites to the log are sequential "\Trites. Consequently, the
cost of forcing the log tail is luuch sIllaller than the cost of \vri ting aJl changed
pages to disk.

18.5 CHECKPOINTIN(;

A checkpoint is like a snapshot of the DB:NlS state, and by taking checkpoints
periodically, as we will see, the DBl\1S can reduce the alnount of work to be
done during restart in the event of a subsequent crc1..sh.

Checkpointing in ARIES has three steps. First, a begin_checkpoint record is
written to indicate when the checkpoint starts. Second, an end __checkpoint
record is constructed, including in it the current contents of the transaction
table and the dirty page table, and appended to the log. The third step is
carried out after the end_checkpoint record is written to stable storage: A
special master record containing the LSN of the begirLcheckpoint log record is
written to a known place on stable storage. 'Vhile the end__checkpoint record
is being constructed, the DBMS continues executing transactions and writing
other log records; the only guarantee we have is that the transaction table and
dirty page table are accurate as of the ti'lY~e of the begirLcheckpoint record.

This kind of checkpoint, called a fuzzy checkpoint, is inexpensive because it
does not require quiescing the SystCIll or writing out pages in the buffer pool
(unlike senne other forlns of checkpointing). On the other hand, the effectiveness
of this checkpointing technique is lirnited by the earliest recLSN of pages in the
d.irty pages table, because during restart we Inust redo changes starting froin
the log record \vhose LSN is equal to this recI.lSN. l-Iaving a background process
that periodically writes dirty pages to disk helps to lirnit this probleln.

vVhen the SystCIIl cornes back up after a crash, the restart process begins by
locating the rnost recent checkpoint record. For uniforlnity, the systeIll al\v::tys
begins no1'n1al execution by takirlg a checkpoint, in \vhich. the transaction table
and dirty page table are both Clnpty.

18.6 RECOV~:RIN'G FROM A sysrr~=M CRASH

\Vhen the systenl is restarted after a crash, the recovery Iuana,ger proceeds in
three phases, as shown in Figure 18.4.
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Figure 18.4 Three l'lhases of Restart in ARIES

The Analysis phase begins by examInIng the rnost recent begin_checkpoint
record, whose LSN is denoted C in Figure 18.4, and proceeds forward in the
log until the last log record. '1'he Redo phase follows Analysis and redoes all
changes to any page that Illight have been dirty at the tir11e of the crash; this set
of pages and the starting point for Redo (the srnallest recLSN of any dirty page)
are deterrnined during Analysis. 'The Undo phase follows Redo and undoes the
changes of all transactions active at the tirne of the crash; again, this set of
transactions is identified during the Analysis phase. Note that Redo reapplies
changes in the order in which they were originally carried out; Undo reverses
changes in the opposite order, reversing the lllost recent change first.

Observe that the relative order of the three points A, B, and C in the log rnay
differ frolIl that shown in Figure 18.4. The three phases of restart are described
in rnore detail in the following sections.

18.6.1 Analysis Phase

l'he Analysis phase perfonns three tc1...,ks:

1. It detennines the point in the log at \vhich to start the Redo pass.

2. It deterrnines ((1, conservative superset of the) pages in the buffer pool that
\Ver8' clirty at the tirne of the crash.

:3. It identifies'iransEtctions that \\rere active at the tirne of the crash and rnust
be undone.

Analysis 'begins by exEtrnining the rnost recent begirLcheckpoint log record and
initializing the dirty page table and transaction table to the copies of those
structures in the next end-e.:heckpoint record. ~rhus, t11ese tables are initialized
to the set of dirty pages and active transcl,c:tions at the tilne of the checkpoint.
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(If additional log records are between the begiILcheckpoint and encLcheckpoint
records, the tables HIUst be adjusted to reflect the inforluation in these records~

but \ve cnnit the details of this step. See Exercise 18.9.) A.naJysis then scans
the log in the for\vard direction until it reaches the end of the log:

III If an end log record for a transaction T is encountered,T is reIlloved fronl
the transaction table because it is no longer active.

III If a log record other than an end record for a transaction T is encountered,
an entry for T is added to the transaction table if it is not already there.
Further, the entry for T is rnodified:

1. The lastLSN field is set to the LSN of this log record.

2. If the log record is a cOllnnit record, the status is set to C, otherwise
it is set to U (indicating that it is to be undone).

III If a redoable log record affecting page P is encountered, and P is not in
the dirty page table, an entry is inserted into this table with page id P and
recLSN equal to the LSN of this redoable log record. This LSN identifies
the oldest change affecting page P that may not have been written to disk.

At the end of the Analysis phase, the transaction table contains an accurate
list of all transactions that were active at the tilue of the crash·-···_·--this is the
set of transactions with status U. The dirty page table includes all pages that
were dirty at the tirne of the crash but rnay also contain SOIne pages that were
written to disk. If an end_write log record were written at the cornpletion of
ea,ch write operation, the dirty page table constructed during Analysis could
be lnade rnore accurate, but in AHJES, the additional cost of writing eneLwrite
log records is not considered to be worth the gain.

As an exa.rnple, consider the execution illustrated in Figure 18.~3. Let us extend
this execution by assurning that ]'2000 COlIllnits, then TIOnO rnodifies another
page, say, .P700, and appends an update record to the log tail, and then the
systern cra"shes (before this update log record is written to stable storage).

The dirty page table and the transaction table, held in rnernory, are lost in the
cra..sh. The rnost recent checkpoint \Vah') taken at the beginning of the execution,
\vith an ernpty tran.saction table and dirty page table; it is not shown in Figure
18.;3. After excunining this log record, \vhich \ve assurne is just before the
first log record shown in the figure, Analysis initializes the two tables to l>e
ernpty. Scanning forv:.rard in the log, T'1000 is added to the transaction table;
in additiol1,P500 is ad(h~d to the dirty page ta,blc\vith recLSN equal to the
LSN of the first sho\vn log record. Sirnilarly, T2C)OO is added to the transaction
table andPGOO is added to the dirty page table. There is no change based on
the third log record, and the fourth record n:~sults in the addition of P505 to
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the dirty page table. The eOllnnit record forT2000 (not in the figure) is no\v
encountered, and T2000 is relIloved fro111 the transaction table.

The Analysis pha~e is now eornplete, and it is recognized that the only active
transaction at the tilne of the crash is TIOOO, \vith lastLSN equal to the LSN
of the fourth record in Figure 18.3. rrhe dirty page table reconstructed in the
Analysis pha.cse is identical to that shown in the figure. The update log record
for the change to P700 is lost in the crash and not seen during the Analysis
pa.'3s. Thanks to the WAL protocol, however, all is well······--the corresponding
change to page P700 cannot have been written to disk either!

SaIne of the updates rnay have been written to disk; for concreteness, let us
aSSUIne that the change to P600 (and only this update) was written to disk
before the crash. ThereforeP600 is not dirty, yet it is included in the dirty
page table. rIhe pageLSN on page P600, however, reflects the write because it
is now equal to the LSN of the second update log record shown in Figure 18.3.

18.6.2 Redo Phase

During the Redo phase, ARIES reapplies the updates of all transactions, COill­

rnitted or otherwise. Further, if a transaction was aborted before the crash
and its updates were undone, as indicated by CLRs, the actions described in
the CLRs are also reapplied. This repeating history paradigm distinguishes
ARIES from other proposed vVAL-based recovery algoritlnIls and causes the
database to be brought to the sarne state it was in at the time of the crash.

rrhe R,edo phase begins with the log record that has the srnallest recLSN of all
pages in the dirty page table constructed by the Analysis pass because this log
record identifies the oldest update that rnay not have been written to disk prior
to the crash. Starting frorn this log record, R,edo scans forward until the end
of the log. For each redoable log record (update or CLR) encountered, Rx~do

checks whether the logged action HUlst be redone. The action rnust be redone
unless one of the follo\ving conditions holds:

IIIIl The affected page is not in the dirty page table.

II rrhe affected page is in the dirty page table, but the recLSN for the entry
is gTcatcT tlU),'t1 the LSN of the log record being checked.

II 1'he pageLSN (stored on the page, which rnust be retrieved to check this
condition) is gTea!;cr than OT equal to the LSN of the log record being
checked.

rrh(~ first condition obviously 1118a11S that all changes to this page have been
\vritten to disk. Because the recLSN is the first update to this pa.,ge that lnay
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not have been written to disk, the second condition rneans that the update
being checked ,"va.s indeed propagated to disk. The third condition, \vhieh is
checked la.",st because it requires us to retrieve the page, also ensures that the
update being checked was ·written to disk, because either this update or a later
update to the page wcL.'3 written. (R,ecall our a.ssurnption that a write to a page
is atomic; this assurnption is irnportant here!)

If the logged action lllust be redone:

1. The logged action is reapplied.

2. The pageLSN on the page is set to the LSN of the redone log record. No
additional log record is written at this tiIne.

Let us continue with the exarnple discussed in Section 18.6.1. FrorIl the dirty
page table, the smallest recLSN is seen to be the LSN of the first log record
shown in Figure 18.3. Clearly, the changes recorded by earlier log records
(there happen to be none in this example) have been written to disk. Now,
Redo fetches the affected page, P500, and compares the LSN of this log record
with the pageLSN on the page and, because we assurned that this page was not
written to disk before the crash, finds that the pagE~LSN is less. The update
is therefore reapplied; bytes 21 through 23 are changed to 'DEF', and the
pageLSN is set to the LSN of this update log record.

Redo then exarnines the second log record. Again, the affected page, P600, is
fetched and the pageLSN is cornpared to the LSN of the update log record. In
this case, because we assurned thatP600 was written to disk before the crash,
they are equal, and the update does not have to be redone.

The rernaining log records are processed sirnilarly, bringing the systern back
to the exact state it was in at the tirue of the cra,5h. Note that the first hvo
conditions indicating that a redo is unnecessary never hold in this exaruple.
Intuitively, they corne into play when the dirty page table contains a very old
recLSN, going back to before the rJlost recent checkpoint. In this case, as Iledo
scans forwa.rd frorn the log record with this LSN, it encounters log records for
pages that were written to disk prior to the checkpoint and therefore not in
the dirty page table in the checkpoint. Sorne of these pages Inay be dirtied
again after the checkpoint; nonetheless, the updates to these pages prior to the
checkpoint need not be redone. Although the third condition alone is sufficient
to recognize that these updates need not be redone, it requires us to fetch
the affected page. 'The first t\VO conditions allc)\v us to recognize this situation
\vithout fetching the page. (The reader is encouraged to construct exaulples
th,lt illustrate the use of each of these conditions; see Exercise 18.8.)
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.At the end of the Iledo phase, end type records are written for an transactions
with status C, which are rCllloved '£1'01n the transaction table.

18.6.3 Undo Phase

The 1Jndo phase, unlike the other two pha..')cs, scans backward fronl the end
of the log. The goal of this phase is to undo the actions of all transactions
active at the tilne of the cra..sh, that is, to effectively abort the1n. This set of
transactions is identified in the transaction table constructed by the AIlalysis
phase.

The Undo Algorithm

Undo begins with the transaction table constructed by the .Analysis phase,
which identifies all transactions active at the tiIne of the crash, and includes the
LSN of the 1110st recent log record (the lastLSN field) for each such transaction.
Such transactions are called loser transactions. All actions of losers IllUst be
undone, and further, these actions rnust be undone in the reverse of the order
in which they appear in the log.

Consider the set of lastLSN values for all loser transactions. Let us call this set
ToUndo. Undo repeatedly chooses the largest (Le., rnost recent) LSN value in
this set and processes it, until rro1Jndo is ernpty. To process a log record:

1. If it is a CLR and the undoNextLSN value is not null, the undoNextLSN
value is added to the set ToUndo; if the undoNextLSN is null, an end
record is written for the transaction because it is cornpletely undone, and
the CLR, is discarded.

2. If it is an. update record, a CLR, is written and the corresponding a,ction is
undone, as described in Section 18.2, and the prevLSN value in the update
log record is added to the set ToUndo.

\i\lhen the set rroUndo is ernpty, the lJndo phas(~ is cornplete. I{estart is no\v
cornplete, and the systenl can proceed 'with nonnal operations.

Let us continue with the scenario discussed in Sections 18.6.1 and 18.6.2. The
onlv active tratlsaction at the tiTne of the cra,sh\vas detennined to be TI000.

~J . ,'- - . , . .. ., '-' - ., . " . - ••

:F'rorn the transaction table, vve get the LSN of its Inost recent log record, \vhich
is the fourth update log record in Figure 18.3. '1'he npdn..te is undone, and a
CL11 is \vritten\vith undoNextLSN equal to the LSN of the first log record in
the figure. T'he next record to be undone for transaction i"TI000 is the first log
record in the figure. After this is undone, a CLR a,nel an end log record for
711000 <trewritten, <tnd the IJndo phase is cornplete.
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In this exarnple, undoing the action recorded in the first log record causes the
action of the third log recor~l, \vhich is due to a conunitted traJlsaetioIl, to be
overwritten and thereby lost! rrhis situation arises because 1"'2000 overvvrote
a data itcrIl \vritten by TIOOO while 1''1000 W(l..'3 still active; if Strict 2PLwere
follo\ved, 1'2000 \vould not have been allowed to overwrite this data iterH.

Aborting a Transaction

Aborting a. transaction is just a special case of the Undo phase of Restart in
\vhich a single transaction, rather than a set of transactions, is undone. The
exarnple in Figure 18.5, discussed next, illustrates this point.

Crashes during Restart

It is important to understand how the lTndo algorithrn presented in Section
18.6.3 handles repeated systern crashes. Because the details of precisely how
the action described in an update log record is undone are straightforward,
we discuss Undo in the presence of systern crashes using an execution history,
shown in Figure 18.5, that abstracts away unnecessary detail. This exarnple
illustrates how aborting a transaction is a special case of Undo and how the use
of CLRs ensures that the Undo action for an update log record is not applied
twice.

LSN LOG

00, os -;- begin_checkpoint, end_checkpoint

10 -r update: Tl writes P5 prevLSN

20 -F- update: T2 writes P3

30 Tl abort .- \

I
40,45 -F- CLR: Undo T1 LSN 10, T1 tnd

undonextLSN

50 -..,...... update: T3 writes PI i
I
j
!
I

60 -...... update: 1'2 writes P5 ....../

>< CRASH, RESTART

70 CLR: l1ndo '1'2 LSN 60

so, 85 CLR: Undo '1'3 LSN 50, '1'3 end

>< CRASH, RR~TART

90,95 CLR: lJndo T2 LSN 20, T2 end

Figure 18.5 ExC'uTlple of Undo with Repeatt!d C~rashes



594 (;IIAPTEH. J8

'rhe log shcnvs the order in \vhich theDB~IS executed various actions; note that
the LSNs are in ascending order ~ and that eal~h log record for a transaction ha..'3
a prevLSN' field that points to the previous log record for that transaction. \~Te

have not shown 'n/ull prevLSNs, that is, SOIne special '\lailleused in the prevLSN
field of the first log record for a, transaction to indicate tha,t there is no previous
log record. vVe also cOlnpacted the figure by occasionally displaying hvo log
records (separated by a cOIlllna) on a single line.

Log record (with LSN) 30 indicates that Tl aborts. All actions of this trans­
action should be undone in reverse order, and the only action of ~r1, described
by the update log record 10, is indeed undone as indicated by CLR, 40.

After the first crash, Analysis identifies F)l (with recLSN 50), P~3 (with recLSN
20), and P5 (with recLSN 10) as dirty pages. Log record 45 shows that Tl is a
cornpleted transaction; hence, the transaction table identifies T2 (with lastLSN
60) andT3 (with lastLSN' 50) as active at the tirne of the crash. '1'he Redo
plu:1...se begins with log record 10, which is the rninirnurn recLSN in the dirty
page table, and reapplies all actions (for the update and CLR, records), as per
the Redo algorithIl1 presented in Section 18.6.2.

The r1'olJndo set consists of LSNs 60, for 1'12, and 50, for T~3. The lJndo phase
now begins by processing the log record with LSN 60 because 60 is the largest
LSN in the ToUndo set. The update is undone, and a CLR, (with LSN 70)
is written to the log. ~rhis CLIl has llndoNextLSN equal to 20, which is the
prevLSN value in log record 60; 20 is the next action to be undone for 112. Now
the largest rernaining LSN in the rroundo set is 50. The \vritE~ corresponding
to log record 50 is now undone, and a CLH, describing the change is 'written.
rrhis eLH, has LSN 80, and its undoNextLSN field is null because 50 is the
only log record for transaction T3. Therefore T~3 is cOITlpletely undone, and an
end record is written. Log records 70, 80, and 85 aTe written to stable storage
before the systern crct.shes a second tirHe; ho\vever, the changes described by
these records ITlay not have been written, to disk..

\\lhen the systern is resta.rted after the S8C011(1 cra,,')}L Analysis deterrnines that
the only active transactioIl at the tirne of the crash \\1[1.'3 'T2; in addition, the dirty
pa,ge table is identicaJ to \\That it \VEtS during the previous restart. Log records
10 througll 85 are processed Etgain during Itedo. (If sorne of the changes rnade
during the prcv"ious H,edo were vvritten to disk, the pageLSN's on the affected
pages are used to detect this situation and avoid writing these pages again.)
T'he lJndo phase considers the onlyLSN in the TolJndo set, 70, and processes it
}))" adding tIle llndoNextLSN value (20) to the 1'olJndo set. Next, log record 20
is processed l)y llndoing~r2's "\Trite of page }J:.3, a.nd a. CIJl, is VvTitten (LSN 90).
Because 20 is the first of 7'2's log records and therefore, the laAst of its records



to be undone~~the undoNextLSN field in this CLR IS ntlll, an end record IS

written for T2, al1d the TolJndo set is no\v E:~rnpty.

llecovery is no\v cornplete, and norrnal execution can resurne vvith the ·writing
of a checkpoint record.

This exarnple illustrated repeated crashes during the lJndo phage. Ii()l' corn­
pleteness, let us consider vvhat happens if the s)'stern cra,'3hes ·while R,estart is
in the Analysis or Iledo pha.se. If a crash occurs during the Analysis phase, all
the work done in this phase is lost, and on restart the Analysis phase starts
afresh vvith the sa11le inforrnation as before. If a cr&'3h occurs during the Redo
phase, the only effect that survives the cra...9h is that sorne of the changes rnade
during Redo 11U1Y have been written to disk prior to the crash. R,estart starts
again with the Analysis phase and then the Redo phase, and sorne update log
records that were redone the first tirne around will not be redone a second tirne
because the pageLSN is now equal to the update record's LSN (although the
pages have to be fetched again to detect this).

We can take checkpoints during llestart to rninirnize repeated work in the event
of a crash, but we do not discuss this point.

18.7 MEDIA RECOVERY

Media recovery is based on periodically rnaking a copy of the database. Be­
cause copying a large database object such as a file CeHl take a long tirHe, and
the I)BMS rnust be allowed to continue vvith its operations in the Ineantirne,
creating a copy is handled in a rnanner sirnilar to taking a fuzzy checkpoint.

\\Then a databa.se object such as a file or a page is corrupted, the copy of that
object is brought up-to-date by using the log to identify and reapply the changes
of cornnlitted transactions and undo the changes of uncoI1unitted transactions
(as of the tirne of the rnedia recovery operation).

The begilLchecl<.point LSN of the rnost recent cOlllplete checkpoint is recorded
along \vith the copy ()f the database object to luinirnize the vvork in reapplying
chaxlges of cornrnitt(~d transactions. Let us COlnpare the sl11<:.111est recLSN of
a dirty page in the corresponding encLcheckpoint record \vith the I;SN of the
begirLcheckpoint record and call the slua.ller of these tvvo LSNs I. \Ve observe
that the actions recorded in all log records with LSNs less thaD I Inust be
ref1ectE~(l in the copy. Thus: 0111y log records \vithLSNs greater than I need be
reapplied to the copy.
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Finally, the updates of transactions that are incornplete at the tiIl1e of Inedia
recovery or that \vere aborted after the fuzzy copy \va" corllpleted need to be
undone to ensure that the page reflects only the actions of conunitted transac­
tions. The set of such transactions can be identified (1...'3 in the Analysis pass,
and we ornit the details.

18.8 OTHER APPROACHES AND INTERACTION WITH
CONCURRENCY CONTROL

Like ARIES, the Inost popular alternative recovery algoritlllns also rnaintain a
log of databa.'3e actions according to the \VAL protocol. A InajaI' distinction
between ARIES and these variants is that the Redo phase in ARIES repeats
history, that is, redoes the actions of all transactions, not just the non-losers.
Other algorithms redo only the non-losers, and the Redo phase follows the
Undo phase, in which the actions of losers are rolled back.

Thanks to the repeating history paradigm and the use of CLRs, ARIES sup­
ports fine-granularity locks (record-level locks) and logging of logical operations
rather than just byte-level rnodifications. For exalllple, consider a transaction
T that inserts a data entry 15* into a B+ tree index. Between the tirne this
insert is done and the time that T is eventually aborted, other transactions Inay
also insert and delete entries frorn the tree. If record-level locks are set rather
than page-level locks, the entry 15* I11ay be on a different physical page when
T aborts fr0111 the one that T inserted it into. In this case, the undo operation
for the insert of 15* lllUSt be recorded in logical tenns because the physical
(byte-level) actions involved in undoing this operation are not the inverse of
the physical actions involved in inserting the entry.

I.Jogging logical operations yields considerably higher concurrency, although the
use of fine-granularity locks can lead to increased locking activity (because rnore
locks 1nust be set). Hence: there is a trade-off between different \VAL-b<.k"led
recovery schclnes. vVe chose to cover ARIES because it has several attractive
properties, in pa.rticular, its sirnplicity and its ability to support fine-granularity
locks and logging of logical operations.

One of the earliest recovery algorithrns, llsed in the Syster11 R, prototype at
IBI\'1, takes a v(~ry different approach. 'There is no logging and, of course,
no \VAL protocol. Instead, the database is treated as a collection of pages
and accessed thTough a page table, which IIHtpS page ids to disk addresses.
\Vhen a transaction Inakes changes to <'1 data pagel it actually Inakes a copy
of the page, called the shadow of the page, a,nel changes the shadow page.
The transaction copies the appropriate part of the page table and chan,ges the
entry for the changed page to point to the shadov,r, so that it can see the



changes; ho\vever ~ other transactions continue to see the original page table,
and therefore the original page, until this transaction COll1lnits. Aborting a
transaction is sirnple: .Just discard its shadcnv versions of the page table and
the data pages. Cornrnitting a transaction involves rnaking its version of the
page table public and discarding the original data pages that are superseded
by shado\v pages.

This schelue suffers frorn a nUlnber of problerlls. First, data becornes highly
fragrnented clue to the replacernent of pages by shado"v versions, "vhich rIlay be
located far fr01n the original page. This phenornenon reduces data clustering
and rnakes good garbage collection irnperative. Second, the sche1ne does not
yield a sufficiently high degree of concurrency. rrhird, there is a, substantial
storage overhead due to the use of shadow pages. ~burth, the process aborting
a transaction can itself run into deadlocks, and this situation rllust be specially
handled because the sernantics of aborting an abort transaction gets rnurky.

For these reasons, even in Systern R, shadow paging was eventually superseded
by \VAL-based recovery techniques.

18.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

.. What are the advantages of the ARIES recovery algoritluu? (Section 18.1)

II Describe the three steps in crash recovery in ARIES? What is the goal of
the Analysis phase? The redo phase? The undo phase? (Section 18.1)

II \lVhat is the LSN of a log record? (Section 18.2)

II \Vhat are the different types of log records <:l,,11d when are they written?
(Section 18.2)

ifill "Vhat inforrnation is rnaintained in the transaction table and the dirty page
table? (Section 18.3)

ifill vVhat is\Vrite-Ah(~ad Logging? \Vhat is forced to disk at the tirne a trans­
action COIlllnits? (Section 18.4)

• \~That is a fuzzy checkpoint? \Vhy is it useful? "\That is a rnaBter log record?
(Section 18.5)

III In \vhich direction does the .A.nalysis phase of recovery scan the log? At
\vhich point in the log does it begin and end the scan? (Section 18.6.1)

II Descril)c \vhat infonnation is gathered in the Analysis pha,se and ho\v.
(Section 18.6.1)
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• In \vhich direction does the Redo phase of recovery process the log? At
which point in the log does it begin and end? (Section 18.6.2)

• What is a redoable log record? Under what conditions is the logged ac­
tion redone? \Vhat steps are carried out when a logged action is redone?
(Section 18.6.2)

• In which direction does the Undo phase of recovery process the log? At
which point in the log does it begin and end? (Section 18.6.3)

• What are loser transactions? How are they processed in the Undo phase
and in what order? (Section 18.6.3)

• Explain what happens if there are crashes during the Undo phase of re­
covery. What is the role of CLR.s? What if there are ~rashes during the
Analysis and Redo phases? (Section 18.6.3)

II How does a DBlV1S recover from 111edia failure without reading the complete
log? (Section 18.7)

• Record-level logging increases concurrency. What are the potential prob­
lems, and how does ARIES address them? (Section 18.8)

II What is shadow paging? (Section 18.8)

EXERCISES

Exercise 18.1 Briefly answer the following questions:

1. How does the recovery rnanager ensure atornicity of transactions? How does it ensure
durability?

2. What is the difference between stable storage and disk?

:3. What is the difference between a systenl crash and a uledi"l failure?

4. Explain the vVAL protocol.

t). Describe the steal and no-force policies.

Exercise 18.2 Briefly answer the follO\ving questions:

1. v\That are the properties required of LSNs?

2. \\That arc the fields in an update log record? Explain the use of each field.

:3. VVhat are redoal)le log records?

4. vVha.t are the differences between update log records and CLRs?

Exercise 18.3 Briefly answer the following questions:

1. \Vhat are the roles of the Analysis, Iledo1 and Undo phases in AHlES?

2. (;onsider the execution shown in Figure 18.6.



LSN LOG

00 begin__checkpoint

10 - end_cbeckpoint

20 - update: Tl writes P5

30 --- update: T2 writes P3

40 .....-.- T2 commit

SO T2end

60 .....-.- update: T3 writes P3

70 Tl abort

>< CRASH, RESTART

Figure 18.6 Execution with a Crash

LSN LOG

00 -r- update: Tl writes P2

10 -l- update: Tl writes PI

20 - update: T2 writes P5

30 update: T3 writes P3

40 T3 commit

50 1- update: T2 writes PS

60 i update: T2 writes P3

70 -r- T2 abort

Figure 18.7 Aborting a Transaction

(a) What is done during Analysis? (Be precise about the points at which Analysis
begins and ends and describe the contents of any tables constructed in this phase.)

(b) What is done during Redo? (Be precise about the points at which Redo begins and
ends.},

(c) 'VVhat is done during Undo? (Be precise about the points H.t which Undo begins
and ends.)

Exercise 18.4 Consider the execution shown in Figllre 18.7.

1. Extend the figure to shuw prevLSN and llndonextLSN values.

2. Describe the actions taken to rollback transaction 7"'2.
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LSN LOG

00 - begin_checkpoint

10 end_checkpoint

20 7 update: 1'1 write..~ PI

30 --- update: 1'2 writesP2

40 --- update: 1'3 writes P3

50 - 1'2 commit

60 --- update: 1'3 writes P2

70 ......0- 1'2 end

80 - update: 1'1 writes P5

90 -!- 1'3 abort

>< CRASH,RESTART

Figure 18.8 Execution with Multiple Cra...,hes

3. Show the log after T2 is rolled back, including all prevLSN and undonextLSN values in
log records.

Exercise 18.5 Consider the execution shown in Figure 18.8. In addition, the systerll crashes
during recovery after writing two log records to stable storage and again after writing another
two log records.

1. What is the value of the LSN stored in the master log record?

2. What is done during Analysis?

3. What is done during Redo?

4. \Vhat is done during Undo?

,5. Show the log when recovery is complete, including all non-null prevLSN and unclonextLSN
values in log records.

Exercise 18.6 Briefly answer the following questions:

1. How is checkpointing done in ARIES?

2. Checkpointing can also be done as follows: Quiesce the systerll so that only checkpointing
activity can be in progress, write out copies of all dirty pages, and include the dirty page
table and trallsaction table in the checkpoint record. \\lhat are the pros and cons of this
approach versus the checkpointiug a,pproach of ARIES?

:3. \Vhat happens if a second begiILcheckpoint record is encountered during the Analysis
ph<-1..13e?

4. C;an a second en(Lcheckpoint record be encountered during the AnaJysis phase?

5. \iVh,Y is the use of CLRs irnportant for the use of undo actions that are not the physical
inverse of the original update?



Figure 18.9

LSN LOG

00 -'- begin_checkpoint

10 -!- update: Tl writes PI

20 + '1'1 commit

30 -+ update: T2 writes P2

40 T '1'1 end

50 - '1'2 abort

60 -r update: '1'3 write'ii P3

70 end_checkpoint

80 -- '1'3 commit

>< CRASH, RESTART

Log Records between Checkpoint Records
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6. Give an example that illustrates how the paradigm of repeating history and the use of
CLRs allow ARIES to support locks of finer granularity than a page.

Exercise 18.7 Briefly answer the following questions:

1. If the system fails repeatedly during recovery, what is the rrlaximum nunlber of log
records that can be written (as a function of the number of update and other log records
written before the crash) before restart cOInpletes successfully?

2. What is the oldest log record we need to retain?

3. If a bounded amount of stable storage is used for the log, how can we always ensure
enough stable storage to hold all log records written during restart?

Exercise 18.8 Consider the three conditions under which a redo is unnecessary (Section
20.2.2).

1. \Vhy is it cheaper to test the first two conditions?

2. Describe an execution that illustrates the use of the first condition.

;3. Describe an execution that illustrates the use of the second condition.

Exercise 18.9 The description in Section 18.6.1 of the Analysis pha,se rnade the sirnplifying
assulTlptioll that no log records appeared between the begill-checkpoint and end_checkpoint
records for the Inost recent cOlnplete checkpoint. The following questions explore how such
records should be handled.

1. Explain why log records could be written between the begiIl-checkpoint and eneLcheckpoint
records.

2. Describe how the Analysis phase could be Inodified to handle such records.

;3. Consider the execution sho\vn in l~"igure 18.9. Show the contents of the encLcheckpoint
record.

4. Illustrate your rnodified Analysis pha.se on the execution shown in Figure 18.9.
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Exercise 18.10 Ans\ver the following questions briefly:

C~HAPTER IB

1. Explain how 1nedin recovery is handled in ARIES.

2. \Vhat are the pros (I,nd cons of using fuzzy durnps for nledia recovery?

~1. \Vhat are the sirYlilarities and differencf~s between checkpoints and fuzzy chunps?

4. Contrast ARIES with other vVAL-based recovery schernes.

5. Contrast AHlES with shadcrw-page-bcLsed recovery.

BIBLIOGRAPHIC NOTES

Our discussion of the ARIES recovery algorithm is based on [544]. [282] is a survey article
that contains a very readable, short description of ARIES. [541, 545] also discuss ARIES.
Fine,·granularity locking increases concurrency but at the cost of 11101'e locking activity; [542]
suggests a technique based on LSNs for alleviating this problerYl. [458] presents a for111al
verification of ARIES.

[355] is an excellent survey that provides a broader treatrnent of recovery algoritlulls than our
coverage, in which we chose to concentrate on one particular algorithrn. [17] considers perfor­
rnance of concurrency control and recovery algorithrIls, taking into account their interactions.
The irnpact of recovery on concurrency control is also discussed in [769]. [625] contains a
perforrnance analysis of various recovery techniques. [236] cornpares recovery techniques for
main rnerllory database systeulS, which are optirnized for the case that 11l0st of the active data
set fits in rnain H1ernory.

[478] presents a description of a recovery algorithm based on write-ahead logging in which
'loser' transactions cHe first undone and then (only) transactions that corl1nlitted before the
crash are redone. Shadow paging is described in [493, 337]. A scherne that uses a cOlnbination
of shadow paging and in-place updating is described in [624].
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SCHEMA REFINEMENT AND

NORMAL FORMS

WI" What problems are caused by redundantly storing information?

.. What are functional dependencies?

.. What are nornlal forms and what is their purpose?

... What are the benefits of BCNF and 8NF?

... What are the considerations in decolllposing relations into appropriate
normal forms?

.. Where does normalization fit in the process of database design?

... Are luore general dependencies useful in database design?

.. Key concepts: redundancy, insert, delete, and update anomalies;
functional dependency, Armstrong's Axioms; dependency closure, at­
tribute closure; normal fonns, BCNF, 8NF; decOlnpositions, lossless­
join, dependency-preservation; multivalued dependencies, join depen­
dencies, inclusion dependencies, 4NF, 5NF

It is a nlelancholy truth that even great IneIl have their poor relations.

Charles Dickens

Conceptual database design gives us a set of relation 8chen1&') and integrity
constraints (ICs) that can be regarded a,s a good starting point for the final
dat(1)ase design. T'his initial design IHust be refined by taking the lCg into
account rnore fully than is possiblc\vith just the Ell rnodel constructs aIId also
by considering perforrnance criteria and typical workloads. In this chapter,
we c!iscllss how lCs can be used to refine the conceptual schenul produced by

G05
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translating anER, 1Hodel design into a collection of relations. \Vorkload and
perforrnance considerations are discussed in Chapter 20.

\Ve concentrate on an irnportant class of constraints called flLnct'ional depen­
dencies. Other kinds of les, for exarnple, m/ultival'll,ed dependencies and join
dependencies, also provide useful inforrnation. They can sOIuetilnes reveal re­
dundancies that cannot be detected using functional dependencies alone. We
discuss these other constraints briefly.

This chapter is organized as follows. Section 19.1 is an overview of the schenla
refineInent approach discussed in this chapter. We introduce functional depen­
dencies in Section 19.2. In Section 19.3, we show how to reason with functional
dependency information to infer additional dependencies from a given set of
dependencies. We introduce norlnal forIns for relations in Section 19.4; the
normal form satisfied by a relation is a measure of the redundancy in the rela­
tion. A relation with redundancy can be refined by decomposing it, or replacing
it with smaller relations that contain the saIne information but without redun­
dancy. We discuss deco1npositions and desirable properties of decompositions
in Section 19.5, and we show how relations can be decomposed into smaller
relations in desirable normal forms in Section 19.6.

In Section 19.7, we present several examples that illustrate how relational
schemas obtained by translating an ER model design can nonetheless suffer
froln redundancy, and we discuss how to refine such schemas to eliminate the
problems. In Section 19.8, we describe other kinds of dependencies for databa..se
design. We conclude with a discussion of nornlalization for our case study, the
Internet shop, in Section 19.9.

19.1 INTRODUCTION TO SCHEMA REFINEMENT

We now present an overview of the probleIns that schenla refinement is intended
to address and a refinernent approach based on decolnpositions. Iledundant
storage of inforrnation is the root cause of these problerns. Although decoInpo­
sition can elirninate redundancy, it can lead to problclns of its o\vn and should
be used with caution.

19.1.1 Pro~lems Caused by Redundancy

Storing the SeHne inforrnation redundantly, that is, in l110re than one place
\vithin a database, can lead to several problcll1S:

II Redundant Storage: SOU1C iuforInation is stored repeatedly.



607

II Update Anomalies: If one copy of sueh repeated data is updated, an
inconsistency is created unless all copies cu'c sirnilarly updated.

II Insertion Anomalies: It IIU1Y not be possible to store certain inforlnation
unless sorne other, unrelated, inforIIlatioIl is stored as well.

II Deletion Anomalies: It rnay not be possible to delete certain inforrnation
vvithout losing SOHle other, unrelated, infofrnation as v'lell.

Consider a relation obtained by translating a variant of the IIourly_Emps entity
set frorn Chapter 2:

Hourly_Ernps(:2,sn, na'lne, lot, rating, hOllrly_wages, hOllr.'LwoTked)

In this chapter, we ornit attribute type inforrnation for brevity, since our focus
is on the grouping of attributes into relations. We often abbreviate an attribute
narne to a single letter and refer to a relation schema by a string of letters, one
per attribute. For exarllple, we refer to the Hourly_Ernps scherna as SNLRWH
( ~V denotes the hov,rly_wages attribute).

1'he key for Hourly_Emps is ssn. In addition, suppose that the hourly_wages
attribute is deterrnined by the Tating attribute. That is, for a given 7'CLting
value, there is only one perrllissible houTly_wages value. This IC is an exanlple
of a functional dependency. It leads to possible redundancy in the relation
Hourly_Ernps, as illustrated in Figure 19.1.

I narne
., ._ ....._..

-, --- - ._-

123-22-3666 Attishoo 48 8 10 40
._.n_··_··~·~···~· ~.."""".'.'.""<-",,'-"""'.'

231-31-5368 Sruiley 22 8 10 ~30
....'~.".li ..."'•. .__....~ .._..._.._..-

131-24-3650 Srllethurst 35 5 7 ~30
-

434-26-3751 Guldu :35 5 7 ~)2
---

612-67-4134 :NIadayan 35 8 10 40
._........._- . .-

Figure 19.1 An Instance of the Hourly_Emps Relation

If the saIne value appears in the rating colurnn of tv'lo tuples, the IC tells us
that the sarne value HUlst appear in the hourly_wages colurnn c1.'3 well. This
redundancy has the sarne negative consequences a..s before:

II Redtlndant StoTage: rrhe rating value 8 corresponds to the hourly wage 10,
and this (L.':lsociation is repeated three tirnes.

II [Tpdate AnoTno1ic,,: The hO'lLTlY_'l1HLgcs in the first tuple could be updated
without rnaking a sirnilar change in the second tuple.
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• InseT"lion Ano'mal'ie,';: VVe cannot insert a tuple for an crnployee unless \ve
know the hourly wage for the ernployee's rating value.

• Delet'ion finon-LaUe..,: If \ve delete all tuples vvith a given rating value (e.g.,
we delete the tuples for Snlcthurst and Guldu) \ve lose the &t;sociation
bet:\veen that Tat'ing value and its houTly_wage value.

Ideally, vve \vant scherna.s that do not pennit redundancy, but at the very least
we want to be able to identify schernas that do allow redundancy. Even if we
choose to accept a scherna vvith sorne of these drawbacks, perhaps owing to
perforlnance considerations, we want to rnake an infonned decision.

Null Values

It is worth considering whether the use of null values can address some of these
problems. As we will see in the context of our exarnple, they cannot provide a
complete solution, but they can provide sorne help. In this chapter, we do not
discuss the use of null values beyond this one exarnple.

Consider the example Hourly_Elnps relation. Clearly, null values cannot help
eliminate redundant storage or update anomalies. It appears that they can
address insertion and deletion anomalies. For instance, to deal with the inser­
tion anolnaly exarnple, we can insert an elTIplayee tuple with null values in the
hourly wage field. However, null values cannot address all insertion anornalies.
For exarnple, we cannot record the hourly wage for a rating unless there is
an ernployee with that rating, because we cannot store a null value in the ssn
field, which is a prirnary key field. Sinlilarly, to deal with the deletion anomaly
exarnple, we rnight consider storing a tuple with null values in all fields except
Tat'ing and hourly_wages if the last tuple with a given rating would otherwise
be deleted. However, this solution does not work because it requires the 8871,

value to be null, and prirnary key fields cannot be null. Thus, rl/ull values do
not provide a general solution to the problerns of reclundancy, even though they
can help in sorne cases.

19.1.2 Decompositions

Intuitively, redundancy arises \vhen a relational schcrna forces an association
bet\veen attributes that is not natural. Functional dependencies (and, for that
rnatter, other Ies) can 'be used to identify such situations and suggest re£1ne­
rnents to the scheruEL The essential idea is that rnany problerns arising fr0111 re­
dundancy carl be addressed by replacing a relation 'with a collection of'srnaller'
relations.
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A. decomposition of a relation schema It consists of replacing the relation
scherna by t\VO (or 1no1'e) relation schcrnas that each contain a subset of the
attributes of R and together include all attributes in R. Intuitively, \eve \evant
to store the inforrnation in any given instance of R by storing projections of
the instance. This section exalnines the use of decornpositions through several
exanlples.

vVe can decornpose lIourly_Ernps into two relations:

Ifourly_Ernps2C~.:~n~naTne, lot, 'rating, hOUr\'Lwo'rked)
\Vages (rating, hourly_wages)

The instances of these relations corresponding to the instance of Hourly_E1nps
relation in Figure 19.1 is shown in Figure 19.2.

'--['-ioT] 'rating [ hours_lLJorked-
n

]I narne
.. ._- .....""....,,,..........

123-22-3666 Attishoo 48 8 40
-

231-31-5368 Sluiley 22 8 30
-_..._...... _...

131-24-3650 Smethurst 35 5 30
...-.,...-.....-..."' ...." ...... ,...._- ..._._...

434-26-3751 Guldu 35 5 32
-_...~._--_ ...

612-67-4134 Madayan 35 8 40

[ ssn

I rating l!!ourly~'u)ages

Fl_~_no _
Figure 19.2 Instances of Hourly...Emps2 and vVages

Note that we can easily record the hourly wage for any rating sirnply by adding
a tuple to \;Vages, even if no ernployee with that rating appears in the cur­
rent instance of flourly_Ernps. Changing the wage associated \vith a rating
involves updating a single Wages tuple. This is rnore efficient than updating
several tuples (as in the original design), and it elirninates the potential for
inconsistency.

19.1.3 Problems Related to Decomposition

lJnless \ve are careful~ decornposing a relation scherna can create 1n01'e problerns
than it solves. rrvVO irnportant questions llHlst be asked repeatedly:

1. 1)0 vve need to decornpose a relation?
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2. \\That problerns (if any) does a given deeornposition cause?

CHAPTER 19

To help \vith the first question, several norrrtal j'O'rnl,8 have been proposed for
relations. If a relation scherna is ill one of these nOfrual 1'orrns, we knovv that
certain kinds of problerlls cannot arise. Considering the norrnal forrn of a given
relation scherna can help us to decide \vhether or not to decornpose it further. If
vve decide that a relation scherna 111USt be decornposed further, vve rnust choose
a particular dec()lnposition (I.e., a particular collection of slnaller relations to
replace the given relation).

With respect to the second question, two properties of decornpositions are
of particular inter(~st. The lossless-join property enables us to recover any
instance of the decornposed relation froln corresponding instances of the s111aller
relations. The dependency-preservation property enables us to enforce any
constraint on the original relation by sinlply enforcing SaIne contraints on each
of the srnaller relations. That is, we need not perform joins of the slllaller
relations to check whether a constraint on the original relation is violated.

From a performance standpoint, queries over the original relation may require
us to join the decomposed relations. If such queries are common, the perfor­
rnance penalty of decomposing the relation may not be acceptable. In this
case, we may choose to live with some of the problems of redundancy and not
decompose the relation. It is important to be aware of the potential problerns
caused by such residual redundancy in the design and to take steps to avoid
thern (e.g., by adding SaIne checks to application code). In sonle situations,
decomposition could actually improve performance. This happens, for exam­
ple, if lnost queries and updates exanline only one of the decornposed relations,
which is srnaller than the original relation. vVe do not discuss the irnpact of
decompositions on query perforInance in this chapter; this issue is covered in
Section 20.8.

()ur goal in this chapter is to explain S0111e powerful concepts and design guide­
lines b&'3ed on the theory of functional dependencies. A good datab&'3e designer
should have a firm grasp of nor1nal fonns and \vhat problerns they (do or do
not) alleviate, the technique of decornposition, and potential problerns vvith
decornpositions. For exaInple, a designer often asks questions such &'3 these: Is
a relation in a given nonnal forIn? Is a decornposition clependency-preserving?
Our objective is to explain when to raise these questions and the significance
of the answers.
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19.2 FUNCTIONAL DEPENDENCIES

611

A functional dependency (FD) is a kind of Ie that generalizes the concept
of a key. Let R be a relation scherna and let ..¥" and Y be nonernpty sets of
attributes in R. We say that an instance r of R satisfies the FDX ~ }i 1 if the
following holds for every pair of tuples tl and t2 in r-.

If t1.X = t2 ..X, then tl.}T = t2.Y'".

w(~ use the notation tl.X to refer to the projection of tuple t1 onto the at­
tributes in .<\'", in a natural extension of our TIlC notation (see Chapter 4) t.a
for referring to attribute a of tuple t. An FD X ----7 Yessentially says that if two
tuples agree on the values in attributes X, they 111Ust also agree on the values
in attributes Y.

Figure 19.3 illustrates the rneaning of the FD AB ----7 C by showing an instance
that satisfies this dependency. The first two tuples show that an FD is not the
same as a key constraint: Although the FD is not violated, AB is clearly not
a key for the relation. The third and fourth tuples illustrate that if two tuples
differ in either the A field or the B field, they can differ in the C field without
violating the FD. On the other hand, if we add a tuple (aI, bl, c2, dl) to the
instance shown in this figure, the resulting instance would violate the FD; to
see this violation, compare the first tuple in the figure with the new tuple.

-- ...-......................... ..."""......................"N

a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 dl
a2 bl c3 ell

..............."" ...............,."'" ' ........ n ....' ...................-.---- -"-

Figure 19.3 An Instance that Satisfies AB -Jo C

Ilecall that a legal instance of a relation nUlst satisfy all specified les, including
all specified FDs. As noted in Section 3.2, Ies rIlust be identified and specified
ba...sed on the sernantics of the real-world enterprise being n1odeled. By looking
at an instance of a relation, we rnight be able to tell that a certain FD does not
hold. I-Iowever; we C<-:l.Tl never deduce that an FD docs hold by looking at one
or 1I10re instances of the relation, beca,use an FD, like other les, is a staternent
about all possible legal instances of the relation.

1X _._, Y is re,lel aAS X fu'nctionally deteTrninc8 Y, or simply a..s X determ'ines Y.
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.A prirnary key constraint is a special ease of an .1"1). The attributes in the key
play the role of X, and the set of all attributes in the relation plays the role of
Y. Note, ho\vever, that the definition of an FD does not require that the set ..Y"
be 111iniInal; the additionalrninimality condition Illust be Inet for -'~ to be a key.
If ..~ ----+Y holds, \vhere Y" is the set of all attributes, and there is SCHne (strictly
contajned) subset llof .iJ( such that 1/ ----+ },~ holds, then ..X" is a 81LIJerkey.

In the rest of this chapter, ·we see several exarIlples of FDs that are not key
constraints.

19.3 REASONING ABOUT FDS

Given a set of FDs over a relation scheula .R, typically several additional FDs
hold over R whenever all of the given FDs hold. As an exalnple, consider:

WorkersC~~n, naTne, lot, did, since)

We know that ssn ----+ did holds, since ssn is the key, and FD did ----+ lot is given
to hold. Therefore, in any legal instance of Workers, if two tuples have the
same ssn value, they Blust have the sarne did value (frolH the first FD), and
because they have the sarrle did value, they must also have the saIne lot value
(1'1'0111 the second FD). Therefore, the FD ssn ----+ lot also holds on Workers.

We say that an FD f is implied by a given set F of FDs if f holds on every
relation instance that satisfies all dependencies in F; that is, f holds whenever
all FDs in F hold. Note that it is not sufficient for f to hold on SaIne instance
that satisfies all dependencies in F; rather, f rnust hold on every instance that
satisfies all dependencies in P'.

19.3.1 Closure of a Set of FDs

The set of all .FDs irnplied by a given set F of FDs is called the closllre of
Ji-', denoted as .F'+. An irnportant question is how we can infer, or cornpute,
the closure of a given set ]? of FDs. ~rhe answer is sirnple and elegant. The
folhwving three rules, called Armstrong's Axioms, can be applied repeatedly
to infer all FI)s irnplied by a set ]? of FDs. \lVe use ..,""Y, and Z to denote scts
of attributes over a relation scherna It:

\I Reflexivity: If X ~ }T, then X ----+ Y.

\I Augn1.entation: If )( -'tY, then ..YZ ---t }TZ for any Z.

11II Transitivity: If)( ----+Y (urd Y
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Theorem 1 AT1nstrong'8 A:riorns are sound J in that they gene1ute only 1t'Ds
in F"+- 'when apT)l'ied to a set, F of j?D8. They are also completeJ in that repeated
a]Jplicat'ion afthese T"ules 1JJill generate all FDs in the ClOS'U7"'e .Fl+.

The soundness of Arrnstrong's Axiorns is straightfor\vard to prove. Cornplete­
ness is harder to show; see Exercise 19.17.

It is convenient to use SOlne additional rules while rea..soning about P+:

• Union: If X ~ Yand X ~ Z, then X ~ YZ.

• Decomposition: If X -+ YZ, then X ~ y' and X -7 Z.

These additional rules are not essential; their soundness can be proved using
Armstrong's AxiolllS.

To illustrate the use of these inference rules for FDs, consider a relation schelua
ABC with FDs A ····-*B and B -7 C. In a trivial FD, the right side contains
only attributes that also appear on the left side; such dependencies always hold
due to reflexivity. Using reflexivity, we can generate all trivial dependencies,
which are of the form:

X ~ Y, where Y ~ X, X ~ ABC, and Y ~ ABC.

FrOHl transitivity we get A -+ C. Fronl auglnentation we get the nontrivial
dependencies:

AC--->- BGY
, AB -7 AC', AB -7 C13.

As another exalnple, we use a rnore elaborate version of Contracts:

Contracts (!:..9ntractid, supplierid, pro,jectid, dept'id, partid, qty, val'ue)

\Ve denote the schenla for Contracts a..s CSJDPQ V. The rneaning of a tuple is
that the contract with contractid C is an agreelnent that supplier S (sv,pplierid)
'will supply Q iterns of part? (par-tid) to project J (pTo,ject'id) associated with
departrnent D (deptid); the value tl of this contract is equal to value.

The following res are known to hold:

1. 1'he contract id Gl is a key: C -+ CSJDP(J V.

2. A project purclHlses a given part using a single contract: .II) --+ C1
•
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3. .A. departInent purcha..'3es a.t most one part froul a supplier: 8D ---+ P.

Several a.dditional FDs hold in the closure of the set of given FDs:

E'rorIl .IP -} C\ G'1 -+ C!SJD.PCJ 'V, and transitivity, ""VB infer .IP -_..+ CJSJDPCJ V.

FraIn 8D _...-7 P and augnlentation, we infer SDJ -7 JP.

FraIn 8DJ -7 .IP, JP -7 CSJDPQ~r, and transitivity, we infer SDJ ---+ CSJD­
PQ V. (Incidentally, while it Illay appear tenlpting to do so, we cannot conclude
SD -7 CSDPQ V, canceling .I on both sides. FD inference is not like aritlunetic
Illultiplication! )

We can infer several additionalFDs that are in the closure by using augruen­
tation or decomposition. For exarnple, from C----+ CSJDPQ V, using decompo­
sition, we can infer:

C -7 C, C -7 5, C -7 J, C -} D, and so forth

Finally, we have a number of trivial FDs from the reflexivity rule.

19.3.2 Attribute Closure

If we just want to check whether a given dependency, say, X ---+ Y, is in the
closure of a set ~F' of FDs, we can do so efficiently without cornputing Fl+. We
first cornpute the attribute closure X+with respect to F, \vhich is the set
of attributes A such that X -7 A can be inferred using the Arrnstrong Axioms.
The algorithrn for computing the attribute closure of a set X of attributes is
shown in Figure 19.4.

closure = X;
repeat until there is no change: {

if there is an FD U -} V in F such that U ~ closllre,

then set clo,sure == closure U v·
}

Figure 19.4 Computing the Attribute Closure of Attribute Sct X

Theorem 2 The algorithln .shown inF'iguTc 1.9.4 cornputes the attr'ibv,te closure
X-+-- of the attribute set ~Y 'IDith respect to the sct of }"1Ds Fl.
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The proof of this theorern is considered in Exercise 19.15. This algoriUuIl can
be rl10dified to find keys by starting with set .i\"" containing a, single attribute and
stopping as soon cl,.o;;; ClOS'UTC contains all attributes in the relation scherna. By
varying the starting attribute and the order in \vhich the algorithrIl considers
FDs, \ve can obtain all candidate keys.

19.4 NORMAL FORMS

Given a relation sche111a, we need to decide whether it is a good design or we
need to decornpose it into srnaller relations. Such a decision llUlst be guided
by an understanding of what problenls, if any, arise froln the current schelna.
To provide such guidance, several normal forms have been proposed. If a
relation schelna is in one of these norrnal forIns, we know that certain kinds of
problerlls cannot arise.

The nonnal forrns ba...'Sed on FDs are fir-st nor-rnal forrn (1 Nfj, second nor-mal
forrn (2NJ?) , thi'td norrnalfor-rn (3NF) , and Boyce-Codd nor-rnal for-rn (BCN]?).
These fonns have increasingly restrictive requirernents: Every relation in BCNF
is also in 3NF, every relation in 3NF is also in 2NF, and every relation in 2NF is
in INF. A relation is in first normal fortH if every field contains only atornic
values, that is, no lists or sets. This requirerllent is iInplicit in our definition
of the relational rnode!. Although SOHle of the newer database systerlls are
relaxing this requirernent, in this chapter we aSSUlne that it always holds. 2NF
is Inainly of historical interest. 3NF and BCNF are irnportant frolH a database
design standpoint.

While studying norrnal fonns, it is irnportant to appreciate the role played by
FDs. Consider a relation scherna I? with f1ttributes ABC:. In the absence of any
ICs, any set of ternary tuples is a legal instance and there is no potential for
redundancy. ()n the other hand, suppose that \ve have the FI) A --,'> 13. Now if
several tuples have the sarne A value, they rnust also have tllC sarneB value.
This potential redundanc:y can be predicted using the FD il1fonnation. If 11101'8

detailed 1Cs are specified, \ve rnay be able to detect rnore subtle redundancies
as \vell.

\Ve prilnarily discuss redundancy revealed l)y PI) inforrnation. In Section 19.8,
\ve discuss 11lore sophisticated 1Cs ca1led rnuUivalued dependencies and join
dependencies and norrnal forrns based on theIn.

19.4.1 Boyce...Codd Normal Form

Let I? be a relation scherna, 1? be the set ofF'I)s given to hold over R, .iX" be a.. - .

subset of the attributes ofR, and A be (\,.11 attribute of I? l~ is in Boyce-Codd
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normal form if, for everyFl)X -+ A in F, one of the follo\ving statements is
true:

• A E .<Y; that is, it is a trivial FD, or

• X is a superkey.

Intuitively, in a BCNF relation, the only nontrivial dependencies are those
in 'which a key detennines SaIne attribute(s). Therefore, each tuple can be
thought of C1....':l an entity or relationship, identified by a key and described by
the reluaining attributes. !(ent (in [425]) puts this colorfully, if a little loosely:
"Each attribute nlust describe [an entity or relationship identified by] the key,
the \vhole 'key, and nothing but the key." If we use ovals to denote attributes
or sets of attributes and dravv arcs to indicate FDs, a relation in BCNF has
the structure illustrated in Figure 19.5, considering just one key for simplicity.
(If there are several candidate keys, each candidate key can play the role of
KEY in the figure, with the other attributes being the ones not in the chosen
candidate key.)

--...-::-----
Nonkey attr2

Figure 19.5 FDs in a BCNF Relation

BCNF ensures that no redundancy can be detected using FD infonnation alone.
It is thus the Inost desirable norrnal form (fronl the point of view of redundancy)
if we take into account only FD information. 1'his point is illustrated in Figure
19.6.

Figure 19.6 Instance Illustrating BCNF

This figure shc)\vs (t\VO tuples in) an instance of a relation with three attributes
X, }T, an.d A. r:Chere a.re t"vo tuples with the saIne value in the X colurnn. Now
suppose that \ve kno\v that this instance satisfies an FD -,y._-+ A. ~re can see
that one of the tuples heLl) the value a in the A colurnn. \\lhat can \ve infer
al)out the value in the A colllrnn in the second tuple? 'Using the FI), \ve can
conclude that the second tuple also has the value a in this colurnn. (Note that
this is really the only kind of inference \ve can Ina,ke about values in the fields
of tuples by usingFDs.)
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But is this situation not an exaInple of redundancy? \Ve appear to have stored
the value a t\viee. Can such a situation arise in a BCNF relation? The ans\ver
is No! If this relation is in BCNF, because A is distinct fronl ..x:-, it follows that
X IllU8t be a key. (Otherwise, the FD X -+ A \vould violate BC:NF.) If .IY is
a key, then Yl = Y2, which Ineans that the two tuples are identical Since a
relation is defined to be a 8et of tuples, \\re cannot have two copies of the saIne
tuple and the situation shc)\vn in Figure 19.6 cannot arise.

rrherefore, if a relation is in BCNF, every field of every tuple records a piece
of inforlnation that cannot be inferred (using only FDs) frorn the values in all
other fields in (all tuples of) the relation instance.

19.4.2 Third Normal Form

Let R be a relation scherna, F be the set of FDs given to hold over R, X be a
subset of the attributes of R, and A be an attribute of R. R is in third normal
forIn if, for every FD X -+ A in F, one of the following statenlents is true:

• A EX; that is, it is a trivial FD, or

• X is a superkey, or

• A is part of sorne key for R.

rrhe definition of 3NF is sinlilar to that of BCNF, with the only difference being
the third condition. Every BCNF relation is also in 3NF. To understand the
third condition, recall that a key for a rela,tion is a rninirnal set of attributes
that uniquely deterrnines all other attributes. A rrlllst be part of a key (any
key, if there are several). It is not enough for A to be part of a superkey,
because the latter condition is satisfied by every attribute! Finding all keys
of a relation scherna is known to be an NP-cornplete problern, and so is the
prob1ern of detennining whether a relation seherna is in 3NF.

Suppose that a dependency X· -+ A causes a violation of 3NF. There are two
cases:

• X is a proper 8'l.lb8Ct of 80'(ne key K. Such a dependency is 801netirnes called
a partial dependency. In this Cc1se, we store (X, ./1) pairs redundantl:y.
As an eXEtlnple, consider the Ileserves relation \vith attributes SBIJC1 frorn
Section 19.7.4. The only key is 8El), and \ve have the FD 8 -_.+ C/. vVe store
the credit ca,rd nurnber for a sailor as lnany tirnes <:1.'3 there are reservations
for that sailor.

• X is not a pTOpCT snb8ct of any key. Such a dependerlcy is sornetirnes
called a transitive dependency, because it rneans \ve have a chain of
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dependencies !( ---+ X ---+ A. The problem is that we cannot associate an
X value \vith a K value unless we also associate an A value vvith an X
value. As an exanlple, consider the Hourly-Enlps relation with attributes
SNLRWH froIn Section 19.7.1. The only key is S, but there is an FD R
---+ 1,V, \vhieh gives rise to the chain S ---+ R -~-" W. The consequence is that
\ve cannot record the fact that elnployee S has rating R without knowing
the hourly \vage for that rating. 'This condition leads to insertion, deletion,
and update anoIllalies.

Partial dependencies are illustrated in Figure 19.7, and transitive dependencies
are illustrated in Figure 19.8. Note that in Figure 19.8, the set X of attributes
11lay or Illay not have some attributes in conunon with KE-Y; the diagranl should
be interpreted as indicating only that X is not a subset of KEY.

Case 1: A not in KEY

Figure 19.7 Partial Dependencies

Case 1: A not in KEY

Case 2: A is in KEY

Figure 19.8 Transitive Dependencies

The Inotivation for 3NF is rather technical. By Inaking an exception for certain
dependencies involving key attributes, we can ensure that every relation schclna
can be decornposed into a collection of 3NF relations using only dec(nnpositions
that have certain desirable properties (Section 19.5). Such a guarantee does not
exist for BCNF relations; the :3NF definition weakens the BCNF requirernents
just enough to Inake this guarantee possible. \Ve Inay therefore cOlnprornise by
settling for a :3NF design. As we see in Chapter 20, we 11lay sOllletilnes accept
this cornpr()Jni~e (or even settle for a non-:3NF scheIna) for other reasons as
well.

lJnlike BCNF, however, BOlne redundancy is possible "Vvith :~NF. The problerns
clssoci<:tted \vith partial and transitiv(~ dependencies persist if there is a nontriv­
ial dep(~ndencyX --~., A and X is not a sup(~rkey, even if the relation is in :3NF
l)ccause A is pa,rt of a key. Th understand this point, let us revisit the R,eserves
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relation with attributes SEDe a,nd the FD S ~ ['1, \vhich states that a sailor
uses a unique credit card to pay for reservations. S is not a key, clnd C is not
part of a key. (In fact, the only key is SED.) Hence, this relation is not in 3NF;
(S, CJ pairs are stored redundantly. IIowever, if we also know that credit cards
uniquely identify the o\vner, vve have the FD C --? 5, which rneans that GEJD
is also a key for Reserves. Therefore, the dependency S -7 C does not violate
3NF, and R,eserves is in 3NF. Nonetheless, in all tuples containing the saIne 5
value, the saIne (8, CJ pair is redulJ.dantly recorded.

For cOlllpleteness, we reluark that the definition of second norrnal form is
essentially that partial dependencies are not allowed. Thus, if a relation is in
3NF (which precludes both partial and transitive dependencies), it is also in
2NF.

19.5 PROPERTIES OF DECOMPOSITIONS

DecoIllposition is a tool that allows us to eliminate redundancy. As noted in
Section 19.1.3, however, it is iInportant to check that a decoInposition does not
introduce new problellls. In particular, we should check whether a decomposi­
tion allows us to recover the original relation, and whether it allows us to check
integrity constraints efficiently. vVe discuss these properties next.

19.5.1 Lossless-Join Decomposition

Let R be a relation schelna and let F be H, set of FDs over R. A decolnposition
of R into two schernas with attribute sets X andY is said to be a lossless-join
decomposition with respect to F if, for every instance T of R that satisfies
the dependencies in }?, 1Tx('r) N 1T}-(r) = T. In other words, \ve can recover
the original relation 1'rorn the deconlposed relations.

This definition can easily be extended to cover a decornposition of Ii into Inore
than two relations. It is ea."sy to see that T ~ 1fx(r) [XJ 1TyC,.,) ahvays holds.
III general, though, the other direction does not hold. If sve take projections
of a relation and recornbine theln using natural joirl,\Ve typically obta.in SOlne

tuples that 'were 1.'1.ot in the original relation. This situation is illustrated in
Figure 19.9.

By replacing the instance T shown in Figure 19.9 "Vvith the instances 1f8P(r) and
1T PI) (r), '\ve lose sorne inforInation. In particular, suppose that the tuples in 't

d(-~note relationships.vVe can no longer tell that the relationships (81, PI, d:3)

and (8:3,])1, d:d do not hold. rrhe decoluposition of schelna SPD into S.P and
PI) is therefore loss,Y if the instance '( shown in the figure is legal, that is, if this
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81 pI ell
f---- ._- _..-

82 p2 d2
..-

83 pI d3_.
sl pI d3
s3 pI ell

[P--·-I~

§.'~ ~~
pI d3

1rI:JD(r)

s1 pI
s9 p2'....

f---..

s3 pI
...-

Instance T

.....,.,.... .._.

sl pI. ell
s2 p2 d2

.._..-

L~.9. pI. d3

Figure 19.9 Instances Illustrating Lossy Decompositions

instance could arise in the enterprise being rIlodeled. (Observe the siInilarities
between this eX~Llnple and the Contracts relationship set in Section 2.5.3.)

All decompositions used to eli'minate redundancy must be lossless. The follow­
ing sirnple test is very useful:

Theorern 3 Let R be a relation and F be a set of FDs that hold over Il. The
decomposition ofR into relations with attribute sets III and R2 is l08sless if and
only if p+ contains either the FD R1 n R2 ---+ R 1 or the FDR1 n R2 ---'f R2.

In other words, the attributes cornrIlon to Rl and R2 HUlst contain a key for
either RIOI' R 2 .2 If a relation is decornposed into 1110re than two relations,
an efficient (tiTne polynomial in the size of the dependency set) algoritllln is
available to test whether or not the dec(nnposition is lossless, but we will not
discuss it.

Consider the lIourly_Ernps relation again. It has attributes SNLRWII, and
the FI) R ~ W causes a violation of 3NF. We dealt ¥lith this violation by
decorIlposing the relation into SNLRII and IlvV. Since R is cornrnon to both
decornposed relations and Ii ---+ W holds, this decornposition is lossless-join.

This exarnple illustrates a general observation that follows froIH Theorerll 3:

If an Ff) X ---+ }T holds over a relation ii and ~y n }T is ernpty, the
decornposition ofR into .R - y~ and XY is lossless.

X appears in both It --~~. y' (since ~¥ (I }7 is ernpty) and .IYY, and it is a key for
){}T.

2See Exercise 19.19 for a proof of Theorern :3. Exercise 19.11 illustrates that the 'only if l claim
depends on the IL')slIInption that only functional dependencies can be specified a..s integrity constraints.
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Another hnportant observation, '\vhieh we state without pr()of~ hal;) to do \vith
repeated decolnpositiollS. Suppose that a relation Ii is decornposed into Rl and
R2 through a IOBsless-join decolupositiol1, and tlUtt Rl is decolnposed intoRl.1
and R12 through another lossless-join decolnposition. Then, the decolnposition
of R into R.lI, R.12, and .R2 is lossless-join; by joining ftll and R12, \ve can
recover R.1, and by then joining Rl and R2, we can recover flo

19.5.2 Dependency-Preserving Decomposition

Consider the Contracts relation with attributes C8JDPCJVfronl Section 19.3.l.
The given FDs are C -+ C8JDPQV, JP "'-7 C1

, and SD -+ P. Because SD is not
a key the dependency SD ".,-1- P causes a violation of BCNF.

We can decolnpose Contracts into two relations with schelnas CSJDQ V and
SDP to address this violation; the decolnposition is lossless-join. There is
one subtle problelll, however. We can enforce the integrity constraint JP -} C
easily when a tuple is inserted into Contracts by ensuring that no existing tuple
has the same JP values (as the inserted tuple) but different C values. Once
we decompose Contracts into CSJDQ V and SDP, enforcing this constraint
requires an expensive join of the two relations whenever a tuple is inserted into
CSJDQ V. We say that this decornposition is not dependency-preserving.

Intuitively, a dependency-preserving decornposition allows us to enforce all FDs
by exarnining a single relation instance on each insertion or rnodification of a tu­
ple. (Note that deletions cannot cause violation of FDs.) To define dependency­
preserving decornpositions precisely, we have to introduce the concept of a pro­
jection of FDs.

Let R be a relation schenla that is decolnposed into two schernaswith attribute
sets X' and }/, and let F be a set of FDs over Il. T'he projection of F on X is
the set of FDs in the closure l i'+ (not just .F !) that involve only attributes in X.
\Ve denote the projection of I? on attributes .iYa,s Fx . .Note that a dependency
U -_...+ V in F+ is in l~~x; only if all the cLttributes in [/ and V are in .iY.

The decornposition of relation scherna Il with FI)s }' into schcrnas with attribute
sets ..:¥ and }/ is dependency-preserving if CF'x U F\·)+ == I?+, That is, if we
take the dependencies in };'( and Fv and cornpute the closure of their un.ion, vve
get back all dependencies in the closure of F. rrherefore, \ve need to enforce onl,y
the dependencies in Ji'){ and F}r: allFDs in }'+ are then sure to be satisfied. ~ro

enforce }~':( ,\V8 need to exarnine only relation )( (on in.serts to that relation).
To enforce F'y,·, \Ale need to exarnine only rela,tion Y·.
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To appreciate the need to consider the (:Iosure Fl+- while COIUpllting the projec­
tion of f?, suppose that a relation R \vith attributes ABG1 is clecornposed into
relations\vith attributes AB and Be:. The set ~F of FDs overR includes A -+

B, B ---+ C, and G1 -+ A. Of these, A ----+ B is in 1~~1B and B -+ C) is in }'"'lBC.

But is this decoIIlposition dependency-preserving? \~lhat about C ---+ A? This
dependency is not irnplied by the dependencies listed (thus far) for [<'AB and
}13c·

The closure of 1~1 contains all dependencies in }' plus A -+ C, B -+ A, and C ~---+ B.
Consequently, f:1B also contains B -+ A, and .FBc contains C -+ B. Therefore,
FAB U F}3c; contains A -+ B, B -+ C, Ii -+ A, and C -,. B. The closure of the
d(~pendenciesin f:1.B and }'BC now includes C -). A (which follows frorn C _.....+ B,
B·--+ A, and transitivity). l'hus, the deccHnposition preserves the dependency
C-+ A.

A direct application of the definition gives us a straightforward algoritlun for
testing whether a deconlposition is dependency-preserving. (This algorithrn
is exponential in the size of the dependency set. A polynomial algorithnl is
available; see Exercise 19.9.)

We began this sectiol1with an exanlple of a lossless-join deC0111position that was
not dependency-preserving. Other decorupositions are dependency-preserving,
but not lossless. A silnple exalnple consists of a relation ABC' with FD A~---+ B
that is decornposed into AB and BG.

19.6 NORMAI-iIZATION

Having covered the concepts needed to understand the role of HortHa} fonns
and decolnpositions in databa"se design, we now consider algoritlnIls for con­
verting relations to BCNF or :3NF. If a relation schelna, is not in BCNF, it
is possible to obtain a lossless-join deccunpositioll into a collection of BCNF
relation sCherl1chs. Unfortunately, there lllay be no dependenc,y-preserving de-·
cOlnposition into a collection of BCN.F relation schernas. l-Ic}\vever, there is
ahvays (l, dependency-preserving, lossless-join decoruposition into a collection
of ~3NF relation schernas.

19.6.1 Decomposition into BCNF

vVo now present an <llgorithIl1 for decornposing a relation scherna Ii with a set
of FI)sF into a collection of BCNF relation schernas:
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1. Suppose that R is not in BCNF. Let .IX' C It, A be ::1, single attribute in R,
and X --7 A be an FD that causes a violation of BCNF. DecornposeR into
R - il and XA.

2. If either Ii - ",4 or ..YA is not in BCN.F, decornpose thern further by a
recursive application of this algorithrn.

If ..- ",4 denotes the set of attributes other than A in Il, and ./YA denotes the
union of attributes in -"Yand A. Since X ----+ A violates BCNF, it is not a trivial
dependency; further, A is a single attribute. Therefore, A is not in X; that
is, ..;\ n A is ernpty. Therefore, each dec()lnposition carried out in Step 1. is
lossless-join.

The set of dependencies associated vvith R .- A and XA is the projection of F
onto their attributes. If one of the new relations is not in BCNF, w'e decornpose
it further in Step 2. Since a decornposition results in relations with strictly
fewer attributes, this process terrninates, leaving us with a collection of relation
schernas that are all in BCNF. Further, joining instances of the (two or 1nore)
relations obtained through this algorithrn yields precisely the corresponding
instance of the original relation (i.e., the decorllposition into a collection of
relations each of which in BCNF is a lossless-join dec()lnposition).

Consider the Contracts relation with attributes C3JDPQ V and key C. We are
given FDs JP ---7 C and 3D -+ P. By using the dependency 3D -+ P to guide the
decornposition, we get the two schernas 3DP and C5JDQV. 51)P is in BCNF.
Suppose that we also have the constraint that each project deals with a single
supplier: .I _.+ 5. This rneans tlutt the sche1na CSJDQ V is not in BeN}? So we
deccnnpose it further into J3 and C.IDC2 V. C --+ JDQ V holds over CJDQ V; the
only other FI)s that hold are those obtained frorll this PI) by augrnentation, and
therefore all FDs conte-tin a key in the left side. Thus, each of the schernas ST)P,
.IS, and C:.I1J(J V is in BCNF~ and this collection of schcrnas also represents a
lossless-join decornposition of ()SJD(J V.

The st(~PS in this deC(nllposition process can be visualized as a tree, as sho\vn
in Figure 19.10. rrhe root is the original relation CSJIJPQ \/, and the leaves are
the BCNl~~ relations that result frorn the deccHnposition aJgorithrn: 3D?, .IS,
and CSDC2 V. Intuitively, ea.ch internal node is replaced by its children through
Et single decOruI}osition step guided by the FD shown just belo\v the node.

Redundancy in BCNF Revisited

T'he decolnposition of (}SJDQ V iuto ,S])}), J5'1, and C'JI)(J \l is not dependency­
preserving. Intuitively, dependency Jp ..._...~ (} carlllot be enforced without a, join.
()ne \vay to deal \vith this situation is to add a relation \vith attributes G1J}). In
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Figure 19.10 Decomposition of CSJDQV into SDP, JS, and CJDQ V

effect, this solution arnounts to storing SOITle information redundantly to rnake
the dependency enforcement cheaper.

This is a subtle point: Each of the schemas CJP, SDP, JS, and CJDQV is in
BCNF, yet some redundancy can be predicted by FD infonnation. In particu­
lar, if we join the relation instances for SDP and CJDQVand project the result
onto the attributes CJP, we rnust get exactly the instance stored in the relation
with scherna CJP. We saw in Section 19.4.1 that there is no such redundancy
within a single BCNF relation. This exarnple shows that redundancy can still
occur across relations, even though there is no redundancy within a relation.

Alternatives in Decomposing to BCN~-'

Suppose several dependencies violate BCNF. Depending on ·which of these de­
pendencies we choose to guide the next decornposition step, we rnay arrive at
quite different collections of BeNF relations. Consider Contracts. \Ve just
decornposed it into SDP, is, and CJDCj V. Suppose we choose to decornpose
the original relation (}SJDPC2 V into JS and CJIJPCj V, based on the FD .I -+

S. The only dependencies that hold over (}JIJPQ V Etre .IP ----7 C and the key
dependency C~ C.IDPQV. Since iP is a key, C:J.DPC2Vis in BeNF. Thus, the
schernas JS and CJDPQ V represent a lossless-join decornposition of Contracts
into BCNF relations.

The lesson to be learned here is that the theor,Y of dependencies can tell us ·when
there is redundancy and give us clues about possible clecornpositions to address
the problern, but it cannot discrirninate arnong decornposition alternatives. A
designer has to consider the alternatives and choose one based on the scrnantics
of the application.
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BCNF and Dependency-Preservation

Soruethnes, there siIuply is no decomposition into BCNF that is dependency­
preserving. .i\s an exaruple, consider the relation schelna SBD, in which a tuple
denotes that sailor S ha.s reserved boat ,8 OIl date [J. If we have the 11"'Ds 8B
~ D (a sailor can reserve a given boat for at nlost one day) and D -+ B (on
any given day at rllost one boat can be reserved), SBn is not in BCNF because
D is not a key. If we try to dec(nnpose it, however, we cannot preserve the
dependency BB "-7 D.

19.6.2 Decomposition into 3NF

Clearly, the approach \ve outlined for 10ssless-joiIl decornpositioIl into BCNF
also gives us a lossless-join decomposition into 3NF. (Typically, we can stop
a little earlier if we are satisfied with a collection of 3NF relations.) But this
approach does not ensure dependency-preservation.

A siInple rllodification, however, yields a deco111position into 3NF relations that
is lossless-join and dependency-preserving. Before we describe this modifica­
tion, we need to introduce the concept of a lninirnal cover for a set of FDs.

Minimal Cover for a Set of FDs

A minimal cover for a set F of FDs is a set G of FDs such that:

1. Every dependency in G is of the forIn ..¥ ---+ A, where A is a single attribute.

2. The closure F+ is equal to the closure (;+.

:3. If we obtain a set II of dependencies frorn G by deleting one or 1110re depen­
dencies or by deleting attributes frorn a dependency in G, then p+' i= II+.

Intuitively, a rninirnal cover for a set }-' of FDs is an equivalent set of depen­
dencies that is 'minirnal in two respects: (1) Every dependency is as slIlall as

possible; tha,t; iS 1 each attribute on the left side is necessary and the right side
is a single attribute. (2) Every dependency in it is required for the closure to
be equal to j?-+',.

As an exarnplc, let J? be the set of dependencies:

1 B 1BCID E' E'j-' ("'I 1'" T;' lIlA (-'11)}'--' E-'G'1it ..-+ ',j -- ----+ .../, .f ...._--t >T, -~r --+ ,. 1 ~Ul( ./. f ----+ .../.J.

First 1 let us rewrite it ()DF -_...+ BG so that every right side is a single attribute:
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ACDF-tEand ACDF-t G,

CHAPTERt9

Next consider ACDF -+ G, This dependency is irnplied by the following FDs:

A -7 B, ABC'D -7 E, and EF -7 G,

Therefore, \ve can delete it, Sirnilarly, we can delete A CDF -7 1:7, Next con­
sider ABCD -7 E, Since A -7 B holds, we can replace it with ACD _..._~ E, (At
this point, the reader should verify that each rernaining FD is rninilnal and
required,) Thus, a rninilnal cover for F is the set:

A -7 B, ACD -7 E, EF ---7 Ci, and EF --+ H,

The preceding exarnple illustrates a general algorithrn for obtaining a rninimal
cover of a set }i' of FDs:

1. Put the FDs in a Standard Form: Obtain a collection G of equivalent
FDs with a single attribute on the right side (using the decornposition
axiolIl),

2. Minimize the Left Side of Each FD: For each FD in G, check each
attribute in the left side to see if it can be deleted while preserving equiv­
alence to F+,

3. Delete Redundant FDs: Check each reluaining FD in G to see if it can
be deleted while preserving equivalence to .F+,

Note that the order in which we consider FDs while applying these steps could
produce different rninilnal covers; there could be severa'! rninirnal covers for a
given set of FDs,

lV101'8 irnportant, it is necessary to rniniInize the left sides of F'Ds befoTc checking
for redundant FI)s, If these two steps are reversed, the final set of FI)s could
still contain senne redundant FDs (i,e., not be a rninirnal cover), as the following
exarnple illustrates, LetF be the set of dependencies, each of ""vhich is already
in the standard fornl:

.A13CTJ -t E',E " ~~ D, A ----;. 13, and A C ----;. I),

Observe that none of these FDs is redundant; if \ve checked for redundantFDs
first, \ve ""vould get the saIne set of FI)s I?, The left side of il13CIJ }; can be
n~l)hiced by A Ct\vhile preserving equivalence to 1~"1+, and ,ve \vould stop here if
\ve checked for reclunda.ntF'Ds in I? before rnillilnizing the left sides. HO\V8Ver,

the set of FDs ""ve 11(lVe is not a Inininlal cover:
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ACt .......:;. E,E _..-+ D,A --t B, and AG1 -+ D.

~127

FrOlIl transitivity, the first two FDs irnply the la.",'3t FD, ,v-hich can therefore be
deleted while preserving equivalence to 1~1+. The irnportant point to note is
that A C---+ D becc)lnes redundant only after we replace ABeD -)- E with A C
-)- E. If "ve Ininirnize left sides of FDs first and then cheek for redundantFDs,
,ve are left "vith the first three FDs in the preeeding list,whieh is indeed a
Ininirna1 cover for F.

Dependency-Preserving Decomposition into 3NJ.1-'

Returning to the problenl of obtaining a lossless-join, dependency-preserving
decornposition into 3NF relations, let R be a relation with a set [/' of FDs that
is a minirnal cover, and let R1 , R2 , ... , Rn be a lossless-join decolnposition
of R. For 1 < i < n, suppose that each Ri is in 3NF and let Fi denote the
projection of F onto the attributes of Ri . Do the following:

• Identify the set N of dependencies in F that is not preserved, that is, not
included in the closure of the union of Fis.

• :F'or each FD X ---t A in N, create a relation schelna XA and add it to the
decomposition of R.

Obviously, every dependency in F is preserved if we replace R by the R'iS plus
the schernas of the forn1 XA added in this step. The Ris are given to be in
3NF. We can show that each of the schelnas XA is in 3NF as follows: Since X
----7' A is in the lninirnal cover F, Y ---+ A does not hold for any Y that is a strict
subset of X. Therefore, X is (1, key for XA. :F\llrther, if any other dependencies
hold over XA, the right side can involve only attributes in X' because A is a
single attribute (because X -~ A is an FD in a rninhnal cover). Since X is a
key for ..:YA, none of these additional dependencies causes a violation of ~3NF

(although they rnight cause a violation of BCNF).

As an optilYlization, if the set N contains several FI)swith the saIne left
side, say, X -~~.-t ..41 , X -t A2 , , ..X- ..+ /In , we can replace thern \vith
(.I., single equivalent FD X -t AI ..I4·n . Therefore, \ve produce one relation
scherna ..X' ..14 1 ... /In , instead of several schernas XA 1 , .... ~X'"An, \vhich is gener­
ally preferable.

(~onsider the Contracts relation vvith attrilnltes C:SJDPQV etnel FI)s JP -j> C:,
81)--4 P. and J ....-» S. If \ve decolnpose (}SJIJPe) V into SDIJ and C}SJl) (JV,
then 8DP is in BCNF, but C\'1J1) (2 V is not ev(~n in :3NI;'. So \ve dec.olupose it
further into JS and C1JDe2 V. rrhe relation schcrnas 19IJ.P, .I8, Etnel C7JDQVare
in ~3NF (in fact, in BCNF) 1 and the decoInposition is lossless-join. lIowever,
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the dependency JP ---:,. C' is not preserved. This problerIl can be addressed by
adding a relation schenut e'Jp to the decornposition.

3NF Synthesis

vVe assurned that the design process starts with an Ell diagraII1, and that our
use of FDs is prilnarily to guide decisions about decolnposition. The algo­
rithill for obtaining a lossless-join, dependency-preserving decornpositiol1 was
presented in the previous section fro111 this perspective--------a lossless-join decoru­
position into 3NF is straightforward, and the algorithrn addresses dependency­
preservation by adding extra relation schcrnas.

An alternative approach, called synthesis, is to take all the attributes over the
original relation R and a rnininlal cover F for the FDs that hold over it and
add a relation scherna XA to the decomposition of R for each FD X -----+ A in F.

The resulting collection of relation schernas is in 3NF and preserves all FDs.
If it is not a lossless-join decomposition of R, we can Dlake it so by adding a
relation schenla that contains just those attributes that appear in sorne key.
This algorithrn gives us a lossless-join, dependency-preserving decornposition
into 3NF and has polynornial corIlplexity-----polynornial algorithms are available
for coruputing rninirnal covers, and a key can be found in polync)Inial tirHe
(even though finding all keys is known to be NP-cornplete). The existence
of a polynornial algorithnl for obtaining a lossless-join, dependency-preserving
decornposition into 3NF is surprising when we consider that testing whether a
given schenu:l, is in ~~NF is NP-cornplete.

As a.n exarnple, consider a relation AB G1 with FI)s F:::::::: {A -----+ B, C -----+ B}. ~rhe

first step yields the relation scheluas AB and BG. T'his is not a lossless-join
deC0l11position of AilC; AB nBC is B, and neither B -----+ A nor IJ -, C: is in /?+.
If we add a, scherna A C:, \ve have the lossless-join property <:I"," well. Although
the collectic)ll of relations AB,BC, and A C is a depenclency-preserving, lossless­
join decornposition of ABC, we obtained it through a process of synthesis,
rather tllan through a process of repeated decornposition. \\Te note that the
decoIIIposition produced by the synthesis approa,ch heavily dependends on the
rninirnal cover used.

As another exarnple of the synthesis approach, consider the Contracts relation
with attributes (}SJDP(JVand the follovving FI)s:

C C\').IIJ.P(J V, .IP -----+ C, 8D --+P, aDd J -7 s.

This set of FI)s is not a rninirnal cover, and so \ve IllUSt find OI18. \Ve first
replace G -.-7 (}S'IJ[J.P(J V v'lith tllcF'I)s:
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C' -+ 5, Cf -" J, (: _.+ IJ, C' _...+ .P, C --+ Q~ and () -+ \1.

1 1he FD C --+ P is irnplied by C1
-to S, C _.......;. D, and SD -_··+P~ so we can delete

it. ~rhe FD C-r ~ S is irnplied byC -;. J and J _..u} S; so \ve ean delete it. This
leaves us with a rninirnal cover:

C _.-+ ,I, C _.-7 1), C·--:,. Q, C -;. V, JP --...;. C, 3D ---;. P, and J ~.._+ S.

lJsing the algorithrll for ensuring dependency-preservation, we obtain the re­
lational scherna CJ, CD, CQ. CV, GlJP, SDP, and JB. We can irnprove this
schenla by cornbining relations for which C is the key into CDJP(J V. In addi­
tion, we have SDP and ,IS in our decorllposition. Since one of these relations
(CDJPQ V) is a superkey, \ve are done.

Conlparing this decomposition with that obtained earlier in this section, we
find they are quite close, with the only difference being that one of them has
CDJPQV instead of CJP and CJDQV. In general, however, there could be
significant differences.

19.7 SCHEMA REFINEMENT IN DATABASE DESIGN

We have seen how normalization can elilninate redundancy and discussed sev­
eral approaches to nonnalizing a relation. We now consider how these ideas
are applied in practice.

Database designers typically use a conceptual design rnethodology, such as ER
design, to arrive at an initial databa,,"3e design. Given this, the approach of
repeated decorllpositions to rectify instances of redundancy is likely to be the
rnost natural use of PI)s and nonnalization techniques.

In this section, \ve Inotivate the need for a schcrna refinernent step follovving
Ell design. It is natural to aBk whether \ve even need to decornpose relations
produced by translating an Eli diagranl. Should a good ER design not lead to a
collection of relations free of redundancy prob.lerns? Unfortunately, Fjll design
is a c()!nplex, subjective process, and certain constraints are not expressible
in tenns of Ell diagraJns. 1'he exaruples in this section are intendecl to illus­
trate \vhy decornposition of relations produced through Ell design rnight be
necessary.
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19.7.1 Constraints on an Entity Set

Consider the Hourly_ElllPS relation again. rrhe constraint that attribute 8/)'n is
a key can be expressed a..s an FI):

{ssn} ---} {SS11, naTne, lot, l>ai'ing, ho'U,'rIY_J.oages, hOUTS_'U)orke.d}

:For brevity, we \vrite this FD &'3 S ---} 8NLR~VII, using a single letter to denote
each attribute and ornitting the set braces, but the reader should rernernber
that both sides of an FD contain sets of attributes. In addition, the constraint
that the hourl:y~wages attribute is deterruined by the rating attribute is an FD:
R .,. W.

As \ve saw in Section 19.1.1, this FI) led to redundant storage of rating wage
associations. It cannot be expressed in, teTrns of the ER rr~odel. Only FDs
that deteTrr~ine all attTilndes of a relation (i. e., key constraints) can be ex­
pTessed in the ER rnodel. rrherefore, we could not detect it when we considered
Hourly_EIIlPS as an entity set during ER IIlodeling.

We could argue that the problenl with the original design was an artifact of a
poor ER design, which could have been avoided by introducing an entity set
called Wag(~_Table (with attributes rating and houTly_wages) and a relationship
set lIas_Wages associating IIourly_.ErIlps and vVagc_Table. The point, however,
is that we could easily arrive at the original design given the subjective nature of
Ell rnodeling. Having forInal techniques to identify the problenl with this design
and guide us to a, better design is very useful. 1'he value of such techniques
cannot be underestirnated when designing large schernas····-schcrnas with rnore
than a hundred tables are not unCOIllIHon.

19.7..2 Constraints on a Relationship Set

1"'he previous exarnple illustrated how FDs can help to refine the subjective
decisions Blade during ER. design, but one could argue that the best possible
ER, eliagrarn \vould have led to the sc:Hne final set of relations. ()ur next exarnple
shovvs ho\v Ff) inforrnation ca.ll lead to a. set of relations unlikely to be arrived
at sol(~ly through ER. design.

\Ve revisit an exanlple frOTH Chapt<~r 2. Suppose that \ve have entity sets Parts,
Suppli(~rs, and I)epartrnents, as \vell as a relationship set Contracts that involves
all of theIn. \lVe n~fer to th(~ scherna for Contra(:ts as C7C2}>S'1IJ. A contra,ct \vith
contract id () specifies that <1, supplier 8 \vill supply sorne ql.Hlntity (2 of a part
P to a departrnent J). (\,Ve have adderl the contract ieI field C' tC) tIle versiorl of
the C~ontracts relation discussed in Chapter 2.)



SchCTna Refinernc'n.t anr11VoT7nalFoTrn8 6431

vVe Blight have a policy that a departrnent purchases at Inost one paJt fror11
any given supplier. 'Therefore, if there are several contracts between the saIne
supplier and departrnent, \ve know that the saIne part Inus!; be involved in all
of thcrn. This constraint is cUI FD, DS·--.+ P.

Again "ve have redundancy and its a",c;sociated problclns. \Ve can address this
situation by decornposing Contracts into two relations with attributes CQSD
and 3DP. Intuitively, the relation 3DP records the part supplied to a depart­
rllent by a supplier, and the relation C:QSD records additional infornlation
about a contract. It is unlikely that we would arrive at such a design solely
through ER rIlodeling, sinee it is hard to fOfrnulate an entity or relationship
that corresponds naturally to CQSD.

19.7.3 Identifying Attributes of Entities

This exarIlple illustrates how a careful examination of FDs can lead to a better
understanding of the entities and relationships underlying the relational tables;
in particular, it shows that attributes can easily be associated with the 'wrong'
entity set during ER design. 'I'he ER diagrarn in Figure 19.11 shows a rela­
tionship set called Works_In that is silnilar to the Works.ln relationship set of
Chapter 2 but with an additional key constraint indicating that an employee
can work in at rnost one departrIlent. (Observe the arrow connecting Employees
to Works_In.)

Figure 19.11. The Works._In Relationship Set

Using the key constraint, \ve can translate this Ell diagrarn into two relations:

\VorkersC58n, narne, lot, d'id, since)
Departrnents( did, dna1nc, budget)

The entity set Ernployees and the relationship set\iVorks~n are rnapped to
a sil.lgle relation, vVorkers. This translation is ba".'Scd on the second approach
discussed in Section 2.4.1.
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No\v suppose elIlployees are a,,'3signed parking lots ba.rged on their departrnent,
and that all enlployees in a given departrnent are ~'h'3signed to the saIne lot. This
constraint is not expressible vvith respect to the ER, diagrarIl of Figure 19.1l.
It is another exarnple of an FD: did --: lot. The redundancy in this design can
be elirninated by decornposing the Vlorkers rela.tion into two relations:

vVorkers2( 8sn, narne, did, since)
Dept_Lots (did, lot)

'rhe new design has lnuch to reconunend it. VVe can change the lots associated
with a departlnent by updating a single tuple in the second relation (i.e., no
update anornalies). \Ve can associate a lot with a department even if it cur­
rently has no crnployees, without using null values (i.e., no deletion anornalies).
\Ve can add an eruployee to a department by inserting a tuple to the first rela­
tion even if there is no lot associated with the enlployee's departrnent (i.e., no
insertion anornalies).

Exalnining the two relations Departrnents and Dept_Lots, which have the saIne
key, we realize that a Departrnents tuple and a Dept_Lots tuple with the sarne
key value describe the sarne entity. This observation is reflected in the ER,
cliagrarn shown in Figure 19.12.

Figure 19.12 Refined\Norks_In Relationship Set

Translating this diagrarn into the relational rnodel would yield:

\iVorkers2 (8871" narne, did, since)
I)epartrnentsCdid, dnarne, budget, lot)

It SeClllS intuitive to associate lots ,vith crnployees; on the other hand, the les
reveal tllat ,in this exarnple lots are rea.1ly a"ssociated ,\lith departrnents. The
subjective pr()c(~ss of EIlrnodeling could Iniss this point. T'he rigorous process
of norrnaliza,tion would not.
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19.7.4 Identifying Entity Sets

Consider a variant of the lleserves scherna used in earlier chapters. Let Re­
serves contain attributes S, B, and D :::1.'3 before, indicating that sailor S has
a reservation for boat B on day D. In addition, let there be an attribute G"1
denoting the credit card to which the reservation is charged. vVe use this ex­
arnple to illustrate how FD illfonnation can be used to refine an ER design. In
particular, \ve discuss how FD inforluation can help decide whether a concept
should be rnodeled as an entity or as an attribute.

Suppose every sailor uses a unique credit card for reservations. This constra,int
is expressed by the FD S -7- C. This constraint indicates that, in relation Re­
serves, we store the credit card rnllnber for a sailor as often as we have reserva­
tions for that sailor, and we have redundancy and potential update anolnalies.
A solution is to deconlpose Reserves into two relations with attributes SBD
and SC. Intuitively, one holds inforrnation about reservations, and the other
holds infonnation about credit cards.

It is instructive to think about an ER design that would lead to these rela­
tions. One approach is to introduce an entity set called Credit_Cards, with the
sale attribute cardno, and a relationship set Has_Card associating Sailors and
Credit_Cards. By noting that each credit card belongs to a single sailor, we can
Inap Has_Card and Credit_Cards to a single relation with attributes SC. We
would probably not rnodel credit card nUlnbers as entities if our Inain interest
in card nurnbers is to indicate how a reservation is to be paid for; it suffices to
use an attribute to rnodel card nUlnbers in this situation.

A second approach is to rnake cardno an attribute of Sailors. But this approach
is not very natural-" ..··(1 sailor lllay have several cards, and we are not interested
in all of theln. Our interest is in the one card that is used to pay for reservations,
which is best lnodeled as an attribute of the relationship Iteserves.

A helpful way to think about the design problern in this exarnple is tlHlt we
first lnake carrino an attribute of H,eserves and then refine the resulting tables
by taking into account the 1"1) inforrnation. C\Vhether \VC refine the design by
adding cardno to the table obtained froTIl S<dlors or by creating a new table
\vith attributes S'f(} is (1, separate issue.)

19.8 OTHER KINDS O~., D~:PENDENCIES

FI)s are probal)l.y the rn08t conunon and irnportant kind of (~onstraiIlt fr0 III

the point of vie"\! of database design. TIowever, there axe several other kinds
of dependencies. In particular, there is a 'Vvell-developccl theory for database
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design llsing rrLultival'ued dependenc'ics and join dependencies. By taking sueh
dependencies into account, we C,Ul identify potential redundancy problenls that
cannot be detected using FDs alone.

'rhis section illustrates the kinds of redundancy that can be detected using II1Ul­

tivalued dependencies. Our Inain observation, however, is that sirnple guidelines
(which can be checked using only FD reasoning) can tell us whether we even
need to worry about complex constraints such as 111ultivalued and join depen­
dencies. We also conunent on the role of inclusion dependencies in database
design.

19.8.1 Multivalued Dependencies

Suppose that we have a relation with attributes course, teacher, and book, which
we denote as CTB. The Ineaning of a tuple is that teacher T can teach course
C, and book B is a reccnnmended text for the course. There are no FDs; the
key is CTB. However, the recolnlnended texts for a course are independent of
the instructor. The instance shown in Figure 19.13 illustrates this situation.

~ofurse .~ teache2J book

Green
..-

Physics101 Mechanics
PhysicslOl Green Optics
PhysicslOl Brown Mechanics
Physics101 Brown Optics

Green Mechanics
._..

Math301
..

Math301 Green Vectors
--

Math301 Green Geometry
L..--._..._ ........

Figure 19.13 BCNF R.elation with Redundancy That Is Revealed by MVDs

Note three points here:

II 1'he relation sehcrna CTB is in BCNF; therefore we would not consider
decolnposing it further if we looked only at the FDs that hold over (JTB.

II There is redundancy. rrhe fact that G·reen can teach Physics101 is recorded
once per reeonunendecl text for the course. Sirnila.rly, the fact that Optics
is a text for Physics101 is recorded once per potential teacher.

.. T'he redundancy can be elirninated by decornposing C1fTB into CT and CE.

The redundaJ1cy in this exarnple is due to the constraint that the texts for a
course are independent of tIle instructors, which cannot be expressed in tenns
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of FDs. rrhis constraint is an example of a rn'll,ltival'ued dependency, or~1VD.
Ideally, we should rnodel this situation using two binary relationship sets, In­
structors \vith attributes G1T and l'ext with attributes CB. Because these are
two essentially independent relationships, rnodeling them with a single ternary
relationship set with attributes CTE is inappropriate. (See Section 2.5.3 for a
further discussion of ternary versus binary relationships.) Given the subjectiv­
ity of ER design, ho\vever, we rnight create a ternary relationship. A careful
analysis of the fvIVD infonnation would then reveal the problern.

Let R be a relation scheIna and let X and Y be subsets of the attributes of R.
Intuitively, the multivalued dependency X --+--+ Y'is said to hold over R if,
in every legal instance r of R, each X value is associated with a set of Yvalues
and this set is independent of the values in the other attributes.

ForInally, if the MVD X -+-+ Y holds over l~ and Z = R - XY, the following
lllUSt be true for every legal instance r of Fl:

If tl E r, t2 E rand tl.X == t2.X, then there must be sorne t3 E r such
that tl'XY = t3.XY and t2· Z = t3'Z,

Figure 19.14 illustrates this definition. If we are given the first two tuples and
told that the MVD X ,-+---+ Y holds over this relation, we can infer that the
relation instance must also contain the third tuple. Indeed, by interchanging the
roles of the first two tuples~treating the first tuple &'3 t2 and the second tuple
as tl----we can deduce that the tuple t4 must also be in the relation instance.

Lx I Y I Z ]

t: B~
CI ___'n tuple t1

C2 ____.n_ tuple t2
--'-"-

a bl C2 .--- tuple t:~

a b2 CI -........... tuple t4

Figure 19.14 Illustration of MVD Definition

This table suggests another \vay to think about lVIVDs: If X ----7-+ Y holds
over Ii, then 1fyz(ax=:r(R)) = 1fy(ax=:r(R)) x 1fz(ax:::::.:x(Ii)) in every legal
instance of R,' for any value x that appears in the X colurnn of R. In other
words, consider groups of tuples inR with the sarne X-value. In each such
group consider the projection onto the attributes lTZ. This projection HUlst be
equal to the cross-product of the projectiolls onto Yand Z. That is, for a given
X-value, the Y-values and Z-values are independent. (Froln this definition it is
eaAsy to sec that ~Y ----7-----;0 y'l11Ust hold wherlever ..!Y --..~ }T holds. If the FI) X _...;.
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Y holds, there is exactly one Y:'value for a given X-value, and the conditions in
the ~!IVD definition hold trivially. ~rhe converse does not hold, a.s Figure 19.14
illustrates. )

Returning to our G't1"'B exaIllple, the constraint that course texts are indepen­
dent of instructors can be expressed as G1 ---+---+ T. In terlllS of the definition of
lVIVDs, this constraint can be read as follo\vs:

If (there is a tuple showing that) () is taught by teacher T,
and (there is a tuple showing that) G has book B as text,
then (there is a tuple showing that) G is taught by T and has text B.

Given a set of FDs and :NIVDs, in general, we can infer that several additional
FDs and :NIVDs hold. A sound and complete set of inference rules consists of
the three ArIllstrong AxioIllS plus five additional rules. Three of the additional
rules involve only :NIVDs:

• MVD Complementation: If X ---+~ Y, then X ~---+ II ~ XY.

• MVD .Augmentation: If X ---+~ Yand W:2 Z, then WX --+--t YZ.

• MVD Transitivity: If X --7-> Yand Y -+--+ Z, then X --+--+ (Z - Y).

As an exanlple of the use of these rules, since we have () --+---+ T over GTB,
MVD complelnentation allows us to infer that C -7-+ OTB ~ CT as well, that
IS, C ---+---+ B. The remaining two rules relate FDs and MVDs:

• Replication: If X --+ Y, then X --+--+ Y.

• Coalescence: If ~y --+---+ Yand there is a W such that W n Y- is elnpty,
W ---+ Z, and Y:2 Z, then X -7 z.

()bserve that replication states that every FD is also an l\1VT).

19.8.2 Fourth Normal Form

Fourth Horrnal fonn is a direct generalization of BeNF. Let R be a relation
scherna, X and Y be nonernpty subsets of the attributes of R, and F' be a set
of dependencies that includes both FDs and lVIVDs. R is said to be in fourth
normal form (4NF), if, for every l\1.VI) -'X',.>----'t }i that holds over R, one of
the following staternents is true:

• y" ~ ~y or XIT

:::::::: .R, or

• X is a superkey.
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In reading this definition, it is irnportant to understand that the deflnition of a
key has not changed··········-the key rnust uniquely deterrnine all attributes through
FDs alone. X ---+-; Y'is a trivial MVD if Y C .LX" ~ R or .LX"Y· :::: R; such
wIVDs always hold.

The relation CTB is not in 4NF because C ~-> T is a nontrivial MVD and C
is not a key. vVe can elirninate the resulting redundancy by deconlposing CTB
into cr and CB; each of these relations is then in 4NF.

rfo use 1t1VD inforrnation fully, we nUlst understand the theory of :NIVDs. IIow­
ever, the following result due to Date and Fagin identifies conditions-detected
using only FD infornlation!~-underwhich we can safely ignore MVD inforrna­
tion. That is, using MVD information in addition to the FD infornlation will
not reveal any redundancy. Therefore, if these conditions hold, we do not even
need to identify all MVDs.

If a relation schema is in BCNF, and at least one of its keys consists
of a single attribute, it is also in 4NF.

An in1.portant assl.unption is inlplicit in any application of the preceding result:
The set of FDs identified thus far is 'indeed the set of all FDs that hold over the
'('elation. This assulllption is important because the result relies on the relation
being in BCNF, which in turn depends on the set of FDs that hold over the
relation.

We illustrate this point using an exalnple. Consider a relation scherna ABCD
and suppose that the FD A -+ BCD and the MVD B -+-+ C are given. Consid­
ering only these dependencies, this relation schema appears to be a counterex­
alnple to the result. The relation has a sirnple key, appears to be in BCNF, and
yet is not in 4NF because B ..~-+ C: causes a violation of the 4NF conditions.
Let us take a closer look.

b Cl 0:1 ell --- tUP!ti§
-'

-~ tUI?-ie t2 -b C2 ([,2 d2

b Cl ([,2 d2 --_... tuple t:3
_..__ ...__..-

:Figure 19.15 Three Tuples [rorn a Legal Instance of ABCD

Figure 19.15 8ho\v8 three tuples f1'orn an instance of ABCD that satisfies the
given lVIVI) B --+-+ Cr

, Frolu the definition of an lVIVD, given tuples tl and "t2: it
follows that tuple t:3 Inust also be included in the instaJ1ce. Consider tuples "t2
and 1:3. FrOlJl the givenFD A -,B(/1) and the fact that these tuples have the



638 (;HAPTER L9

same A-value~ we GaIl deduce that Cl = C2. Therefore, ,ve see that the FD B ---+

C rnust hold overilBCD \V"henever the FI) A ~ BCD and theNIVI) B··_·-7~ (:
hold. If B -·-4 () holds~ the relation ABeD is not in BeNF (unless additional
FDs lllake B a key)!

Thus, the apparent counterexalnple is really not a counterexalllple···········-rather,
it illustrates the iInportance of correctly identifying all FDs that hold over a
relation. In this exarnple, A -» BCI) is not the only FD; the FD B -+ C
also holds but ·wa..s not identified initially. Given a set of FDs and IvIVI)s, the
inference rules can be used to infer additional FDs (and l\1VDs); to apply the
Date-Fagin result without first using the l\1VD inference rules, we IUUSt be
certain that we have identified all the FDs.

In summary, the Date-Fagin result offers a convenient way to check that a
relation is in 4NF (without reasoning about l\1VDs) if we are confident that
we have identified all FDs. At this point, the reader is invited to go over the
examples we have discussed in this chapter and see if there is a relation that is
not in 4NF.

19.8.3 Join Dependencies

A join dependency is a further generalization of MVDs. A join dependency
(JD) [><J {R1 , ... , R'71,} is said to hold over a relation R if R1, ... , Rn is a
lossless-join decolnposition of R.

An MVD X ~~ Yover a relation R can be expressed as the join dependency
[)<J {XV, X(R,--Y)} ..As an excunple, in the GTB relation, the MVD C ~-+ T
can be expressed as the join dependency [)<J {Crr, CB}.

U·nlike FDs and l'v1VDs, there is no set of sound and cornplete inference rules
for .IDs.

19.8.4 Fifth Normal Form

A relation schcrna R is said to be in fifth normal form (5NF) if, for every
.II) [XJ {.R 1. , ••• , Tin} that holds over Il, one of the follo"ving statcrnents is
true:

• Il i == R, for scnne i, or

• The .lD is irnplied by the set of those FDs over Il in ·which the left side is
a key for R.
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'The second condition deserves S(Hne explanation, since \ve have not presented
inference rules for FDs and .00Ds taken together. Intuitively, \ve rnust be able to
sho\v that the decolnposition of R into {R l , ... ) R'TI} is lossless-join whenever
the key dependencies (FDs in which the left side is a key for R) hold. JI)
t><J {.R I , .. , , Rn } is a trivial JD if R j = R for SaIne i; such a .JD always
holds.

~rhe following result, also due to Date and Fagin, identifies conditions-H' ·again,
detected llsing only FD inforlnation---under -which we can safely ignore JD
inforlnation:

If a relation schenla is in 3NF and each of its keys consists of a single
attribute, it is also in 5NF.

The conditions identified in this result are sufficient for a relation to be in 5NF
but not necessary. rrhe result can be very useful in practice because it allcnvs
us to conclude that a relation is in 5NF 'Without ever 'identifying the!'v1VDs and
JDs that 'may hold oveT the relation.

19.8.5 Inclusion Dependencies

lVIVDs and JDs can be used to guide database design, as we have seen, although
they are less COllUllon than FDs and harder to recognize and rea..')on about. In
contrast, inclusion dependencies are very intuitive and quite cornrnon. IIowever,
thE~y typically have little influence on database design (beyond the ER design
stage).

Infonnally, an inclusion dependency is a statcrnent of the fOlTH that S0111e

cohunns of (1, relation are contained in other cohunns (usually of a second re­
lation). A foreign key constraint is an exarnple of an inclusion dependency;
the referring colurnn(s) in one relation rnust be contain.ecl in the prirnary key
cohnnn(s) of the referenced relation. As another exarnple, if!? and S are tv\to

relations obtained 1)y translating t\VO entity sets that every R entity is also
an 8 erltity, vve \vollid have an inclusion dependency; projecting If on its key
attributes yields a relation conta,ined in the relation obtained by projecting 8
on its key attributes.

The rnain point to bear in rnind is that \ve should not split groups of attributes
that participate in aJl inclusion dependency. For exarnple, if ,ve have an inclu­
sion dep(~ndenc'y Al~ ~ Of), \vhile decornposing the relation scherna containing
A 13, \\le should ensure that at lea"st one of the scherna.g obtained in the de­
ccnnposition contains botJ1 A and f3. ()ther\vise,v.re cannot check the inclusion
clependency .1113 ~ C:/) ·without reconstructing the relation containing A 13.



640 (;If.APTER W

Ivlost inelu.sioIl dependencies in practice are kelJ-based~ that is, involve only keys.
Foreign key constraints are a good exalnple of key-ba.'3ed inclusion dependencies.
~A.n E~I{ diagralIl that involves ISA hierarchies (see Section 2.4.4) also leads to
key-based inclusion dependencies. If all inclusion dependencies are key-ba,sed,
\ve rarely have to ''lorry about splitting attribute gTOUps that participate in
inclusion dependencies, since decornpositions usually do not split the priInary
key. N'ote, ho\vever, that going fn:)111 3NF to BCNF ahvays involves splitting
SOlne key (ideally not the prirnary key!), since the dependency guiding the split
is of the fornl ..x -7 ..4 where A is part of a key.

19.9 CASE STUDY: THE INTERN'ET SHOP

R,ecall froIn Section 3.8 that DBDudes settled on the following scherna:

Books(i~~~n: CHAR(10), title: CHAR(8) , author: CHAR(80) ,
qty_iTL.stock: INTEGER, price: REAL, year_published: INTEGER)

Custolllers( cid: INTEGER, cnaTne: CHAR(80) , address: CHAR(200))

Orders (orde.rnum,: INTEGER, .....~sbn: CHAR(.10), cid: INTEGER,
cardnu'm: CHAR(16), qty: INTEGER, ordeT_date: DATE, ship.... date: DATE)

DBDudes analyzes the set of relations for possible redundancy. The Books
relation has only one key, (isbn), and no other functional dependencies hold
over the table. Thus, Books is in BCNF. The Custorners relation also has only
one key, (cid), and no other functional depedencies hold over the table. T'hus,
Custorners is also in BCNF.

DBI)udes has already identified the pair (o7'(lerTl,'urr~7 isbn) as the key for the
Orders table. In addition, since each order is placed by one custorner on one
specific date with one specific credit card nurnber, the following three functional
dependencies hold:

ordcrnuTn -_......j. cid, ordernuTrl,-+ order_date, and oTderTru,Tn -7 co:rdrHlTn

The experts at DBDudes conclude that Orders is not even in 3NF. (Can you
see \vh.y?) They decide to clecornpose ()rders into the follc)\ving t\VO relations:

()rders(Q!..:clcT71'u:rn, c1.:d, order_date, caTdnurtl, a.nd
()rderlists( ordernurn,i8b..!.~, qty, 8hip~date)

The resulting t\VO relation,s~ ()rders and ()rderlists, are both in BCNF', and the
decornposition is lossless-join since oTcle'rn,'ll'rn is a key for (the new) ()rders. The
r(-~ader is invited to check that this decolnposition is also dependency-preserving.
l?or cornpleteness, ,ve give th,e S(~L DIJL for the ()rders and Orderlists relations
below:
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Figure 19.16 ER Diagram Reflecting the Final Design

CREATE TABLE Orders ( ordernurn INTEGER,
cid INTEGER,
order_date DATE,
cardnum CHAR(16),
PRIMARY KEY (ordernlllll),
FOREIGN KEY (cid) REFERENCES Custolllers )

CREATE TABLE Orderlists (ordernurll INTEGER,
isbn CHAR ( 10),
qty INTEGER,
ship~date DATE,
PRIMARY KEY (ordernurn, isbn),
FOREIGN KEY (isbn) REFERENCES Books)

F'igure 19.16 shc)\\TS an updated ER diagrarn that reflects the new design. Note
that DBDudes could have arrived inunedia,tely at this diagrarn if they ha"d llla.de
()rders an entity set instead of a relationship set right at the beginning. But at
that tilne they did not understand the requirernents cornpletely, and it seeTHed
natural to rnodel Orders a.I) a relationship set. This iterative refinernent process
is typical of real-life da,tabase design processes. As DBI)udes has learned over
tirne, it is rare to achieve an initial design that is not changed as a project
progresses.

T'he DBI)udes tea,lll celebrates the successful cornpletion of logical dataJn1,.'3c
design and scherna refinelnent by opening a bottle of charnpagne and charging
it to B&:N. After recovering frorn the celebration~ they lIlove on to the physical
design phase.
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19.10 REVIEW QUESTIONS

Answers to the review' questions can be found in the listed sections.

• Illustrate redundancy and the problerns that it ca.n cause. Give excunples
of insert, delete, and npdate anoInalies. Can 'fudl values help address these
problerlls? Are they a cOlnplete solution? (Section 19.1.1)

• "VVhat is a decoTnpositio'n and how does it address redundancy? What
problerlls Inay be caused by the use of decolupositions? (Sections 19.1.2
and 19.1.3)

• Define junctional dependencies. How are pr'lnLary keys related to FDs?
(Section 19.2)

• V\Then is an PD j implied by a set F of FDs? Define Armstrong's Axioms,
and explain the statement that "they are a sound and cornplete set of rules
for FD inference." (Section 19.3)

• What is the dependency closure F+ of a set F of FDs? What is the at­
tribute closure X+ of a set of attributes X with respect to a set of FDs F?
(Section 19.3)

• Define INF, 2NF, 3NF, and BCNF. What is the nlotivation for putting a
relation in BCNF? What is the motivation for 3NF? (Section 19.4)

• When is the decomposition of a relation schenla R into two relation schemas
X and Y said to be a lossless-join decomposition? Why is this property
so irnportant? Give a necessary and sufficient condition to test whether a
decc)1nposition is lossless-join. (Section 19.5.1)

• When is a decornposition said to be depc'ndency-preserving? \Vhy is this
property useful? (Section 19.5.2)

• Describe how we can obtain a. lossless-join decornposition of a relation into
BCNI"""'. Give an exanlple to show that there rnay not be a dependency­
prest~rvingdecornposition into BCNF. Illustrate how a given relation could
be decornposed in different ways to arrive at several alternative decornposi­
tions, and discuss the irnplications for clatabc~"e design. (Section 19.6.1)

IlIll (jive an cx.:arnple that illustrates how a collection of relations ill BCNF
could have redundancy even though each relation, by itself, is free fronl
redundancy. (Section 19.6.1)

• What is a. Tninirnal cover for a set of I:(I)s? Describe an algorithrn for
cornputing the rninirnaJ cover of B.. S(~t of FI)s, and illustrate it with an
exarnple. (Section 19.6.2)
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• Describe hovv the algorithl11 for lossless-join decolnposition into BCNF can
be adapted to obtain a lossless-join, dependency-preserving decornposition
into 3NF. Describe the alternative synthesis approach to obtaining such
a decorllposition into 3NF. Illustrate both approaches using an exarnple.
(Section 19.6.2)

• Discuss how scherna refinernent through dependency analysis and norrnal­
ization can iInprove scheIna.-') obtained through ER, design. (Section 19.7)

• Define 'Tn'l1,ltival'Ued dependencies, .Join dependencies, and inclusion depen­
dencies. Discuss the use of such dependencies for database design. Define
4NF and 5NF, and explain how they prevent certain kinds of redundancy
that BCNF does not eliminate. Describe tests for 4NF and 5NF that use
only FDs. What key assumption is involved in these tests? (Section 19.8)

EXERCISES

Exercise 19.1 Briefly answer the following questions:

1. Define the term functional dependency.

2. Why are some functional dependencies called trivial?

3. Give a set. of FDs for the relation schema R(A,B, C,Dj with prilnary key AB under which
R is in 1NF but not in 2NF.

4. Give a set of FDs for the relation schelna R(A,B, C,Dj with prilnary key AB under which
R is in 2NF but not in 3NF.

5. Consider the relation schelna R(A,B, OJ, which has the FD B ~ C. If A is a candidate
key for R, is it possible for R to be in BCNF? If so, under what conditions? If not,
explain why not.

6. Suppose we have a relation schema R (A, B, OJ representing a relationship between two
entity sets with keys A and 13, respectively, and suppose that R has (aIIlong others) the
FDs A ..._+ Band 13 -ot A. Explain what such a pair of dependencies means (i.e., what
they irnply about the relationship that the relation nlOdels).

Exercise 19.2 Consider a relation R with five attributes ABCDE. You are given the follc)\ving
dependencies: A --t B, Be ~ B, and BD ~ A.

1. List all keys for R.

2. Is R in :3NF?

3. Is R in BCNF?

Exercise 19.3 Consider the relation shown in Figure 19.17.

1. l... ist all the functional dependencies that this relation instance satisfies.

2. ASSUIlIe that the value of attribute Z of the la..<:;t record in the relation is cluLuged frorH
23 to Z2. Now list all the functional dependencies that this relation instance satisfies.

Exercise 19.4 Assurne that you are given a. relation with attributes A BCD.
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Xl Yl Zl

Xl Yl Z2

X2 Yl Zl

~r2 Yl Z~~
'--.

Figure 19.17 Relation for Exercise 19.:3.
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1. Asslune that no record has NULL values. \Nrite an SQL query that checks whether the
functional dependency A ---,)0 B holds.

2. Assulne again that no record has NULL values. \tVrite an SQL assertion that enforces
the functional dependency A -+ B.

3. Let us now aSSUlne that records could have NULL values. Repeat the previous two
questions under this assurnption.

Exercise 19.5 Consider the following collection of relations and dependencies. Assume that
each relation is obtained through decomposition from a relation with attributes ABCDEFGHI
and that all the known dependencies over relation ABCDEFGHI are listed for each question.
(The questions are independent of each other, obviously, since the given dependencies over
A BCDEFGHI are different.) For each (sub)relation: (a) State the strongest nonnal fonn that
the relation is in. (b) If it is not in BCNF, decompose it into a collection of BCNF relations.

1. Rl (A. C,B.D,E), A -+ 13, C -+ D

2. R2(A,B,F), AC -+ B, B -+ F

3. R3(A~DJ.. D "".of G, G -+ H

4. R4(D, C,H, G), A -~·t I, I -+ A

5. R5(A.I,C.B)

Exercise 19.6 Suppose that we have the following three tuples in a legal instance of a relation
schema S with three attributes ABC (listed in order): (1,2,:3), (4,2,3), and (5,3,3).

1. \Vhich of the follc)\\ring dependencies can you infer does 'lUJl hold over scherna S?

(a) A -+ 13, (b) Be ---'1 A, (c) 13 ..._-, C

2. Can you identify allY dependencies that hold over 5''?

Exercise 19.7 Suppose you are given a rebltion R \vith four attributes AB()D.F'or each of
the following sets of FDs, assurning those are the only dependencies that hold for R, do the
following: (a) Identify the candidate key(s) for R. (b) Identify the best Honnal forBl thatR
satisfies (lNF, 2NF, :JNF, or BeNF). (c) If Ii is not in BCNl~\ decOlnpose it into a set of
BCNF relations that preserve the dependencies.

1. C:-······ D, C----+ A. 13 C

2. FJ '-~-f C'. D --> A

:3. ABC -~f D, D --> A

4. A -+ B. B(} ,. D. A ~. C

5. A13 _....... C, AB···_··.• D. C -+ A, D·_·-+ 13



Scherna llefincl1H;nt (nul IVorrnal 1:"~oTn18 645

Exercise 19.8 Consider the attribute set Ii = ABCDEGH (Lud theFD set F= {A.B·--+ C:,
AC --+ B: AD ---4 E, B -----+ D, Be --+ 11, B -!- G}.

1. For each of the following attribute sets, do the following: Cornpute the set of depen-
dencies that hold over the set and write down a rninirnal cover. (ii) Narne the strongest
nonnal [onn that is not violated by the relation containing these attributes. (iii) De­
COlnpose it into a. collection of BCNF relations if it is IH)t in BeNF'.

(a) ABC, (b) ABCD, (c) ABCEG, (d) DC:BGII, (e) ACEH

2. vVhich of the following decOIllpositions of R = ABCDEG, with the saIne set of depen­
dencies F', is (a) dependency-preserving? (b) lossless-join?

(a) {AB, BC, ABDE. EG }

(b) {ABC, ACDE, ADG }

Exercise 19.9 Let R be decOIllposed into R 1 , R2 , ... , Rn . Let F be a set of FDs on R.

1. Define what it rlleans for F to be pre8erved in the set of decOlllposed relations.

2. Describe a polynomial-tirne algorithm to test dependency-preservation.

3. Projecting the FDs stated over a set of attributes X onto a subset of attributes Y requires
that we consider the closure of the FDs. Give an exarnple where considering the closure
is irnportant in testing dependency-preservation, that is, considering just the given FDs
gives incorrect results.

Exercise 19.10 Suppose you are given a relation R(A,B, C,D). For each of the following
sets of FDs, assuming they are the only dependencies that hold for R, do the following: (a)
Identify the candidate key(s) for R. (b) State whether or not the proposed decOlnposition of
R into smaller relations is a good decolllposition and briefly explain why or why not.

1. B --+ C, D --+ A; decornpose into BC and AD.

2. AB -+ C, C -~~ A, C ,--)- D; decompose into A CD and Be.

~~. A -!- BC, C -+ AD; decornpose into ABC and AD.

4. A -!- B, B C, C '-1 D; decornpose into AB and A CD.

5. A --+ B, B -+ C, C -!- D; decOInpose into AB, AD and CD.

Exercise 19.11 Consider a relation R that has three a"ttributes ABC. It is decornposed into
relations R 1 with attributes AB and R2 with attributes Be.

1. St<lte the definition of a lossless-join decOlnposition with respect to this exarnple. Answer
this question concisely by \-vriting a relational algebra equation involving R, R 1 , and H2.

2. Suppose that B --+--+ C. Is the decorHposition of R into .R! and R2 lossless-join? Reconcile
your (l.,nswer with the observation that neither of the FDs HI nR2 ----'> R I nor R I n R2 --+ .H..2
hold, in light <;)f the siInple test offering a necessary and sufficient condition for lossless­
join decmnposition into two relations in Section 15.6.1.

:3. If you are given the follc}\\ring justa.nees of R 1 a,nd 112, what can you say about the
instance of R from which these were obtained? Answer this question by listing tuples
that are definitely ill R and tuples that a.re possibly· in R.

Instance of RJ. = {(5,l), (6,l)}
Instance of R2 :::::: {(l,8), (1,9)}

Can you say that attribute B definitely is or 'is not. a key for R?
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Exercise 19.12 Suppose that we have the following four tuples in a relation 5' with three
attributes ABC: (1,2,:3), (4,2,:3), (5,3,:3), (5,::~A). \Vhich of the following functional (-+) and
rIlultivalued (-+--» dependencies can you infer does not hold over relation S?

1. A -+ 13

2. A _....-} ..._,,-} B

3. Be --,} A

4. BG -+_..~> A

5. 8 -+ C

6. B ~'---'o C

Exercise 19.13 Consider a relation R with five attributes A BCDE'.

1. For each of the following instances of R, state whether it violates (a) theFD Be ",,"-, D
and (b) the J\fVD Be _..-t--+ D:

(a) { } (i.e., mnpty relation)

(b) {(0,,2,3,4,5), (2,a,3,5,5)}

(c) {(o,,2,3,4,5), (2,0,,3,5,5), (o,,2,3,4,6)}

(d) {(a,2)~,4,5), (2,0,,3,4,5), (o,,2,3,6,5)}

(e) {(0,,2,3,4,5), (2,0,,3,7,5), (a,2,3,4,6)}

(f) {(o,,2,3,4,5), (2,0,,3,4,5), (0,,2,3,6,5), (o,,2,3,6,6)}

(g) {(a,2,~3,4,5), (0,,2,:3,6,5), (0,,2,3,6,6), (o,,2,3,4,6)}

2. If each instance for R listed above is legal, what can you say about the FD A -+ B?

Exercise 19.14 JDs are lllotivated by the fact that sornetilnes a relation that cannot be
decoruposed into two sinaller relations in a lossless-join rnanner can be so deC0111pOsed into
three or rnore relations. An exa,rnple is a relation with attributes 8upplier, part, clnd J}Toject,

denoted SPJ, with no FDs or l'vlVDs. The JD [Xl {SP, P J, J S} holds.

Frorn the JD, the set of relation scheines SP, PJ, and JS is a IORsless-join decornposition of
SPJ. Construct an instance of HPJ to illustrate that no two of these schernes suffice.

Exercise 19.15 Answer the following questions

1. Prove that the algorithrn shown in Figure 19.4 correctly cornputes the ::l.ttribute closure
of the input attribute set X.

2. Describe a linear-tirne (in the size of the set of FI)s, where the size of each FD is the
nurnber of attributes involved) algoritlun for finding the attribute closure of a set of
attributes with respect to a set of FDs. Prove that your algoritlun correctly COInputes
the attribute closure of the input attrilnlte set.

Exercise 19.16 Let us say that an 'Fl) )( -_.,} Y is si'mple if Y is a single attribute.

1. Replace the FD AB........, CD l.Jy the srnallest equivalent collection of sirnple FDs.

2. Prove that everyFD X _...crY" in (.'L set of FDs F Cetn be replaced by a set of sirnple F'Ds
such that p+ is equal to the closure of the new set of FDs.
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Exercise 19.17 Prove that Arrnstrong's i-\xiorns are sound and cOluplete for FD inference.
rT'hat is, sh()\v that repeated application of thesf; ttxiOlllS on a set F ofF'Ds produces eX(lctly
the dependencies in P+.

Exercise 19.18 Consider a relation R with attributes A BCDE. aLet the following FDs be
given: A ~ BC, Be ----'!" E, and E ~ DA. Siluilarly, let S be a relation with attributes ABC1DE
and let the follo\ving FDs be given: A-+ BC, B -+ IE, and E ----'!" DA. (Only the second
dependency differs frolll those that hold over R.) You do not know whether or which other
(join) dependencies hold.

1. Is R in BCNF?

2. Is R in ,1NF?

3. Is R in 5NF?

4. Is Sin BeNF?

5. Is Sin 4NF?

6. Is Sin 5NF'?

Exercise 19.19 Let R be a relation schelna with a set F of FDs. Prove that the decOIll­
position of R into HI and R2 is lossless-join if and only if p+ contains HI n R 2 ----'!" R 1 or
R 1 n R2 ----'!" R 2 .

Exercise 19.20 Consider a scheme R with FDs F that is decOlnposed into schelnes with
a..ttributes X and Y. Show that this is dependency-preserving if F' ~ (}~x U py)+.

Exercise 19.21 Prove that the optiInizatioll of the algorithrn for lossless··-join, dependency­
preserving decornposition into ~)NF relations (Section 19.6.2) is correct.

Exercise 19.22 Prove that the 3NF synthesis algoritlull produces a lossless-join decOlnposi­
tion of the relation containing all the original attributes.

Exercise 19.23 Prove that an ]\IlVn .X -+-+ Y over a rehltion R can be expressed a,,') the
join dependency [Xl {-,YY, X(R - Y)}.

Exercise 19.24 Prove that, if R has only one key, it is in BCNF if and only if it is in ~3NF.

Exercise 19.25 Prove that, if R is in 3NF and every key is shnple, then R is in HeNF.

Exercise 19.26 Prove these staternents:

1. If a relation scherne is in BCNF and at lea.st one of its l\.eys consists of }1 single attrilmte,
it is also in 4NF.

2. If a relation scherne is in :3NF and each key has a single attribute, it is also in 5NF'.

Exercise 19.27 Give <ill algorithrn for testing whether a relation scheme is in BCNF. ]'he
:.llgorithrn should l)e polynorniaJ in the size of the set of given FDs. ('rhe size is the surn over
all FI)s of the nurnber of attributes that a,ppear in theFJ).) Is there ::t polyuOlnial algorithrn
for testing whether a relation scheme is in :~NF?

Exercise 19.28 Give ('UI algorithm for testing \vhether a relation scherne is in BCjNF'. 'I'hf~

aJgorithrn should be polynomial in the size of the set of given FI)s. CI'he 'size' is the SUln over
all FI)s of the nurnber of attributes that appear in theFD.) Is there a polynomial algorithrn
for testing whether a relation scherne is in :~NF?

Exercise 19.29 1)rove that the algorithm for decomposing a re1cltion scherna with a set of
FI)s into a collection of BC~NS relation schenlas as describerl in Section 19.G.l is correct (i.e.,
it produces a collection of BCNF relations, and is lossless-join) and terrninates.
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PHYSICAL DATABASE
DESIGN AND TUNING

--What is physical database design?

.. What is a query workload?

... How do we choose indexes? What tools are available?

.. What is co-clustering and how is it used?

.. What are the choices in tuning a database?

.. How do we tune queries and view?

.. What is the impact of concurrency on perforrnance?

.. How can we reduce lock contention and hotspots?

.. "'That are popular database benchnlarks and how are they used?

... Key concepts: Physical database design, database tuning, workload,
co-clustering, index tuning, tuning wizard, index configuration, hot
spot, lock contention, database benchmark, transactions per second

Advice to a client who cornplained al)out rain leaking through the roof onto the
dining Utble: "J\!!ove the table."

............ Architect Frank IJoyd \"lright

The perfonnance of a 1)131:18 on cornrnonly &':lked queries and typical update
operations is the ultirnate Ineasure of a database desigIl. A I}BA can irnprove
perforrnance by identifying perforrnance bottlenecks and adjusting sorne DBIVlS
pararneters (e.g., the size of the buffer pool or the frequency of checkpointing)
or adding hanhvare to elirninate such bottlenecks. rIhe first step in achieving

Gi19
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good perforlnancc, however, is to Inake good databa.se design choices, which is
the focus of this chapter.

After we design the conceptual and exte'rnal scherna..'3, that is, create a collection
of relations and views along 'with a set of integrity constraints, we .Il1ust address
pe1'forlna11c8 goals through physical database design, in which we design the
physical sche111a. As user requirernents evolve, it is usually necessary to tune,
or adjust, all &"3pects of a database design for good perforrnance.

This chapter is organized as follows. We give an overview of physical database
design and tuning in Section 20.1. The 1nost irnportant physical design deci­
sions concern the choice of indexes. We present guidelines for deciding which
indexes to create in Section 20.2. These guidelines are illustrated through sev­
eral exalnples and developed further in Sections 20.3. In Section 20.4, vve look
closely at the irnportant issue of clustering; we discuss how to choose clustered
indexes and whether to store tuples fron1 different relations near each other (an
option supported by sorne DBMSs). In Section 20.5, we empha.."3ize how well­
chosen indexes can enable some queries to be answered without ever looking at
the actual data records. Section 20.6 discusses tools that can help the DBA to
autornatically select indexes.

In Section 20.7, we survey the lnain issues of database tuning. In addition
to tuning indexes, we 111ay have to tune the conceptual schema as well as
frequently used query and view definitions. We discuss how to refine the con­
ceptual schelna in Section 20.8 and how to refine queries and view definitions
in Section 20.9. We briefly discuss the perforrnance irnpact of concurrent access
in Section 20.10. We illustrate tuning on our Internet shop exarnple in Section
20.11. \Ye conclude the chapter with a short discussion of DBMS benchrnarks in
Section 20.12; benchrnarks help evaluate the perfOI'lnanCe of alternative DBl\1S
products.

20.1 INTRODUCTION TO PHYSICAI.J DATABASE
DESIGN

Like all other a.spects of elataba.se design, physical design rnust b(~ guided by
the nature of the data, a,nd its intencled use. In particular, it is irnportant tonn­
derstand the typical workload th<:tt the database lI1Ust support; tlH~ vvorklc)ad
consists of a rnix of queries a.nel updates. 1Jsers (:tlso have certain requirenl(~nts

about ho\v fast cert;:lin queries or llpdat(~s 11111st run or ho\v rnan.y tran.sactions
rnust be processed per second. rrhe \vorkload (l<~scription and users' perfor­
In(U1C(~ reqllirernents are the ba"sis on \vhich a nurnber of decisions have to be
rnade during pl1ysical datab':lse design.
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r-..····_·_,,·,_·.._~ .._···_··_-."_.~ _-_.-.-.._-_._ _-~"" __ _~ _.._ _..~ --·_ l
I Identifying Perfornlance Bottlenecks: All cornrrlercial systeuls pro­
I vide a suite of tools for rnonitoring a wide range of systeIll paralneters.

'I' These tOOlS. ' used properlY" C,Ul help identify perfOfIna.nc.e bO.ttlenecks and
suggest aspects of the databc1..'Se design and application code that need to

I be tuned for perforlnance. For exarnple 1 •"ve can ask the DBMS to rnonitor
I the execution of the database for a certain period of tinle and report on
i the nurnber of clustered scans, open cursors, lock requests, checkpoints,

buffer scans, average wait titne for locks, and many such statistics that
give detailed insight into a snapshot of the live system. In Oracle, a report
containing this inforlnation can be generated by running a script called
UTLBSTAT. SQL to initiate monitoring and a script UTLBSTAT. SQL to termi­
nate rnonitoring. The system catalog contains details about the sizes of
tables, the distribution of values in index keys, and the like. The plan gen­
erated by the DBMS for a given query can be viewed in a graphical display
that shows the estimated cost for each plan operator. While the details
are specific to each vendor, all InajaI' DBlIIS products on the market today

~rovide a sUi~e of such tools. __~..

To create a, good physical database design and tune the systenl for perfor­
mance in response to evolving user requirelnents, a designer HUlst understand
the workings of a DBMS, especially the indexing and query processing tech­
niques supported by the DBMS. If the database is expected to be accessed
concurrently by rnany users, or is a d'istr'ibuted database, the task beeornes
lnore cornplicated and other features of a, DBl\1S CaIne into play. 'iVe discuss
the ilnpact of concurrency on database design in Section 20.10 and distributed
databases in Chapter 22.

20..1..1 Database Workloads

The key to good physical design is DTriving at an accurate description of the
expectedworkloa.d. A workload description includes the follCJ\ving:

1. A list of queries (with their frequency, as <'1 rc:ttio of all queries / npdcltes).

2, A list of updates and their frequencies.

:3.Perfonnanc(~ goals for each type of query and update.

For each quer.y in the \vorklo;:vL vve HUlst identify

1\1II \Vhich relations (11'e accessecl.

1\1II \Vhich attributes are n:~tained (in the SELECT clru.lse).
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• \Vhich attributes have selection Of join conditions expressed on thern (in
the WHERE clause) (UH:! hovv selective these conditions are likely to be.

SiInilarly, for each update in the \vorkloacl, \ve Blust identify

• vVhich attributes have selection or join conditions expressed on therll (in
the WHERE clause) and ho\v selective these conditions are likely to be.

B The type of update (INSERT, DELETE, or UPDATE) and the updated relation.

• For UPDATE cOHnuands, the fields that are rnodified by the update.

R.ellleluber that queries and updates typically have parameters, for exarnple, a
debit or credit operation involves a particular account nUlnber. rrhe values of
these paralneters deterlnine selectivity of selection and join conditions.

Updates have a query cornponent that is used to find the target tuples. This
cOlllponent can benefit froIn a good physical design and the presence of indexes.
On the other hand, updates typically require additional work to ITlaintain in­
dexes on the attributes that they 111odify. Thus, while queries can only benefit
froill the presence of an index, an index rnay either speed up or slow down
a given update. Designers should keep this trade-off in rnind when creating
indexes.

20.1.2 Physical Design and Tuning Decisions

Irnportant decisions rnade during physical datab&'3e design and database tuning
include the follovving:

1. Choice of indexes to create:

II \Vhich relations to index and which field or cornbination of fields to
choose as index search keys.

II For each index, should it be clustered or ul1clustered?

2. Tuning the conceptual 8chenLa:

l1li Alternative 'fuJTYnalized 8cherna/): \Ve usually have rnore than one way
to dec()1npose a schclua into a desired IlOl'Inal fOITn (BCNF or 3NF).
A choice can be rnade on the basis of perforrnance criteria,.

II Den,OT7Tl.alizat'io'n: \Ve Inight\vant to reconsider scherna decolnposi­
bons ca.rried Ollt for norrnalization. during the conceptual schern.a de­
sign process to irnprove the perforrnance of queries that involve at­
tributes fr0111 several pn:~viously decornposed relations.



II l/crvtical part'itioning: LJnder certain circurnstances we rnight 'want to
further decornpose relations to ilnprove the perfornlance of queries
that involve only a fevv attributes.

II ViC'U1S: \Ve luight 'want to add sorne vie\vs to nlask the changes in the
conceptual scherna fr0111 users.

3. Query and tTansact'ioTl, t'UJLing: Frequently executed queries and transac­
tions ulight be re\\rritten to run fc1..ster.

In paTallel or distributed databases, \vhichwe discuss in Chapter 22, there are
additional choices to consider, such (laS whether to partition a relation across
different sites or whether to store copies of a relation a,t rnultiple sites.

20.1.3 Need for Database Thning

Accurate, detailed workload infonnation 111Cly be hard to corne by while doing
the initial design of the systen1. Consequently, tuning a database after it has
been designed and deployed is ilnportant---we HlllSt refine the initial design in
the light of actual usage patterns to obtain the best possible perfonnance.

The distinction bet\veen database design and database tuning is soruewhat
arbitrary. We could consider the design process to be over once an initial
conceptual sche1na is designed and a set of indexing and clustering decisions
is nlade. Any subsequent changes to the conceptual scherna or the indexes,
say, would then be regarded as tuning. Alternatively, we could consider sorne
refinernent of the conceptual scheula (and physical design decisions afl'ected by
this refinernent) to be part of the physical design process.

vVh,ere we draw the line between design and tuning is not very irnpoItant, and
we sirnply discuss the issues of in(lE:~x selection and databa..'3c tuning without
regard to when the tuning is carrier} out.

20.2 (;UIDEI.JINES FOR INDEX SELECTION

In considering \vhich indexes to create; we begin \\rith the list of queries (includ­
ing queries tha,t a.ppear as paTt of update operations). ()bviously, only relations
accessed by sorTle qu(~ry need to be considered as candidates for indexing, and
the choice of attributes to index is guided by the conditions that appear in the
WHERE clauses of the queries in the \vorkload. 1'he presence of suitable indexes
can significa.,ntly irnprove the evaluation plan for (1, query, EtS\Ve saw in Chapters
8 and 12.
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()ne approach to index selection is to consider the Ulost irnportant queries in
turn, and, for each, deterrnine \vhich plan the optiInizer \vould choose given
the indexes c:urrently on our list of (to be crc(;tted) indexes. Then\ve consider
\vhetherwe can aTrive at a substantially better plan by a,clding 1110re indexes; if
so. these additional indexes are candidates for inclusion in our list of indexes.
In general, range retrievals benefit froIn a 13'-f- tree index, and exact-IHatch.. ,-

retrievals benefit frorn a hash index. Clustering benefits range queries, and it
benefits exact-rnatch queries if several data entries contain the saIne key value.

Before adding an index to the list, hovvever, \ve lnust consider the irnpact of
having this index on the upda,tes in our workload. As \ve noted earlier, although
an index can speed up the query cornponent of an update, all indexes on an
updated attribute---{)n any attribute, in the case of inserts Cl.,nd deleteslnust
be updated whenever the value of the attribute is changed. Therefore, we
J.nust sOlnetirnes consider the trade-off of slo\ving sorne update operations in
the workload in order to speed up sorne queries.

Clearly, choosing a good set of indexes for a given workload requires an un­
derstanding of the available indexing techniques, and of the workings of the
query optiruizer. The following guidelines for index selection sunnnarize our
discussion:

Whether to Index (Guideline 1): The obviollS points are often the lnost
irnportant. Do not build an index unless sorne query including the query
cOlnponents of updates benefits frolu it. Whenever possible, choose indexes
that speed up rIlore than one query.

Choice of Search Key (Guideline 2): Attributes rnentioned HI a, WHERE
clause <),re ca,ndidates for indexing.

11I'I An exact-rnatch selection condition suggests that \ve consider an irldex on
t}le selected attributes, ideally, <:-}, hash index.

II j\ range selection condition suggests that we consider a 13+- tree (Of ISA1/1)
index on the selected attrilnltes. j\ B+ tree index is 11S1U111y preferaJ)le to
an ISA1/1 index. A.n ISA:NI irlclex rnay l)e vvorth considering if the relation is
infrequently updated, but we assurne that a B-t--- tree index is (lhvays chosen
over an lSft.\i\,1 index, for sirnplicity.

Multi-Attribute Search :Keys (Guideline 3): Indexes\vith Inllitipl(~-attributc

sea,rch keys slH)uld l)e considered in the follc)\ving two situ<ltion.s:

ill j\ WHERE clause includes conditinns 011 Inore t.han on(~ attribute of a rela­
tion.
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III They ellilble index-only evaluation strategies (i.e., accessing the relation can
be avoided) for irnportCtnt queries. (This situation Gould lead to attributes
being in the sCc:lrch key even if they do not appear in WHERE clauses.)

vVhen creating indexes on search keys wit.h rnultiple attributes, if range queries
axe expected, be careful to order the attributes in the search key to Ina.tch the
quenes.

Whether to Cluster (Guideline 4): At lllost one index on a given relation
can be clustered, and clustering affects perfonnance greatly; so the choice of
clustered index is iInportant.

II As a rule of tlnunb, range queries are likely to benefit the 1110St froIll clus­
tering. If several ra,nge queries are posed on a relation, involving different
sets of attributes, consider the selectivity of the queries and their relative
frequency in the workload when deciding which index should be clustered.

II If an index enables an index-only evaluation strategy for the query it is
intended to speed up, the index need not be clustered. (Clustering Inatters
only when the index is used to retrieve tuples fr(nll the underlying relation.)

Ifash versus Tree Index (Guideline 5): A B-·t- tree index is usually prefer­
able because it supports range queries as well as equality queries. A hash index
is better in the following situations:

IIi1 The index is intended to support index nested loops join; the indexed
relation is the inner relation, and the search key includes the join colurllns.
In this case, the slight ilnproveIllent of a hash index over a B·+ tree for
equality self~ctions is rnagnified, because an equality selection is generated
for each tuple in the outer relation..

II rrllcre is a very iInportant equality query, and no range queries, involving
the sea.rch key attributes.

Balancing the C~ost of Index Maintenance (Guideline 6): After drawing
up a ~\vishlist' of indexes to create, consider the irnpact of each index on the
updates in tl1cvvorkload.

• If Inaintainlng an index sl()\vs do\vn frc~quent update operations, consider
dropping the index.

II I{eep ill rnind, hOvv(~ver, thaJ adding an index Illay 'well speed up a given
update operation. For exanlplc, <111 index on enlployec~ IDs could speed up
th(~ operaJion of increa,'3ing the salary of a given ernployee (specified b:y ID).
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CHAPTER.20

BASIC EXAMPLES OF INDEX SELECTION

The follawing examples illustrate hen¥ to choose indexes during databa..sc design,
continuing the discussion froln Chctpter 8, \vherewe focused on index selection
for single-table queries. The schernas used in the exarnples are not described in
detail; in general, they contain the attributes nalned in the queries. Additional
inforlnation is presented "when necessary.

Let us begin with a silnple query:

SELECT E.enaIne 1 D .rugI'
FROM Enlployees E, DepartInents D
WHERE D.dncune='Toy' AND E.dno=D.dno

The relations rnentioned in the, query are Enlployees and Departnlents, and
both conditions in the WHERE clause involve equalities. Our guidelines suggest
that we should build hash indexes on the attributes involved. It seeIns clear
that we should build a hash index on the dnaTne attribute of DepartInents. But
consider the equality E. dno=D. dno. Should we build an index (hash, of coursf~)

on the dno attribute of Departrnents or Ernployees (or both)? Intuitively, we
want to retrieve Departments tuples using the index on dnarne because few
tuples are likely to satisfy the equality selection .D. dnaTne= 'Toy '.1 For each
qualifying Departrnents tuple, we then find lnatching EInployees tuples by using
an index on the dno attribute of Ernployees. So, we should build an index on the
dno field of En1ployees. (Note that nothing is gained by building an additional
index on the dno field of Departrnents because Departnlents tuples are retrieved
using the dna:rne index.)

Our choice of indexes was guided by the query evaluation plan we \vanted
to utilize. This consideration of a, potential evaluation pla.n is connnon while
rnaking physical design decisions. U·nderstanding query optirnization is very
useful for physical design. "VVe show the desired plal1 for this query in Figure
20.1.

As a variant of this query, suppose that the WHERE clause is rnodified to be
WHERE J). dnarne= 'Toy ~ AND E'.dno=D. dno AND E'1. 0,oge=25. Let us consider al­
ternative evaluation plans. ()ne good plan is to retrieve Departrnents tuples
that satisfy the selection on dnarne and retrieve rnatching Ernployees tuples by
using an index on the dno field; the selection on age is then applied on-the-fly.
TIc)\vever, unlike the previous variant of this Cjllcry, vve do not really need to
have an index on the dna field of Ernployees if \ve have an index. on age. In this

------_...... _._--
lThis is only a heuristic. If dnarne is not the key, and we have no statistics to verify this cla.inl. it

is possible that several tuples satisfy this condition.
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Figure 20.1 A Desirable Query Evaluation Plan

case we can retrieve Departrnents tuples that satisfy the selection on dnarrte (by
using the index on dname, as before), retrieve Ernployees tuples that satisfy the
selection on age by using the index on age, and join these sets of tuples. Since
the sets of tuples we join are srnall, they fit in 111ernory and the join Inethod is
unirnportant. This plan is likely to be sornewhat poorer than using an index on
dno, but it is a reasonable alternative. rrherefore, if we have an index on age
already (prolnpted by sorne other query in the workload), this variant of the
sarnple query does not justify creating an index on the dno field of Ernployees.

Our next query involves a range selection:

SELECT
FROM
WHERE

E.enan1e, I),dnarne
Elnployees E, Departrnents D
B.sal BETWEEN 10000 AND 20000
AND E.hobby='Starups' AND E.dno=D.dno

T'his query illustrates the use of the BETWEEN operator for expreSSIng range
selections. It is equivalent to the condition:

10000 ::; E.sal AND E.sal :S 20000

l~he use of BETWEEN to express rarlge conditions is reconunended; it lnakes it
cc1.5ier for both the user and the optilnizer to recognize both parts of the range
selection.

lleturning to the exarnple query, both (nonjoin) selections are on the Ernployees
relation. Therefore, it is clear that a plan in which Eluployees is the outer
relation and I)epartrnents is the inner relation is the best, as in the previous
query, and\ve should build a hash index on the dno attribute of Departlnents.
But vvhich index should vve build on Ernployees? 1\. 13+ tree index on. the sal
attribute would help with the range selection, especially if it is clustered. A
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hash index on the hobby attribute \\Tould help ·with the equality selection. If
one of these indexes is available, we could retrieve Ernployees tuples using this
index, retrieve rnatching Departruents tuples using the index on dno~ aJld apply
all rernaining selections and projections on-the-fly. If both indexes are available,
the optirnizer would choose the rno1'e selective index for the given query; that is,
it \vollld consider \vhich selection (the range condition on salary or the equality
on hobby) ha",,; fe\ver qualifying tuples. In general, which index is rnore selective
depends on the data. If there are very few people with salaries in the given
range and rnany people collect starnps, the B-t- tree index is best. Otherwise,
the hash index on hobby is best.

If the query constants are known (H,," in our exarnple) ~ the selectivities can be
estiInated if statistics on the data are available. Otherwise, as a rule of thurnb,
an equality selection is likely to be rnore selective, and a rea.sonable decision
would be to create a hash index on hobby. Sornethnes, the query constants
are not knowIl",,··----we rnight obtain a query by expanding a query on a view at
rUIl-tirrle, or we rnight have a query in Dynalnic SQL, which allows constants
to be specified as wild-card variables (e.g., %X) and instantiated at run-tinle
(see Sections 6.1.3 and 6.2). In this case, if the query is very important, we
lllight choose to create a B+ tree index on sal and a hash index on hobby and
leave the choice to be rnade by the optirnizer at run-tirrle.

20.4 CLUSrrERING AND INDEXING

Clustered indexes can be especially iInportant while accessing the inner relation
in an index nested loops join. To understand the relationship between clustered
hldexes and joins, let us revisit our first exarnple:

SELECT E.enanle, D.rngr
FROM I;~Inployees E, I)epartrnentsD
WHERE I).dnalne=uroy~ AND Ii~.clno:=I).dno

\Ve concluded that a good evaluation plan is to use an index on dna:rne to re­
trieve DepartlnE:~nts tuples satisfying the condition on dnarne and to find. rnatch­
ing Ernployees tuples using an index on dna. Should these indexes be clustenxl?
G·iven our asslunption that the nUlnl.H~r of tuples satisfying 1). dnarne:= 'Toy' is
likely to be srnall, \ve should build an unclustered index on dnanu~. ()n the
other IH:ind, Ernployees is the inner relation in an index nested loops join and
dna is not El candidate key. 'fhis situation is a strong Etrgulnent that the index
on the dno field of Ernployees 8ho111(1 be clustered. In fact~ bec;:Luse the join
consists of repeatedly posing equ.ality selections CH1 the dnofield of the inner
relation, this type of quer,Y is a stronger justification for rnaking tIle index on
dno clustered than (1, sirnple sc~lecti(}n query such as the previous selection on
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hobby. (Of courso, factors such as selectivities and frequency of queries have to
be taken into account a",swell.)

'rhe follc)\ving oxaluplc, very sirnilar to the previous one, illustrates ho\v clus­
tered indexes can be used for sort-rnerge joins:

SELECT E.enarne,D.rngr
FROM Ernployees E, DepartlTlents D
WHERE E.hobby='Starnps' AND E.dno=D.dno

This query differs froIll the previous query in that the condition E. hobby-= 'Starnps i

replaces D. dnarne== 'Toy'. Based on the t1.'3sl.unption that there are few ernploy­
ees in the Toy departrnent, we chose indexes that would facilitate an indexed
nested loops join with DepartlTlents as the outer relation. Now, let us suppose
that rllany ernployees collect stamps. In this case, a block nested loops or sort­
rnerge join Blight be rnore efficient. A sort-rnerge join can take advantage of a
clustered B+ tree index on the dno attribute in Departrnents to retrieve tuples
and thereby avoid sorting Departrnents. Note that an unelustered index is not
useful----since all tuples are retrieved, performing one I/O per tuple is likely to
be prohibitively expensive. If there is no index on the dno field of Ernployees,
we could retrieve Ernployees tuples (possibly using an index on hobby, especially
if the index is clustered), apply the selection E. hobby= 'Starnps ' Oll-the-fly, and
sort the qualifying tuples on dno.

As our discllssion has indicated, when we retrieve tuples using an index, the
irnpact of clustering depends on the rnunber of retrieved tuples, that is, the
nuruber of tuples that satisf\r the selection conditions that rnatch the index.
An unclustered index is just a.s good as (1, clustered index for a selection that
retrieves a single tuple (e.g., an equality selection on a candidate key). As the
llurnber of retrieved tuples increases, the unclustered index quickly becoHlcs
rnore expensive than e'ven a sequential scan of the entire relation. Although
the sequential scan retrieves all tuples, each page is retrieved exactly onc(·~,

wherea,s a page rIlay be retrieved as often as the rnunber of tuples it contains
if an unclustered index is usee!' If blocked l/C) is perforrned (as is COl1nnon),
the relative advantage of sequential scan versus an llnclustered index increases
further. (Blocked T/C) also speeds up access using a clustered index, of c(nus(~.)

\Ve illustrate the relationship bet\veen the nUlnb(~r of r(~trieved tuples, vicv.red
as a percentage of the total nurnber of tuples in the rehttioIl, a,nd the cost of
various access rnethods in .Figure 20.2. vVe assurne that the query is a selection
on a single relation, for sirnplicity. (Note that this figure reflects the C()st of
writing out the result: other\vise~ the line for seqnential scan weHlld be flat.)
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Cost

Unclustered index
Range in which
uncl'Ustered index is
better than sequential
scan of entire relation

o
Percentage of tuples retrieved

Figure 20.2 The Impa.ct of Clustering

20.4.1 Co-clustering Two Relations

100

In our description of a typical database systern architecture in Chapter g, we
explained how a relation is stored as a file of records. Although a file usually
contains only the records of SOIn8 one relation, SCHue systeIlls allow records
frorn Inore than one relation to be stored in a single file. rrhe database user
can request that the records froIll two relations be interleaved physically in this
111anne1'. This data layout is sornetiInes referred to as co-clustering the two
relations. We now discuss when co-clustering can be beneficial.

As an exarnple, consider two relations with the following schernas:

Parts(pid: integer, pnarne: string, cost: integer, 8upplierid: integer)
Asserllbly"(part'id: integer, cOT!.!,ponent~d: integer, quantity: integer)

In this scherna the cO'nl,ponentid field of Assernbly is intended to be the pid
of sorne part that is used as a cornponent in assernbling the part with pid
equal to partido Therefore, the Assernbly table represents a l:N relationship
between parts and their subparts; a part can have rnany S11 bparts, but each
part is the subpart of at rnost one part. In, the Parts table, pid is the key. For
cOlnposite parts (those assernbled frorIl other parts, a.s indicated by the contents
of Assclnb1y), the cost field is taken to be the cost of a.sselubling the part frorn
its subparts.

Suppose tha.t a frequent query is to find the (inllnediate) subparts of all parts
supplied by a given supplier:

SELECT P.piel, .A.componentid
FROM Pql't'c' 'J") AS''''(.'·\I'Xll'')I't" A. (L" 11:::1 .. , \,S ..' ",r "
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WHERE P.piel = A.partid AND P.supplierid = 'Acrne'

6ljl

A good evaluation plan is to apply the selection condition on Parts a,nel then
retrieve rnatching Asselnbly tuples throngh an index on the partid field. Ideally,
the index on part'id should be clustered. rrhis plan is rea,,'30rHlbly good. :However,
if such selections are COHU110n and we \.vant to optirnize thorn further, ,ve can
co-cZ'usteT' the tvvo tables. In this approach, we store records of the two tables
together, \vith each Parts record P follc)\ved by all the Assernbly records ./1 such
that P.pid = A.partid. This approach improves on storing the two relations
separately and having a, clustered index on paTtid because it does not need an
index lookup to find the A.ssernbly records that rnatch a given Parts record.
Thus, for each selection query, we save a few (typically two or three) index
page l/Os.

If we are interested in finding the imrnediate subparts of all parts (i.e., the
preceding query with no selection on supplierid) , creating a clustered index on
paTtid and doing an index nested loops join with Assembly as the inner relation
offers good perfonnance. An even better strategy is to create a clustered index
on the paTtid field of Assernbly and the pid field of Parts, then do a sort-rnerge
join, using the indexes to retrieve tuples in sorted order. This strategy is
comparable to doing the join using a co-clustered organization, which involves
just one scan of the set of tuples (of Parts and Asselnbly, which are stored
together in interleaved fashion).

The real benefit of co-clustering is illustrated by the following query:

SELECT P.pid,A.componentid
FROM Parts P, Assernbly A
WHERE P.pid = A.partid AND P.cost=10

Suppose that rnany parts have cost = 10. This query essentially a,rnonnts to
a collection of queries in which we are given a Parts record and want to find
rnatching Assernbly records. If we have an index on the cost field of Parts, we
can retrieve qualifying Parts tuples. I~'or each such tuple, we haNe to use the
index on Assernbly to locate records with the given pid. rrhe index access for
A.ssernbly is avoided if we have a co-clustered organization. (()f courS8, vve still
require all index on the cost attribute of Parts tuples.)

Such an optirnization is especiftlly irnportant if we ,vant to traverse several
levels of the part-subpart hierarchy..For excunplc, a COnll110Il query is to find
the totaJ cost of a part, vvhich requires us to rep(~atedly carry out joins of
Pa,rts (lIlel Asscrnbly. Incidentally~ if '\:V(~ do not know the nurnber of levels in
the hierarchy ill adVallCf\ the nUlnber of joins varies and the query cannot be
(~xpressed in S(~L. The query can be ansvvered by ernbedcling an S(~L staterneIlt
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for the join insicie an iterative host language prograrll. fluw to express the query
is orthogonal to our lnain point here, which is that co-clustering is especially
beneficial \vhen the join in question is carried out very frequently (either because
it arises repeatedly in an ilnportant query such as finding total cost, or because
the join query itself is asked frequently).

To sUIlunarize co-clustering:

III It can speed up joins, in pa,rticular key· foreign key joins corresponding to
l:N relationships.

III A sequential scan of either relation becornes slower. (In our exalnple, since
several Assenlbly tuples are stored in bet\veen consecutive Parts tuples, a
scan of alll:>arts tuples becornes slower than if Parts tuples \vere stored sep­
arately. SiInilarly, a sequential scan of all Assernbly tuples is also slower.)

Ii All inserts, deletes, and updates that alter record lengths becorne slower,
thanks to the overheads involved in ruaintaining the clustering. (We do
not discuss the irnplernentation issues involved in co-clustering.)

20.5 INDEXES THAT ENABLE INDEX--ONLY PLANS

This section considers a nU111ber of queries for which we can find efficient plans
that avoid retrieving tuples froln one of the referenced relations; instead, these
plans scan an associated index (which is likely to be lnuch srnaller). An index
that is used (only) for index-only scans does not have to be clustered because
tuples fronl the indexed relation are not retrieved.

This query retrieves the lnanagers of depal'truents with at least one ernployee:

SELECTD.rugr
FROM Departrnents I) ~ F~rnployees E
WHERE I).dno=E.dno

()bserve that no attributes of Ernployees are retahlcd. If ¥lC have an index on
the dno field of Ernployees: tl1e optirnization of doirlg an index nested loops join
using an index-onl:y searl for the inner relation is applicable. C;iven this variant
of the quer:y, the correct d(-~cision is to build an uncIustered index on tll(~ dna
field of Elfll>loyees, rather thaIl a clustered index.

rrhe next query takes this idea a step further:

SELECT ]) .rngr ,E.eid
FROM ])epartrnents I), Ernployees E
WHERE D.dno=E.dno
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If \ve have an index on the lino field of :Elnployees~weGan use it to retrieve
EU.lployees tuples during the join (\vith Departrnents a",~ the alIter relation),
but unless the index is clustered, this approach is not be efficient. ()n the
other hand, suppose that vve have a B+- tree index on (dna, e'id).Now all the
inforrnation \ve need about an Ernployee,s tuple is contained in the data entry
for this tuple in the index. We can use the index to find the first data entry
\vith a given elno; all data entries 'with the SeHne dno are stored together in the
index. (Note that a ha'3h index on the cOlnposite key (dna, eid) cannot be used
to locate an entry with just a given dno!) \\Te can therefore evaluate this query
using an index nested loops join with Departlnents as the outer relation and
an index-only scan of the inner relation.

20.6 TOOLS TO ASSIST IN INDEX SELEC"fION

The rUllnber of possible indexes to consider building is potentially very large:
For each relation, we can potentially consider all possible subsets of attributes
as an index key; we have to decide on the ordering of the attributes in the index;
and we also have to decide which indexes should be clustered and which un­
clustered. Many large applications---for exalnple enterprise resource planning
systerns~--··createtens of thousands of different relations, and rnanual tuning of
such a large schelna is a daunting endeavor.

The difficulty and irnportance of the index selection tc'ksk rnotivated the devel­
opment of tools that help database adrninistrators select appropriate indexes
for a given workload. The first generation of such index tuning wizards, or
index advisors, were separate tools outside the database engine; they sug­
gested indexes to build, given a workload of SQL queries. rfhe rnain drawback
of these systerns was that they had to replicate the database query optirnizer's
cost rnodel in the tuning tool to rnake sure that the optilnizer would choose the
sanlC query evaluation plans as the design tool. Since query optirnizers cha,nge
froIn release to release of a conunercial databa.se systern, considerable effort was
needed to keep the tuning tool and the database optirnizer synchronized. The
rnost recent g(~neration of tuning tools are integrated \vith the database engine
and use the database query optiluizer to estirnate th(~ cost of a workload given
a set of indexes, cl,voiding duplication of the query optirnizer's cost rnodel into
an external tool.

20.6.1 Automatic Index Selection

\{Ve call a set of indexes for a given database scherna. an index configuration.
\Ve aSSlune that a, query workload is a set of queries over a databc'kse scherna
'INhere each query has a frequency of occurrence assigned t.o it. (jiven a database
schelna and a, workload, the cost of an index configuration is the expected
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cost of running the queries in the 'workload given the index configuration
taking the different frequencies of queries in the workloa-d into account. (jiven
a database schclna and a query workload, we can no\v define the problel11 of
automatic index selection as finding an index configuration \vith nlinirnal
cost. A.s in query optinlization, in practice our goaJ is to find a good index
configuration rather than the true optirnal configuration.

\Vhy is autollultic index selection a hard problern? Let us calculate the nUlnber
of different indexes \vith c attributes, assurning that the table hc),sn attributes.
For the first attribute in the index, there are n choices, for the second attribute
n ~ 1, and thus for a, c attribute index, there are overall n· (n -1) ... (n -'- c+ 1) =

(, ~! )' different indexes possible. The total nurnber of different indexes with upn c.
to c attributes is

c ,

2: _!!-_.. "
'i=l (n - 1,).

For a table with 10 attributes, there are 10 different one-attribute indexes, 90
different two-attribute indexes, and 30240 different five-attribute indexes. For
a cornplex workload involving hundreds of tables, the nurnber of possible index
configurations is clearly very large.

The efficiency of autornatic index selection tools can be separated into two
components: (1) the nurnber of candidate index configurations considered, and
(2) the nurnber of optimizer calls necessary to evaluate the cost for a configura­
tion. Note that reducing the search space of candidate indexes is analogous to
restricting the search space of the query optiInizer to left-deep plans. In lnany
cases, the optirnal plan is not left-deep, but alllong all left-deep plans there is
usually a plan whose cost is close to the optirnal plan.

We can easily reduce the tiIne taken for autornatic index selection by reducing
the nUlnber of candidate index configurations , but the srnaller the space of
index. configurations considered, the farther away the final index configuration is
[1'0111 the optirnal index configllration. rrherefore, different index tuning \vizards
prune the search space differently, for exarnple, by considering onl:y one- or two­
attribute indexes.

20.6.2 How Do Index Thning Wizards Work?

All index tuning \vizards s(~arch a, set of candidate indexes for an index con­
figuration '''lith lowest cost. 1hols differ in the spa.ce of candidate index con­
figurations they consider aJld how they search this space. \Ve describe one
representative algoritlun; existing tools iInplernent 'variants of this algorithrn,
hut their irnplernentations have the sanIe basic structun~.
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r-·······..-··---...----·····..·.··....··.-~-·· .."..--·-_............ .. ... .....~.--------l
I The DB2 Index Advisor. The DB2 Index Advisor is a tool for auto- I
I matic index recon1nl~ndationgiven a workload.. The workl?adis stored i~ I

the databa~~e systell1 In a table called ADVISE_WORKLOAD. It IS populated e1- I
ther (1) by SQL statcrnents 1'1'0111 the DB2 dynanlic SQL statelnent cache, .
a cache for recently executed SQL statenlents, (2) with SQL staternents
frol11 packages·....--groups of statically cornpiled SQL statenlents, or (3) with
SQL statelnents frolIl an online monitor called the Query Patroller. The
DB2 Advisor allows the user to specify the lnaximuill arnount of disk space
for ne\v indexes and a rnaxirrnul1 tiTne for the cornputation of the recom­
rnended index configuration.
The DB2 Index Advisor consists of a prograrrl that intelligently searches
a subset of index configurations. Given a candidate configuration, it
calles the query optirnizer for each query in the ADVISE_WORKLOAD table
first in the RECOMMEND_INDEXES rnode, where the opthnizer recommends
a set of indexes and stores thern in the ADVISE_INDEXES table. In the
EVALUATE_INDEXES mode, the optimizer evaluates the benefit of the index
configuration for each query in the ADVISE-WORKLOAD table. The output of
the index tuning step is are SQL DDL statenlents whose execution creates
the recomrnended indexes.

Ghe M~crosoft-~Q~~~~er-;~OO ~~x ;:nin;-Wiz~d. Microsoft l
, pioneered the irnplell1entation of a tuning wizard integrated with the I

database query optiInizer. The l\1icrosoft Tuning vVizard has three tuning I

rnodes tha.t perrnit the user to trade off running tiIne of the analysis and !

nurnber of candidate index configurations exarnined: fast, rned-itlm, and I
thOTOUgh, with fast having the lo\vest running tirne aJld thoTo'ugh exalnin­
ing the h1rgest nUlnber of configurations. rro further reduce the running I
tiIne, the tool has a salnpling Inode in which the tuning wizard randoruly :1'

salllpics queries fronl the input workload to speed up analysis. Other pa­
nuneters include the lnaxirnurn space allowed for the reeornmended indexes, !
the. rn~x.iInu~n nurnber of attributes per i~ldex considered, a~d th:. tables on Ii

\Vl11C}~ Indexes can. be generated. The ~llcroso~'~' Index ~u.lung \\1 Izard also, I
perunts table scall,ng, \vhere the user can specIfy an antIcIpated nurnber of ;

i records for the tables involved in the workload. This allows users to plan I

I.._f~:t~~_~~~th_of::~_~~abl~~:__.____. ~" "" _ __".._" _.__~,._ __"..__.._ __ .J
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Before we describe the index tuning algoriUlIn, let us consider the problell1 of
estiInating the cost of a configuration. Note that it is not fea...sible to actu­
ally create the set of indexes in a candidate configuration and then optirnize
the query workload given the physical index configuration. Creation of even a
single candidate configuration with several indexes lIlight take hours for large
databases and put considerable load on the database systerIl itself. Since we
vvant to exauline a large nUlnber of possible candidate configurations, this ap­
proach is not feasible.

Therefore index tuning algorithrIls usually .sim,ulate the effect of indexes in
a candidate configuration (unless such indexes already exist). Such what-if
indexes look to the query optilIlizer like any other index and are taken into
account when calculating the cost of the workload for a given configuration,
but the creation of what-if indexes does not incur the overhead of actual index
creation. Commercial databa..'3e systelIls that support index tuning wizards
using the database query optirnizer have been extended with a module that
permits the creation and deletion of what-if indexes with the necessary statistics
about the indexes (that are used when estirnating the cost of a query plan).

We now describe a representative index tuning algorithm. The algorithm pro­
ceeds in two steps, candidate index selection and cor~figuration enumeration. In
the first step, we select a set of candidate indexes to consider during the second
step as building blocks for index configurations. Let us discuss these two steps
in Inore detail.

Candidate Index Selection

We saw in the previous section that it is iInpossible to consider every possible
index, due to the huge nUluber of candidate indexes available for larger databa.'3c
schernas. ()ne heuristic to prune the large space of possible indexes is to first
tune each query in the workload independently and then select the union of
the indexes selected in this first step as input to the second step.

:F'or a query, let us introduce the notion of an indexable attribute, which is an
attribute whose appearance in an index could change the cost of the query. An
indexable attribute is an attribute on \vhich the WHERE-part of the query h(4'3
a condition (e.g., an equality predicate) or the attribute appears in a GROUP BY
or ORDER BY clause of the SC~L query. An admissible index for a query is an
index that contains only indexable attributes in the query.

JIo\v do we select candidate indexes for an individual query? ()ne approach is
a ba.sic ellurnenttion of all indexes with up to k attributes. \Ve start \ivith aU
indexable attributes as single attribute candidate ind(~xes, then add all corn-



[>hysical Database ]Jc8ign and T11ning

binations of two indexable attributes &'3 candidate indexes, and repeat this
procedure until a user-defined size threshold k. 'This procedure is obviously
very expensive a., we add overall n +n· (n - 1) + ... +n· (n - 1) ... (n·- k + 1)
candidate indexes, but it guarantees that the best index with up to k attributes
is aIl10ng the candidate indexes. The references at the end of this chapter COIl­

tain pointers to faster (but less exhaustive) heuristieal search algorithrns.

Enumerating Index Configurations

In the second phase, we use the candidate indexes to enUInerate index con­
figurations. As in the first phase, we can exhaustively enurnerate all index
configurations up to size k, this time cornbining candidate indexes. As in the
previous phase, more sophisticated search strategies are possible that cut down
the number of configurations considered while still generating a final configu­
ration of high quality (i.e., low execution cost for the final workload).

20.7 OVERVIEW OF DATABASE TUNING

After the initial phase of databa.se design, actual use of the database provides
a valuable source of detailed information that can be used to refine the initial
design. Many of the original a.ssulnptions about the expected workload can be
replaced by observed usage patterns; in general, some of the initial workload
specification is validated, and some of it turns out to be wrong. Initial guesses
about the size of data can be replaced with actual statistics frorn the sys­
tern catalogs (although this inforrnation keeps changing as the systern evolves).
Carefulrnonitoring of queries can reveal unexpected problerlls; for eXaJnple, the
optirnizer lllay not be using SOIne indexes &'3 intended to produce good plans.

Continued database tuning is irnportant to get the best possible perforrnance.
In this section, we introduce three kinds of tuning: tun'ing 'inde1;(~8J tun'ing the
conceptual scherna, and tuning queT'ies. OUf discussion of index selection also
applies to index tuning decisions. Conceptual schcrna and query tuning are
discussed further in Sections 20.8 and 20.9.

20.7.1 Thning Indexes

The initial choice of indexes rnay be refined for one of several reasons. 'fhe
sirnplest reeL-son is that the observed \vorkload reveals that scnne queries and
updates considered irnportant in the initial\vorkload specification are not very
frequent. 1'he observed \vorkload rnay a1so identi~y SCHne ne\v queries and up­
dates that aTe inlportant.The initial choice of indexes has to be revievved in
light of this new inforrnation. Scnne of the original in,dexes rnay be dropped and



668 CHAPTER 20

new ones added. The rea.solling involved is siInilar to that used in the initial
design.

It Inay also be discovered that the optimizer in a given systenl is not finding
some of the plans that it vvc1"s expected to. For exaluple, consider the following
query, which \ve discussed earlier:

SELECT D.Ingr
FROM Ernployees E, Departulents D
WHERE D.dname=='Toy' AND E.dno=D.dno

A good plan here would be to use an index on dnarne to retrieve Departnlents
tuples with dnarne= 'Toy' and to use an index on the dno field of Employees as
the inner relation, using an index-only scan. Anticipating that the optirnizer
would find such a plan, we rnight have created an unclustered index on the dno
field of Ernployees.

Now suppose queries of this fonn take an unexpectedly long time to execute. We
can ask to see the plan produced by the optiInizer. (Most commercial systerIls
provide a simple cOillrnand to do this.) If the plan indicates that an index-only
scan is not being used, but that Employees tuples are being retrieved, we have
to rethink our initial choice of index, given this revelation about our system's
(unfortunate) lhnitations. An alternative to consider here would be to drop the
unclustered index on the dno field of EUlployees and replace it with a clustered
index.

SOUle other COllllnon lirnitations of optiInizers are that they do not handle
selections involving string expressions, arithrnetic, or null values effectively.
We discuss these points further when we consider query tuning in Section 20.9.

In addition to re-exarnining our choice of indexes, it pays to periodically reor­
ganize S(Hne indexes. For example, a static index, such <he.:; an ISAl\Il index~ Illay
have developed long overflow chains. Dropping the index and rebuilding it ..···_·-if
feasible, given the interrupted access to the indexed relation----··can substantially
irnprove access tiTHes through this index. Even for a dynarnic structure such
as a 13+ tree, if the implernentation does not rnerge pages on deletes, space
occupancy can decrea"se considerably in SaIne situations. This in turn rnakes
the size of the index (in pages) larger than necessary, and could increase the
height and therefore the access tilne. Ilebuilding the index should be consid­
ered.Extensive updates to a clustered index rnight also lead to overflow pages
being allocated, thereby decreasing the degree of clustering. Again, rehuilding
the index Inay be vvorthwhile.
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l?inally, note that the query optinlizer relies on statistics rnaintained in the
SystCIll catalogs. These statistics are updated only "til/hen a special utility pro­
granl is run; be sure to run the utility frequently enough to keep the statistics
reasonably current.

20.7.2 Thning the Conceptual Schema

In the course of datab&'Se design, \ve rnay realize that our current choice of
relation SChelllaS does not enable us rneet our perforrnance objectives for the
given vvorkload with any (feasible) set of physical design choices. If so, \ve
11lay have to redesign our conceptual scherna (and re-exarnine physical design
decisions affected by the changes we rnake).

We rnay realize that a redesign is necessary during the initial design process or
later, after the systern has been in use for a while. Once a database has been
designed and populated with tuples, changing the conceptual scherna requires
a significant effort in tenrlS of rnapping the contents of the relations affected.
Nonetheless, it rnay be necessary to revise the conceptual scherna in light of
experience with the systern. (Such changes to the schema of an operational
systerll are sometirnes referred to as schema evolution.) \lVe now consider
the issues involved in conceptual scherna (re)design frorn the point of vie\v of
perforrnance.

rrhe rnain point to understand is that OUT choice of concepb.lal 8cherna should
be gv-ided by a cons'ideration of the querflc8 and 'updates in our 'workload" in
addition to the issues of redundancy that rllotivate nonnalization (which we
discussed in Chapter 19). Several options rnust be considered while tuning the
conceptual scherna:

IlIII \Ve lIlay decide to settle for a :3NF design instead of a BCN'F design.

III If there are two ways to decornpose a given schelna into 3NF or BCNF\ our
choice should be guided by the workload.

III Sornetilnes we rnight decide to further decornpose a relation that is already
. BC1 NF'-'rn :./1 .

III In other situations, we rnight denorrnalizc. rrhat is~ \ve rnight choose to
replace a cOllection of relations obtained by a dec(nnposition frorn a larger
relation ,vith the original (larger) relation, even though it suffers frorn 80rne
redundancy problerl1s. Alternatively, we rnight choose to H.del sorne fields
to certain relations to speed up SCHne irnportant queries, even if this leads
to a redundant storctge of 80rne infonnation (anei, consequently, a scherna
that is in neither :3NF nor BCNF).
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II This discussion of nonnalization has concentrated on the technique of de­
CO'f17JJo8'ition, 'which arnounts to vertical partitioning of a relation. Another
technique to consider is horizontal ],Jartit'ion/ing of a relation, 'which \vould
lead to having two relations v'lith identical schernas. Note that we are not
talking about physically partitioning the tuples of a single relation; rather,
\ve \vant to create two distinct relations (possibly \vith different constraints
and indexes on each).

Incidentally, when \ve redesign the conceptual scherna, especially if we are tun­
ing an existing database sche1na, it is \vorth considering whether V'le should
create vic\vs to rnask these changes fronl users for WhOlll the original schcrlla is
]nore natural. \\le discuss the choices involved in tuning the conceptual scherna
in Section 20.8.

20.7.3 Thning Queries and Views

If we notice that a query is running rnuch slower than we expected~ we have to
exarnine the query carefully to find the problern. SaIne rewriting of the query,
perhaps in conjunction with SCHne index tuning, can often fix the problern. Sirn­
ilar tuning rnay be called for if queries on SaIne view run slower than expected.
We do not discuss view tuning separately; just think of queries on views as
queries in their own right (after all, queries on views are expanded to account
for the view definition before being optirnized) and consider hcnv to tune thern.

vVhen tuning a query, the first thing to verify is that the systern uses the plan
you expect it to use. Perhaps the systelll is not finding the best plan for a
variety of rcclsons. Sorne COIllrllon situations not handled efficiently by rnany
optinlizers follow:

.. A selection condition involving null values.

l1li Selection conditions involving aritlunetic or string expressions or concli­
tions using the OR connective. For exarnple, if we have a conclitionE. age
= 2*]). age in the WHERE clause, the optirnizer rnay correctly utilize an
available index onE. age but fail to utilize an availclble index on 1). age.
R,eplacing the condition by 1;;. age/2 = 1). age \vould reverse the situation.

IIi1I Inability to recognize a sophisticated plan such as an index-only scan for
an aggregation query involving a GROUP BY clause. ()f course, virtually no
optirnizer looks for plans outside the plan space described in Chapters 12
and 15, such cL.snonleft-deep join trees. So a good urHl(~rstandingof ·what
an optirnizer typically does is irnportant. In addition, the rnore a:ware you
are of a given systeur's strengths arrd lirnitations, the better off Y01J arc.
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If the optirnizer is not SIl1art enough to find the best pla.n (using access Inethods
and evaluation straJegies supported by the DB.wIS), SOHle systern.s allo\v users
to guide the choice of a plan by providing hints to the opthnizer; for exalnplc,
users rnight be able to force the use of a particular index or choose the join
order and join rnethod. A user who wishes to guide optirnization in this Inanner
should have a thorough understanding of both optirnizatioll and the capabilities
of the given DBNIS. We discuss query tuning further in Section 20.9.

20.8 CHOICES IN TUNING THE CONCEPTUAL
SCHEMA

We novv illustrate the choices involved in tuning the conceptual scheIua through
several exarnples using the following schelnas:

Contracts( cid: i~.~eger, s'Upplierid: integer, projectid: integer,
deptid: integer, partid: integer, qty: integer, value: real)

Departments (did: integer, budget: real, annualreport: varchar)
Parts(pid: integer, cost: integer)
Projects(jid: integer, rngr: char(20))

_.- -
Suppliers (sid: _..~.:nteger, address: char(50))

For brevity, we often use the cornrnon convention of denoting attributes by
a single character and denoting relation schernas by a sequence of characters.
Consider the scherna for the relation Contracts, whic.h we denote as CSJDPQV,
with each letter denoting an attribute. The Ineaning of a tuple in this relation
is that the contract with cid C is an agreernent that supplier S (with sid equal
to supplierid) will supply (~ iterns of part P (with pid equal to partid) to project
J (with j'id equal to projectid) a.'3sociated with departrnent D (with deptid equal
to did), and that the value V of this contract is equal to value. 2

There are two known integrity constraints with respect to Contracts. A project
purdHk')cs a given part using a single contract; thus, there cannnot be two
distinct contracts in which the saIne project buys the saIne part. This constraint
is represented using th.e FI) .II) ----;. (.1. Also, a departrnent purchases at rnost
one part frolll any given supplier. This constraint is represented llsing the I?D
8D ----;. I). In addition, of course, the contract ID C is a key. l"1he rneaning
of the other relations should be obvious, and we do not describe thcrn further
because we focus on the Contra.cts rela.tion.

2If this schema seems cornplicated, note that real-life situations often call for considerably more
cornplex schema.,,':>!
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20.8.1 Settling for a Weaker Normal Form

Consider the Contracts relation. Should we deconlpose it into sHlaller relations?
Let us see what norrnal fann it is in. '1'he candidate keys for this relation are C
and .1P. (C is given to be a key~ and tIP functionally deterrnines C.) The only
nonkey dependency is 3D -+ P, and P is a pri'rne attribute because it is part
of candidate key JP. rrhus, the relation is not in BC:NF···because there is a
nonkey dependency-..·..·....but it is in 3NF.

By using the dependency 8 D -tP to guide the decornposition, we get the
t"vo sclH~rnas SDP and CSJDQV. This decornposition is lossless~ but it is not
dependency-preserving. lfo\vever, by adding the relation schelne CJP, we ob­
tain a lossiess-join, dependency-preserving decoruposition into BCNF. Using
the guideline that such a decorllposition into BCNF is good, we might decide
to replace Contracts by three relations with schernas CJP, SDP, and CSJDQV.

However, suppose that the following query is very frequently asked: Find the
nurnber of copies Q of part P ordered in contract C. 'rhis query requires a join of
the decornposed relations CJP and CSJDQV (or SDP and CSJDQV), wherea..'3
it can be answered directly using the relation Contracts. The added cost for
this query could persuade us to settle for a 3NF design and not decompose
Contracts further.

20.8.2 Denormalization

The rea.'3ons rTIotivating us to settle for t1 weaker norrnal forIn lIlcl;Y lead us to
take an even rnore extrerne step: deliberately introduce SOlllC redundancy. As
an exarnple, consider the Contracts relation, 'which is in 3NF. Now, suppose
that a frequent query is to check that the value of a contract is less than
the budget of the contracting departruent. \Ve lllight decide to add a budget
field B to Contracts. Since did is a key for Departrnents , \ve now have the
dependency D -+ B in Contracts, \vhich InCt1IlS Contracts is not in 3NF any
r11orc. Nonethelf~ss, vVf~ rnight choose to stay vvith this design if the rnotivating
query is sufficiently irnportant. Such a decision is clearly subjective and CaInes
at the cost of significant redundancy.

20.8.3 Choice of Decomposition

Consider the Contracts relation again. Several choices are possible for dealing
with the redundancy in this relation:

IIiI \Ve can leave C\)ntracts as it is ::uld accept the rcchu1dancyr associaJed \\"ith
its being in :3N:F ratller than .BCNF.
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• \Ve Inight decide that we want to avoid the anolIlalies resulting froIn this re­
dundancy by deeornposing Contracts into BC;NF using one of the following
ruethods:

·0__ \Ve have a lossless-join decornposition into Partlnfovvith attributes
SDP and Contractlnfo \vith attributes CSJDQ\l. As noted previously,
this decornposition is not dependency-preserving, and to rnake it so
\vould require us to add a third relation CJP: \vhose sale purpose is to
allow us to cheek the dependency J P -+ C.

- \Ve could choose to replace Contracts by just Partlnfo and Contract­
Info even though this decornposition is not dependency-preserving.

R,eplacing Contracts by just Partlnfo and Contractlnfo does not prevent us
frorll enforcing the constraint JP -+ C; it only makes this n10re expensive. We
could create an assertion in SQL-92 to check this constraint:

CREATE ASSERTION checkDep
CHECK ( NOT EXISTS

(SELECT *
FROM Partlnfo PI, Contractlnfo Cl
WHERE PI. supplierid==CI. suppl'ierid

AND PI. deptid==CI. deptid
GROUP BY C1.projectid, PI. partid
HAVING COUNT (cid) > 1 ) )

This assertion is expensive to evaluate because it involves a join followed by a
sort (to do the grouping). In cornparison, the systerll can check that JP is a
prirnary key for table CJP by rnaintaining an index on J P. This difference in
intf~grity-checking cost is the rl1otivation for dependency-preservation. On the
other hand, if updates are infrequent, this incrcclE;ed cost IIlay be acceptable;
therefore, we rnight choose not to rnaintain the table C.JP (and quite likely, an
index all i~;).

As another exarnple illustrating decornposition choices, consider the Contracts
relation again, Etud suppose that we also have the integrity constraint that a
departrnent uses a given supplier for at rnost one of its projects: SPCJ --7 V.
Proceeding (1"S before, we have a lossless-join decornposition of Contracts into
SDP and CSJDQV. Alternatively:\ve could begin by using the dependency
8 PQ ----+ V to guide our decornpositioIl: and replace Contracts with SPQV and
CS.JI)P(~. vVe can then dec(Hnpose CSJI)P(~, guided by 51D -+ P, to obtain
SDP and CS.JD(~.

\Ve now have two alternative lossless-join decornpositions of Contracts into
BC:N}"\ neither of which is dependency-preserving. 'fhe first alternative is to
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replace Contra~~ts\viththe relations SDP and CS.JDC~V.The second alternative
is to replace it \vith SPQV, SDP, and (]SJD(~. The addition of CJP HU1kes the
second deC0111positioll (but not the first) dependency-preserving. Again, the
cost of lnaintaining the three relations CJP, SP(~V, and CSJD(~ (versus just
CSJDQV) Illay lead us to choose the first alternative. In this ca..se, enforcing
the given FDs becornes Inore expensive. vVe Illight consider Ilot enforcing thern,
but we then risk a violation of the integrity of our data.

20.8.4 Vertical Partitioning of BCNF Relations

Suppose that we have decided to decornpose Contracts into SDP and CSJDQV.
These scheruas are in BCNF, and there is no reason to decornpose thern further
from a nonl1alization standpoint. However, suppose that the following queries
are very frequent:

• Find the contracts held by supplier S.

• Find the contracts placed by departrnent D.

These queries rnight lead us to decompose CSJDQV into CS, CD, and CJQV.
The decornposition is lossless, of course, and the two il11portant queries can be
answered by exarnining 111uch slualler relations. Another reason to consider such
a dec()l11position is concurrency control hot spots. If these queries are COIllIllon,
and the rnost COIlunon updates involve changing the quantity of products (and
the value) involved in contracts, the decoulposition inlproves perforrnance by
reducing lock contention. Exclusive locks are now set rnostly on the CJ(~V

table, and reads on CS and CD do not conflict with these locks.

Whenever we decornpose a relation, we have to consider which queries the
decolnposition rnight adverse~y affect, especially if the only rnotivation for the
decoInposition is iUlproved perforrnance. "For exaruplc, if another illlportant
query is to find the total value of contracts held by a supplier, it would involve
a join of the decornposed relations CS and C.J(~V. In this situation, we rnight
decide against the decolnposition.

20.8.5 Horizontal Decomposition

Thus far, we have essentially considered how to replace a relation v'lith a col­
lection of vertical decorupositions. Sornetilnes, it is \vorth considering whethf~r

to repla.ce a relation with t\VO relations that have the sa.Dle attributes as the
original relation, ea..eh containin.g a subsf'.t of thf~ tuples in tb.e original. Intu­
itively, this technique is useful \vhen different subsets of tuples are queried in
very distinct ways.
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For exanlple, different rules lnay govern large contracts, \vhich are defined a~"

contracts with values greater than 10,000. (Perhaps, such contra<cts have to be
awarded through a bidding process.) This constraint could lead to a nUlnber
of queries in which Contracts tuples are selected using a condition of the forIII

value > 10, 000. On8 way to approach this situation is to build a clustered
B+ tree index OIl the value field of Contracts. Alternatively, we could replace
Contracts with t\VO relations called LargeContracts and SrnallContracts, with
the obvious 11leaning. If this query is the only lllotivation for the index, hori­
zontal decornposition offers all the benefits of the index without the overhead of
index maintenance. This alternative is especially attractive if other irnportant
queries on Contracts also require clustered indexes (on fields other than val'ue).

If we replace Contracts by two relations LargeContracts and SrnallContracts,
we could r1l8sk this change by defining a view called Contracts:

CREATE VIEW Contracts(cid, supplierid, projectid, deptid, partid, qty, value)
AS ((SELECT *

FROM LargeContracts)
UNION
(SELECT *
FROM SmallContracts))

However, any query that deals solely with LargeContracts should be expressed
directly on LargeContracts and not on the view. Expressing the query on the
view Contracts with the selection condition value> 10, 000 is equivalent to
expressing the query on LargeContracts but less efficient. This point is quite
general: Although we can rllth"k changes to the conceptual scherlla by adding
view definitions, users concerned about perforrnance have to be aware of the
change.

As another exanlple, if Contracts had an additional field yeaT and queries typ­
ically dealt with the contracts in sorne one year, we rnight choose to pa,rtition
Contracts by year. ()f course, queries that involved contracts fron1 rnore than
one year rnight require us to pose queries against each of the decolllposed rela­
tions.

20.9 CHOICES IN TUNING QUERIES AND VIEWS

T'he first step in tuning a query is to understand the plan used by the I)B1-18
to evaluate the query. 8ysten1s usually provide sorne facility for identifying
the plan used to evaluate a query. ()nce\ve understand the plan selected by
the systelIl, we can consider how to irnprove perfornu:Ulce. "\Ve can consider a
different choice of ilHlexes or perhaps co-clustering two relations for join queries,
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guided by our understanding of the old plan and a better phtn that we want
theDBlVIS to use. The detaHs are sinlilar to the initial design process.

One point'worth rnaking is that before creating ne"v indexes we should consider
\vhether rewriting the query achieves acceptable results with existing indexes.
For example, consider the foll()\ving query with an OR connective:

SELECT E.dno
FROM Ernployees E
WHERE E.hobby='Stalnps' OR E.age==10

If \ve have indexes on both hobby and age, we can use these indexes to retrieve
the necessary tuples, but an optiInizer ruight fail to recognize this opportunity.
The optinlizer rnight view the conditions in the WHERE clause &1;) a whole &'3

not rnatching either index, do a sequential scan of Ernployees, and apply the
selections on-the-fly. Suppose we rewrite the query ElS the union of two queries,
one with the clause WHEREE.hobby= 'Starnps" and the other with the clause
WHERE E.agc==10. Now each query is answered efficiently with the aid of the
indexes on hobby and age.

We should also consider rewriting the query to avoid sorne expensive operations.
for exalnple, including DISTINCT in the SELECT clause leads to duplicate elirn­
ination, which can be costly. rrhus, we should ornit DISTINCT whenever pos­
sible. For exalnple, for a query on a single relation, we can ornit DISTINCT
whenever either of the following conditions holds:

II We do not care about the presence of duplicates.

II rrhe attributes lllentioned in the SELECT clause include a candidate key for
the relation.

SOlnetirnes a query \vith GROUP BY and HAVING can be replaced by a query
without these clauses, thereby eliminating c1 sort operation. For ext1rnplc, COIl­

sider:

SELECT
FROM
GROUP BY
HAVING

MIN (E.age)
Ernployees E
E.dno
E' ..}. " '1 ()'>;.( no=:::, , ~

This quer:y is equivalent to

SELECT
FROM
WHERE

MIN (E. age)
Erl1ployees E
E.dno=102
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Cornplex queries are often \vritten in steps, using a ternporary relation. \\le
can usually re\vrite such queries without the tClnporary relation to rnake thcrn
run faster. Consider the following query for cornputi.ng the average salary of
departrnents rnanaged by Robinson:

SELECT
INTO
FROM
WHERE

*
Ternp
ErnployeesE, Depa:rtruents D
E.dno==D.dno AND D.rngrnanle='Robinson'

SELECT T.dno, AVG (T.sal)
FROM T'clnp T
GROUP BY T.dno

This query can be rewritten a.s

SELECT
FROM
WHERE
GROUP BY

E.dno, AVG (E.sal)
Elnployees E, Departlnents D
E.dno==D.dno AND D.rngrnarne=='llobinson'
E.dno

The rewritten query does not 111aterialize the interrnediate relation ,Ternp and is
therefore likely to be faster. In fact, the optimizer may even find a very efficient
index-only plan that never retrieves Ernployees tuples if there is a cornposite
B+· tree index on (d'no, sal). This exanlple illustrates a general observation: By
Tewriting queries to avoid 'Unnecessary temporaries, we not only avoid creating
the ternporary relations, we also open up rnore opt'im,ization possibilit'ies for the
optim,izer to el;plore.

In SCHne situations, ho\vever, if the optirnizer is unable to find a good plan for a
cornplex query (typically a nested query with correlation), it rnay be worthwhile
to re\vrite the query using tenlporary relations to guide the optirnizer toward
a good plan.

In fact, nested queries are a conunon source of inefficiency because luany opti­
rnizers deal poorly with theIn, as discussed in Section 15.5.v'Vllenever possible,
it is better to l:e\vrite a nested query \vithout nesting and a correlated query
without correlation. As already notfxl, a good reforrIlulation of the query rnay
require us to introduce ne\v, ternporary relations, and techniques to do so sys­
tenlatically (ideally, to be done by the optirnizer) have been \videly studied.
()ften tllough, it is possible to re\vrite nested queries ,vithout nesting or the use
of ternpora,ry relations, a"s illustrated in Section 15.5.
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20.10 IMPACT OF CONCURRENCY

In a system with IIlaIlY concurrent users, several additional points IllUSt be
considered. Transactions obtain locks on the pages they a,ccess, and other
transactions Ina)' be blocked waiting for locks on objects they wish to access.

vVe observed in Section 1().5 that blocking delays 111ust be IniniInized for good
perforrnance and identified two specific ways to reduce blocking:

II R,educing the tilne that transactions hold locks.

II R,edllcing hot spots.

We now discuss techniques for achieving these goals.

20.10.1 Reducing Lock Durations

Delay Lock Requests: Tune transactions by writing to local prograrn vari­
ables and deferring changes to the database until the end of the transaction.
This delays the acquisition of the corresponding locks and reduces the time the
locks are held.

Make Transactions Faster: The sooner a transaction c01npletes, the sooner
its locks are released. We have already discussed several ways to speed up
queries and updates (e.g., tUllillg indexes, rewriting queries). In addition, a
careful partitioning of the tuples in a relation and its &'3sociated indexes across
a collection of disks can significantly irnprove concurrent access. :B-'or exarnple,
if we have the relation on one disk and an index on another, accesses to the
index can proceed without interfering with accesses to the relation, at lea""t at
the level of disk reads.

Replace Long Transactions by Short Ones: SometiInes, just too ruuch
work is done within a transaction, and it takes a long tirne and holds locks a
long tirne. Consider rewriting the transaction as two or Inore sInall(-~r trans­
actions; holdable cursors (see Section 6.1.2) can be helpful in doing this. The
advantage is that each new transaction cornpletes quicker and releases locks
sooner. ~rhe disadvantage is that the original list of operations is no longer ex­
ecuted atolni(~ally, and the application code Illust deal with situations in which
one or rnore of the new transactions fail.

Build a Warehouse: CC)lnplex queries can hold shared locks for a long tirne.
()ften, howev('~r, these queries involve statistical analysis of business trends and
it is a,cceptable to run theln on a copy of the da.ta that is a little out of date. rrhis
led to the popularity of data ?LJaTeho1LBCS, which are databa.'3cs that cornplcnlcnt
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the operational datab&"c by rnaintaining a copy of data USE:xl in cornplex queries
(Chapter 25). H~unning these queries against the \varehouse relieves the burden
of long-running queries froln the operational datal:H1.'3c.

Consider a Lower Isolation Level: In rnany situations, such as queries gen­
erating aggregate infonnation or statistical sununaries, we can use a lo\ver SQL
isolation level such as REPEATABLE READ or READ COMMITTED (Section 16.6).

Lo\ver isolation levels incur lower locking overheads, a,nel the application pro­
grannner rllust nUlke good design trade-offs.

20.10.2 Reducing Hot Spots

Delay Operations on Hot Spots: We already discussed the value of delaying
lock requests. Obviously, this is especially irnportant for requests involving
frequently used objects.

Optimize Access Patterns: The patteTn of updates to a relation can also be
significant. For exanlple, if tuples are inserted into the Ernployees relation in
eid order and we have a B+ tree index on eid, each insert goes to the last leaf
page of the B+ tree. This leads to hot spots along the path froIn the root to the
rightrnost leaf page. Such considerations nlay lead us to choose a hash index
over a B+- tree index or to index on a different field. Note that this pattern of
access leads to poor perforrnance for ISAM indexes as well, since the last leaf
page beCOlIles a hot spot. rrhis is not a problcln for hash indexes because the
hashing process randornizes the bucket into which a record is inserted.

Partition Operations on Hot Spots: Consider a data entry transaction
that appends new records to a file (e.g., inserts into a table stored as a heap
file). Instead of appending records one-per-transaction and obtaining a lock
on the hhst page for each record, we can replace the transaction by several
other transactions, each of which writes records to a local file and periodically
appends a batch of records to the rnain file. While we do rnore work overall,
this reduces the lock contention on the last page of the original file.

_As a further illustration of partitioning, suppose "\ve track the nU111ber of re(~ords

inserted in a counter. Instead of updating this counter once per record, the pre­
ceding approad,l results in updating several counters and periodically updating
the HULin counter. rrhis idea can IJe aclapt(~d to rnany uses of counters, \vith
varying degrees of effort. For exaInple, consider a counter that tracks the Ilurn­
ber of reservations, with the rule that a nc\v reservation is allowed onl~y if the
counter is belo"v a, rnaxiullun value. vVe can replace this by three counters, each
\vith one-third the origina11naxirIlurn threshold, and three transactions that use
these counters rather than the original. \\le obtain greater concurrency, but
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have to deal with the cc1..58 where one of the counters is at the 111axirnum value
but SOHle other counter can still be incrcrnented. 1~hus, the price of greater
concurrency is increased cornplexity in the logic of the application code.

Choice of Index: If a relation is updated frequently, B+ tree indexes can
becolne a concurrency control bottleneck, because all accesses through the index
HUlst go through the root. Thus, the root and index pages just below it can
bec()lne hot spots. If the DBMS uses specialized locking protocols for tree
indexes, and in particular, sets finc-granularity locks, this problenl is greatly
alleviated. l\Ilany current systeuls use such techniques.

Nonetheless, this consideration lllay lead us to choose an ISA~1 index in SOllIe
situations. Because the index levels of an ISAM index are static, \ve need not
obtain locks on these pages; only the leaf pages need to be locked. An ISAl\!l
index rnay be preferable to a B·+ tree index, for exalllple, if frequent updates
occur but we expect the relative distribution of records and the nUlnber (and
size) of records with a given range of search key values to stay approxirnately
the saIne. In this case the ISAM index offers a lower locking overhead (and
reduced contention for locks), and the distribution of records is such that few
overflow pages are created.

I-Iashed indexes do not create such a concurrency bottleneck, unless the data
distribution is very skewed and lnany data itenlS are concentrated in a few
buckets. In this ca..'SC, the directory entries for these buckets can beccnne a hot
spot.

20.11 CASE STUDY: THE INTERNET SHOP

Revisiting our running case study, I)BDudes considers the expected workload
for the B(~N 1)00kstore. rrhe owner of the bookstore expects rnost of his CllS­

torners to search for books by ISBN nUluber before placing an order. Placing
an order involves inserting one record into the ()rders table and inserting one
or lllore records into the Orderlists relation. If a sufficient nurnber of books is
avaihtble, a, shiprnent is prepared and a value for the ship.Jlale in the Orderlists
relation is set. In addition, the available quantities of books in stock changes
all the tirne, since orders are placed that; decrease the quantity available and
new books arrive frorn suppliers and increase the quantity available.

The DBDudes tearn begins by considering searches for books by ISBN'. Since
isbn, is a key~ (l,n equality query on isbn returns at rnost one record. rrhereforc,
to speed up queries frolll Cllstolllers who look for books "with a given ISBN,
I)BIJudes decides to build an unclustered hash index on L"bn.
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Next, it considers updates to book quantities. Tb update the qtll_iTLstock value
for a book, we IllUSt first search for the book by ISBN; the index on 'isbn speeds
this up. Since the qty_irLstock value for a book is updated quite frequently,
DBDudes also considers partitioning the Books relation vertically into the fo1­
1c)\ving two relations:

Books(~ty(isbn, qty)
BookH,(~st( 'isbn, title, author" price, yeQ.T_IHlblished)

Unfortunately, this vertical partitioning slows do\vn another very popular query:
Equality search on ISBN to retrieve all infonnation about a book no\v requires
a join between BooksQty and BooksH,est. So DBDudes decides not to vertically
partition Books.

DBDudcs thinks it is likely that custonlers "vill also want to search for books by
title and by author, and decides to add unclustered hash indexes on title and
author-these indexes are inexpensive to rnaintain because the set of books is
rarely changed even though the quantity in stock for a book changes often.

Next, DBDudes considers the Custorners relation. A custorner is first identi­
fied by the unique custorner identifaction nurnber. So the rnost COlnrnon queries
on Custorners are equality queries involving the custolner identification nurn­
ber, and DBDudes decid(~s to build a clustered ha..'3h index on cid to achieve
maxirnum speed for this query.

l\!Ioving on to the Orders relation, DBDudes sees that it is involved in two
queries: insertion of new orders and retrieval of existing orders. Both queries
involve the ordcrrl/urn attribute as search key and so DBDudes decides to huild
an index on it. What type of index should this be~""·"a 13+ tree or a hash index?
Since order nurnbers are assigned sequentially and correspond to the order date,
sorting by onleT"n'lun effectively sorts by order date as well. So DBDudes decides
to build a clustered B-t- tree index OIl onlernurn. A.lthough the operational
requirernents rncntioned until no\v favor neither a 13+ tree nor a hash index,
B&N\vill probably want to rnonitor daily a,ctivities and the clustered 13+ tree
is a better choice for such range queries. ()f course, this 1118ans that retrieving
all orders for a given custorner could be expensive for custolllers with InallY
orders, since clustering by o'(ylerntlTn precludes clustering by other attributes,
SllCh as cicio

l'he ()rderlists rela,tion involves lnostly insertions, vvith an occfLsionaJ update of
a shiprnent date or a query to list all cOlnponents of a given order. If Orderlists
is kept sorted on oT'dcrnvxn, all insertions are appends at the end of the relation
and thus verJr efficient. A clustered 13+ tree index on oT'dernuTn rnaintains this
sort order and also speeds up retrieval of aU iterns for a given order. lc) update
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a shiprnent date, we need to search for a tuple by oT(le1~rrnmj and isbn. The
index on ordeT'n'Urn helps here as well. Although an index on (ardern:u,rn, 'isbn)
would be better for this purpose, insertions would not be as efficient a..,,\vith
an index on just oTdeT7rurn; DBDudes therefore decides to index ()rderlists on
just oTCiern7lrn.

20.11.1 Tuning the Database

Several rnonths after the launch of the B&N site, DBDudes is called in and told
that custorner enquiries about pending orders are being processed very slowly.
B&N has becorne very successful, and the Orders and Orderlists tables have
grown huge.

l'hinking further about the design, DBDudes realizes that there are two types of
orders: completed orders, for which all books have already shipped, and partially
co'mpleted order'S, for which sorne books are yet to be shipped. l\Ilost custorIler
requests to look up an order involve partially corIlpleted orders, which are a
sInall fraction of all orders. DBDudes therefore decides to horizontally partition
both the Orders table and the Orderlists table by ordernu'Tn. This results in
four new relations: NewOrders, OldOrders, NewOrderlists, and OldOrderlists.

An order and its cornponents are always in exactly one pair of relations····· ..·--and
we can deterrIline which pair, old or new, by a sinlple check on ordernurn-----"and
queries involving that order can always be evaluated using only the relevant
relations. SCHIle queries are now slower, such as those asking for all of a cus­
toruer's orders, since they require us to search two sets of relations. lIowever,
these queries are infrequent and their perforrnance is acceptable.

20.12 DBMS BENCHMARKING

~rhus far, we considered ho\v to irnprove the design of a database to obtain bet­
ter perforrnance. 1\S the database grows, however; the underlying IJB1tlS rnay
no longer be able to provide adequate perforrnance, even with the best possi­
ble design, and \ve have to consider upgrading our systcrn, typically by buying
faster harchva,re and additional rnernory. We IIlay also consider rnigrating our
database to (1, new DBIVIS.

\\Then evaluating IJBl'vlS products, perforrnal1ce is an iUlportant consideration.
ADBIVIS is a cornplex piece of sofb,va,rc, and different vendors rnay target
their systerns to\vard cliff'erent 1I1Etrket segrnents by putting rnore effort into
optirnizirlg certa,in parts of the systern or choosing different systern designs.
For exc:unple, sorne systcrIls are designed to run cornplex queries efficiently,
while others are designed to run Inany sirnple transactions per second. \iVithin
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each category of systcrIls, there are lnany cornpeting products. To assist users
in choosing a DBi'vIS that is 'well suited to their needs, several performance
benchmarks have been developed. These include benchrnarks for Inea.'Hlring
the perforlnance of a certain class of applications (e.g., the TPC benclnnarks)
and benchrnarks for rnecl,.c:;uring how well a DBIVlS perfOrII1S various operations
(e.g., the \Visconsin benchrnark).

Benchnuuks should be portable, easy to understand, and scale naturally to
larger problenl instances. 'rhey should II1eaSUre peak performance (e.g., trans­
actions per second, or ips) &s well as pTice/perforrnance ratios (e.g., $/tps) for
typical workloads in a given application donlain. The Transaction Processing
Council (TPC) was created to define benchlnarks for transaction processing
and database systerns. Other well-known benchlnarks have been proposed by
acadelnic researchers and industry organizations. Benchrnarks that are pro­
prietary to a given vendor are not very useful for cornparing different systerns
(although they rnay be useful in deterrnining how well a given systern would
handle a particular workload).

20.12.1 Well-Known DBMS Benchmarks

Online 'Transaction Processing Benchmarks: The TPC-A and TPC-B
benchrnarks constitute the standard definitions of the ips and $/ tps measures.
TPC-A rneasures the perfonnance and price of a computer network in addition
to the DBMS, whereas thE~ TPC-B benclnnark considers the DBMS by itself.
These bencln11arks involve a sirnple transaction that updates three data records,
frolIl three different tables, and appends a record to a fourth table. A 11urnber
of details (e.g., transaction arrival distribution, interconnect rnethod, systern
properties) are rigorously specified, ensuring that results for different systenls
can be rneaningfully cOI11pared. The T'PC-C benchrna,rk is a l110re cornplex
suite of transactional ta.,,'3ks than TPC-A and TPC-B. It rnodels a waxehouse
that tracks iterns supplied to custorners and involves five types of transrtctions.
Each TPC-C transaction is rnuch rIlore expensive than a 1'PC-A or TPC-B
transaction, a,nel TPC-C exercises a rnuch ,videI' range of systern capabilities,
such as use of secondary indexes and transaction aborts. It ha,,'3 Inore or less
cOlnpletely replaced 'I'PC-A and rrpC-B as the standard transaction processing
bencillnark.

Query Benchmarks: '1'he \Visconsin l)cnchrnark is \videly used for 1neasnr­
ing the perforrnance of sirnple relational queries. ]'he Set (~ueI'Y benclunark
Hleasures the perforrnance of Et suite of rJlore cornplex queries, and the .AS:{A.P
l)enchrnark rneaBures the perfonnance of (1, Inixed ~Torkloa,d of transactions 1 re­
latiol1(l] queries, (lnd utility fUllctions. 'The rrpC-I) benchn.lark is a suite of
cornplex S(~I.J queries intended to be representative of the (Incision-support ap-
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plication dCHuain. 'fhe ()LAP (]ouneil also developed a benehlnark for cornplex
decision-support queries, including sor11e queries that cannot be expressed eas­
ily in SQL; this is intended to rnea..'3ure systerIls for online a'nalyt'ic ]JTocessing

(OLAP),\vhieh we discuss in (~hapter 25, rather than traditional S(~L sys­
terns. The Sequoia 2000 benchrnark is designed to cornpare DBNIS support for
geographic inforrnation systerns.

Object-Database Benchmarks: 'The 001 and 007 benclunarks rneasure
the perforrnance of object-oriented database systelns. 'rhe Bucky benclunark
rneasures the perforrnance of object-relational database systcrns. (We discuss
object-database systelns in Chapter 23.)

20.12.2 Using a Benchmark

Benchrnarks should be used with a good understanding of what they are de­
signed to rnea8ure and the application environrnent in \vhich a DBMS is to be
used. \Vhen you use benchrnarks to guide your choice of a DBMS, keep the
following guidelines in rnind:

II How Meaningful is a Given Benchmark? Benchrnarks that try to
distill perforrnance into a single nunlber can be overly sirnplistic. A DBMS
is a cOlnplex piece of software used in a variety of applications. A good
benchlnark should have a suite of tasks that are carefully chosen to cover a
particular application dornain and test DBJ\lIS features irnportant for that
d01nain.

II How Well Does a Benchrnark Reflect Your Workload? Consider
your expected workload and corupare it with the benchrnark. C;ive 11101'8
\veight to the perfonnance of those l)enchrnark tasks (i.e., queries and up­
dates) that are siInilar to irnportant tasks in your workload. Also consider
how benclunark nurnbers are rnect..sured. For exarnple, elapsed tirne for in­
dividual queries rnight be rnisleading if considered in a rnultiuser setting:
A systern rnay have higher elapsed tirr18s because of slo\ver l/C). On a 1nul­
tiuser workloa,d, given sufficient disks for parallel l/C), such a systern lnight
olltperfofrn <1 SY8t8111 'with a leJ\ver elapsed tirne.

II Create Your Own Benchmark: Vendors often tweak their systerns
in ad hoc ways to obtctin good nurnbers on irnportant benchrnctrks. fro
counter this, create your own benc1unark by rnodi(ying standard bench­
rnarks slightly or by replacing the ta,'3k8 in f), standard benchrnark \vith
siInilar tct..sl<:s frarn your workload.
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20.13 REVIEW QUESTIONS

AllS\VerS to the revie\v questions can be found in the listed sections.
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II vVhat aTe the cornponents of a \vorkload description? (Section 20.1.1)

II \Vhat decisions need to be rnade during physical design? (Section 20.1.2)

II Describe six high-level guidelines for index selection. (Section 20.2)

II \\Then should \ve create clustered indexes? (Section 20.4)

.. What is co-clustering, and when should vve use it? (Section 20.4.1)

II vVhat is an index-only plan, and how do we create indexes for index-only
plans? (Section 20.5)

II \rVhy is automatic index tuning a hard problern? Give an exarnple. (Sec­
tion 20.6.1)

II Give an exarnple of one algorithrn for autonlatic index tuning. (Section
20.6.2)

II Why is database tuning irnportant? (Section 20.7)

II How do we tune indexes, the conceptual scheula, and queries and views?
(Sections 20.7.1 to 20.7.3)

II What are our choices in tuning the conceptual scherna? What are the fol­
lowing techniques and when should \ve apply thern: settling for a weaker
norrnal forrn, denorrnalization, and horizontal and vertiacal decornposi­
tions. (Section 20.8)

11 vVhat choices do \ve have in tuning queries and vie\vs? (Section 20.9)

II \Vhat is the irnpact of locking 011 databa..se perforluance? I-Iow can we
reduce lock contention and hot spots? (Section 20.10)

II1II \Vhy dO\~le have standaTdized database benclllnarks, and \vhat conunon
Inetrics are used to evaluate datalH:t..'Se systelns? Can ;you describe a few
popular database benchrnarks? (Section 20.12)

EXERCISES

Exercise 20.1 Consider the following BCNF schcrna for a portion of a sirnple corporate
database (type infonnation is not relevant to this question and is ornitted):

Ernp (e'iq, enarne, addl', sal, age, yT8, deptid)
Dept (did, dnarru~; flooT, [nalget)
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Suppose you know that the following queries are the six rIlC>"'it COUUIlcm queries in the \vorkload
for this corporation and that all six are roughly equivalent in frequency and inlportance:

II List the irC IHUn(~, and address of eUlployees in a user-specified age range.

II List the id, naUIe, and address of crnployees vv'ho work in the departHwnt \vith a llser-
specified departInent narne.

II List the id and address of elnployees with a user-specified eluployeenanle.

II List the overall average salary for ernployees.

II List the average salary for eInployees of each age; that is, for each age in the datal)(1se,
list the age and the corresponding average salary.

II List all the departrnent infonnation, ordered by departrnent floor nurnbers.

1. Given this infonnation, and assuIning that these queries are lnore iluportant than any
updates, design a physical scherna for the corporate database that will give good perfor­
rnance for the expected workload. In particular, decide which attributes will be indexed
and whether each index will be a clustered index or an unclustered index. Assuuw that
13+ tree indexes are the only index type supported by the DBMS and that both single­
and nnrltiple-attribute keys are pernlitted. Specify yOllr physical design by identifying
the attributes you recornnlCnd indexing on via clustered or unclustered 13+ trees.

2. Redesign the physical schelna assuIning that the set of iInportant queries is changed to
be the following:

III List the id and address of enlployees with a user-specified ernployee narne.

II List the overall rnaxinHun salary for eruployees.

III List the average salary for ernployees by departnlent; that is, for each deptid value,
list the rlcpt'id value and the average salary of ernployees in that departrnent.

.. List the Slun of the budgets of all departrnents by floor; that is, for each floor, list
the floor and the sum.

II AssuIne that this workload is to be tuned with an autornatic index tuning wizard.
Outline the rnain steps in the execution of the index tuning algorithrn and the set
of candidate configurations that would be considered.

Exercise 20.2 Consider the follo\ving BCNF' relational scherna for a portion of a universit.y
database (type infonnation is not relevant to this question and is ornitted):

Prof(ssno, pnamc, office, age, 8ex:, specialt:y. dept-did)
Dept (did, drw:rnc, budget, T//wlLTTI,ajoT8, cha'lT...ssno)

Suppose you kno\v that the folknving queries (I,rc the five rnost connnon queries in the workloa,d
for this university and that all five an~ roughly equivalent in frequency ::lud iInportance:

-List the n<un~~s, <lges, and offices of pn)fessors of (1 usc~r-specified sex (rnale or fernale)
who have a llser"specified resean:h specialty (e.g., TeC'lLT8i'ue qtLer7J fJTOco3.'ring). Assurne
that the university hEtS a diverse set of faculty rnernbers, rnaking it very unCOlnmon for
Inore than a fe\\! professors to have the sarne r(~search specialty.

IIIi List all tite departrnent information for departrnents ''lith professors in a. user-specified
<lge range.

Il List the <lepartlnent i<l, dep<lrtrnent BaIne, and chaiq)erscmnarne for depcutrnents ,viti!
a user-specified nurnber of majors.



Physical Databa,se De.,'rign and T!zlTLing

.. IJist the lowest budget for a departInent in the university.

.. List all the infornultion about professors \vho are departlnent chairpersons.

f>&7

'These queries occur runch 1nore frequently than updates, so you should build whatever in­
dexes you need to speed up these queries. Ho\\'ever, you should not build any unnecessary
indexes, as updates will occur (and would be slowed down by unnecessary indexes). (jiven
this information, design a physical schc1na for the university database that will give good per­
fonnance for the expected workload. In particular, decide which attributes should be indexed
and 'whether each index should be a clustered index or an unclustered index. Assulne that
both B·+ trees and hashed indexes are supported by the DBlVIS and that both single- and
lImltiple-attribute index search keys are perrnitted.

1. Specify your physical design by identifying the attributes you recomlnend indexing on,
indicating whether each index should be clustered or unclustered and whether it should
be a B+ tree or a hashed index.

2. Assurne that this workload is to be tuned with an autornatic index tuning wizard. Outline
the rnain steps in the algorithrn and the set of candidate configurations considered.

3. Redesign the physical schema, assurning that the set of irnportant queries is changed to
be the following:

III List the nUlnber of different specialties covered by professors in each department,
by department.

III ,Find the departrnent with the fewest rnajors.

II Find the youngest professor who is a department chairperson.

Exercise 20.3 Consider the following BCNF relational schmna for a portion of a cornpany
database (type inforrnation is not relevant to this question and is OInitted):

Project (pno, p'l'o}_narne. pro}_bascdept, ]YT'o}_'mgT, topic, budget)
:rvianagerC!.Itl..d, rngT."narne, rngr... dept, salary, age, sex:)

Note that each project is based in sorne cleprtrtrnent, each manager is e1Ylployed in some
departIllEmt, and the lTu.tnager of a project need not be e1nployed in the sarne departrnent
(in which the project is ba'Sed). Suppose you know that the following queries are the five
most COHUllon queries in the workload for this university and aJl five are roughly equivalent
in frequency and i1"nportance:

II1II List the IH1IlIeS, ages, and salaries of lnanagers of a user-specified sex (rnale or feluale)
working in a given department. You can assurne that, while there are rnany deparhnents,
each departInent contains very fe\v project IlHlnagers.

iIIIIl ljst the narnes of (ill projects with lnanagers whose ages are m a user-specified range
(e.g., younger than :30).

Iii!l List the na"rnes of all departrnents such that a rnanager III this deparhnent manages a
project based in this department.

m I..list the nan1C of the project \'vith the l()\vest budget.

I11III List the narrIeS (Jf all managers in the SaITIC department as a given project.

rI'hese queries occur nIllch Inore frequently than updates, so you should build \vhatever in­
dexes you need to speed up these queries. 110weve1', you should not build any unnecessaT.Y
inclexes, <.lS updates \'lill occur (a"nd \vould be slmved down by urmccessary indexes). Given
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this infonnatioll, design a physicaJ schelna for the conlpany database that win give good per­
formance for the expected \vorkload. In particular l clc'Ci<le which attributes should be indexed
and whether each index should be a clustered index or an unclustered index. Assuille that
both B+ trees and hashed indexes are supported by the DBrvlS, and that both single- and
Illuitiple-attribute index keys are perruitted.

1. Specify your physical design by identifying the attributes you recOlIlrIlend indexing on,
indicating whether each index should be clustered or unclustered and \vhether it should
be a B+ tree or a hashed index.

2. Assunle that this workload is to be tuned with an autornatic index tuning wizard. Outline
the lnain steps in the algorithrn and the set of candidate configurations considered.

3. Redesign the physical schenu't assulning the set of ilnportant queries is changed to be the
following:

• Find the total of the budgets for projects luanaged by each rnanager; that is, list
p'roj_rngr and the total of the budgets of projects luanaged by that manager, for
all values of proj _mgT.

• Find the total of the budgets for projects managed by each rnanager but only for
managers who are in a user-specified age range.

• Find the number of male rnanagers.

• Find the average age of rnanagers.

Exercise 20.4 The Globetrotters Club is organized into chapters. The president of a chapter
can never serve as the president of any other chapter, and each chapter gives its president
sonle salary. Chapters keep moving to new locations, and a new president is elected when
(and only when) a chapter rnoves. This data is stored in a relation G(C,S,L,P), where the
attributes are chapters (C), salaries (S), locations (L), and presidents (P). Queries of the
following fornl are frequently asked, and you mU8t be able to answer thern without cOluputing
a join: "Who was the president of chapter X when it was in location Y?"

1. List the FDs that are given to hold over G.

2. What are the candidate keys for relation G?

a. What Honnal fornl is the scherna Gin?

4. Design a good database scherna for the club. (Rernernber that your design 'mnst satisfy
the stated query requirenlent!)

5. \\7hat nonnal fonn is your good scherna in? Give an exarnple of a query that is likely to
run slc)\ver on this schema than on the relation G.

6. Is there a lossless-join, dependency-preserving deCOlTlposition of G into BeNF?

7. Is there ever <:::t good reason to accept sornething less than :3NF' \vhen designing a schema
for ct relaJional da..tabase? Use this ex~unple, if necessary adding further constraints, to
illustrate your answer.

Exercise 20.5 Consider the following BCNF relation, which lists the ids, types (e.g., nuts
or bolts), and costs of various parts, along with the mllnber available or in stock:

Parts (pid, pname, cost, n'll.1YLC/.'l)(L'il)

You are told that the following t\\'o queries are extrelnely irnportant:



III Find the total nunlber available by part type, for all types. CI'hat is, the surn of the
nunL(l,'vail value of all nuts, the sum of the nunLuvau value of all bolts, and so forth)

III List the ]yids of parts with the highest cost.

1. Describe the physical design that you would choose for this relation. That is, what kind
of a file structure would you choose for the set of Parts records, and what indexes would
you create?

2. Suppose your custorners subsequently cmnplain that performance is still not satisfactory
(given the indexes and file organization you chose for the Parts relation in response to the
previous question). Since you cannot afford to buy new hardware or software, you have
to consider a schenla redesign. Explain how you would try to obtain better perfonnance
by describing the scherna for the relation(s) that you would use and your choice of file
organizations and indexes on these relations.

3. How would your answers to the two questions change, if at all, if your systeIl1 did not
support indexes with multiple-attribute search keys?

Exercise 20.6 Consider the following BCNF relations, which describe ernployees and the
departments they work in:

Ernp (eid, sal, did)
Dept. (d'id, location, budget)

You are told that the following queries are extrernely important:

II Find the location where a user-specified enlployee works.

II Check whether the budget of a department is greater than the salary of each ernployee
in that departrnent.

1. Describe the physical design you would choose for this relation. That is, what kind of a
file structure would you choose for these relations, and what indexes would you create?

2. Suppose that your custollwrs subsequently cOIuplain that perforrnance is still not sat­
isfactory (given the indexes and file organization that you chose for the relations in
response to the previous question). Since you cannot afford to buy ne\\' hardware or
software, you have to consider a schelna redesign. Explain how you would try to obtain
better perfonnance by describing the scherna for the relation(s) that you would use and
your choice of file organizations and indexes on these rehltions.

~3. Suppose that your databa.:;e systern IU1S very ineff1cient irnplenlentations of index struc­
tures. \Vhat kind of a design would you try in this case?

Exercise 20.7 Consider the following BCNF relations, which describe departrnents in H,

company and ernployees:

Dept (did, dn.arne, location" managerid)
Enlp( cid_, sal)

'You arE' told that the follovving queries are extrernely iruportant:

IlIII List the names and ids of rnanagel's for each department in a user-specified location., in
alphabetical order by departuwl1t narne.

III Find the aventge salary of ernployees who rnanage departments in a user-specified loca­
tion.You can ,kssurne that no one rnanages nlOre than one depa,rtrnent.
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1. Describe the file structures and indexes that you would choose.

2. You subsequently realize that updates to these relations are frequent. Because indexes
incur a high overhead, can you think of a way to irnprove perforrnance on these queries
without using indexes?

Exercise 20.8 For each of the following queries, identify one possible reason why an opti­
Inizer Illight not find a good plan. RevvTite the query so that a good plan is likely to be
found. Any available indexes or known constraints are listed before each query; assurne that
the relation schelnas are consistent with the attributes referred to in the query.

1. An index is available on the age attribute:

SELECT E.dno
FROM Elnployee E
WHERE E.age=20 OR E.age=10

2. A B+ tree index is available on the age attribute:

SELECT E.dno
FROM Employee E
WHERE E.age<20 AND E.age>10

3. An index is available on the age attribute:

SELECT E.eIno
FROM Enlployee E
WHERE 2*E.age<20

4. No index is available:

SELECT DISTINCT *
FROM Enlployee E

5. No index is available:

SELECT
FROM
GROUP BY
HAVING

AVG (B.sal)
Elnployee E
E.dno
E.dno=22

6. The sid in Reserves is a foreign key that refers to Sailors:

SELECT
FROM
WHERE

S.sid
Sailors S, Reserves H
S.sid=R.sid

Exercise 20.9 Consider two 'ways to COlupute the HaIneS of elnployees who earn rnore than
$100,000 and whose age is equal to their rnan~tger)s age. First, a nested query:

SELECT
FROM
WHERE

F~l.en(Hne

EnlpEI
El.sal > 100 AND El.age = ( SELECT

FROM
WHERE

E2.(lge
Ernp E2 , Dept D2
E1.dname = D2.dnaJ.ne
AND D2.mgr = E2.enarne )

Second, a query that uses a view definition:
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SELECT
FROM

WHERE

CREATE

£1.enarne
Ernp El, ~igrAge A
El.dnarue = A.dnarne AND E1.sal > 100 AND E1.age = A.age

VIEW :WIgrAge (dnan1e, age)
AS SELECT D .dnanw, E.a,ge

FROM Errlp E, Dept D
WHERE ~D.nlgr = E.erli:une

1. Describe a situation in which the first query is likely to outperforrn the second query.

2. Describe a situation in which the second query is likely to outperfonn the first query.

3. Can you construct an equivalent query that is likely to beat both these queries when
every ernployee who earns rnore than $100,000 is either ~35 or 40 years old? Explain
briefly.

BIBLIOGRAPHIC NOTES

[658] is an early discussion of physical database design. [659] discusses the performance
implications of normalization and observes that denormalization may improve perforrnance
for certain queries. The ideas underlying a physical design tool frorn IBl'vf are described in
[272]. The Nlicrosoft AutoAdrnin tool that perfonns automatic index selection according to
a query workload is described in several papers [163, 164]. The DB2 Advisor is described
in [750]. Other approaches to physical database design are described in [146, 639]. [679]
considers transaction tuning, which we discussed only briefly. The issue is how an application
should be structured into a collection of transactions to rnaxirnize perfonnance.

The following books on database design cover physical design issues in detail; they are reCOIll­
rnended for further reading. [274] is largely independent of specific products, although rnaBy
excunples are based on DB2 and Teradata systerl1S. [779] deals prirnarily with DB2. Shasha
and Bonnet give an in-depth, readable introduction to database tuning [104].

[;334] contains several papers on benchrnarking database systerns and has accompanying soft-·
ware. It includes articles on the AS:3AP, Set Query, 'I'PC-A, 'rpC-B, Wisconsin, and 001
bendunarks written by the original developers. The Bucky benchrnark is described in [132],
the 007 benchrnark is described in [l:H] , and the T'pe-D benchrnark is described in [7:39].
The Sequoia 2000 bendunark is described in [720].



21
SECURITY AND

AUTHORIZATION

.. What are the rnain security considerations in designing a database
application?

.. What IIlechanisms does a DBNIS provide to control a user's access to
data?

.. What is discretionary access control and how is it supported in SQL?

.. What are the weaknesses of discretionary access control? How are
these addressed in lnandatory access control?

.. What are covert channels and how do they cornpromise lnandatory
access control?

.. What lTIUst the DBA do to ensure security?

.. What is the added security threat when a database is accessed re­
rnotely?

.. What is the role of encryption in ensuring secure access? How is it
used for certifying servers and creating digital sig11atures?

.. Key concepts: security, integrity, availability; discretionary access
control, privileges, GRANT, REVOKE; rna.ndatory access control, objects,
subjects, security classes, rnultilevel tables, polyinstantiation; covert
channels, DoD security levels; statistical databases, inferring secure
information; authentication for reIllote access, securing servers, digital
signatures; encyption, public-key encryption. -

I know that's a secret, for it's whispered everywhere.

.. .... ·· ..·vVilliam Congreve
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SeC1LTity and .A~uthoT'iz'ation

The data stored in a DBNIS is often vital to the business interests of the or­
ganization and is regarded &1.) a corporate a,,'Sset. In addition to protecting the
intrinsic value of the data, corporations rnust consider O\vays to ensure privacy
and control access to data that must not be revealed to certain groups of users
for various re&'3ons.

In this chapter, \ve discuss the concepts underlying access control and secu­
rity in a DB:N.IS. After introducing database security issues in Section 21.1,we
consider two distinct approaches, called d'iscTetionar~lj and rnandatory, to spec­
ifying and lTlanaging access controls. An access control Inechanism is a way
to control the data accessible by a given user . After introducing access controls
in Section 21.2, we cover discretionary access control,which is supported in
S(~L, in Section 21.3.vVe briefly cover n1andatory access control, which is not
supported in SQL, in Section 21.4.

In Section 21.6, we discuss SOIne additional aspects of database security, such
as security in a statistical database and the role of the database adrninistrator.
We then consider SOlne of the unique challenges in supporting secure access to
a DBMS over the Internet, which is a central problern in e-COlllInerce and other
Internet database applications, in Section 21.5. We conclude this chapter with
a discussion of security aspects of the Barns and Nobble case study in Section
21.7.

21.1 INTRODUCTION TO DATABASE SECURITY

There are three rnain objectives \vhen designing a secure database application:

1. Secrecy: InfoI'rnation should not be disclosed to unauthorized users. EoI'
exarnple, a student should not be allowed to exarnine other students' grades.

2. Integrity: ()nly authorized users should be allowed to Hlodify data. For
eXHxnplc, students 1Ilay be allowed to see their grades, yet not allowed
(obviously) to rnodify thern.

:3. Availability: Authorized users should not be denied access. For excunplc,
an instructor who wishes to change a grade should be allowed to do so.

T'() achieve these objectives, a clear and consistent security policy should be
developed to describe \vhat security Ine::1SU1'eS rnust be enforced. In particular,
we rnu8t detennine what part of the data is to be protected and which users
get access to \vhich portions of the data. Next, the security mechanisrns of
the underlying I)B:JVIS and operating systenl, as \veU as externaJ rnechanisHls,
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such as securing access to buildings, Illust be utilized to enforce the policy. \Ve
crIlphasize that security rneasures IIlust l)e taken at several levels.

Security leaks in the OS or network connections can cirCUlnvent databa.se secu­
rity rnechanisrns. For exarnple, such leaks could allow an intruder to log on as
the database acbninistrator, 'with all the attendant I)BlVIS access rights. Hurnan
factors are another source of security leaks. :For exarnple, a user IHay choose a
pa.ss\v()l·d that is easy to guess, or a user who is authorized to see sensitive data
rnay luisuse it. Such errors account for a large percentage of security breaches.
\Ve do not discuss these aspects of security despite their irllportance because
they are not specific to data,base rnanagerllent systelIls; our IIlain focus is on
databa..se access control rllechanisrns to support a security policy.

We observe that vie\vs are a valuable tool in enforcing security policies. The
view rnechanisrll can be used to create a 'window' 011 a collection of data that is
appropriate for SOllIe group of users. 'Views allow us to liUlit access to sensitive
data by providing access to a restricted version (defined through a view) of that
data, rather than to the data itself.

We use the following SCll(~InHS in our exaurples:

Sailors( s'id: integer, snarne: string, rating: integer, age: real)
Boats( bid: integ~r, bnarne: string, color: string)
Rl~serv~;s(sid: ,,~nteger, bid: _...integer, d~y): dates)

Increasingly, as database systcrlls becorne the backbone of e-COlluncrce appli­
cations requests originate over the Internet. This rnakes it irnportant to be
able to authenticate a user to the databa..se systern. A.fter all, enforcing a
security policy that allows user Sarn to read a table and Ehner to write the
table is not of l11uch use if S~un can rnasquerade a"s Ebner. COllversely, we Inus!;
be able to assure users that they a,re COIluIlunicating \vith a legitilnate systern
(e.g., the real Arnazoll.col11 server, and not a spurious application intended to
steal sensitive inforrnation such as c), credit card nurl11>cr). vVhile the details
of authentication are outside the scope of our coverage, we discuss the role
of authentication (uId the l)Hsic ide;:ls involved in Section 21.5, after covering
database access control rnechanisrIls.

21.2 ACCESS CONTROL

i\ database for an enterprise contains a great deal of inforrnation and usually
has sever(.tl groups of users. 1\IJost users need to access onl,y a sruall pa;rt of the
database to carry out their ta",:,ks. J\l1owing users unrestricted access to all the
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data can be undesirable, and a !)Bl\IlS should provide rnechanisHls to control
access to data.

A DBMS offers two rnain approaches to access control. Discretionary access
control is ba,,"ed on the concept of access rights, or privileges, and rnecha­
nisrllS for giving users such privileges. A privilege allows a user to access Borne
data object in a certain IIlHnIler (e.g., to read or 11lOdify). A user ,vho creates
a databa,se object such as a table or a vie\v autornatically gets all applicable
privileges on that object. The D.BMS subsequently keeps track of how these
privileges are granted to other users, and possibly revoked, and ensures that at
all tirnes only users with the necessary privileges can access all object. S(~L sup­
ports discretionary access control through the GRANT and REVOKE conunands.
The GRANT cOllnnand gives privileges to users, and the REVOKE cornrnand takes
away privileges. We discuss discretionary access control in Section 21.3.

Discretionary access control rnechanisrns, while generally effective, have certain
weaknesses. In particular, a devious unauthorized user can trick an authorized
user into disclosing sensitive data. Mandatory access control is based on
systemwide policies that cannot be changed by individual users. In this ap­
proach each databal.'3e object is assigned a security class, each user is assigned
clearance for a security cla..ss, and rules are irnposed on reading and writing of
database objects by users. The DBMS deterrnines whether a given user can
read or write a given object based on certain rules that involve the security
level of the object and the clearance of the user. These rules seek to ensure
that sensitive data can never be 'passed on' to a user without the necessary
clearance. 'rhe SQL standard does not include any support for rnandatory
access control. 'We discuss rnandatory access control in Section 21.4.

21.3 DISCRETIONARY ACCESS CONTROL

SQL supports discretionary access control through the GRANT and REVOKE corn­
rnands. The GRANT cornrnand gives users privileges to base tables and views.
'rhe syntax of this corllrllctnd is H.'I.'3 follows:

GRANT privileges ON object TO users [WITH GRANT OPTION]

For our purpo~esobject is either a base table or a vie\-v. SClL recognizes certain
other kinds of objects, but we do not discuss thcrn. Several privileges can be
specified, including these:

III SELECT: The right to access (read) all colurnns of the table specified as the
object, including colurnns added later through ALTER TABLE cornrnands.
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• INSERT( colurnn-na'Tne): The right to insert rowsvvith (non-nuU or non­
default) values in the naTned cohnnn of the table rHuncd as object. If
this right is to be gra,nted with respect to all cohunns, including coluulns
that rnight be added later, \ve can sirnply usc INSERT. 1~he privileges
UPDATE( col't/,'rnn-narne) and UPDATE are sirnilar.

III DELETE: 1'hc right to delete rows frorn the table narned i:1..S object.

• REFERENCES(col'Urnn-namJe): The right to define foreign keys (in other ta­
bles) that refer to the specified cohnnn of the table object. REFERENCES
without a colurnn naUIe specified denotes this right with respect to all
colurnns, including any that are added later.

If a user has a privilege with the grant option, he or she can P<:1..')S it to another
user (with or without the grant option) by using the GRANT conunand. A user
who creates a base table autolnatically has all applicable privileges on it, along
with the right to grant these privileges to other users. A user who creates a
view has precisely those privileges on the view that he or she has on everyone

of the views or base tables used to define the view. The user creating the view
Inust have the SELECT privilege on each underlying table, of course, and so is
always granted the SELECT privilege on the view. The creator of the view has
the SELECT privilege with the grant option only if hE~ or she has the SELECT
privilege with the grant option on every underlying table. In addition, if the
view is updatable and the user holds INSERT, DELETE, or UPDATE privileges
(with or without the grant option) on the (single) underlying table, the user
autornatically gets the same privileges on the view.

()nly the owner of a scherna can execute the data definition statcrnents CREATE,
ALTER, and DROP on that schcrna. The right to execute these staternents cannot
be granted or revoked.

In conjullction with the GRANT and REVOKE cOl1llnands, views are an irnportant
cornponent of the security rnechanisrns provided by Et relational J)B~1S. By
defining vie\vs on the base tables, \ve can present needed inforrnation to a user
"while hiding other inforrnation that the user should not be given access to. For
exalnple, consider the following view definition:

CREATE VIEW }\ctiveSajlors (naJIle, age, day)
AS SELECT S.snarne, S.age, R"day

FROM Sailors S, H,eserves }{
WHERE S.sid =: Il.sid AND S.rating > 6

A user who can access ActiveSailors 1)11t not Sailors or R,eserves kno\vs the
nennes of sailors who have reservations but cannot find out the bids of boats
reserved by a given sailor.
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Role-Ba.'icd Authorization in SQL: Privileges are assigned to users
(authorization 11)s, to be precise) in S(~L-92. In the real world, privileges
arE~ often LiSsociatedwith a user's job or Tole within the organizat;ion.. :Nlany
DBMSs have long supported the concept of a role and allowed privileges
to be assigned to roles. I{,oles can then he granted to users and other
roles. (Of courses, privileges can also be granted directly to users.) l'he
SQL:1999 standard includes support for roles. R.,oles eanbe created and
destroyed using the CREATE ROLE and DROP ROLE eornrnands. Users can
be granted roles (optionally, \vith the ability to P&'3S the role on to others).
The standard GRANT and REVOKE connnands can assign privileges to (and
revoke from) roles or authorization IDs.
What is the benefit of including a feature that Inany systerns already sup­
port? 'T'his ensures that, over tiIne, all vendors who comply with the stan­
dard support this feature. 'rhus, users can use the feature without worrying
about portability of their application across DBMSs.

Privileges are assigned in SQL to authorization IDs, which can denote a sin­
gle user or a group of users; a user lllUSt specify an authorization ID and, in
Inany systerns, a corresponding password before the DBMS accepts any C0111­

rnancls from hirn or her. So, technically, Joe, l'vlichael, and so on are authoriza­
tion IDs rather than user nan1es in the following exalllpies.

Suppose that user Joe has created the tables Boats, Reserves, and Sailors.
Senne exarnples of the GRANT cOllunand that Joe can now execute fo11o\v:

GRANT INSERT, DELETE ON Reserves TO Yuppy WITH GRANT OPTION

GRANT SELECT ON Reserves TO Nlichael
GRANT SELECT ON Sailors TO Michael WITH GRANT OPTION

GRANT UPDATE (rating) ON Sailors TO Leah
GRANT REFERENCES (bid) ON Boats TO Bill

Yuppy CaJl insert or delete Ileserves rO\V8 and authorize SOlneone else to do the
sarne. I\1ichael can execute SELECT queries on Sailors and H,eserves, and 118 can
pass this privilege to others for Sailors but not for R,eserves. \Vith the SELECT

privilege, 1-tichael can create a view that accesses the Sailors and Ileserves
tables (for exarnple, the ActiveSailors vic\v), but he cannot grant SELECT on
ActiveSailors to others.

()rl the other hand, suppose that Iv1ichael cn~ates the foUo\ving vie\v:

CREATE VIEWYoungSailors (sicl, age, rating)
AS SELECT S.sicl, S.age, S.rating
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FROM
WHERE

Sailors S
S.age < 18

CHAPTER 21

The only underlying table is Sailors, for which Michael has SELECT with the
grant option. He therefore h&'3 SELECT with the grant option on YoungSailors
and can pass on the SELECT privilege on YoungSailors to Eric and Guppy:

GRANT SELECT ON YoungSailors TO Eric, Guppy

Eric and Guppy can now execute SELECT queries on the view YoungSailors­
note, however, that Eric and Guppy do not have the right to execute SELECT
queries directly on the underlying Sailors table.

Michael can also define constraints based on the inforrnation in the Sailors and
Reserves tables. For exarnple, Michael can define the following table, which
has an associated table constraint:

CREATE TABLE Sneaky (lnaxrating INTEGER,
CHECK (maxrating >=

( SELECT MAX (S.rating)
FROM Sailors S )))

By repeatedly inserting rows with gradually increasing rnaxrating values into
the Sneaky table until an insertion finally succeeds, lVIichael can find out the
highest rating value in the Sailors table. This exarnple illustrates why SQL
requires the creator of a table constraint that refers to Sailors to possess the
SELECT privilege on Sailors.

Returning to the privileges granted by Joe, Leah can update only the rating
colulnn of Sailors rows. She can execute the following cornmand, which sets all
ratings to 8:

UPDATE Sailors S
SET S.rating = 8

IIuwever, she cannot execute the seune cOllunand if the SET clause is changed
to be SET S. age = 25, because she is not allowed to update the age field. A
rnoro subtle point is illustrated by the following cOIrllnand, which decrelnents
the rating of all 'sailors:

UPDATE Sailors S
SET S.ratillg = S.rating-l

Leah cannot execute this cOlInnand because it requires the SELECT privilege 011

the IS. Tabng colurnn anei Leah does not have this privilege.
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Bill can refer to the lxid colurnn of Boats as a foreign key in another table. For
exalnple~ Bill can create the Reserves table through the following cOlnnland:

CREATE TABLE R"eserves (sid INTEGER,

bid INTEGER,

day DATE,

PRIMARY KEY (bid, day),
FOREIGN KEY (sid) REFERENCES Sailors ),
FOREIGN KEY (bid) REFERENCES Boats)

If Bill did not have the REFERENCES privilege on the bid coh1111n of Boats, he
would not be able to execute this CREATE staternent because the FOREIGN KEY

clause requires this privilege. (A sirnilar point holds with respect to the foreign
key reference to Sailors.)

Specifying just the INSERT privilege (sirnilarly, REFERENCES and other privi­
leges) in a GRANT conlmand is not the sarne as specifying SELECT( colurnn-name)
for each column currently in the table. Consider the following command over
the Sailors table, which has cohllnns sid, snarne, rating, and age:

GRANT INSERT ON Sailors TO J\!Iichael

Suppose that this conunand is executed and then a colurnn is added to the
Sailors table (by executing an ALTER TABLE cOlIllnand). Note that Michael
has the INSERT privilege with respect to the newly added colurnn. If we had
executed the following GRANT cornrnand, instead of the previous one, Michael
would not have the INSERT privilege on the new cohllnn:

GRANT INSERT ON Sailors(sid), Sailors(sna1ne) , Sailors(rating),
Sailors( age), TO J\!Iichael

There is a cornplernentary corl1rnand to GRANT that allov.ls the \vithdra:wal of
privileges. The syntax of the REVOKE cOllunand is as follows:

REVOKE [GRANT OPTION FOR ] privileges
ON object FROM users {RESTRICT I CASCADE }

The cOIlnnand CH,n be used to revoke either a privilege or just the grant option
on a privilege (by using the optional GRANT OPTION FOR clause). One of the
two a..lternatives, RESTRICT or CASCADE, HUlst be specified; we see 'what this
choice IneaI1S shortly.

The intuition behind the GRANT cOlnnlHJHl is clear: rrhe creator of a ba",se table
or a vh~\v is given all the ctppropriate privileges \vith respect to it and is alh)\ved
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to pass these privileges~··-·-includingthe right to pass along a privilege,,~,to other
users. The REVOKE comuland is, as expected, intended to achieve the reverse:
A user who ha",:; granted a privilege to another user rnay change his or her lnincI
and \vant to withdraw the gra,nted privilege. 11 he intuition behind exactly 'what
effect <::1, REVOKE cornrnand has is conlplicated by the fact that a user Inay be
granted the sarne privilege rnultiple tilnes, possibly by different users.

\Vhen a user executes a REVOKE cornmand with the CASCADE keyword, the effect
is to \vithdraw the IHuned privileges or grant option froIn all users \vho currently
hold tlH~se privileges solely through a GRANT cOllunand that "va,,') previously
executed by the sallIe user who is now executing the REVOKE cOl1nnand. If
these users received the privileges with the grant option and passed it along,
those recipients in turn lose their privileges as a consequence of the REVOKE
cOIurnand, unless they received these privileges through an additional GRANT
comIuand.

We illustrate the REVOKE cOllllnand through several examples. First, consider
what happens after the following sequence of eornmands, where Joe is the
creator of Sailors.

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION
REVOKE SELECT ON Sailors FROM Art CASCADE

(crecuted by Joe)
(executed by Art)
(executed by Joe)

Art loses the SELECT privilege on Sailors, of course. Then Bob, who received
this privilege from Art, and only Art, also loses this privilege. Bob's privilege
is said to be abandoned when the privilege froIn which it was derived (Art's
SELECT privilege with grant option, in this exarnple) is revoked. vVhen the
CASCADE keyword is specified, all abandoned privileges are also revoked (pos­
sibly causing privileges held by other users to becOlne abandoned and thereby
revoked recursively). If the RESTRICT keyword is specified in the REVOKE corll­
mctnd, the cornrnand is rejected if revoking the privileges just frorn the users
specified in the cOIllluand vvould result in other privileges becorning abandoned.

Consider the following sequence, as another exarnple:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION
GRANT SELE"cT ON Sailors TO Bob WITH GRANT OPTION
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION
REVOKE SELECT ON Sailors FROM Art CASCADE

(e:recuted by Joe)
(e:tecuted by Joe)
(e.Tfc'uted by Art)
(e~cecuted by Joe)

.ilS before, Art loses the SELECT privilege on Sailors. But vvhat about Bob?
Bob received this privilege fronl Art, but he (:llso received it: independently
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(coincidentally, directly fro111 Joe). So Bob retains this privilege. Consider a
third eXa,lllple:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION
GRANT SELECT ON Sailors TO Axt WITH GRANT OPTION
REVOKE SELECT ON Sailors FROM Art CASCADE

(executed by Joe)
(executed by Joe)
(e:l;ecuted by Joe)

Since Joe granted the privilege to Art twice and only revoked it once, does
Art get to keep the privilege? As per the SQL standard, no. Even if Joe
absentmindedly granted the saIne privilege to Art several tirnes, he can revoke
it with a single REVOKE cOIlunand.

It is possible to revoke just the grant option on a, privilege:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
REVOKE GRANT OPTION FOR SELECT ON Sailors

FROM Art CASCADE (executed by Joe)

This cOlnmand would leave Art with the SELECT privilege on Sailors, but Art
no longer has the grant option on this privilege and therefore cannot pass it on
to other users.

These exarnples bring out the intuition behind the REVOKE cOillllland, and
they highlight the cOlllplex interaction between GRANT and REVOKE cOlnnlands.
When a GRANT is executed, a privilege descriptor is added to a table of such
descriptors Inaintained by the DElVIS. The privilege descriptor specifies the ~ol­

lowing: the grantor of the privilege, the gTarrtee who receives the privilege, the
gr-anted privilege (including the narne of the object involved), and whether the
grant option is included. When a user creates a table or view and 'autornati­
cally' gets certain privileges~ a privilege descriptor with system, a.'S the grantor
is entered into this table.

rrhe effect of a series of GRANT cornrnands can be described in terrns of an
authorization graph in which the nodes are users ......-technically~ they are au­
thorization IDs·..·--and the arcs indicate .how privileges are passed. There is an
arc fron1 (the node for) user 1. to user 2 if user 1. executed a GRANT cOIIunand
giving a privilege to user 2; the arc is labeled \vith the descriptor for the GRANT
cOIlllnand. A GEANT cOIlnnand has no effect if the saIne privileges ha.ve already
been granted to the SeHne grantee by th.e sarne grantor. The following sequence
of COnllllcUlds illustrates the sernantics of GRANT and REVOKE connnands when
there is a cycle in the authorization graph:

GRANT SELECT ON Sailors TO .Art WITH GRANT OPTION
GRANT SELECT ON Sa.ilors TO Bob WITH GRANT OPTION

(e:r:e.c'U,ted by Joe)
(e;1;(~c'lded by Art)
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GRANT SELECT ON Sailors TO Axt WITH GRANT OPTION
GRANT SELECT ON Sailors TO Cal WITH GRANT OPTION
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION
REVOKE SELECT ON Sailors FROM i-\rt CASCADE

ellAP'I'E,R $21

(e:ceC1tted bllBob)
(e:r:ec1lted bl/ Joe)
(cJ;eclded by Cal)
(executed by Joe)

The authorization graph for this exarnple is shown in Figure 21.1. Note that
vve indicate hovv Joe, the creator of Sailors, acquired the SELECT privilege fror11
the DBlVIS by introdtIcing a 8ystern node and dravving an arc froIn this node
to Joe's node.

~:~
~/

jystem, Joe, Select on Sailo", Yes)

(JO~rt, Select on Sailo", Yes)

_../

(Art. Boh. Select on Sailors, Yes)

(Joe, Cal. Select on Sailors. Yes)

/" (Bob. Art, Select on Sailors. Yes)

0:/ (Cal, Bo;;:-;elecl on Sailo", ~) Bob

Figure 21.1 Example Authorization Graph

As the graph dearly indicates, Bob's grant to Art and Art's grant to Bob (of the
scl.lne privilege) creates a cycle. Bob is subsequently given the saIne privilege
by Cal, who received it independently froIn Joe. At this point Joe decides to
revoke the privilege he granted Art.

Let us trace the effect of this revocation. 1'he arc [raIn Joe to Art is renlov(,~d

because it corresponds to the granting action that is revoked. All rernaining
nodes have the following property: 1f node N has an otdgo'ing aTe labeled with
a pT'iv'ilege, there is a path fTorn the Systern node to 'node N in 'which each aTC
label contains the sante privilege phiS the grant opt'ion. That is, any rernaining
granting action is justified by a privilege received (directly or indirectly) frorn
the Systern. The execution of Joe's REVOKE conllnand therefore stops at this
POiIlt,\vith everyone continuing to hold the SELECT privilege on Sailors.

rrhis result rn~.ty seenl nnintuitive because Art continues to have the privilege
only because he received it fr0111 Bob, and at the tiIne that Bob granted the
privilege to Art, he had received it only frorn Art. Although Bob acquired the
privilege through Cal subsequentl~y, should we not undo the effect of his grant
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Bob to ,Art is 'not undone in SCJL. In effecL if a user acquires a privilege rnultiple
tilnes frolIl different grantors, S(~L treats each of these grants to the user <he;

having occurred befoTe that user pa"c;sed on the privilege to other users. This
iInplcrnentation of REVOKE is convenient in 111any reaJ-\vorld situations. .For
exanlple, if a lIl.anager is fired after passing on sorne privileges to subordinates
(vvho lnay in turn have passed the privileges to others), vve can ensure that
only the rnanager's privileges are rernoved by first redoing all of the Illanager's
granting actions and then revoking his or her privileges. That is, Vle need not
recursively redo the subordinates' granting actions.

To return to the saga of Joe and his friends, let us suppose that Joe decides
to revoke Cal's SELECT privilege a.., well. Clearly, the arc frorn Joe to Cal
corresponding to the grant of this privilege is rerIloved. The arc frorH Cal to
Bob is reilloved as well, since there is no longer a path fronl SystelIl to Cal
that gives Cal the right to pass the SELECT privilege on Sailors to Bob. The
authorization graph at this interrnediate point is shown in Figure 21.2.

E=0
1-(SY<tem, Joe, Select on Sailoe<, Ye<)

(o~) (~
"''--'-''~'/

(Art, Bob, Select on Sailors, Yes)

(Bob, Art, Select on Sailors, Yes)

Cal

Figure 21.2 Example Authorization Graph during Revocation

rrhe graph 110Vv' contains t~lO nodes (Art and Bob) for vvhieh there are outgoing
arcs \vith labels containing the SELECT privilege on Sailors; therefore, these
users have granted this privilege. lInwever, although each node contains a,n
incorning arc carrying the saIne privilege, then:; is no .such path jnnn Systern
to either of these nodes; so these users' right to grant the privilege lUh'S been
abandonecL "\\le therefore rernove the outgoing arcs as well. In general, these
nodes rnight have other arcs incident on theIn, but in this exarnplc, they now
have no incident arcs. Joe is left as the only user\vith the SELECT privilege on
Sailors; Art and Bob have lost their privileges.
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21.3.1 (;rant and Revoke on Views and Integrity Constraints

1"'!he privileges held by the creator of a vie\\! (\vitll respect to the vie\v) change
over tiIne cbS he or she gains or loses privileges on the underlying tables. If the
creator loses a privilege held 'with the grant option, users vvho "vere given that
privilege on the view lose it as \vell. 'There are SOlHO subtle &-spects to the GRANT
and REVOKE conunands vvhen they involve vicV\1s or integrity constraints. \;Ye
consider senne exarnples that highlight the folloV\Ting irnportant points:

1. A view Inay be dropped because a SELECT privilege is revoked froIn the
user who created the vie\~r.

2. If the creator of a vie"v gains additional privileges on the underlying tables,
he or she autornatically gains additional privileges on the view.

3. The distinction between the REFERENCES and SELECT privileges is irnpor­
tanto

Suppose that Joe created Sailors and gave Michael the SELECT privilege on it
with the grant option, and J\!Iichael then created the view YoungSailors and
gave Eric the SELECT privilege on ·youngSailors. Eric now defines a view called
FiIl(~YoungSailors:

CREATE VIEW FineYoungSailors (naIne, age, rating)
AS SELECT S.snarne, S.age, S.rating

FROM YoungSailors S
WHERE S.rating > 6

\Vhat hc1.1>pens if .Joe revokes the SELECT privilege on Sailors froln l\1icha,el?
lV1ichael no longer has the authority to execute the query used to define Young­
Sa,ilors because the definition refers to Sailors. rrherefore, the vieV\! YoungSailors
is dropped (Le., destroyed). In turn, Fine'{oungSailors is dropped as \vell. Both
view definitions axe rernoved fr0111 the systcln catalogs; even if (1, rerIlorseful Joe
decides to give ba,ckthe SELECT privilege on Sailors to l\;1ichael, the vicV\Ts are
gone a11d rnust be created afresh if they are required.

On a Inore happy note, suppose tllat everything proceeds as just described until
Eric defines I~'\ineYoungSailors; tJleu, instead of revoking the SELECT privilege
on Sailors frorll I\:lichael, .Joe decides to also give l\'Echctel the INSERT privilege
011 Sailors. l\!Iichael's privileges on th(~ vievv YoungS(tilors are upgraded to \vhat
he \vould 11<'lVe if he \-vere to create the vie\v no'll!. lI(~ therefore acquires the
INSERT privilege on 'YourlgSailors as VilCd1. (Note that this vie"v is updatal)le.)
\~nlat ab(nltEri(~? IIis privileg(~s axe Un(Jlfu1g(:~d.

\Vh(~ther ()l' ll.ot .lVIicllael 11::18 tlle INSERT privilege 011 \roungSailors with the
gra11t ()ption clel)encls 011 \vhether or not .Joe gives hirn the INSERT I)rivilege OIl
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Sailors \vith the grant option. 'Ib understand this situation, consider Eric again.
If lVIiehael has the INSERT privilege on YoungSailors with the grant option, he
can pass this privilege to Eric. Eric could then insert rovvs into the Sailors table
because inserts on YC}llngSailors are effected by rnodifying the underlying base
table, Sailors. Clearly, vve do not \vant l\:1ichael to be able to authorize Eric to
rnake such changes unless :I\JIichael has the INSERT privilege on Sailors with the
grant option.

rrhe REFERENCES privilege is very different froIll the SELECT privilege, kk" the
following exarIlple illustrates. Suppose that Joe is the creator of Boats..He can
authorize another user, say, Freel, to create H,eserves with a foreign key that
refers to the bid colurnn of Boats by giving ~'red the REFERENCES privilege with
respect to this colulnn. ()n the other hand, if Fred has the SELECT privilege on
the bid colurnn of Boats but not the REFERENCES privilege, Fred cannot create
R.eserves with a foreign key that refers to Boats. If Fred creates R,eserves with
a foreign key colunlll that refers to bid in Boats and later loses the REFERENCES
privilege on the bid colurnn of boats, the foreign key constraint in Reserves is
dropped; however, the R,eserves table is not dropped.

To understand why the SQL standard chose to introduce the REFERENCES priv­
ilege rather than to siInply allow the SELECT privilege to be used in this sit­
uation, consider what happens if the definition of Iteserves specified the NO
ACTION option with the foreign key------.-Joe, the owner of Boats, Inay be pre­
vented from deleting a row fronl Boats because a row in Reserves refers to this
Boats row. Giving Fred, the creator of Reserves, the right to constrain updates
on Boats in this rnanner goes beyond. siInply allowing hinl to read the values
in Boats, vvhich is all that the SELECT privilege authorizes.

21.4 MANDATORY ACCESS CONTROL

Discretionary access coutrollnechanislns, while generally effective, have certain
\veaknesses. In particular they are susceptible to Trojan h07'se schelnes whereby
a devious unauthorized user can trick an authorized user into disclosing sensi­
tive data. For exalnple, suppose that student rrricky Dick \Va.nt8 to break into
the grade tables of instructor ]).'ustin Justin. IJick does the following:

IIIlI lIe creates a nc\v table called lVlineAlIlVIine and gives INSERT privileges
on this tahle to .Justin (who is blissfully una\vare of aJl this attention, of
course).

lI! lIe rllodifies the code of SOllIe I}BlVIS application that J llstin uses often to
do (L couple of additional things: first, read the (jrades tel-ble, Ctlld next,
\vrite the result into IVIineAl1~'1ine.
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Then he sits back and waits for the grades to be copied into :NfineAllNlinc and
later undoes the Illodifications to the application to ensure that Justin does
not sOlnehow find out later that he has been cheated. Thus, despite the DB~1S

enforcing all discretionary access controls··.,.-·--only Justin's authorized code ,vas
allowed to access Grades....·..··....sensitive data is disclosed to an intruder. 1:'he fact
that Dick could surreptitiously modify Justin's code is outside the scope of the
DB1/IS's access control rnechanisrn.

NIandatory access control meehanisrns are airned at addressing such loopholes in
discretionary access control. 1"he popular rllodel for mandatory access control,
called the Bell-LaPadula Illodel, is described in tenllS of objects (e.g., tables,
views, rows, columns), subjects (e.g., users, prograrlls), security classes, and
clearances. Each databa..'3e object is a..'3signed a security class, and each subject
is assigned clearance for a security class; we denote the class of an object or
subject A as class(A). The security classes in a systerll are organized according
to a partial order, with a most secure class and a least secure class. for
sirnplicity, we assume that there are four classes: top secTet (T8) , secret (8),
confidential (C), and unclassified (U). In this system, T8> S > C> U, where
A > B rneans that class A data is more sensitive than class B data.

The Bell-LaPadula model imposes two restrictions on all reads and writes of
database objects:

1. Simple Security Property: Subject S is allowed to read object 0 only
if class(8) > class (()). For exarllple, a user with TS clearance can read a
table with C clearance, but a user with C clearance is not allowed to read
a table with TS classification.

2. *-Property: Subject S is allowed to write object 0 only if class(S) <
class(O). For exarllple, a user with S clearance can write only objects with
S or TS classification.

If discretionary a,ccess controls are also specified, these rules represent addi­
tionaJ restrictions. Therefore, to read or write a databa.'3e object, a user lllUst
have the necessary privileges (obtained via GRANT cornrnands) and the security
classes of the user and the object rnust satis(y the preceding restrictions. Let
us consider how such a Inandator~y control rnech.an.isrn lui.ght h.ave foiled 1'ricky
I)ick. rfhe Grades table could be classified aB S, .Justin could be given clearance
for S, and 'Il'icky Di.ck could be given a lower clearance (Cf

). Dick can create
objects of only C! or lc)\ver classification; so the table l\!IineAl1ivline can have at
Inos1, the classification (}. \Vhen the application prograrIl running on behalf of
..Justin (and therefore\vith clearance S) tries to copy (irades into 1\1ineAllIVline,
it is not allowed to do so because clas,s(1\llineAlllvfrin,e) < class(applicat'ion), a.nel
the *-Property is violated.
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21.4.1 Multilevel Relations and Polyinstantiation

7Q7

rro apply Inandatory access control policies in a relational DBMS, a security
clf:1SS must be ac;sig11ed to each databa...sc object. The objects can be at the
granularity of tables, rows, or even individual colurnn values. Let us assU111e
that each row is a9signed a security class. This situation leads to the concept
of a multilevel table, which is a table with the surprising property that users
with different security clearances see a different collection of rows when they
access the sarne table.

Consider the instance of the Boats table shown in Figure 21.3. Users with S
and TS clearance get both rows in the answer when they ask to see all rows in
Boats. A user with C clearance gets only the second row, and a user with [J

clearance gets no rows.

I .bid ., bname J color I SeclJ,:citYClass.

[~ ~~~:: J~;:wn E-··..._-.-S-=-C---

Figure 21.3 An Instance B1 of Boats

The Boats table is defined to have bid as the prirnary key. Suppose that a user
with clearance C wishes to enter the row (101, Picante, Scarlet, 0). We have
a dilemrna:

• If the insertion is perlnitted, two distinct rows in the table have key 101.

• If the insertion is not pennitted because the priInary key constraint is vio­
lated, the user trying to insert the new row, who ha...') clearance C, can infer
that there is a boat with {rid== 101 whose security class is higher than C. This
situation cOlnpromises the principle that users should not be able to infer
any infonnation about objects that have a higher security classification.

This dilerrlllla is resolved by effectively treating the security cla..ssification as part
of the key. rrhus, the insertion is allo\ved to continue, and the table instance is
rnodified as shown in Figure 21.4.

I bid I bna'me I color I Security-'Class I
l(:i'T .'--'Salsa fled .--,§
101 Picante Scarlet C

1---------+------....-- .___._----+-------
102 Pinto Brown C

---_.... . _---

Figure 21.4 Insta.nce 131 after Insertion
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lJsers\vith clearance C or [1 see just the rows for Picante and Pinto, but users
with clearance S or 1'8 see all three nnvs. The two ro\vs with bid=1()1 can
be interpreted in one of t'wo\vays: only the rc)\v\vith the higher cla..~sification

(Salsa, with classification 8) a,ctually exists, or both exist and their presence is
revealed to users according to their clearance level. The choice of interpretation
is up to application developers and users.

The presence of data objects that appear to have different values to users
¥lith different clearances (for exarnple, the boat with b'id 101) is called polyin­
stantiation. If we consider security classifications associated \~lith individual
colurnns, the intuition underlying polyinstantiation can be generalized in a
straightforward rnanner~ but SOIne additional details Inust be addressed. \I\le
relnark that the rnain drawback of rnandatory access control schelnes is their
rigidity; policies are set by systeIll adrninistrators, and the classification 1necha­
nisrns are not flexible enough. A satisfactory cornbination of discretionary and
rnandatory access controls is yet to be achieved.

21.4.2 Covert Channels, DoD Security Levels

Even if a DElVIS enforces the rnandatory access control schenle just discussed,
inforrnation can flow frorn a higher classification level to a lower classification
level through indirect rneans, called covert channels. For exanlplc, if a trans­
action accesses data at rnore than one site in a distributed DBI\1S, the actions
at the tvvo sites 1nust be coordina,ted. The process at one site rTlay have a
lower cleara.nce (say, C) than the process at another site (say, S), and both
proceSSE~S have to agree to cOllnnit before the transaction can be conunitted.
This requirernent can be exploited to pass i11fo1'rnatio11 with an S classification
to the process with a () clearance: The transaction is repeatedly invoked, and
the process \vith the C: clearance always agrees to cOlIllnit, whereas the prOCf~SS

with the 8 clearance agrees to conunit if it wants to translnit a 1 bit and does
not agree if it ~rants to transrnit a 0 l)it.

In this (adrnittedly tortuous) lIlanllcr, infonnation with an ,9 clearance can b(~

sent to a process with a C: clearance as a strea111 of bits. 1~his covert cllannel is
an indirect violation of the int(~nt behind the *-Propert.y. Additional exarnples
of covert channels can be found readilv in statistical dataJ)t:lses, vvhich vve cliscuss

,j

." S' . ')! 6'" 2"In k cetlon .... ,. ". '.

DBrv1S vendors recently started irnplcrnenting rnandatory access control rnech­
aniSlns (although they aTe not part: of the S(~L stanc!<trcl) because the lJ nit(:~(l

States l)epartnlent of J)efense (1)01)) requires such support for its systelns.TlH~

Dol) requirernents can be described in terrns of security levels ./1 ~ ,13, CI, E1JJd

D. of \vhich ./1 is the 1J10st secure and 1) is the lC<l,st secure.
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Current SysteIlls:ColnuilereiaIR,DBIvISs areavt\ilable that support dis­
cretionary controls at the C21evel andrnandat.ory controls at theBJ level.
If3:NI DB2, Inforruix, ivIierosoft SQL Server, Oracle 8, and Sybase ASE an
support SQL's features for discretionary clccess controL In gel1eral, they
do not support lnandatory a.ccess control; Ora,cle offers a versio:n of their
product with support for rnandatory access control.

Level C requires support for discretionary access control. It is divided into
sublevels Cl and C:2; C2 also requires SOll1C degree of accountability through
procedures such 3,.':3 login verification and audit trails. Level B requires sup­
port for lnandatory access control. It is subdivided into levels Bl, B2, and
B3. Level 132 additionally requires the identification and clirnination of covert
channels. Level B3 additionally requires 11laintenance of audit trails and the
designation of a security administrator (usually, but not necessarily, the
DBA). Level A, the most secure level, requires a n1athernatical proof that the
security rnechanisrn enforces the security policy!

21.5 SECURITY FOR INTERNET APPLICATIONS

When a DBMS is accessed frorn a secure location, we can rely upon a shnple
password rnechanisrn for authenticating users. IIowever, suppose our friend
Sarn wants to place an order for a hook over the Internet. rrhis presents sorne
unique challenges: Saln is not even a known user (unless he is a repeat cus­
tonler). Fron1 Alnazon's point of view, we have an individual asking for a book
and offering to pay with a credit card registered to Saln, but is this individual
really Sarn? f'rcnn Sarn's point of view, he sees a fornl asking for credit card
inforrnation, but is this indeed a legitirnate part of Arnazon's site, and not a
rogue application designed to trick hi1l1 into revealing his credit card nurnber?

Tlhis exarnple illustrates the need for a rnore sophisticated approach to authen­
tication than a sirnple pass"Vvord rnechanisrn. Encryption techniques provide
th(-,~ foun,dation for rnodern authentica,tion.

21.5.1 Encryption

The basic ide(\' b(~hind encryption is to apply an encryption algorithrn to the
data, using a user-specified or IJBA-SI)Ccified encryption key. The output of
the algorithrn is the en.cryptexl version of th(~ data. There is aJso a, decryp­
tion algorithrrL ·which ta,kes the encryptc"d data and (:1, decryption key as
input and then returns the original data.\Vithont the corn:~ct decryption key~

the decryption aJgori tll111produces gibl)crish. rrhe (~llcrypti(nl and clecryption
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r-'-'" ---------·--·--·----·----·-..··-··1

I DES and AES: The DES standard,. adopted in 1977, has a 56-bit en- !

I cryption key. Over thne1 COII:tputers have become so ra",t that, in 19991 'I!!.

I (1, special-purpose chip and a network ofPCs were used to cra{:kDl~S in
! under a day. The systern W~l.'3 testing 245biHion keys per second w,hen

the correct key "va,." fonnd! It is estirnated that a special~pu.rpose hE:trdware
device can be built for under a 1l1iUioIl dollars that can crack DES in under
four hours. Despite growing concerns about its vulnerability, DES is still
widely used. In 2000, a successor to DES, called the Advanced Encryp­
tion Standard (AES), W&'3 adopted as the new (syrrunetric) encryption
standard. AES has three possible key sizes: 128, 192, and 256 bits. \\lith II

a 128 bit key size, there are over 3 . 1038 possible AES keys, which is on
the order of 1024 Inore than the number of 56-bit DES keys. Asslllne that
we could build a conlputer fa.'3t enough to crack DES in 1 second. This J
COIllputer would. cornpnte for about 149 trillion years to crack a 128-bit

~.=:..~~ (Experts think the universe is less than 20 billion years old.) _

algorithrns thernselves are assunled to be publicly known, but one or both keys
are secret (depending upon the encryption scheme).

In symmetric encryption, the encryption key is also used as the decryption
key. The ANSI Data Encryption Standard (DES), which has been in use
since 1977, is a well-known exarnple of syllunetric encryption. It uses an en­
cryption algorithrn that consists of character substitutions and pernlutations.
rrhe nlain weakness of synunetric encryption is that all authorized users rnust
be told the key, increasing the likelihood of its becorning known to an intruder
(e.g., by sirnple Inllnan error).

Another approach to encryption, called public-key encryption, ha.l;) becorne
increa.'3ingly popular in recent years. The encryption scheniC proposed by
Hjvest, Sharnir, and Adlernan, called RSA, is a well-known exarnple of public­
key encryption. Each authorized user has a public encryption key, known
to everyone, and a private decryption key, known only to hini or her. Since
the priv<lte decryption keys are kno\llln only to their owners, the weakness of
1)ES is avoided.

A central issue for public-key encryption is ho\v encryption and decryption
keys are chosen. Technically, public-key encryption algorithrns rely on the
existence of one-way functions, whose inverses are cornplltationally very hard
to deterrnine. rrhe I1SA algoritllIn, for exaJnple, is based on the observation
that, although checking vvhether a given nurnber is prirne is easy, deterrnining
the prirne factors of a nonpriIne nurnber is extrernely hard. (I)eterlnining the
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Why RSA Works: The essential point of the scherne is that it is easy to
compute d given e, 1>, and q, but ve'r.lJ hard to cornpute d given just e and
L. In turn, this difficulty depends OIl the fact that it is hard to deterlnine
the priIne factors of L, ",r11ich happen to be p and q. A cavcat:Factoring
is widely believed to be hard, but there is no proof that this is so. Nor
is there a proof that factoring is the only way to crack I\SA; that is, to
CU11111 d frolll e and L.

prirne factors of a nurnber with over 100 digits can take years of CPlJ tirne on
the fastest available COIllputers today.)

We now sketch the idea behind the R,SA algorithrn, ~lssurning that the data. to
be encrypted is an integer I. To choose an encryption key and a decryption
key for a given user, we first choose a very large integer L, larger than the
largest integer we will ever need to encode. 1 We then select a nUl1lber e as the
encryption key and cornpute the decryption key d based on e and L; how this
is done is central to the approach, as we see shortly. Both Land e are l1lade
public and used by the encryption algorithrn. However, d is kept secret and is
necessary for decryption.

II The encryption function is 8

II The decryption function is 1

Ie mod L.

Sd mod L.

vVe choose L to be the product of t,vlO large (e.g., 1024-bit), distinct prirne
nurnbers, 11 * q. 1"he encryption key e is a randornly chosen nlunber between
1 and L that is relatively prirne to (p "~- 1) * (q - 1). The decryption key d is
cornputed such that d *e = 1 mod ((p - 1) * (q - 1)). Ciiven these choices, results
in nurnber theory can be used to prove that the decryption function recovers
the original ruessage frorll its encrypted version.

A very irnportant property of the encryption and decryption algoritluns is that
the roles of the encryption and decryption keys can be reversed:

decrypt( el, (encrypt(c, I))) = I == decTypt(c, (cru:rypt( el, I)))

Since In.any protocols rely on this property, \ve henceforth sirnply refer to pub­
lic aTld private keys (since both keys CHJ1 be used for encryption as \'lell as
decryption) .

LA message th':lt is to be encrypted is decomposed into blocks such t.hat each block can be treated
'L.S an integer less tha.n L.
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\Vhilewe introduced encryption in the context of authenticatioll, \VC note that
it is a fundaIIlental tool for enforcing seeurity.ADBNIS can use encrlJ1Jt'lon to
protect inforrnation in situations where the norrnal security rnechanisrns of the
DBlVIS are not adequate. For exarnple, an intruder rnay steal tapes containing
SOUIC data or tap a conunu.nieation line. By storing and transrnitting data in
an encrypted forIn, the DBNlS ensures that such stolen data is not intelligible
to the intruder.

21.5.2 Certifying Servers: The SSL Protocol

Suppose \ve associate a public key and a decryption key "vith Alnazon. Any­
one, say, user Sa,rl1, can send Alnazon an order by encrypting the order using
Arnazon's public key. ()nly Arnazon can decrypt this secret order because the
decryption algorithrn requires Arnazon's private key, known only to Arnazon.

This hinges on 8arn's ability to reliably find out Arnazon's public key. A num­
ber of cornpanies serve as certification authorities, e.g., Verisign. Arnazon
generates a public encryption key eA (and a private decryption key) and sends
the public key to Verisign. Verisign then issues a certificate to Arnazon that
contains the following inforrnation:

(VeTi8ig'r'l" Arnazoin, htl;P8://w'U)w. arnazon. corn, eA )

The certificate is encrypted using Verisign 's own (pTivate key, which is known
to (i.e., stored in) Internet Explorer, Netscape Navigator, and other browsers.

vVhen 8an1 carnes to the Anulzon site and wants to place an order, his browser,
running the SSL protocol, 2 asks the server for the Verisign certificate. The
bro\vser then validates the certificate by decrypting it (using ·Verisign's public
key) and checking that the result is a certificate with the HaIne Verisign, and
that theURL it contains is that of the server it is talking to. (Note that an
atternpt to forge a certificate \vill fail because certificates are encrypted using
Verisign 's private key, Vilhieh is knc)\vn only to Verisign.) Next, the brovvser
generates (1, randc)ln session key, encrypt it using Arnazon's public key (\vhieh
it obtained frorn the validated certificate anel therefore trusts), and sends it to
the 1\rn(lzon server.

Frorn this point on, the Arnazon server and the browser can use th.c session
key (which both know and are confident tliat only they know) and a /3Y'fnrnetric
encrypticHl protc)collike AES or IJES to exchangc~ securely encrypted rnessages:
l\Jlessages are encrypted by the sender anel decrypted by the receiver using the
sa,HIe session key. rrhe encrypted Inessages travel over the Internet and rnay be

._-_ _--_.._.-----
:2 A browser uses the SSL protocol if the tclrget lJHl..i begins with https.
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intercepted, but they cannot be decrypted without the session key. It is useful
to consider \vhy \ve need a session key; after all, the bro\vser could sirnply have
encrypted 8a1n's original request using Arnazon '8 public key and sent it securely
to the Arnazon server. The reason is that, without the session key, the Arnazon
server has no "'lay to securely send infonnation back to the bro\vser. A further
advantage of session keys is that syrnrnetric encryption is cOlnputationally nluch
faster than public key encryption. The session key is discarded at the end of
the session.

Thus, 8aIn can be assured that only Alnazon can see the inforrnation he types
into the fonn shown to hirn by the AIuazon server and the inforrnation sent
back to hiln in responses froIn the server. However, at this point, r\rnazon
has no assurance that the user running the browser is actually Sanl, and not
SOlneone who has stolen Sarn's credit card. l-'ypically, rnerchants accept this
situation, which also arises when a custoIner places an order over the phone.

If we want to be sure of the user's identity, this can be accoIuplished by addi­
tionally requiring the user to login. In our exarnple, 8arn 11lUSt first establish
an account with Alnazon and select a password. (Stun's identity is originally
established by calling hiln back on the phone to verify the account inforrnation
or by sending elnail to an elnail address; in the latter case, all we establish is
that the owner of the account is the individual with the given clnail address.)
Whenever he visits the site and Anlazon needs to verify his identity, AInazon
redirects hinl to a login fo1'1n after' using SSL to establish a session key. 'rhe
paE;sword typed in is transrnitted securely by encrypting it with the session key.

()ne rcrnaining drawback in this approach is that Arnazon now kno\vs Sarn's
credit card nlunber, and he rnust trust Alnazon not to rnisuse it. The Secure
Electronic Transaction protocol addresses this lirnitation. Every custolner
rnust nnw obtain a certificate, with his or her own private and public keys,
and every transaction involves the Alnazon server, the cust(nner's browser, and
the server of a trusted third party, such as Visa for credit card transactions.
r:Che basic idea is that the bro"vser encodes non-credit caTd inforrnation using
AInazon's public key and the credit ca.rd infonnation using Visa's public key and
sends these to the AJnazon servc:~r, which for"vards the credit card inforrnation
(which it cannot decrypt) to the Visa server. If theVisct server a,pproves the
inforrnation, the transa,ction goes through.

21.5.3 Digital Signatures

Suppose tllat ,Elnlcr, who works for ArnazoIl, a,nd Betsy, \vho \\forks for IVlcCjnlw­
lIill,need to COlllll1Unicate \vith each other about inventory. Public key encryp­
tion can be used t() create digital signatures for rnessages. rrhat is, rnessages
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can be encoded in such a way that, if ElIneI' gets a Inessage supposedly fr(nTI
Betsy, he can verify that it is fronl Betsy (in addition to being able to decrypt
the rnessage) and, further, prove that it is froIn Betsy at McGraw-lIill, even if
the ll1cssage is sent froIn a IIotrnail account when Betsy is traveling. Sirnilarly,
Betsy can authenticate the originator of Inessages froln Ellner.

If Ellner encrypts Inessages for Betsy using her public key, and vice-versa,
they can exchange inforrnation securely but cannot authenticate the sender.
Sorueone who wishes to irnpersonate Betsy could use her public key to send a
rnessage to EIrner, pretending to be Betsy.

A clever use of the encryption sche111e, however, allows Ellner to verify whether
the rnessage was indeed sent by Betsy. Betsy encrypts the rnessage using her
private key and then encrypts the result using Elrner's public key. When Ellner
receives such a 111essage, he first decrypts it using his private key and then
decrypts the result using Betsy's public key. rrhis step yields the original un­
encrypted rnessage. FllrtherInore, Ehner can be certain that the rnessage was
composed and encrypted by Betsy because a forger could not have known her
private key, and without it the final result would have been nonsensical, rather
than a legible 111essage. 1~\lIther, because even E~lrner does not know Betsy's
private key, Betsy cannot clairn that Ehner forged the ruessage.

If authenticating the sender is the objective and hiding the rnessage is not im­
portant, we can reduce the cost of encryption by using a message signature.
A signature is obtained by applying a one-way function (e.g., a hashing schelne)
to the rnessagc and is considerably sInaHer. \Ve encode the signature as in the
basic digital signature approach, and send the encoded signature together with
the full, unencoded 111cssage. rrhe recipient can verify the sender of the signa­
ture as just described, and validate the I11essage itself by applying the onc-\vay
function and cOlnparing the result with the signature.

21.6 ADDITIONAL ISSUES REI.JATED TO SECURITY

Security is a, l)road topic, and our coverage is necessarily lirnited. 'rhis section
briefly touches on sorne additional irnportant issues.

21.6.1 Role of the Database Administrator

rrhe database (l,chninistrator (IJBA) plays an irnportant role in enfol'c:ing the
security-related aspects of i:1 dataJ>ase design. In conjunction with the o\vners
of the data, the I)BA aJso COlltributes to developing a security policy. The I)BA
has a sp(~cial i:1,ccount, \vhich we call the systenl account~ (l,nd is responsible
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for the overall security of the systeru. In particular ~ the DBA. deals with the
follo\ving:

1. Creating New Accounts: Each new user or group of users Blust be
assigned an authorization ID and a paA'3s\vord. Note that application pro­
graIns that access the database have the saIne authorization ID as the user
executing the prograill.

2. Mandatory Control Issues: If the DB~'fS supports rnandatory control·-···­
S0111e custornized systeIns for applications \vith very high security require­
rnents (for exarllple, rnilitary data) provide such support~-theDBA lllUst
assign security classes to each database object and a..'3sign security clear­
ances to each authorization ID in accordance with the chosen security pol­
ICY·

The DBA is also responsible for rnaintaining the audit trail, which is essen­
tially the log of updates with the authorization ID (of the user executing the
transaction) added to each log entry. This log is just a Ininor extension of
the log mechanislll used to recover from crashes. Additionally, the DBA lllay
choose to rnaintain a log of all actions, including reads, perfornled by a user.
Analyzing such histories of how the DBMS was accessed can help prevent se­
curity violations by identifying suspicious patterns before an intruder finally
succeeds in breaking in, or it can help track down an intruder after a violation
h&" been detected.

21.6.2 Security in Statistical Databases

A statistical database contains specific inforrnation on individuals or events
but is intended to perlnit only statistical queries. For exarnple, if \ve rnailltained
a statistical database of inforrna,tion about sailors, we would allow statistical
queries about average ratings, rnaxirnurn age, and so on, but not queries about
individua.l sailors. Security in such dataJxtses poses nevv probleurs because it is
possible to infer protected inforrnation (such Cl"S (1, sailor's rating) frorn ans\vers
to perrnitted statistical queries. Such inference opportunities represent covert
channels that can cornprornise the security policy of the database.

Suppose that sailor Sn(~aky Pete Vlants to kncrw the rating of .A.clrniral Ho1'n­
tooter ~ the c~st~elned chairrnarl of the sailing clu1), and happens to kno\v thclt
IIorntooter is the olclest sailor in the (Jub. Pete repeat(~dly (18ks queries of thc~

forln "'IIow' InClny sailors aTe there whose age is greater than ..x,:?" for vaxious
va.1ues of ..\'", until the (UIS\Ver is 1. (}bviously, this sa,iIor is lIorntooter, th(~

oldest sailor. Notethat each of these queries is (J, valicl statistical query and
is perrnitt(~d. Let the value of ..x at this POillt be, say, fi5. ~Pete no\v asks the
(lller:y, "'vVhat is tll(·~ nraxirnurn rating of all sailors \vhose age is greater than
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65'1" f\gain~ this query is pennitted because it is a statistical query. However,
the ans\ver to this query reveals J101'ntooter's rating to Pete, and the security
policy of the databa.se is violated.

One approach to preventing such violations is to require that each query rnust
involve at 1e(1.'3t S01ne lnininuull nUluber, say,N, of l'()\VS. vVith a rea.sonable
choice of N, Pete \vould not be able to isolate the inforrnation about 1101'ntooter,
because the query about the rna.xinUUll rating would fail. rrhis restriction,
hc)\vever, is easy to overCOIne. By repeatedly (1.'3king queries of the forIII , '"How
ruany sailors are there vvhose age is greater than ..Y?" until the systenl rejects
one such query, Pete identifies a set ofN sailors, including Florntooter. Let the
value of ~Y at this point be 55. Novv, Pete can ask tvvo queries:

III "vVhat is the SlUll of the ratings of all sailors whose age is greater than
557" Since N sailors have age greater than 55, this query is perrnitted.

• "What is the SUIll of the ratings of all sailors, other than l1orntooter, whose
age is greater than 55, and sailor Pete?" Since the set of sailors whose rat­
ings are added up now includes Pete instead of Horntooter, but is otherwise
the sallle, the rnunber of sailors involved is still N, and this query is also
pennitted.

171'oln the answers to these two queries, say, Al and A2 , Pete, who knows his
rating, can easily calculate Horntooter's rating as Al ~ A2 + .Pete'8 rating.

Pete succeeded because he WcU3 able to ask two queries that involved Illany of
the sarne sailors. 'The nurnber of rows exalnined in corllrnon by two queries
is called their intersection. If a liInit \vere to be pla,ced on the alIlount of
intersection perrnitted bet\veen anyt-wo queries issued by the Si::une user, Pete
could be foiled. Actually, a truly fiendish (and patient) user can generally find
out inforruation about specific individuals even if the systcrn phtces a, rniniruurn
nUlnber of ro\vs bound (N) and a rnaxirnurn intersection bound (1\1) on queries,
hut the n1.11n])er of qlleries required to do this gro\vs in proportion to N fA!. "Ve
can try to additionally lirnit the total nUlnbe1' of queries that a user is allowed
to aslc but t\VO users could still conspire to breach security. By Il1aintaining
a log of all activity (including rectcl-on1y ac(,~esses), such query patterns can be
cletected, icleally before a security violation occurs. This discussion should rnake
it cleaT~ however, that security in statistical databases is difficult to enforce.

21.7 DESIGN CASf: STUDY: THE INTERNET STORE

\Ve return to our case study and our friends at DBI)udes to consider security
issues. 'There are three groups of users: custolners, ernl>loyees, a.nd the ovvner
of the l>ook shop. (()f course, there is also the datal)ase adrninistrator ~ who
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luts universal access to all data and is responsible for regular operation of tlle
database systcrTl.)

<:.,' ,

The ()\vner of the store has full privileges on all tables. Custorners can query the
Books table and place orders online, but they should not have access to other
custonH=~rs' records nor to other c11storne1'8' orders.DBDudes restricts access
in t\VO ·ways. First, it designs a silnple 'VVeb page with several fonus sirnilar to
the page shc}\vn in Figure 7.1 in Chapter 7. rrhis allo\vs custo1ners to subrnit
a s111all collection of valid requests without giving tho1n the ability to directly
access the underlying DB1JfS through an SQL interface. Second, I)B.Dudes uses
the security features of the .DB1\·IS to li111it access to sensitive data.

rIhe \vebpage allows custorners to query the Books relation by ISBN nU111bcr,
narne of the author, and title of a boolc The webpage also has two buttons.
The first button retrieves a list of all of the custolIler's orders that are not
completely fulfilled yet. l'he second button displays a list of all cornpleted
orders for that custorner. Note that custolllers cannot specify actual SQL
queries through the Web but only fill in SCHne pararneters in a forn1 to instantiate
an autonlatically generated S(~L query. All queries generated through fonll
input have a WHERE clause that includes the cid attribute value of the current
custo1ner, and evaluation of the queries generated by the two buttons requires
knowledge of the custolller identification nUlnber. Since all users have to log
on to the website before browsing the catalog, the business logic (discussed
in Section 7.7) lllust 1naintain state inforrnation about a custoDler (i.e., the
Cllstorner identification nUlnber) during the custorner's visit to the website.

~rhe second step is to configurEl, the database to lirnit access according to each
user group's need to know. DBI)udes creates a special customer account that
has the following privileges:

SELECT ON Books, New()rders, ()ldOrders, NewOrderlists, OldOrderlists
INSERT ON New()rders, ()Ic:H)rders, New()rderlists, ()ld()rderlists

Ernployees should be able to acid ncvv books to the catalog, upda,te the quantity
of (L book in stock, revise custorner orders if rlecessary, and update all custorner
inforrnation e:ccept the credit card 'inforInation.. In fa,ct, ernployees should not
even be able to see a custorner's credit card nurnber. 1]lcreforc,DBDucles
creates the foUcnving vic\v:

CREATE VIEW C\lstornerlnfo (cid,cnarnc,address)
AS SELECT (~.cid, C.cnaJTlE\ C.(l.cldress

FROMCllstolners C

I)BI)udes gives the employee account the follc)\ving privileges:
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SELECT ON Cllstolnerlnfo~ Books~

Ne\vOrders, ()Id()rders~Ne\v(}rclerlists~ Old()rderlists
INSERT ON Cllstornerlnfo, Books,

Nc\vOrders, 01dC)rders, Ne\vOrderlists~ ()ldOrderlists
UPDATE ON CustolnerInfo, Books,

New()rders, OldOrders, Nevv()rderlists, Old()rderlists
DELETE ON Books, NewOrders, Old()rders~ NewOrderlists, ()ldOrderlists

Observe that ernployees can rnodify Custornerlnfo and even insert tuples into
it. This is possible because they have the necessary privileges, and further, the
view is updatable and insertable-into. \Vhile it seerns rea.sonable that elllployees
can update a custorner's address, it does sceln odd that they call insert a t1lple
into Cllstornerlnfo E~ven though they cannot see related infonna.tion about the
custorner (i.e., credit card nurnber) in the Cllstorners tahle. The reason for
this is that the store wants to be able to take orders 1'1'0111 first-tirne custorners
over the phone without asking for credit card inforrnation over the phone.
Ernployees can insert into Custornerlnfo, effectively creating a new Custoillers
record without credit card inforluation, and custorners can subsequently provide
the credit card nurnber through a Web interface. (Obviously, the order is not
shipped until they do this.)

In addition, there are security issues when the user first logs on to the website
using the cllstolner identification nUlnber. Sending the nUlnber unencrypted
over the Internet is a security hazard, and a secure protocol such as SSL should
be used.

Cornpanies such a.s CyberCash and DigiCash offer electronic conunerce pay­
rIlcnt solutions, even inclu.ding electronic cash. Discussion of hoy\! to incorporate
such techniques into the website are outside the scope of this book.

21.8 REVIEW QUESTIONS

..l\.nS\~lerS to the revic\v questions can be founel in the listed sections.

91! \\That (J..re tIle 1n,ain objectives in designing a secure datal)ase application?
Explain the te1'rns ,seCT'CCY, 'integrity, availalrddy, and (lldhcn,tication. (Sec­
tion 21.1)

IS Explain tlH~ tenns 8ccur'ity policy ,'UHl 8cc'u'l'ily TrlcchaILisnl arid ho\v tllCy
are related. (Section 21.1)

l1li \\That is th(~ Blain iele;,1. behind disc'rct'ion,aT,1j acces.' con!;T'Ol? vVhat is the
idea behind Trl.,(1,'ruiaf,oT;ij access con,troT? vVhat are the relativ(~ rnerits of
thes(~ tv·/C) approaches? (Section 21.2)



II Describe the privileges recognized in S(~L? In particular, describe SELECT,
INSERT, UPDATE, DELETE, and REFERENCES. For each privilege, indicate
\vho acquires it autornatical1y on a given table. (Section 2103)

II I-Io\v are the O\VIH~rS of privileges identified? In particular, discuss atLtho­

rizlrt;ion ID8 and '{"ole8. (Section 21.3)

I'l \\That is an authorizat'ion graph? Explain S(~L's GRANT and REVOKE eOl11­

IIHHlds in terrns of their effect on this graph. In particular, discuss \vhat
happens when users pass on privileges that they receive frorn sorneone else.
(Section 2103)

II Discuss the difference between having a privilege on a table and on a vie\v
defined over the table. In particular, how can a user have a privilege
(say, SELECT) over a view 'without also having it on all underlying tables?
\'Tho 11111st have appropriate privileges on all underlying tables of the view?
(Section 21.3.1)

111 vVhat are objects, subjects, 8eCl.Ir'ity classes, and cleaTances in rnandatory
access control? IJiscuss the Bell-LaPadula restrictions in tenns of these con­
cepts. Specifically, define the sirnple seC1LTity pr'Operty and the *-pToperty.
(Section 21.4)

II What is a Trojan horse attack and how can it cOlnprornise discretionary
access control? Explain how lnandatory a,ccess control protects against
Trojan horse attacks. (Section 21.4)

Jl1II What do the tenns rnult'ilevf;l table and polyinstantiation rnean? Explain
their rela.tionship, a,nd ho\,r they arise in the context of lnandatory access
control. (Section 21.4.1)

Iii \'That are covert ChJlrrnels and how can they arise v\Then both discretionary
and luandatory access controls are in plcl,ce? (Section 2104;.2)

II Discuss the I)oD security levels for database systclns. (Section 21.4.2)

IiIil Explain why (t sirnple pEtssword rnechanisrn is insufficient for authentica­
tion of users "\vho <.lccess a databa.."c renJotely, say, over the Internet. (Sec­
tion 21.5)

Illll \Vhat is the differellC(~ between sy'tnrnctTic a,lld public-key en,(~r'ypti()n? C.;ive
ex:.unples of 1Nell-kncJWll encryption algoritluns of both ki.lldso v\lhat is the
rnain \veakilcss of synunetric encryption and ho'Vv is this addressed in public­
k(~:y encryption? (Section 21.5.1)

II 1)i8c118s the choice of encrYIltion and decryption keys in public-key en.cryp­
tion cHId how they are llsed to c~ncrypt and decrypt dattL Explain the role
of ()'nC-'luay !u.'ncti(Jr/,.'i. vVhat H.ssurance do\ve h.ave that the H,SA SC;heln(~

(:;:'1,nno1, be cornprornised? (Section 21.5.1)
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II \:\That are cert'ificat'ion attthorities and \vhy are they nE~eded? Explain ho\v
cert'ificates are issued to sites and validated by H, bro\vser using the SSL
TJrotocol: discuss the role of the session key. (Section 21.5.2)

II If a user connects to a site using the SSL protocol, explain \vhy there is still
a need to login the USCI'. Explain the use of SSL to protect pass\vords and
other sensitive infonnation being exchal1ged. vVhat is the secure electTolu:C
transaction pTOtoCO[? vVhat is the added value over SSL? (Section 21.5.2)

II A d'i.qital /:rignat'UTe facilitates secure exchange of rnessages. Explain what
it is and how it goes beyond sirnply encrypting rnessages. Discuss the use
of rnessage signat'UTes to reduce the cost of encryption. (Section 21.5.3)

II \:Vhat is the role of the databa"se achninistrator with respect to security?
(Section 21.6.1)

II Discuss the additional security loopholes introduced in statistical databases.
(Section 21.6.2)

EXERCISES

Exercise 21.1 Briefly answer the following questions:

1. Explain the intuition behind the two rules in the Bell-LaPadulamodel for rnandatory
access control.

2. Give an exarnple of how covert channels can be used to defeat the Bell-LaPadula rnodel.

;3. Give an exarnple of polyinstantiation.

4. Describe a scenario in whichrnandatory access controls prevent a breach of security that
cannot be prevented through discretionary controls.

5. Describe a scen:'Lrio in which discretionary access controls are required to enforce a seCll­
rity policy that cannot be tmforced using onlymancl<ttory controls.

6. If a DBNIS already supports discretionary and Jnandatory access controls, is there a need
for encryption '?

7. Explain the need for each of the following lirnits in a statistical database systern:

(a) A maxirnurn on the munber of (pl(~ries a user ca.Jl PoS(~.

(b) A rninirnUln on the munber of tuples involved in ans\vering a query.

(c) A maximurn on the intersection of t\vo queries (Le.) on the number of tuples that
both queries exarnine).

8. Explain the use of an audit trail, ''lith special reference to a statistical database system.

9. \,Vllat is the role of the DBA \vith respect to security?

10. Describe AES and its relationship to DES.

11. \?\'hat is public-key encryption? How does it differ frorn the encryption approach taken
in the Data Encryption Standard (DES)~ and in \vhat ways is it better than DES?
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12. Explain hmv a company offering services on the Internet could use encryption-based
techniques to lllake its order-entry process secure. Discuss the role of DES, A.ES, SSL,
SET, and digital signatures. Search the \tVeb to find out IllOre about related techniques
such as electronic cash.

Exercise 21.2 You are the DBA for the VeryFine Toy Cornpany and create a relation called
Employees with fields enam,e, dept, and Sala1~1j. For authorization reasons, you also define
views EmployeeNallIes (with ena:rne as the only attribute) and DeptInfo with fields dept and
avgsalary. The latter lists the average salary for each departrnent.

1. Show the view definition statements for EnlployeeNames and Deptlnfo.

2. What privileges should be granted to a user who needs to know only average departn1ent
salaries for the Toy and CS departments?

3. You want to authorize your secretary to fire people (you will probably tell hill1 whorn to
fire, but you want to be able to delegate this task), to check on who is an elllployee, and
to check on average department salaries. What privileges should you grant?

4. Continuing with the preceding scenario, you do not want your secretary to be able to
look at the salaries of individuals. Does your answer to the previous question ensure this?
Be specific: Can your secret~ry possibly find out salaries of some individuals (depending
on the actual set of tuples)", or can your secretary always find out the salary of any
individual he wants to?

5. You want to give your secretary the authority to allow other people to read the EUlploy­
eeNames view. Show the appropriate conI111and.

6. Your secretary defines two new views using the EnIployeeNarnes view. The first is called
AtoRNames and simply selects names that begin with a letter in the range A to R. The
second is called HowManyNan1es and counts the number of narnes. You are so pleased
with this achievement that you decide to give your secretary the right to insert tuples into
the EnlployeeNan1es view. Show the appropriate cOllunand and describe 'what privileges
your secretary has after this cornrnand is executed.

7. Your secretary allows Todd to read the Erl1ployeeNarnes relation and later quits. You
then revoke the secretary's privileges. \Vhat happens to Todd's privileges?

8. Give an exarnple of a view update on the preceding schelna that cannot be illlplernentecl
through updates to Erl1ployees.

9. You decide to go on an extended vacation, and to rnake sure that ernergencies can be
handled, you want to authorize your boss Joe to read and modify the Ernplo~yees relation
and the ErIlployeeNalnes relation (and Joe lllust be able to (leleg(:lte authority, of course,
since he is too far up the managernent hierarchy to ttctually do any \vork). Show the
appropriate SQL staternents. Can Joe read the Deptlnfo view?

10. After returning frorn your (wonderful) vacation, you see a note from Joe, indicating that
he authorized his secretary fvlike to rea,d the Ernployees relation. You \vant to revoke
f\like's SELECT privilege on Ernployees, but you do not \vant to revoke the rights you
gave to Joe, even teruporarily. Can you do this in SQL?

11. Later you realize that Joe has been quite busy. He has defined a view called AllNarnes
using the view ErnployeeN(lIneS, defined another relation caJled StaffNarnes that he ha..s
access to (but you cannot access), and given his secretary f\1ike the right to read from
the AllNanH:~s vicw.l\like has passed this right on to his friend Susan. You d(~cide that,
even at the cost of annoying .Joe 1)y revoking Borne of his privileges, you sirnply have
to takf~ away TvIike (\,nd Susarl's rights to see your data.\VhaJ, REVOKE staternent \vould
you execute? 'VVhat rights does Joe have on Ernployees after this staternent is executed?
\Vha..t views are dropped as a consequence?
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PARALLEL AND

DISTRIBUTED DATABASES

... What is the rnotivation for parallel and distributed DBMSs?

... What are the alternative architectures for parallel database systellls?

... How are pipelining and data partitioning used to gain parallelism?

... How are dataflow concepts used to parallelize existingsequential code?

... What are alternative architectures for distributed DBMSs?

... How is data distributed across sites?

... How can we evaluate and optimize queries over distributed data?

... What are the nlerits of synchronous vs. asynchronous replication?

... How are transactions Inanaged in a distributed environment?

.. Key concepts: parallel DBNIS architectures; perfonnance, speed­
up and scale-up; pipelined versus data-partitioned parallelism, block­
ing; partitioning strategies; dataflow operators; distributed DB11S
architectures; heterogeneous systernsj gateway protocols; data distri­
bution, distributed catalogs; sernijoins, data shipping; synchronous
versus asynchronous replication; distributed transactions, lock nlan­
agcrnent, deadlock detection, two-phase ccnnlnit, Presurned Abort

No rnan IS an island, f~ntire of itself; every Tnan IS a pIece of the
contirlcnt, a part of the rnain.

········...JohnDonne
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In this chapter "ve look at the issues of p:u-allelislll arid data, distribution in a
IJBlvIS. VVe begin by introducing parallel and distributed database systcrIls in
Section 22.1. In Section 22.2~ we discuss aJternative hardwa,re configurations for
a parallel DBI\lIS. In Section 22.:3,\ve introduce the concept of data partitioning
and consider its influence on parallel query evaluation. In Section 22.4, we sho\v
ho\v data partitioning can be used to parallelize several relational operations.
In Section 22.5, \ve conclude our treatrnent of parallel query processing with a
discussion of parallel query optirnization.

'The rest of the chapter is devoted to distributed databases. vVe present an
overvievv of distributed databases in Section 22.6. \Ve discuss sorne alterna­
tive architectures for a distributed DBMS in Section 22.7 and describe options
for distributing data in Section 22.8. vVe describe distributed catalog rnan­
agernent in Section 22.9, then in Section 22.10, we discuss query optirnization
and evaluation for distributed databases. In Section 22.11, we discuss updating
distributed data, and fina.lly, in Sections 22.12 to 22.14 we describe distributed
transaction ruanagernent.

22.1 IN"TRODUCTION

vVe have thus far considered centralized database rnanageruent systerns in which
all the data is luaintained at a single site and &ssluned that the processing of
individual transactions is essentially sequential. One of the most irnportant
trends in data.bases is the increased use of parallel evaluation techniques and
data, distribution.

A parallel database system seeks to irnprove perforruance through paral­
lelization of various operations, such as loading data, building indexes, and
evaluating queries. Although data, IIH1Y be stored in a distributed fa"shion in
such a systcrn, the distribution is governed. solely by perfon.nance considera­
tions.

In a distributed database systenl, data, is physically stored across several
sites, and ea,ch site is typically rnanaged by a 1)13lV18 capable of running il1­

dependent of the 01:11e1' sites. rrhe location of data itenlS and the degree of
autonorny of iJldividual sites have a significctllt irnpa,ct on aJl aspects of the
s)'stern, including c111ery optirnization and processing, concurrency control, and
recovery. In contnLst to parallel datal)ases, the distribution of data is governed
by factors such cL'3 locaJ ownership and iIlcreasccl a,vailability, in addition to
perforlnance issu(~s.

\Vhile paraJlelisrrl is 1110tivated l)y perforlnculc~c~ consideratiolls, sev(,~ra] distinct
issues rnotivate data, clistriblltioIl:
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lIB Increased A vailabHity: If a site containing a relation goes dovvn, the
relation continues to be available if a copy is Inaintained at another site.

M Distributed Access to Data: An organization Inay have branches in.
several cities. Although analysts rnay need to access data corresponding to
different sites, 1NC usually find locality in the access pa,tterns (e.g., a bank
lnanager is likely to look up the accounts of custorners at the local branch),
and this locality can be exploited by distributing the data accordingly.

II Analysis of Distributed Data: Organizations \vant to exa"rnine all the
data available to thern, even when it is stored across rnultiple sites and
on lllultiple databc6'3c systerns. Support for such integrated access involves
nlany issues; even enabling access to widely distributed data can be a
challenge.

22.2 ARCHITEC"rURES FOR PARALLEL DATABASES

The basic idea behind parallel databases is to carry out evaluation steps in par­
allel whenever possible, and there are rnany such opportunities in a relational
DBJ\lIS; databases represent one of the lnost successful instances of parallel
cornputing.

~
ciJ

SHARED NOTHING SHARED MEMOR'( SHARED DISK

Figure 22.1 PhysicaJ Architectures for Parallel Da.tabase Systems

l~hree luain architectures have been proposed for building para.11el DBIVISs. In
a shared-IuerIlory SystCIll, Inultiple CPU·s are attached to an interconnection
net\vork [Lnd c;an [l,ccess (1, cornrl1on region of rnain lnelilory. In a. shared-disk
s:ysten.1, c(l,ch CPU has a private rnelnory and direct access to all disks through
an interconnection nehvork. In a, shared-nothing systerl1: eac:h CPTJ haB local
rnain lnelnory and disk space, but no two CP1Js can access the sarne storage
area; all cOHununication betvveen CP1Js is tllrough a 11etwork connection.. rrhe
three architectures are illustrated in Figure 22.1.
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IThe shared-rnernory architecture is closer to a conventional rnachine, and Illany
conunercial database systerns have been ported to shared lnernory platfornlS
\vith relative ea",":ic. C~oInrnunication overhead is low ~ because lnain rncIIlory can
be used for this purpose, and operating systern services can be leveraged to
utilize the additional CPl:Js. Although this approach is attractive for achieving
rnoderate paranelisln·····~··a few tens of CPlJS can be exploited in this fashion~

Inernory contention bec01nes a bottleneck as the nurnber of CPUs increases.
rfhe shared-disk architecture faces a sirnilar problcrn because large a1110nnts of
data are shipped through the interconnection network.

The basic problern with the shared-111Crrlory and shared-disk architectures is in­
terference: As Inore CPUs are added, existing CPUs are slowed dovvn because
of the increased contention for mClllory accesses and network bandwidth. It has
been noted that even an average 1 percent slowdown per additional CPU 1nea11S
that the rnaxirnum speed-up is a factor of 37, and adding additional CPlJs ac­
tually slows down the systern; a systenl with 1000 CPUs is only 4 percent as
effective as a single- CP U systern! This observation has rllotivated the develop­
rnent of the shared-nothing architecture, which is now widely considered to be
the best architecture for large parallel database systems.

rrhe shared-nothing architecture requires rnore extensive n~organization of the
DBNIS code, but it has been shown to provide linear speed-up, in that the
tilne taken for operations decreases in proportion to the increase in the nUlnber
of CPlJs and disks, and linear scale-up, in that perforrnance is sustained if
the nurnber of CPUs and disks are increased in proportion to the arnount of
data. Consequently, ever-rnore-powerful parallel database systcrns can be built
by taking advantage of rapidly irnproving perforrllance for single-CPU systelns
and connecting as rnany CPUs as desired.

Speed-up and scale-up are illustrated in Figure 22.2. 'The speed-up curves show
how, for a fixed database size, Inore transactions can be executed l)cr second
by adding CPUs. 1118 scale-up curves shovv hovv adding Inorc resources (in the
forln of CPlJs) enables us to process larger problerns. rrhe first scale-up graph
Incasures the nurnber of transactions executed per second as the clatabase size is
iucTec'lsed and th(~ nurnber of CPlJs is correspondingly inCr(~(lsed. Arl alternative
\ivay to Ineasure scale-up is to consider the tirne Utken per transaction (kS r1101'e
CPTJs aTe added to process an increasing nurnber of transactions per second;
the goal here is to sustain the response tirne per transaction.

22.3 PARAI~l~EL QUERY EVALUATION'

In this s(~ction, vve (liscusspH,rallel evaluation of a relational query in a I).lHvlS
\\'ith (1, slutred-nothing architccture.\Vhile it is I)Ossibl(\, to consicler para11el
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SPEED-UP

Linear speed-up (ideal)

Sublinear speed-up

# ofCPUs

SCALE-UP with DB SIZE

Linear scale-up (ideal)

Sllblint~ar scale-up

# of CPUs, database size

SCALI':-I]P with # KACTSiSEC

Sublinear scale-up

Linear scale-up (ideal)

# of CPUs, # transactions per second

Figure 22.2 Speed-up and Scale-up

execution of rnultiple queries, it is hard to identify in advance which queries
will run concurrently. So the ernphasis has been on parallel execution of a single
query.

A relational query execution plan is a graph of relational algebra operators,
and the operators in a graph can be executed in parallel. If one operator
consurnes the output of a second operator, we have pipelined parallelism
(the output of the second operator is worked on by the first operator as soon as
it is generated); if not, the two operators can proceed esseptially independently.
An operator is said to block if it produces no output until 'it has conSUllled all
its inputs. Pipelined parallelisrn is lirnited by the presence of operators (e.g.,
sorting or aggregation) that block.

In addition to evaluating different operators in parallel, we can evaluate each
individual operator in a query plan in a parallel fashion. rrhe key to evaluating
an operator in pa,rallel is to partition the input data; \ve can then work on
each partition in parallel and cornbine the results. This approach is called
data-partitioned parallel evaluation. By exercising sorne care, existing
code for sequentially evaluating relational operators can be ported easily for
data-partitioned parallel evaluation.

All inlportant observation, '\vhich explains vvhy shaxed-nothing parallel databa",;c
systelns have been very successful, is that database query evaluation is very
axncll<tble to data-partitioned parallel evaluation. The goal is to nlinirnize elata,
shipping b:y paTtitioning the data ,lnd structuring the algoritluns to do lnost of
the proc(\'ssing at individual processors. (\\le lIse PTOCCS80T to refer to a. CPU
together vvrith its local disk.)

\Ve nOVil (~onsid(~r elata paxtitioning and pa.rallelization of existing operator evaJ­
uation cod(\' ill rnore detail.
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22.3.1 Data Partitioning

Partitioning a large data..'Sct horizontally across several disks enables us to ex­
ploit the I/O banchvidth of the disks by reading and writing theln in parallel.
rrhere are several \vays to horizontally partition a relation.vVe can assign tuples
to processors in a round-robin fashion, \ve can use hashing, or we can a..'Ssign
tuples to processors by ranges of field values. If there are n processors, the 'ith
tuple is assigned to processor 'i rnodn in round-robin partitioning. Recall
that round-robin partitioning is used in RAID storage systelTIS (see Section 9.2).
In hash partitioning, a hash function is applied to (selected fields of) a tuple
to deternline its processor. In range partitioning, tuples are sorted (con­
ceptually), and n ranges are chosen for the sort key values so that each range
contains roughly the SalTIe nurnber of tuples; tuples in range i are assigned to
processor i.

Round-robin partitioning is suitable for efficiently evaluating queries that ac­
cess the entire relation. If only a subset of the tuples (e.g., those that satisfy
the selection condition age = 20) is required, hash partitioning and range par­
titioning are better than round-robin partitioning because they enable us to
access only those disks that contain rnatching tuples. (Of course, this state­
ment assumes that the tuples are partitioned on the attributes in the selection
condition; if age = 20 is specified, the tuples must be partitioned on age.) If
range selections such as 15 < age < 25 are specified, range partitioning is su­
peric)!' to ha.'3h partitioning because qualifying tuples are likely to be clustered
together on a few processors. On the other hand, range partitioning can lead
to data skew; that is, partitions with widely varying numbers of tuples across
partitions or disks. Skew causes processors dealing with large partitions to
becorne perfonnance bottlenecks. Hash partitioning has the additional virtue
that it keeps data evenly distributed even if the data grows and shrinks over
tirne.

To reduce ske\v in range partitioning, the luain question is how to choose the
ranges by which tuples are distributed. ()ne effective approach is to take sarn­
pIes fronl each processor, collect and sort all sarnples, and divide the sorted set
of samples into equally sized subsets. If tuples are to be partitioned on age,
the age ranges of the sarnpled subsets of tuples can be used as the ba,,5is for
redistributing the entire relation.

22.3.2 Parallelizing Sequential Operator Evaluation Code

An elegant soflvvare architectnre for parallel I)BlVISs enables us to readily par­
allelize existing code for sequentially evaluating a relational oI>crator. 1"he
basic idea is to use parallel da.ta strearrlS. Strea,rIls (frorn different disks or
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the output of other operators) are Inerged cl..S needed to provide the inputs
for a relational operator, and the output of an operator is split a.5 needed to
parallelize subsequent processing.

A. parallel evaluation plan consists of a dataflow network of relational, luerge,
and split operators. 1'he rnerge and split operators should be able to buffer
SOlne data and should be able to halt the operators producing their input data.
11hey can then regulate the speed of the execution according to the execution
speed of the operator that conSUlues their output.

As we will see, obtaining good parallel versions of algorithllls for sequential
operator evaluation requires careful consideration; there is no luagic formula
for taking sequential code and producing a parallel version. Good use of split
and 111erge in a dataflow software architecture, however, can greatly reduce the
effort of implementing parallel query evaluation algorithms, as we illustrate in
Section 22.4.3.

22.4 PARALLELIZING INDIVIDUAL OPERATIONS

This section shows how various operations can be implemented in parallel in
a shared-nothing architecture. We assurne that each relation is horizontally
partitioned across several disks, although this partitioning mayor may not be
appropriate for a given query. The evaluation of a query must take the initial
partitioning criteria into account and repartition if necessary.

22.4.1 Bulk Loading and Scanning

vVe begin with two siluple operations: scanning a relation and loading a relation.
Pages can be read in parallel while scanning a relation, and the retrieved tuples
can then be lnerged, if the relation is partitioned across several disks. More
generally, the idea also c:lpplies when retrieving all tuples that Incet a selection
condition. If ha'Shing or range partitioning is used, selection queries can be
answered by going to just those processors that contain relevant tuples.

A sirnilar observation holds for bulk loading. Further, if a relation ha.." asso­
ciated indexes, any sorting of data entries required for building the indexes
during bulk loc:;tding can also be done in parallel (see later).
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22.4.2 Sorting

A sirnple idea is to let each CPTJ sort the part of the relation that is on its local
disk and then rnerge these sorted sets of tuples. r:rhe degree of parallelisHl is
likely to be lirnited by the rnerging phase.

A better idea is to first redistribute all tuples in the relation using range par­
titioning. For exarnple, if we want to sort a collection of ernploy-ee tuples by
salary~ salary values range froIH 10 to 210, and we have 20 processors, we could
send all tuples with salary values in the range 10 to 20 to the first processor,
all in the range 21 to 30 to the second processor, and so on. (Prior to the redis­
tribution, while tuples are distributed across the processors, \ve cannot assurne
that they are distributed according to sa1ary ranges.)

Each processor then sorts the tuples &'3signed to it, using sorne sequential sorting
algorithrn. For exaluple, a processor can collect tuples until its lllemory is full,
then sort these tuples and write out a run, until all incolning tuples have been
written to such sorted runs on the local disk. rrhese runs can then be rnerged
to create the sorted version of the set of tuples assigned to this processor. The
entire sorted relation can be retrieved by visiting the processors in an order
corresponding to the ranges assigned to thenl and sirnply scanning the tuples.

The basic challenge in parallel sorting is to do the range partitioning so that
each processor receives roughly the Si::Ulle runnber of tuples; otherwise, a proces­
sor that receives a disproportionately large nurnber of tuples to sort becornes a
bottleneck and lirnits the scalability of the parallel sort. ()ne good approach to
range partitioning is to obtain a sarnple of the entire relation by taking sarnples
at each processor that initially contains part of the relation. The (relatively
srnall) saruple is sorted and used to identify ranges with equal nUlllbers of tu­
ples. This set of range values, called a splitting vector, is then distributed to
all processors and used to range partition the entire relation.

A particularly irnportant application of parallel sorting is sorting the data en­
tries in tree-structured indexes. Sorting data entries can significantly speed up
the process of bulk-loading an index.

22.4.3 Joins

In this section, \ve consider ho\v the join operation can be parallelized.\Ve
present the basic idea behind the parallelization and illustrate the use of the
rnerge and split operators described in Section 22.:3.2. vVe focus on parallel
hash join, \vhich is \videly useel, and "briefly outlin(~ how sort-rnerge join ca,n
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be sirnilarly parallelized. ()ther join algorithniS can be parallelized (lA'S \veIl,
although not as effectively'" as thes(~t\vo algoritlnns.

Suppose that 'we \vant to join two relations. say, 1-1 and 13, on the age attribute.
vVe aSSUIllC that they are initially distribl.lted across several disks in senne \vay
that is not useful for the join operation; that is, the initial partitioning is not
based on the join a.ttribute. '1'he l)ctsic idea. for joining A and B in parallel is
to decornpose the join into a collection of k srnnller joins. vVe can decornpose
the join by partitioning both /1 and B into a collection of k logical buckets
or partitions. By using the sarne partitioning function for both j! and B, \ve
ensure that the union of the k s1naller joins cOlnputes the join of A and B; this
idea is si1nilar to intuition behind the pa..rtitioning phase of a sequential hash
join, described in Section 14.4.3. Because A and B are initially distributed
across several processors, the pa,rtitioning step itself can be done in parallel at
these processors. At each processor, all local tuples are retrieved and hashed
into one of k partitions, with the salIie hash function used at all sites, of course.

Alternatively, we can partition A and B by dividing the range of the join at­
tribute age into k disjoint subranges and placing .A and B tuples into partitions
according to the subrange to which their age values belong. For exanlple, sup­
POs(~ that \ve have 10 processors, the join attribute is age, with values froln 0 to
IOO. Assurlling uniforrl1 distribution, A and B tuples with 0 < age < 10 go to
processor 1, 10 < age < 20 go to processor 2, and so on. This approach is likely
to be 1110re susceptible than hash partitioning to data skew (i.e., the number
of tuples to be joined can vary widely across partitions), unless the subranges
are carefully deterrnined; we do not discuss how good subrange boundaries can
be identified.

I-Iaving decided on a partitioning strategy, we can assign each partition to a
processor and carry out a local join, using any join algorithrl1 we want: at
each processor. In this case, the nUIIlber of partitions k: is chosen to be equal
to the nUlnber of processors n availabl(~ for carrying out the join~ and during
p;:utitioning, each processor sends tuples in the ith partition to processor ,l.
After partitioning, each processor joins the A andB tuples assigned to it.
Each join process executes s(~quential join code a.Jld recfdves input ..4. and 13
tuples froro several processors; a rnerge operator lnerges all incorning A tuples,
and another rnerge operator rnerges all incorning 13 tuples. Depending on 110\V

\vc\vant tC) distribute the result of the join of ./1 and [3, the output of the join
process rl1ay be split into several data strealIlS. rI'he net\vork of operators for
parallel join is sho\vn in Figur(~ 22.:3. To sirnplify the figure, \ve assurlle that the
proc.essors doing the join are distinct frorn the processors that. initially contain
tuples of A and [3 and sho\v only four processors.
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Figure 22.3 Dataflow Network of Operators for Parallel Join

If range partitioning is used, this algorithrn leads to a parallel version of a sort­
merge join, with the advantage that the output is available in sorted order. If
hash partitioning is used, we obtain a parallel version of a hash join.

Improved Parallel Hash Join

A hash-based refinernent of the approach offers iJuproved perforruanee. rrhe
ruain observation is that, if A and B are very large and the nurnber of partitions
k is chosen to be equal to the nurnber of processors n, the size of each partition
111ay still be large, leading to a high cost for each local join at the n processors.

An alternative is to execute the srnaller joins Ai !Xl Hi, for i = 1 ... k, one
after the other, but\vith each join executed in parallel using all processors.
This approa,ch allows us to utilize the total available ruain rueruory at all 'n
processors in eEl.ch join Ai !Xl 13i and is described in rnore detail as follcJ\vs:

1. At each site, apply a hash function hI to partition the A and B tuples
at this site into partitions i = 1 ... k. Let A be the srnaller rela,tion. 1'he
nurnber of paJtitions k is chosen such that each partition of ..4 fits into the
aggregate or cornbined rnernory of all n processors.

2. For 'i = 1 ... k, process the join of the ith partitions of A and B. To
cornpute .A.'i [Xl 13i , do the follcnving at every site:
(a.) i\pply a second hash function 12,2 to all Ai tuples .to detennine \vhere

they should be joined and send tuple f; to site h2(t).

(b) As A.;. tuples El.rrive to be joined, add thcln to an in-rnernory hash. tabh~.
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(c) After all~4i tuples have been distributed, apply h2 to Hi tuples to
deterrnine \\There they should be joined and send tuple t to site h2(t).

(d) ..As B'i tuples HJTive to be joined, probe the in-rnernory table of ..4i

tuples and output result tuples.

The lIse of the second hash function h2 ensures that tuples (L1'e (rIlore or less)
uniforrnly distributed across all n processors participating in the join. This
approach greatly reduces the cost for each of the srnaller joins and therefore
reduces the overall join cost. ()bserve that all available processors are fully
utilized, even though the srnaller joins are carried out one after the other.

The reader is invited to adapt the nehvork of operators shown in Figure 22.3
to reflect the iInproved parallel join algorithrn.

22.5 PARALLEL QUERY OPTIMIZATION

In addition to pa.rallelizing individual operations, we can obviously execute dif­
ferent operations in a query in parallel and execute rnultiple queries in parallel.
Optirnizing a single query for parallel execution has received rnore attention;
systerus typically optirnize queries without regard to other queries that might
be executing at the scuue tilne.

rrwo kinds of interoperatioll parallelisrn can be exploited within a query:

II The result of one operator can be pip(·~lined into another. For exalnple,
consider a left-deep plan in which all the joins use index nested loops. The
result of the first (Le., the bottollunost) join is the outer relation tuples
for the next join node. As tuples are produced by the first join, they can
be used to probe the inner relation in the second join. T'he result of the
second join can sirnilarly be pipelined into the next join, and so 011.

I!III wi ultiple independent operations ca,rl be executed concurrently. For exarn­
pIe, consider a (bush~y) plan in vilhich relations A and I3 are joined, relations
(7 and D are joined, and the results of these two joins are finally joined.
(;learly, the join of Jl and 13 can be executed conculTcntly with the join of
C: anci D.

A.n optirnizer that seeks to parallelize query evaluation ha.s to consider several
issues, and we Ol11~y outline the rnain points. The cost of executing individual
operations in paraJlel (e.g., pcLrallel sorting) obviollsly differs frorn executing
thern s(~quentjally, and tIle optirnizer should estirnate operation costs accord­
ingly.
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Next, the plan that returns answers quickest Inay not be the plan \vith the
lea,,'3t cost. For ex,unple, the cost of A. [)<J B plus the cost of C rxJ D plus the
cost of joining their results rnay be rnore than the cost of the cheapest left-deep
plan. I-Iowever, the titne taken is the titne for the 1nore expensive of ..4 t><l B
and () [)<J 1) plus the titne to join their results. Tlhis tirHe lnay be less than
the tirne taken by the cheapest left-deep plan. This observation suggests that
a parallelizing optirnizer should not restrict itself to left-deep trees and should
also consider bVJshy trees, which significantly enlarge the space of plans to be
considered.

Finally, a nurnber of pararneters, such as available buffer space and the nUl1.1­
bel' of free processors, are known only at run-tirne. rrhis comnlent holds in a
rnultiuser environrnent even if only sequential plans are considered; a rnultiuser
environrnent is a sirnple instance of interquery parallelisrn.

22.6 INTRODUCTION TO DISTRIBUTED DATABASES

As we observed earlier, data in a distributed database systern is stored across
several sites, and each site is typically rnanaged by a DBMS that can run inde­
pendent of the other sites. The classical view of a distributed database systern
is that the systcrn should rnake the irnpact of data distribution transparent.
In particular, the following properties are considered desirable:

III Distributed Data Independence: lJsers should be able to ask queries
without specifying where the referenced relations, or copies or fragrnents
of the relations, are located. This principle is a natural extension of phys­
ical and logical data independence; vve discuss it in Section 22.8. Further,
queries that span rnultiple sites should be optirnized systcrnatically in a
cos1,-based rnanner, taking into account COllllnunication costs and differ­
ences in local cornpntation costs. vVe discuss distributed query optirniza­
Lion in Section 22.10.

II Distributed 'Iransaction Atolnicity: lJsers should be able to 1,\r1'ite
transactions that access and update data at several sites just as they vvould
1,\rrite transEl,ctions over purely local data. In pa,rticular, the effects of (1.

1:rans(1.cti011 across sites should continue to be atornic; that is, all changes
persist if the tranS<lction cOllnuits and none persist if it aborts. \Ve discuss
this distributed transaction processing in Sections 22.11, 22.1:~, and 22.14.

AJthough rnost people would agree that these properties are in general clesir­
a,blc~, in certain situ::ttions, such as when sites are conlH~cted by ct 810-w long­
distance network, these properti(~s are not efficiently achievable. Indef\'d, it has
1 :",Y' ····0· ··\·i t·l··'·1·· . r1" ,\' ,·,·t·:"S·' ':.1 )"1)1··11r "'1··,t"·l t·)·l 1"1' :,)":.) .. ,. ,:..·t···,s·" ....\ t)CC11 d.l buce ,Vl." V\. lcn ~I ,C, eU C' g <. )d, .. J <. IS ..1 1)11.C<', i lcse pIOpCl ,IC" ell C no ,
even dcsiral)l(~. l]le argurnerlt essentiaJly is that the adrninistrative overheacl



[)arnllel aTLdDistribtlted Database,s 7~37
t

of supporting a systern vvith distributed data independence and transaction
atornicitY'....·..···in effect 1 coordinating all activities across all sites to support the
view of the whole as a unified collection of data--is prohibitive, over and above
I)B:NlS perfo1'rnanc8 considerations.

}(eep these rerna"rks about distributed databases in rnind a.'3 ,ve cover the topic
in rno1'e detail in the rest of this chapter. There is no real consensus on \vhat the
design objectives of distributed databases should be, and the field is evolving
in response to users 1 needs.

22.6.1 Types of Distributed Databases

If data is distributed but all servers run the sarne DBMS software,. we have a
homogeneous distributed database system. If different sites run under
the control of different DB:NISs, essentially autonorllously, and are connected
sOlllehow to enable access to data from rnultiple sites, we have a heteroge­
neous distributed database system, also referred to as a multidatabase
system.

The key to building heterogeneous systelTIS is to have well-accepted standards
for gateway protocols. A gateway protocol is an API that exposes DBl\1S
functionality to external applications. Examples include ODBC and JDBC (see
Section 6.2). By accessing database servers through gateway protocols, their
differences (in capability, data fonnat, etc.) are rnasked, and the differences
between the different servers in a distributed system are bridged to a large
degree.

C;ateways are not a panacea, however. They add a layer of processing that can
be expensive, and they do not cornpletely rllcL."k the differences arllong servers.
For eXfunplc, a server Illay not be capable of providing the services required for
distributed transaction rnanagernent (see Sections 22.13 and 22.14), and even
if it is capable, standardizing gateway protocols all the \vay down to this level
of interaction poses challenges that have not yet been resolved satisfactorily.

Distributed data rnanagcrnent, in the final analysis, cornes at (1 significant cost
in terulS of perforrna"ncc, software cOlllplexity, and adrninistration difficulty.
rrhis observation is especially true of heterogeneous SystCIllS.

22.7 DISTRIBUTED DBMS ARCHITECTURES

Three alternative approctches are uSf~d to separat,e functionality across different
DBIV'IS-related processes; tllese alternative distributed ])131VI8 axchitectures ar(~

ca,lled ()Zient-S'eTvcT, C/ollaborat'ing SeTver, and ]\;JiddZe'wo/t'(~.
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22.7.1 Client-Server Systems

A Client-Server systelIl has one or rno1'e client processes and one or rnore
server processes, and a client process can send a query to anyone server process.
Clients are responsible for user-interface issues, and servers rnanage data and
execute transactions. Thus, a client process could run on a personal cornputer
and send queries to a server running on a 11lainframe.

This architecture has becorne very popular for several reasons. First, it is rel­
atively sinlple to irnplernent due to its clean separation of functionality and
because the server is centralized. Second, expensive server rnachines are not
underutilized by dealing with lllundane user-interactions, which are now rel­
egated to inexpensive client machines. Third, users can run a graphical user
interface that they are familiar with, rather than the (possibly unfalniliar and
unfriendly) user interface on the server.

While writing Client-Server applications, it is inlportant to remember the
boundary between the client and the server and keep the communication be­
tween therll as set-oriented as possible. In particular, opening a cursor and
fetching tuples one at a time generates many rnessages and should be avoided.
(Even if we fetch several tuples and cache them at the client, rnessages 11lUSt
be exchanged when the cursor is advanced to ensure that the current row is
locked.) Techniques to exploit client-side caching to reduce comlnunication
overhead have been studied extensively, although we do not discuss them fur­
ther.

22.7.2 Collaborating Server Systems

The (;lient-Server architecture does not allow a single query to span rnultiple
servers because the client process would have to be capable of breaking such
a query into appropriate subqueries to be executed at different sites and then
piecing together the answers to the subqueries. The client process vvould there­
fore be quite cOlnplex, and its capabilities would begin to overlap with the
server; distinguishing between clients and servers becornes harder. EliIninating
this distinction leads us to an alternative to the Client-Server architecture: a
Collaborating Server systenl. \Ve can lUl,ve a collection of datab::lse servers,
each capable of running tra,nsactions against local data, which cooperatively
execute transactions spanning rnultiple servers.

'\Vhen a server receives a, query that requires access to data at other servers, it
generates appropriate subqu(~ries to be executed by oth(~r servers and puts the
results together to COIllpute HJlSvVers to the original query. Ideally, the decorn-
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position of the query should be done using cost-based optinlization, taking into
account the cost of network COlnnlunication as \vell a.s local processing costs.

22.7.3 Middleware Systems

The Middle\\Tare architecture is designed to allow a single query to span rnul­
tiple servers, without requiring all database servers to be capable of rnanaging
such nlulti-site execution strategies. It is especially attractive when trying to
integrate several legacy systerns, whose basic capabilities cannot be extended.

The idea is that we need just one database server capable of rnanaging queries
and transactions spanning nlultiple servers; the renlaining servers need to han­
dle only local queries and transactions. We can think of this special server as
a layer of software that coordinates the execution of queries and transactions
across one or more independent database servers; such software is often called
middleware. The middleware layer is capable of executing joins and other
relational operations on data obtained froln the other servers but, typically,
does not itself maintain any data.

22.8 STORING DATA IN A DISTRIBUTED DBMS

In a distributed DBMS, relations are stored across several sites. Accessing a
relation stored at a renlote site incurs message-passing costs and, to reduce
this overhead, a single relation lnay be partitioned or fragrnented across several
sites, with fragrnents stored at the sites where they are most often accessed or
replicated at each site where the relation is in high demand.

22.8.1 Fragmentation

Fragrnentation consists of breaking a relation into srnaller relations or frag­
rnents and storing the fragrnents (instead of the relation itself), possibly at
different sites. In horizontal fragmentation, each fragrnent consists of a,
subset of TOWS of the original relation. In vertical fragluentation, each fra.g­
rllent consists of a subset of col'Urnns of the original relation. IIorizontal and
verticaJ fragrnents are illustrated in Figllre 22.4.

Typically, the tuples that belong to a given horizontal fragrnent are identified
by a selection query; for exarnple, crnployee tuples Blight be organized into
fragrnents b~y city, \vith all enlployees in (1, given city assigned to the sanie frag­
rnent. rThe horizontal fragrnent shown in Figure 22.4 corresponds to Chicago.
" , storing fragrncnts in the data,l)E\..se site at the corresponding city, \ve a,chieve

.:ality of referencc',Chicago data is 1n08t likely to be updated (tnel queried
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Figure 22.4 Horizontal and Vertical Fragmentation

fronl Chicago, and storing this data in Chicago rnakes it local (and reduces
cornrnunication costs) for nlost queries. Sinlilarly, the tuples in a given ver­
tical fragrnent are identified by a projection query. The vertical fragrnent in
the figure results frorn projection on the first two columns of the ernployees
relation.

\;Vhen a relation is fragrnented, we lllust be able to recover the original relation
fronl the fragrnents:

• Horizontal Fragmentation: The union of the horizontal fragments rnust
be equal to the original relation. Fragrnents are usually also required to be
disjoint.

III Vertical Fragrnentation: 'The collection of vertical fragrnents should be
a lossless-join deccnnposition, ~lS per the definition in Chapter 19.

1'0 ensure that (1, vertical fragrnentation is lossless-join, systeuls often assign a
unique tuple ieI to each tuple in the original relation~ as shown in Figure 22.4,
and attach this id to the projection of the tuple in each fragrnent. If we think of
the original relation a.s containing an addit.iC)11al tuple-id field that is a. key, this
field is added to each vertical fragrnent. Such ~L decol11position is guaranteed to
be lossless-join.

In generaJ~ a relation can be (horizontally or vertically) fragrnented, a.nd each
r(~sulting fragrnent can be further fragnlented. For sirnplicity of exposition, in
the rest of this chapter, ,ve (LSSllnH~ that fragrnents are not recursively parti­
tioned in this rnanner.
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Replication Incaus that "we store several copies of a relation or relation frag­
rnent. An entire relation can be repliccltecl at one or rnore sites. Sirnila,rly, one
or 1110re fragrncnts of a relation can be replicated at other sites. For exarnple, if
a relationR is fragrnented into 1?1,R2, and R:3, there nlight be just one copy
of Ill, vvhereas R2 is replicated at two other sites and li,~>' is replica.,t:ed at all
sites.

The rnotivation for replication is twofold:

• Increased Availability of Data: If a site that contains a replica goes
down, we can find the sarne data at other sites. Sirnilarly, if local copies of
rerllote relations are available, we are less vulnerable to failure of COllnnu­
nication links.

• Faster Query Evaluation: Queries can execute faster by using a local
copy of a relation instead of going to a rernote site.

The two kinds of replication, called synchronous and asynchronous replication,
differ prirnarily in how replicas are kept current when the relation is rnodified
(see Section 22.11).

22.9 DISTRIBUTED CATALOG MANAGEMENT

Keeping track of data distributed across several sites can get cornplicated. \tVe
rnust keep track of how relations are fragrnented and replicated------that is; how
relation fragrnents are distributed across several sites and ,vhere copies of frag­
rnents are st()red~"-----in addition to the lIsuaJ seherna, authorization, and statisti­
cal inforrnation.

22.9.1 Naming Objects

If a relation is fragruented and replicated, we rnust be able to uniquely identif\r
each replica of ea,ch fragnlent. Cjenerating such unique narnes requires sorne
care. If \ve use a global narne-server to a.ssign globally unique narnes, local
a,utonornJl is cornprornised; we 'want (users at) each site to be able to <h'3sign
narnes to local objects \vithout reference to nanH:~S systernwide.

The usual solution. to the naTning problenl is to use narnes consisting of several
fields. 1;'01' excunplc, we could hELve:
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III A local TULTnC field, 'which is the HaIIle assigned locally at the site\vhere the
relation is crea,ted. T\vo objects at different sites could have the saIne local
narne, but t\yO objects at a given site cannot have the saIne local narne.

III A biTth s'lt:e field, vvhich identifies the site where the relation \v~1..s crectted,
and where il1fofrnation is ruaintained about all fragruents and replicas of
the rela.tion.

These two fields identify a relation uniquely; we call the cornbination a global
relation nanle. To identify a replica (of a relation or a relation fragnlent) ,we
take the global relation narne and add a 'tcplica-'id field; we call the cornbination
a global replica narrle.

22.9.2 Catalog Structure

A centralized systern catalog can be used but is vulnerable to failure of the site
containing the catalog. An alternative is to rnaintain a copy of a global system
catalog,which describes all the data at every site. Although this approach
is not vulnerable to a single-site failure, it comprornises site autonorny, just
like the first solution, because every change to a local catalog rnust now be
broadcast to all sites.

A better approach, which preserves local autonoruy and is not vulnerable to a
single-site failure, was developed in the It* distributed database project, which
wa..'S a successor to the Systerl1 R, project at IBlV!. Each site ruaintains a local
catalog that describes all copies of data stored at that site. In addition, the
catalog at the birth site for a relation is responsible for keeping track of where
replicas of the relation (in general, of fragnlents of the relation) are stored. In
particular, a precise description of each replica's contents""""''''a list of colurl1ns
for a vertical fragrnent or a selection condition for a horizontal fragruentis
stored in the birth site catalog. \Vhenever a new replica is created or a replica
is rnoved across sites, the inforrnation in the birth site catalog for the relation
HUlst be updated.

To locate a relation, the catalog; at its birth site lnust be looked up. rrhis
e.atalog inforrnation can be ca.,ched at other sites for quicker access, but the
cached inforrnation Inay becolue out of date if, for cxarnple, a fragrnent is
rnoved. \rYe vvould discover that the locally cached inforrnation is out of date
when \ve use it to access the relation, and at that point, we rll11st update the
cache b.y looking up th(~ catalog at the birth site of the relation. (The birth site
of a relation is recorded in each local cache that describes the relation, and the
birth site never changes, even if the relation is rnoved.)
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Distributed data independence lueans thc.tt users should be able to \vrite queries
\vithout regard to ho\v a relation is fragrnented or replicated; it is the respon­
sibility of the DB:NIS to cornpute the relation a~s needed (by locating suitable
copies of fragrnents, joining the vertical fragrnents, and taking the union of
horizontal fragn1cnts).

In particular, this property irnplies that users should not have to specify the
full nalne for the data objects accessed while evaluating a query. Let us see ho\v
users can be enabled to access relations without considering how the relations
are distributed. The local narne of a relation in the systeln catalog (Section
22.9.1) is really a c01l1bination of a 'User narne and a user-defined relation narne.
'Users can give whatever names they wish to their relations, without regard to
the relations created by other users. When a user writes a prograrn or SQL
statelnent that refers to a relation, he or she sirnply uses the relation narne.
The DBMS adds the user narne to the relation narne to get a local narne, then
adds the user's site-id as the (default) birth site to obtain a global relation
narne. By looking up the global relation narne-- -in the local catalog if it is
cached there or in the catalog at the birth site-·the I)Bl\;IS can locate replicas
of the relation.

A user Il1ay want to create objects at several sites or refer to relations created
by other users. To do this, a user can create a, synonym for a global relation
narne' llsing an SQL-style cOl1unand (although such a corl1rnand is not currently
part of the SQL:1999 standard) and subsequently refer to the relation using
the synonyrn. For each user known at a site, the DBl\lS rna.intains a table of
synonynls as part of the systern catalog at that site and uses this table to find
the global relation narne. Note that a user's prograrl1 runs unchanged even if
replicas of the relation are rlloved, because th(~ global relation narne IS never
changed until the relation itself is destroyed.

lJsers rnay \vant to run queries agctinst specific replicas, especially if asyn­
chronous replication is used. To support this, the synonyrn Inechanisrn can
be adapted to also allo\v users to create synon.yrl1S for global replica, 11aJ.IH~S.

22.10 DISTRIBUTED QUERY PROCESSING

\Ve first discuss the issues involved in evaluating relational algebra operations
in a distrilnlted datal)ase through exalnples and then outline distributed query
optiInization. Consider the following t\VO n·~lations:
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Sailors(s'id: integer, snanu?: string, rating: integer, age: real)

Reserves (sid: int~~ger 1 l)'i(~.:: ~ntege:~, day: ~~te,rnalne: string)

r\S in C:hapter 14, assurne that each tuple of R.eserves is 40 bytes long, tha.t a
IH'lge can hold 100 Reserves tuples, and that ¥lC have 1000 pages of such tuples.
Sirnilarly, assurne that each tuple of Sailors is 50 bytes long, that a page can
hold 80 Sailors tuples, and that \ve hrrve 500 pages of such tuples.

1'0 estiInate the cost of an evaluation strategy, in addition to counting the
nurnber of page IjC)s, \ve Blust count the nurnher of pages sent frorH one site
to another because corllrIlunication costs are a significant cornponent of overall
cost in a distributed database. \Ve rnust also change our cost rnodel to count
the cost of shipping the result tuples to the site where the query is posed frOIn
the site where the result is assernbled! In this chapter, we denote the tilne
taken to read one page from disk (or to write one page to disk) as 1;el and the
tiIne taken to ship one page (from any site to another site) as 1;s.

22.10.1 Nonjoin Queries in a Distributed DBMS

Even sirnple operations such as scanning a relation, selection, and projection
are affected by fragrnenta.tion and replication. Consider the following query:

SELECT S.age
FROM Sailors S
WHERE S.rating > ;3 AND S.rating < 7

Suppose that the Sailors relation is horizontally fragruented, with all tuples
having a rating less tha,n 5 at Shanghai and all tuples having a rating greater
than 5 at rrokyo.

TheDBl\/IS nn.lst answer this query by evaluating it at both sites and taking
the union of the ans\vers. If the SELECT clause contained AVG (S. age), COln­

bining the aJ1S\VerS could not be done by sirnply taking the union···-····the DBlV1S
rnust cornpute the SUIn and count of age values at the two sites and use this
infonna,tion to cornpute the average age of all sailors.

If the WHERE clause contained just the condition 5'. rating > 6, on the other
ha,ud, the I)BI\/IS should recognize thEtt this query could be ansvvered by just

. .. t r[" kexecutIng It a j ,.n yo.

As ::ulother exarnple, suppose that the Sailors relation, were vertically frag­
11lented, \vith the 8'id and rai'ing fields at Sha.nghai a,nd the 8naUlC and age
fields at rrokyo. No field is stored at both sites. 1]lis vertical fragrnentcttion
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would therefore be a lossy decornposition, except that a field containing the
id of the corresponding Sailors tuple is included by the DB~fS in both frag­
lnents! N'o\v, the I)BrvIS has to reconstruct the Sailors relation by joining the
t\VO fraglnents on the COHllllon tuple-id field and execute the query over this
reconstructed relation.

Finally, suppose that the entire Sailors relation \vere stored at both Shanghai
and ~rokyo. \lVe could answer any of the previous queries by executing it at
either Sha,nghai or Tokyo. vVhere should the query be executed? This depends
on the cost of shipping the answer to the query site (which rnay be Shanghai,
Tokyo, or SOllIe other site) as well as the cost of executing the query at Shanghai
and at Tokyo...._·..··the local processing costs lnay differ depending on vvhat indexes
are available on Sailors at the two sites, for exaluple.

22.10.2 Joins in a Distributed DBMS

Joins of relations at different sites can be very (~xpensive, and we now consider
the evaluation options that IIlUst be considered in a distributed environrnent.
Suppose that the Sailors relation were stored at London, and the Ileserves
relation were stored at Paris. We consider the cost of various strategies for
cOlnputing Sailor'S [X] Reserves.

Fetch As Needed

We could do a page-oriented nested loops join in Loudon with Sailors as the
outer, and for each Sailors page, fetch all Reserves JH:tges frorn Paris. If we
cache the fetched Ileserves pages in London until the join is cornpk~te, pages
are fetched only once, but aSSU111e that H,eservcs pages are not cached, just to
see how bad things can get. (The situation can get rnuch worse if vve use a
tuple-oriented nested loops join!)

rrhe cost is 500id to scan Sailors plus, for each Sailors page, the cost of seallning
and shipping all of H,eserves, vvhich is 1000(td + ts). 1'he total cost is therefore
500td + 500,OOO(td + is).

In additicHl, if the query was not sllbrnittccl at the London site, \rye rnust add
the cost of shipping the result to the query site; this cost depends on th(~ size
of the result. Because sid is a key for Sailors, the nurnber of tuples in the result
is 100,000 (the rnunber ()f tuples in Ilcserv(~s) and each tuple is 40 + 50 = 90
bytes long; thus 4000/DO = 44 result tuples fit on a page~ and the result size
is 100,OOO/44=227~~ pages. rrhe cost of shipping the answer to another site, if
necessary, is 227:3 t,,,. In tIle rest of this section, we assurne that the query is
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posed at the site where the result is computed; if not, the cost of shipping the
result to the query site Blust be added to the cost.

In this exarnple, observe that, if the query site is not London or Paris, the
cost of shipping the result is greater than the cost of shipping both Sailors
and Ileserves to the query site! Therefore, it would be cheaper to ship both
relations to the query site and COlllpute the join there.

Alternatively, we could do an index nested loops join in London, fetching all
Inatching Reserves tuples for each Sailors tuple. Suppose we have an uncIus­
tered hash index on the sid colurnn of Ileserves. Because there aTe 100,000
Ileserves tuples and 40,000 Sailors tuples, each sailor has on average 2.5 reser­
vations. The cost of finding the 2.5 Ileservations tuples that lllatch a given
Sailors tuple is (1.2 + 2.5)td' assluning 1.2 l/Os to locate the appropriate
bucket in the index. The total cost is the cost of scanning Sailors plus the
cost of finding and fetching nlatching Reserves tuples for each Sailors tuple,
500td + 40, 000(3.7td + 2.5t s )'

Both algorithIns fetch required Reserves tuples from a remote site as needed.
Clearly, this is not a good idea; the cost of shipping tuples dominates the total
cost even for a fast network.

Ship to One Site

\Ve can ship Sailors from London to Paris and carry out the join there, ship
Reserves to London and carry out the join there, or ship both to the site \\There
the query was posed and cornpute the join there. Note again that the query
could have been posed in London, Paris, or perhaps a third site, say, Tirnbuktu!

11he cost of scanning and shipping Sailors, saving it at Paris, then doing the
join at Paris is 500(2td + ts ) + 4500td, assurning that the version of the sort­
rnerge join described in Section Itt.l0 is used and we have an adequate nurnber
of buffer pages. In the rest of this section we aSSUInc that sort-Inerge join is
the join rnethod used when both relations are at the saIne site.

The cost of shipping Ileserves <lJld doing the join at London is 1000(2t(1 -+- t,c;) +­
4500td·

Senlijoins andBloomjoins

Consider the strategy of shipping Ileserves to Londo.l1 and cornputing the join
at London. SOln(~ tuples in (the current inst;-l,llCe of)H,cserves do not join ¥lith
an.y tuple in (the current instaJ1Ce of) Sailors. If Vie could sorneho\v identify
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Reserves tuples that are guaranteed not to join ~Nith any Sailors tuples, we
could avoid shipping thern.

T,,·vo techniques, Se1n'ijo'ln and Bloo1r~ioin, have been proposed for reducing
the number of lleserves tuples to be shipped. The first technique is called
Semijoin. The idea is to proceed in three steps:

1. At London, cornpute the projection of Sailors onto the join colurnns (in
this case just the sid field) and ship this projection to Paris.

2. At Paris, cornpute the natural join of the projection received frorn the
first site with the R,eserves relation. l'he result of this join is called the
reduction of R,eserves with respect to Sailors. Clearly, only those Re­
serves tuples in the reduction will join with tuples in the Sailors relation.
Therefore, ship the reduction of Reserves to London, rather than the entire
Reserves relation.

3. At London, cornpute the join of the reduction of R,eserves with Sailors.

Let us compute the cost of using this technique for our example join query.
Suppose we have a straightforward irnplernentation of projection based on first
scanning Sailors and creating a telnporary relation with tuples that have only
an sid field, then sorting the temporary and scanning the sorted ternporary to
eliminate duplicates. If we assurne that the size of the sid field is 10 bytes,
the cost of projection is 500"td for scanning Sailors, plus 100td for creating
the ternporary, plus 400ld for sorting it (in two passes), plus IOOtc! for the final
scan, plus 100ld for writing the result into another tcrnporary relation; a total of
1200f;d. (Because sid is a key, no duplicates need be elirninated; if the optiInizer
is good enough to recognize this, the cost of projection is just (500 + 100)td.)

The cost of cornputing the projection and shipping it to Paris is therefore
1200ld + 100l,';. The cost of c(nnputing the reduction of R.eserv8s is ~~ . (100 .+
10(0) == ~330(}t(j, assurning that sort-rnerge join is used. crhe cost does not
reflect that the projection of Sailors is already sorted; the cost \vould deerca.,se
slightly if the refined sort-Inerge join exploited this.)

\Vhat is the size of the reduction? If every sailor holds at lC<L5t one reservation,
the reduction includes every tuple of R,eserves! The effort invested in shipping
the projection and reducing lleserves is a total waste. Indeed, because of this
observa.ticHl, \iVC note that Sernijoin is especially useful in conjunction \vith a
selectiol1 on one of the relations.F()r exarnplc , if W(~ \vant to cornpute the join
of Sailors tuples with a ral'ing greater than 8 \vith the lleserves rela.tion, the
size of the projection on 8'id fen' tuples that satisfy the selection \vould be just
20 percent of tIle original projection, that is, 20 pages.
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Let us nuw continue the exarnple join, 'with the assurnption that \ve have the
additional selection on 'r'(rt'ing. (The cost of cornputing the projection of Sailors
goes de)\vn a bit, the cost of shipping it goes do\\rn to 20ts , and the cost of the
reduction of F{,eser\fPS also goes de)\vn a little, but \ve ignore these reductions for
sirnplicity.) \Ve assurne that; only 20 percent of the R,eserves tuples are included
in the reduction, thanks to the selection. lIencc 1 the reduction contains 200
pages, and the cost of shipping it is 200ts .

Finally, at London, the reduction of I{eserves is joined with Sailors, at a cost
of ~3· (200 + 500) = 21100td. Observe that there are over 6500 page I/Os versus
about 200 pages shipped, using this join technique. In contrast, to ship R,eserves
to London and do the join there costs IOOOi s plus 4500td. \Vith a high-speed.
network, the cost of Sernijoin Illay be n10re than the cost of shipping Reserves
in its entirety, even though the shipping cost, itself is rnueh less (200t s versus
IOOOts )·

The second technique, called Bloomjoin, is quite sirnilar. The luain difference
is that a bit-vector is shipped in the first step, instead of the projection of
Sailors. A bit-vector of (SOIlIC chosen) size k is cOlnputed by hashing each tuple
of Sailors into the range 0 to k - I and setting bit i to I if seHne tuple hashes to
i, and 0 otherwise. In the second step, the reduction of Reserves is cOlnputed
by hashing each tuple of lleserves (using the sid field) into the range 0 to k --1,
using the sanle hash function used to construct the bit-vector and discarding
tuples whose hash value i corresponds to a 0 bit. Because no Sailors tuples
hash to such an i, no Sailors tuple can join with any R,eserves tuple that is not
in the reduction.

111e costs of shipping a bit-vector and reducing R,eserves using the vector are
less than the corresponding costs in Sernijoin. ()n the other hand, the size of
the reduction of Iteserves is likely to be larger than in Sernijoin; so, the costs
of shipping the reduction and joining it 'with Sailors are likely to be higher.

Let us estirnate the cost of this approach. rrhe cost of cornputing the bit­
vector is essentially the cost of scanning Sailors, \vhich is 500td. rrhe cost of
sending the bit-vector depends on the size \ve choose for the bit-vector, 'which
is certainly sInaJler than the size of the projection; vve take this cost to be 201: 8 ,

for concreteness. The cost of reducing Reserves is just the cost of scanning
H,eserves, lOOOl'd. T'he size of the reduction of R<eserves is likely to be about
the saIne Eh'3 or a little larger than the size of the reduction in tIle Scrnijoin
clpproach; instea,d of 200, \ve will take tllis size to be 220 pages. (\Ve aSSUIne
that the selection on Sailors is included, to pennit a direct cOInparison \vith the
cost of Scrnijoin.) 'I'he cost of shipping the reduction is therefore 220ts ' 1'he
cost of the final join at London is :3 . (500 + 220) == 2160td.
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rrhus, in cornparison to Sernijoin! the shipping cost of this approach is about
the SaIl1t\ although it could be higher if the bit-vector vvere not as selective
(1.'; the projection of Sailors in tenns of reducing Reserves. 'Typically, though,
the reduction of lleserves is no l110re than 10 to 20 percent larger than the
size of the reduction in SClnijoin. In exchange for this slightly higher shipping
cost, Bloornjoin achieves a significantly lower processing cost: less than :370Cltd
versus rnore than 6500td for SClnijoin. Indeed, Bloornjoin has a lo\ver I/C)
cost and a lower shipping cost than the strategy of shipping all of R,eserves to
London! These nurnbers inclicatewhy Bloollljoin is an attractive distributed
join rnethod; but the sensitivity of the rnethod to the effectiveness of bit-vector
hashing (in reducing Reserves) should be kept in rnind.

22.10.3 Cost-Based Query Optimization

\Ve have seen how data distribution can affect the inlplernentation of individual
operations, such as selection, projection, aggregation, and join. In general, of
course, a query involves several operations, and optirnizing queries in a dis­
tributed database poses the following additional challenges:

• CornrIlunication costs lllUSt be considered. If we have several copies of a
relation, we HlllSt also decide which copy to use.

• If individual sites are run under the control of difl'erent DBl\JlSs, the au­
tonolny of each site HUlst be respected while doing global query planning.

(~uery optiInization proceeds essentially as in a centralized DBMS, as described
in Chapter 12, with inforrnation about relations at rernote sites obtained fron1
the systeln catalogs. ()f course, there are nlore alternative lllethods to consider
for each operation (e.g., consider the new options for distributed joins), and
the cost rnetric ruust account for cornrnunication costs as \vell, but the overall
planning process is essentially unchanged if we take the cost rnetric to be the
total cost of all operations. (If \ve consider response tilne, the fact that certain
subqueries can be carried out in pclrallel at different sites \vould require us to
change the optirnizer ,1,8 per the discussion in Section 22.5.)

In the overall plan, local rnanipulatiol1 of relations at the site where they are
stored (to corllpute an interrnediate relation to be shipped elsewhere) is encap­
sulated into a :sugge8ted local plarl. The overall plan includes several such local
plans, \vhichwe can think of as subqueries executing at different sites. \:Vhile
generating the global plan, the suggested local plans provide recilistic cost es­
tirnates for the cornputatioll of the interrnediate rehltions; the suggested local
plans are constructed by the optirnizer rnainly to provide these local cost esti­
Iuates. A site is free to ignore the local plan suggested to it if it is able to find
a cheaper plan by llsing InorE~ current infonnation in the local catalogs. l'hus,
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site autoncllny is respected in the optirnizaJion and evaluation of distributed
quenes.

22.11 UPDATING DISTRIBUTED DATA

The classical view of a distributed DB:tvIS is that it should behave just like a
centralized DBNIS froul the point of vievv of a user; issues arising froln distribu­
tion of data should be transparent to the user, although, of course, they rnu8t
be addressed at the irnplernentation level.

vVith respect to queries, this vievv of a distributed DBIVIS Ineans that users
should be able to ask queries \vithout worrying about how and "\vhere relations
are stored; we have already seen the irnplications of this requirernent on query
evaluation.

vVith respect to updates, this view rneans that transactions should continue
to be atornic actions, regardless of data fragrnentation and replication. In
particular, all copies of a rnodified relation must be updated before the rnodi­
fying transaction cornn1its. We refer to replication with this sernantics as syn­
chronous replication; before an update transaction cOHllnits, it synchronizes
all copies of rnodified data.

An altE:~rnativeapproach to replication, called asynchronous replication, has
corne to be widely usee1 in eornrnercial distributed DBlVISs. Copies of a rnodified
relation are updated only periodically in this approach, and a transaction that
reads different copies of the sarne relation rnay see different values. T'hus,
asynchronous replication cornprolnises distributed data independence, but it
can be iInplernented 1110re efficiently than synchronous replication.

22.11.1 Synchronous Replication

There are two 1)3sic techniques for ensuring that transactions see the senne vaJue
regardless of\vhich copy of an object they access. In the first technique, called
voting, a tnulsaction Inust \vrite H" lnajority of copies to rnodify a,ll ol)ject <:lJld

read at lea"st enough copies to rnake sure that one of the copies is current. For
exanlple, if there <-:tre 10 copies and 7 copies are \vritten by update transactions,
then at least /.1 copies rnust be read. Eac:h copy has a version nurnber, and
the copy \vith the highest version rllunber is current. This technique is not at­
tra,ctive in rnost situations because reading aJl ol)ject reqllires reading rnultiple
copies; in rnost applications, objects are read rnuch 1n01'e frequently than thc~y

are updated, and f'~fficientperfonnanceon recvls is very irnportant.



I)aT'fLllel and IJistT'ib'ILted !Jai:abascs 751

In the second technique, called read-any write-all, to read an object, a traJ1S­
action can read anyone copy, but to \vTite an object, it Inust \vrite all copies.
R,eads are fast, especially if we have a local copy, but 'writes are slo\ver, relative
to the first technique. 1"'his technique is attractive vvhen reads are rnuch rnore
frequent than vvrites, and it is usually adopted for irnplernenting synchronous
replication.

22.11.2 Asynchronous Replication

Synchronous replication COines at a significant cost. Before an update transac­
tion can corn1'nit, it rnust obtain exclusive locks on all copies···c1.SSUlning that the
read-any write-all technique is used· ···of rnodified data. The transaction Inay
have to send lock requests to rernote sites and \vait for the locks to be granted,
and during this potentially long period, it continues to hold all its other locks.
If sites or connnunication links fail, the transaction cannot cOInrnit until all the
sites at which it has rnodified data recover and are reachable. Finally, even if
locks are obtained readily and there are no failures, connnitting a transaction
requires several additional rnessages to be sent as part of a cOTnrn'it protocol
(Section 22.14.1).

For these reasons, synchronous replication is undesirable or even unachievable
in 111any situations. Asynchronous replication is gaining in popularity, even
though it allows different copies of the saIne object to have different values for
short periods of tinlC. This situation violates the principle of distributed data
independence; users 11Ulst be aware of which copy they are accessing, recognize
that copies are brought up-to-date only periodically, and live with this reduced
level of data consistency. Nonetheless, this seeIns to be a practical C0l11pr0l11ise
that is acceptable in rnany situations.

Primary Site versus Peer-to-Peer Replication

A.synchronous replication C01nes in t\VO flavors. In primary site asynchronous
replication, one copy of a relation is designated the primary or luaster COP)T.

H.eplicas of the entire relation or fragrnents of the relation C(lJl be created at
other sites; these a,re secondary copies, and unlike tIle priInary copy, they can­
not be updated . .l\.. conUIlon InecllallislIl for setting up prhnary and secondary!
copies is that Osers first register or publish the relation at th(-~ priruaxy site
aXlcl subs(~quently subscribe to a fragrnent of a registered relation fron1 another
(secondary) site.

In peer-to-peer as)rnchronous replication~ 111()re than one copy (although per­
haps rIot (11) can be designated as updatable, that is, a 1'naste1' copy. In addition
to propagating changes, a conflict resolution strat(~gy Inusi'; be used to deal



752 C~HAP'TER ~2

with conflicting CIH:ulges Inade at different sites. For exarnplc, .Joe's age rnay
be changed to ~i5 at one site and to 38 at another. \Vhich value is ·correct'?
:NIany luore subtle kinds of conflicts can arise in peer-to-peer replication, and in
general peer-to-peer replication leads to ad hoc conflict resolution. Senne spe­
cial situations in \vhich peer-to-peer replication does not lead to conflicts arise
quite ()ften~ and in such situations peer-to-peer replication is best utilized. For
exalnple:

• Each 1naster is allo\ved to update only a fragrnent (typically a horizontal
frag1nent) of the relation, and any two fragrnents updatable by different
!llasters are disjoint. For excunple, it rIlay be that salaries of Gerrnan erll­
ployees are updated only in Frankfurt, and salaries of Indian ernployees are
updated only in 1\1adras, even though the entire relation is stored at both
Frankfurt and Madras.

• Updating rights are held by only one rnaster at a tillIe. For example, one
site is designated a backup to another site. Changes at the Iuaster site
are propagated to other sites and updates are not allowed at other sites
(including the backup). But, if the Iuaster site fails, the backup site takes
over and updatt~s are now perrnitted at (only) the backup site.

\Ve will not discuss peer-to-peer replication further.

Implementing Primary Site Asynchronous Replication

The Inain issue in irnpler11enting prilnary site replication is deterrnining how
changes to the prirnary copy are propagated to the secondary copies. Changes
are usually propagated in two steps, called CalJtl1:re and Apply. Changes rnade
by cOHnnitted transactions to the prirnary copy are s()Jnehow identified during
the Capture step and subsequently propagated to secondary copies during the
Apply step.

In contrast to synchronous replication~ a transacti.on that rnodifies a replicated
relation directly locks and changes only the prirnary copy. It is typically C0111­
rnitted long before the Apply step is carried out. Systcrnsvary considerably
in their ilnplernentation of these steps. \Ve present an overvic\v of senne of the
alternatives.

Capture

rrlle Capture step is ilnplerIlented using one of two approaches. In log-based
CaptU1'(,\ the log luainta,inecl for recovery purposes is used to generate a record
of updates. B(lsicall~Yj \vhen the log tail is written to stable storage, all log



records that affect replicated relations c1re also -written to a separate change
data table (eDT). Since the transaction that generated the update log record
luay still he active when the record is\vritten to the CDrT, it may subsequently
abort. lJpdate log records written by transactions that subsequently abort
1l1USt l)e rcrnoved fror11 the eDT to obtain a strearll of updates due (only) to
conlln,itted transactions. This streanl can be obtained as part of the Capture
step or subsequently in the Apply step if conunit log records are added to
the eDT; for concreteness, vve aSSUlne that the cornruitted update strealll is
obtained a.~ part of the Capture step and that the CDT sent to the Apply step
contains only update log records of corl1ruitted transactions.

In procedural Capture, a procedure autornatically invoked by the DBlVlS or
an application progra,lIl initiates the Capture process, which consists typically
of taking a snapshot of the prirnary copy. A snapshot is just a copy of the
relation as it existed at sorne instant in tirne. (A procedure that is autoluatically
invoked by the DENIS, such as the one that initiates Capture, is called a trigger.
vVe covered triggers in Chapter 5.)

Log-based Capture has a s111aller overhead than procedural Capture and, be­
cause it is driven by changes to the data, results in a slua11er delay between the
tirne the prirnary copy is changed and the ti111e that the change is propagated
to the secondary copies. (Of course, this delay also depends on ho\v the Apply
step is implelnented.) In particular, only changes are propagated, and related
changes (e.g., updates to two tables with a referential integrity constraint be­
tween thern) are propagated together. The disadvantage is that ilnpleluenting
log-based Capture requires a detailed understanding of the structure of the log,
which is quite systern specific. Therefore, a· vendor cannot easily iInplernent
a log-based Capture rnechanisrn that ,viII capture clulnges rnade to data. in
another vendor's DB1\1S.

Apply

fI'he Apply step takes the changes collected by the Capture step, vvhich are
in the CDT table or a snapshot, and propagates 1,h81n to the secondary copies.
This c:an be done b:y having the prirnary site continuously send the CDT or
periodically requesting (the latest portion of) the crrr or a, snctpshot frorH
the prirnary site. Typically, each secondary site runs a copy of the J\pply
process and 'pulls ' the changes in the eDT fronl the prirnary site using periodic
requests. The interval l)(~t\veen such requests can be controlled by a tilner or
a user ~s appliccl,tion prograrl1. ()nce the changes are avail(1)le at the secondary
site, they can be applied directly to the replica.
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In sorne systerns, the replica Heed not be just a frag1Ilent of the original relation~
it can be a view defined using SQL, and the replication rnechanisrn is sufficiently
sophisticated to 11laintain such a view at a reillote site incrementally (by reeval­
uating only the part of the vie\v affected by changes recorded in the CI)T).

Log-ba..f.3ed Capture in conjunction with continuous Apply rninirnizes the delay
in propagating changes. It is the best cor11bination in situations where the
primary and secondary copies are both used as part of an operational DBlVIS
and replicas must be as closely synchronized with the prinlary copy as possi­
ble. Log-based Capture with continuous Apply is essentially a less expensive
substitute for synchronous replication. Procedural Capture and application­
driven Apply offer the 11l0St flexibility in processing source data and changes
before altering the replica; this flexibility is often useful in data warehousing
applications where the ability to 'clean' and filter the retrieved data is 1110re
important than the currency of the replica.

Data Warehousing: An Example of Replication

Cornplex decision support queries that look at data from Illultiple sites are be­
coming very inlportant. The paradigrn of executing queries that span r11ultiple
sites is sirnply inadequate for perfornlance reasons. One way to provide such
complex query support over data froln rllultiple sources is to create a copy of
all the data at SaIne one location and use the copy rather than going to the in­
dividual sources. Such a copied collection of data is called a data warehouse.
Specialized systelIls for building, rnaintaining, and querying data warehouses
have becolne irnportant tools in the rnarketplace.

Data vvarehouses can be seen as one instance of asynchronous replication, in
'which copies are updated relatively infrequently. '\Vhen we talk of replica­
tion, \ve typically rIlCal1 copies Inaintained under the control of a single DBlVIS,
\vhereaswith data \varehousing, the original data rnay be on different sofhvare
platforrns (including databa",'Sc systerns and as file systerIls) and even l)clong to
different organizations. This distinction, 110\VeVer, is likely to becoine blurred
a.'3 vendors adopt luore 'open' strategies to replication. For exarnple, sorne
products already support the IJlaintenance of replicas of relations stored in one
vendor's DB~·1S in al10ther vendor's I)BlVIS.

vVe 110te that data warehousing involves rnore than just replication. vVe discuss
other aspects of data warehousing in Chapter 2.5.
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22.12 DISTRIBUTED TRANSACTIONS

7~5

In a distributed DBlvIS, a given transaction is subrnitted at SOIne one site, but
it can access data at other sites &') well. In this chapter we refer to the activity
of a transaction at a given site as a subtransaction. VVhen a transaction
is subrnitted at S0111e site, the transaction rnanager at that site breaks it up
into a collection of one or rnoro subtransactions that execute at different sites,
subrnits theln to transaction rnanagers at the other sites, and coordinates their
activity.

\\1e now consider ~lSpects of concurrency control and recovery that require ad­
ditional attention because of data distribution. As we saw in Chapter 16, there
are many concurrency control protocols; in this chapter, for concreteness, we
assurne that Strict 2PL 'with deadlock detection is used. We discuss the follow­
ing issues in subsequent sections:

• Distributed Concurrency Control: How can locks for objects stored
across several sites be managed? How can deadlocks be detected in a
distributed database?

• Distributed Recovery: Transaction atomicity lllUSt be ensured-·---when a
transaction commits, all its actions, across all the sites at which it executes,
rnust persist. Si111ilarly, when a transaction aborts, none of its actions must
be allowed to persist.

22.13 DIS"fRIBUTED CONCURRENCY CONTROL

In Section 22.11.1, we described t\VO techniques for irnplernenting synchronous
replication, and in Section 22.11.2, "vo discussed various techniques for irllple­
rnenting asynchronous replication. rrhe choice of technique deterrnines which
objects are to be locked. When locks are obtained and released is deterrnined
by the concurrency control protocol.vVe now consider how lock and unlock
requests are irnplcrnented in a distributed envirorllnent.

Lock rnanagernent can be distributed across sites in rnanyways:

II Centraliz,ed: A single site is in charge of handling lock and unlock requests
for all objects.

!IIIl Priulary Copy: ()ne copy of each object is designated the prirnclry copy.
.i\.ll requests to lock or unlock a copy of this object are handled by the lock
rnanager at the site \vhere the prirnary copy is stored, regardless of where
the copy itself is stored.
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II Fully Distributed: R,equests to lock or unlock a copy of an object stored
at a site are handled by the lock lnanager at the site "where the copy is
stored.

The centralized schelne is vulnerable to failure of the single site that controls
locking. The prirnary copy scherne avoids this problern, but in general, reading
a,n object requires cornrnunicatiollwith t\VO sites: the site vvhere the prirnary
copy resides and the site "where the copy to be read resides. This problern
is avoided in the fully distributed 8che1nc, because locking is done at the site
where the copy to be read resides. However, \vhile writing, locks rnust be set
at all sites where copies are rnoclified in the fully distributed schclne, whereas
locks need be set only at one site in the other two schernes.

Clearly, the fully distributed locking scherne is the 1110st attractive schelne if
reads are much more frequent than writes, as is usually the case.

22.13.1 Distributed Deadlock

One issue that requires special attention when using either priluary copy or fully
distributed locking is deadlock detection. (Of course, a deadlock prevention
scherne can be used instead, but we focus on deadlock detection, which is widely
used.) As in a centralized DBMS, deadlocks rnust be detected and resolved (by
aborting sorne deadlocked transaction).

Each site rnaintains a local waits-for graph, and a cycle in a local graph indicates
a, deadlock. lIowever, then~ can be a deadlock even if no local graph contains
a cycle. For exarnple, suppose that two sites, A and B, both contain copies
of objects 01 and 02, and that the read-any write-all technique is used. I~l,

which wants to read ()1 and write 02, obtains an S lock on 01 and an X lock
on 02 at Site A, then requests an ..X lock on 02 at Site B. T2, which \vants
to read 02 and write 01, rneanwhilc, obtains an S lock on 02 and an ..x lock
on 01 at Site B, then requests an X lock on ()1 at Site A..A.s I~'igure 22.5
illustrates, 7~2 is waiting for Tl aJ, Site A. and Tl is waiting for T2 at Site 13;
thus, \ve have a deadlock, \vhich neither site can detect based solely on its local
waits-for graph.

To detect such deadlocks, a distributed deadlock detection algoritlun rnust
be used. \Ve descTil)e three such algoritluns.

The first algorithrn,\vhich is centralized, consists of periodically sending all 10­
cal waits-for graphs to one site that is responsible for global deadlock detection.
At this site, the globaJ \va-its-for graph is generated by cOlubinin.g all the local
graphs; the set of nodes is the union of nodes in the local graphs, and there is
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Global Waits-for Graph

Figure 22.5 Distributed Deadlock

an edge frorn one node to another if there is such an edge in any of the local
graphs.

The second algorithrn, which is hierarchical, groups sites into a hierarchy. For
instance, sites r11ight be grouped by state, then by country, and finally into a
single group that contains all sites. Every node in this hierarchy constructs
a waits-for graph that reveals deadlocks involving only sites contained in (the
subtree rooted at) this node. All sites periodically (e.g., every 10 seconds) send
their local waits-for graph to the site responsible for constructing the waits­
for graph for their state. The sites constructing waits-for graphs at the state
level periodically (e.g., every minute) send the state waits-for graph to the
site constructing the waits-for graph for their country. The sites constructing
waits-for graphs at the country level periodically (e.g., every 10 rninutes) send
the country waits-for graph to the site constructing the global waits-for graph.
This scheme is based on the observation that l110re deadlocks are likely across
closely related sites than across unrelated sites, and it puts 1110re effort into
detecting deadlocks across related sites. All deadlocks are eventually detected,
but a deadlock involving two different countries J.nay take a while to detect.

The third algorithrn is sirllple: If a transaction waits longer than SOIne chosen
tinle-out interval, it is aborted. Although this algorithrll rnay cause rnany
unnecessary restarts, the overhead of deadlock detection is (obviously!) low,
and in a heterogeneous distributed database, if the participating sites cannot
cooperate to the extent of sha,ring their \va,its-for graphs, it rnay be the only
option.

A subtle point to note with respect to distributed deadlock detection is that
delays in proI5agating local inforrnation rnight cause the deadlock detection
algorithr11 to identify 'deadlocks' that do not really exist. Such situations~

called phantoln deadlocks~ lead to unnecessary aborts. For concreteness, we
cliscuss the centralized algorithrn, although the hierarchical algorithrn suffers
fr0111 the Se1Ine problern.
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Consider a rnodificatioll of the previous exarnple. As before, the two transac­
tions \vait for each other, generating the local \vaits-for graphs shown in Figure
22.5, and the local vvaits-for graphs are sent to the global deadlock-detection
site. IIo\vever, 7'2 is now aborted for 1'ea..,;on8 other than deadlock. (For ex­
arnple, T2 rnay also be executing at a third site, 'where it reads an unexpected
data value and decides to abort.) .At this point, the local waits-for graphs have
changed so that there is no cycle in the 'true' global \vaits-for graph. l-Io\vever,
the constructed globaJ waits-for graph \vill contain a cycle, and 7'1 Inay well be
picked as the victirn!

22.14 DISTRIBUTED RECOVERY

Recovery in a distributed DBJVIS is rnore cornplicated than In a centralized
DBMS for the following reasons:

l1li New kinds of failure can arise: failure of COlnnlunication links and failure
of a remote site at which a subtransaction is executing.

l1li Either all subtransactions of a giv(~n transaction Iuust ccnnlnit or none HUlst
conlnlit, and this property IIlust be guaranteed despite any cOIllbination of
site and link failures. T'his guarantee is achieved using a commit proto­
col.

As in a centralized DBMS, certain actions are carried out as part of norrnal
execution to provide the necessary infonnation to recover fro111 failures. A log is
rnaintained at each site, and in addition to the kinds of inforrnation rnaintained
in a centralized DB11S, actions taken as part of the cOlInnit protocol are also
logged. The Inost widely used conunit protocol is called TUJO-Phase Cornmit
(2PC). A variant caned 21J C with Prcsurncd Abort, which we discuss next, hc'k'3
been adopted as an industry standard.

In this section, we first describe the steps taken during nonnal execution, con­
centrating on the cOHnnit protocol, and tJlen discuss recovery fron1 failures.

22.14.1 Normal Execution and Commit I>rotocols

I)uring Donnal execution, each site rnaintains a log, and the actions of a sub­
transaction are ~.ogged at the site \vhere it executes. The regular logging activity
described in Chapter 18 is carried out and, in addition, a eornnlit protocol is
follc)\ved to ensure that all subtra,nsa.ctions of a given transaction either cOIrnnit
or H,bort uniforrnly. 1'he transacticHl rnanager at the site vvhcl'e the transaction
()riginat(~cl is called the coordinator for the transaction; transaction Inanagers
at sites \vh(~l'e its subtraJ1Sactiol1S execute are ca.11(~d subordinates (\vith re­
spect to the coordinatioll of this transaction).
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\Ve no\v describe the Two-:Pha'5e Cornmit (2PC) protocol~ in tenns of the
rnessa,ges exchanged and the lc)g records vlritten. \Vhen the user decides to
cornrnit a transactioll~ the conunit cOIrunand is sent to the coordinator for the
transaction. This initiates the 2PC; protocol:

1. The coordinator sends a prepare rnessage to each subordinate.

2. \'Then a subordinate receives a prepare rnessage~ it decides \vhether to abort
or cornrnit its subtransaction. It force-writes an abort or prepare log
record, and then sends a. no or yes rnessage to the coordinator. Note that
a prepare log record is not used in a centralized DB.l\;lS; it is unique to the
distributed cornrnit protocol.

3. If the coordinator receives yes lnessages fr0 III all subordinates, it force­
writes a cornmit log record and then sends a cornrnit rnessage to all sub­
ordinates. If it receives even one no rnessage or receives no response fronl
SOHle subordinate for a specified titne-out interval, it force-writes an abort
log record, and then sends an abort Inessage to all subordinates. 1

4. vVhen a subordinate receives an abort Inessage, it force-writes an abort log
record, sends an ack Inessage to the coordinator, and aborts the subtrans­
action. When a subordinate receives a cornrnit rnessage, it force-writes a
cOl1nnit log record, sends an ack rnessage to the coordinator, and corrunits
the subtransaction.

5. After the coordinator has received ack rnessages frorn all subordinates, it
writes an end log record for the transaction.

1:'he narne T'llJO- ]J}ULSC (7ornTnit reflects the fact that two rounds of rnessages
are exchanged: first a voting phase, then a tennination pha..se, both initiated
by the coordinator. ffhe basic principle is that any of the transaction tnan­
agel'S involved (including the coordinator) can unilaterally a,bort a transaction,
\vhereas therernust be unanirnity to conuuit a transaction, vVhen a rnessage
is serlt in 2PC, it signals a decision by the sender. To ensure that this decision
survives a crash at the sender's site, the log r(~cord describing the decision is
ahvays forced to stable storage before the rnessage is sent.

;\ transaction is ofIicially cornrnitted at the tirne the coordiIlator '8 cOllnnit log
record reaches stable storage. Subsequent failures cannot affect the outcorne of
the transaction; it is irrevocaJ)ly corrunitted. Log records\vritten to record the
connnit protocol actions contain the type of the record, tlH~ tn.lllsaction iel, and
the identity of the coordiu;:ltor. i\ coordinator's conunit or abort log record
also contains the identities of the subordinates.

1As a,n optilnization J the coordinator need not send abort meSS;:lges {;o subordinates who voted no,
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22.14.2 Restart after a Failure

vVhen a site COUles back up after a erao.sh, \ve invoke a recovery process that
reads the log and processes all transactions executing the conunit protocol at
the tirne of the cnlsh. The transaction rnanager at this site could have been the
coordinator for SOUle of these transactions and a subordinate for others. We do
the follo¥ling in the recovery process:

• If vve have a cornInit or abort log record for transaction T, its status is clear;
we redo or undo 1"\ respectively. If this site is the coordinator, which can
be deterrnined froru tl1(~ cOlTllnit or abort log record, we rnust periodically
resend·-,·-because there rnay be other link or site failures in the system~~~"-a

com/n7,it or abort rnessage to each subordinate until we receive an ack. After
we have received acks frorn all subordinates, we write an end log record for
T.

• If we have a prepare log record for T but no conunit or abort log record,
this site is a subordinate, and the coordinator can be detennined froIn
the prepare record. We rllust repeatedly contact the coordinator site to
determine the status of T. Once the coordinator responds with either
cOlurnit or abort, we write a corresponding log record, redo or undo the
transaction, and then write an end log record for T.

• If we have no prepare, cOllunit, or abort log record for transaction T,
T certainly could not have voted to connuit before the crash; so we can
unilaterally abort and undo T and vvrite an end log record. In this case,
we have no way to detennine whether the current site is the coordinator
or a subordinate for 1'1. flowever, if this site is the coordinator, it rnight
have sent a prepare rnessage prior to the crEL.'3h, and if so, other sites rnay
have voted yes. If such a subordinate site contacts the recovery process at
the current site, we now know that the current site is the coordinator for
T, and given that there is no cOllnnit or abort log record, the response to
the subordinate should be to abort 7 1

•

()bserve that, if the coordinator site for a transaction I' fails, subordinates who
voted yes cannot decide \vhether to conunit or abort ~r until the coordinator
site recovers; \ve say that l' is blocked. In principle, the active subordinate
sites could cOl1nnunicate arnong thelIlselves, and if at lccL.'3t one of thelIl contains
an abort or coinrnit log record for T, its status becornes globally known. 1"0
conununicate arnong thernselves, all subordinates nlust be told the identity of
th(~ other subordinates at the titne th(~y are sent the ]Jrcpa:re Inessage. llowever,
2PC is still vlllnerable to coordinator failure durirlg recovery because even if all
subordinates voted yes, the coordinator (-who also ha,s a vote!) rnay have de­
cided to aJ)ort rr, and this decision cannot be detennined until the coordinator
si1,e recovers.
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\Ve covered how a site recovers fro111 a crash, but\vhat should a site that is
involved in the cOIIunit protocol do if a site that it is cornrl1unicating with fails?
If the current site is the coordinator, it should shnply abort the transaction.
If the current site is a sllbordina,te~ and it has not yet responded to the coor­
dinator's prepaT(; lnessage, it can (and should) abort the transaction. If it is a
subordinate and has voted yes, then it cannot unilaterally abort the transac­
tion, and it cannot cOIUlnit either; it is blocked. It lnust periodically contact
the coordinator until it receives a reply.

Failures of COffilnunication links are seen by active sites as failure of other sites
that they are comnlunicating with, and therefore the solutions just outlined
apply to this case as \-vell.

22.14.3 Two-Phase Commit Revisited

Now that we examined how a site recovers frolll a failure, and saw the inter­
action between the 2PC protocol and the recovery process, it is instructive to
consider how 2PC can be refined further. In doing so, we arrive at a more ef­
ficient version of 2PC, but equally irnportant perhaps, we understand the role
of the various steps of 2PC ruore clearly. Consider three basic observations:

1. l'he ack rnessages in 2PC an~ used to detennine when a coordinator (or
the recovery process at a coordinator site following a crash) can 'forget'
about a transaction T. lJntil the coordinator knows that all subordinates
are aware of the cornrnit or abort decision for T, it IIlust keep inforrnation
about T in the transaction table.

2. If the coordinator site fails aJter sending out ]J'repoxe rnessages but before
writing a cornrnit or abort log record, when it cornes back up, it 1Uts no
inf'orruatiol1 abollt the transaction's connnit status prior to the crash. IInv.l­
ever, it is still free to abort the transaction unilaterally (beca,use it has not
\vrittcn a conunit record, it can still cast a no vote itself). If another site
inquires about the status of the transaction, the recovery process, as we

have seen, responds \vith an abort rnessage. Therefore, in the absence of
inforrnation, a transaction is pres'luned to h..ave aborted.

:3. If a subtnlnsaction does no llIHlates, it has no changes to either redo or
undo: in other vvords. its cornrnit or abort status is irrelevant.

'l'he first tvvo ol)servations suggest several refinernents:

m \Vhen a coordirlCltor (tborts a tnl,nsa,cticHl T', it can undo ~r and rerl10ve it
fronl the transaction table irnrrlediately. After all \ rernoving ~r frorn the
table results in a 'no inforrnatioI1' state with respect to T, and the default
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response (to an enquiry about T) in this state, \vhich is abort, is the correct
response for an aborted transaction.

• By the same token, if a subordinate receives an abort Inessagc, it need not
send an ack lnessage. rrhe coordinator is not waiting to hear frorn subor­
dinates after sending an abor't 111essage! If, for SOlne rea...")on, a subordinate
that receives a prepflrc message (and voted yes) does not receive an abort
or cornm,it Inessage for a specified tirne-out interval, it contacts the coordi­
nator again. If the coordinator decided to abort, there Inay no longer be
an entry in the transaction table for this transaction, but the subordinate
receives the default abort nlessage, whicll is the correct response.

• Because the coordinator is not waiting to hear froul subordinates after
deciding to abort a transaction, the names of subordinates need not be
recorded in the abort log record for the coordinator.

• All abort log records (for the coordinator as well as subordinates) can
simply be appended to the log tail, instead of doing a force-write. After
all, if they are not written to stable storage before a crash, the default
decision is to abort the transaction.

The third basic observation suggests SOlne additional refinements:

• If a subtransaction does no updates (which can be easily detected by keep­
ing a count of update log records), the subordinate can respond to a prepare
111essage from the coordinator with a r'eader message, instead of yes or no.
The subordinate writes no log records in this case.

• vVhen a coordinator receives a reader lnessage, it treats the Inessage as a yes
vote, but with the optiInization that it does not send any lnore messages
to the subordinate, because the subordinate's cornlnit or abort status is
irrelevant.

• If all subtransactions, including the sllbtransaction at the coordinator site~

send a reader luessagc, we do not need the second phase of the conunit pro­
tocol. Indeed, \\'e can sirnply rernove the transaction frolH the transaction
table: \vithout \vriting any log records at any site for this transaction.

1lH~ T'wo-Phasc Cornrnit protocol with the refinernents discussed in this section
is called Two-Phase Commit with Presurned Abort.

22.14.4 Three...Phase Commit

A cornlnitprotocol caIled Three-Phase Conlrnit (3PC) can avoid blocking
even if the coordinator sit(~ fails during recovery. T'he basic idea is that, \vhen
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the coordinator sends out prel)arc rnessages and receives yes votes £1'0111 all sub­
ordinates, it sends all sites a pTccomrrl-it message, rather than a cornrnit rnessage.
\\Then a sufficient l1Ulllber..··....··....more than the lIlaxinlulll nUlnber of failures that
nlust be handled········of acks have been received, the coordinator force-writes a
cornrn·it log record and sends a cornmit lnessage to all subordinates. In 3PC,
the coordinator effectively postpones the decision to cornrnit until it is sure
that enough sites know about the decision to corn111it; if the coordinator sub­
sequently fails, these sites can C0l11111Unicate with each other and detect that
the transaction rnust be corllrnitted-conversely, aborted, if none of thern has
received a precomrnit rnessage-'-without waiting for the coordinator to recover.

rrhe 3PC protocol ilnposes a significant additional cost during normal execution
and requires that COlnrIlunication link failures do not lead to a network partition
(wherein sorne sites cannot reach some other sites through any path) to ensure
freedo111 fronl blocking. For these reasons, it is not used in practice.

22.15 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• Discuss the different rnotivations behind parallel and distributed databases.
(Section 22.1)

• Describe the three lllain architectures for parallel DBMSs. Explain why
the shared-memory and shaT'(~d-disk approaches suffer frOlll interference.
What can you say about the speed-up and scale-up of the shared-nothing
architecture? (Section 22.2)

• Describe and differentiate pipelined parallelism and data-partitioned paral­
lelism. (Section 22.3)

• Discuss the following techniques for partitioning data: round-Tobin, hash,
and range. (Section 22.3.1)

II Explain how existing code can be parallelized by introducing split and
rnerrJC operators. (Section 22.3.2)

11II Discuss huw cadI of the following operators can be parallized using data
partitionipg: scanning, sorting, joiTL. Cornparc the use of sorting versus
hashing for partitioning. (Section 22.4)

11III vVhat do \ve need to consider in optilllizing queries for parallel execution?
Discuss interoperation parallelislll, left-dcc~p trees versus bushy trees, and
(~ost estirnation. (Section 22.5)
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Define the tenns disiribtded data itbde1JendeTU~eand distribttted transaction
atryrnicitll. .ATe these concepts sllpported in current eornrnercial systerns?
\Vhy not? \\That is the difference bet\veen hornogeneoclls and heteTogeneOtls
distributed databa",'3es? (Section 22.6)

Describe the three lllain architectures for distributed DB~'lSs. (Section 22.7)

1\ relation can be distributed by jraglnent'ing it or rcplicat'ing it across
several sites. Explain these concepts and ho\v they differ. Also, distinguish
between }un'1;zontal and vertical fragrnentation. (Section 22.8)

If a relation is fraglnented and replicated, each partition needs a globally
unique nalne called the Tclat'ion narnc. Explain how such global naInes
are created and the Inotivation behind the described approach to narning.
(Section 22.9.1)

Explain how rnetadata about such distributed data is rnaintained in a dis­
tr'ibuted catalog. (Section 22.9.2)

Describe a nauling scherne that supports distributed data independence.
(Section 22.9.3)

When processing queries in a distributed DBlVlS, the location of partitions
of the relation needs to be taken into account. Discuss the alternatives
when joining two two relations that reside on different sites. In particular,
explain and describe the rnotivation behind the Sernijoin and Bloornjoin
techniques. (Section 22.10.2)

What issues rnust be considered in optirnizing queries over distributed data,
in addition to where the data is located? (Section 22.10.3)

\\7hat is the difference bet\veen synchronous asynchronous replication? Why
has asynchronous replication gained in popularity? (Section 22.11)

Describe the 'ooting and Tead-a'ny 'l1J'rite-all approaches to synchronous repli­
cation. (Section 22.11.1)

Surnruarize the peer-lo-peer and ]JTinul,Ty site approaches to asynchronolls
repliccLtion. (Section 22.11.2)

In prirnary site replication, changes to the prirnary copy Inust be propa­
gated to secondary copies. vVhat is done in the Caph.lT'c and Apply steps?
Describe log-based and proceri'ttrnl approaches to Capture and cornpare
theln. VVhat are the variations in scheduling the Apply step? Illustrate the
use of asynchronolls replication in a data vi.larehouse. (Section 22.11.2)

\Vhat is a 8'ubtrans(u.:t'io'n? (Section 22.12)
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II \'That are the choices for rnanaglng locks in a distributed DBrvIS? (Sec­
tion 22.13)

Ii Discuss deadlock detection in a distributed datab<:1Se. Contr&')t the ce1lLrnl­
'ized, hierarchical, and tirne-o'ut approaches. (Section 22.13.1)

III \\Thy is recovery in a distributed l.)BlVIS rIlore cornplicated tha.n III a cen­
tralized systern? (Section 22.14)

III \\That is a connnit protocol and \vhy is it required in a distributed database?
Describe and C01npa.1"e T'wo-fJhasc a11d Three-Phase Cornn1it. \Vhat is
blocking, and how does the Three-Pha,,')e protocol prevent it? vVhy is it
nonetheless not used in practice? (Section 22.14)

EXERCISES

Exercise 22.1 Give brief answers to the following questions:

1. What are the siruilarities and differences between parallel and distributed database rnan-·
agement systerns?

2. Would you expect to see a parallel database built using a wide-area network? \Vould
you expect to see a distributed database built using a wide-area network? Explain.

3. Define the terms 8cale--'Up and speed-up.

4. Why is a shared-nothing architecture attractive for parallel database systerns?

5. The idea of building specialized hardware to run parallel database applications received
considerable a+ t.ion but has fallen out of favor. Cornrnent on this trend.

6. \\That are th, (Lntages of a distributed D131\1[8 over a centralized DBNIS?

7. Briefly descr nnd cornpare the Client-Server and Collaborating Servers architectures.

tting Servers architecture, \vhen a transaction is subrnitted to the DBIVIS,
how its activities at various sites are coordinated. In particular, describe

.saction managers at the different sites, the concept of 8ubtransacf:ions,
_cept of d'i.5tributed tTan.saction atO'lnicity.

8. In the Colla l

briefly dew'
the role (l

and the,

Exercise 22.2 Give brief a,nswers to the follmving questions:

1. I)efine the tenus fragrnentat'ion and rcpl'icah 0 T/" in tenns of where data is stored.

2. \\'11(1' is the difference behveen synclrrorwu8 and a,synchTo'TWU8 replication?

a.Define the tern1 distrilndcd data independence. \Vha.t does this Inean'with respect to
quer:ying ane! updating data in the presence of data fragrnentation and n::plication?

4. C:onsieh:~r the 'uot:ing BJ1d n::ad-anywriic-all techniques for irnplementing synchronous
replication.\\rhat are their respectiv(~ l>ros and cons?

5. C;ive an c)Verview of henv asynchronous replication can 1)(' irnplernented. In particular:
explain the tenns Cap t un:' and Apply.

6. \VIHtt is the difference between log-based and procedural irnplernentatiOlls of capture?

7. \VllY is giving database objcc:ts unique names rnore cennplicated in a distributed DB~IS?
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8. Describe a catalog organization that pennits any replica (of an entire relation or a frag­
rnent) to be given a unique nam,e and provides the nanling infrastructure required for
ensuring distributed data independence.

9. If infonuation fi'Olll renlote catalogs is cached at other sites, what happens if the cached
infoflllation becOInes outdated? How can this condition be detected and resolved?

Exercise 22.3 Consider a parallel DB,lVIS in \vhich each relation is stored by horizontally
partitioning its tuples across all disks:

Ernployees(eid: integer, did: integer, .sal.' real)

Departlnents(~'id: integer, Tngrid: integer, budget: integer)

The rngT"id field of DepartInents is the e'id of the manager. Each relation contains 20-byte
tuples, and the sal and budget fields both contain unifonnly distributed values in the range
o to 1 rnillion. The Enlployees relation contains 100,000 pages, the Departrnents relation
contains 5,000 pages, and each processor has 100 buffer pages of 4,000 bytes each. The cost of
one page I/O is tel, and the cost of shipping one page is t s ; tuples are shipped in units of one
page by waiting for a page to be filled before sending a rnessage frmn processor 'i to processor
j. 'There are no indexes, and all joins that are local to a processor are carried out using
a sort-rnerge join. Assurne that the relations are initially partitioned using a round-robin
algorithlll and that there are 10 processors.

For each of the following queries, describe the evaluation plan briefly and give its cost in tenns
of tel and t s . You should cornpute the total cost across all sites as well as the 'elapsed time'
cost (i.e., if several operations are carried out concurrently, the tirne taken is the rnaxilnurn
over these operations).

1. Find the highest paid ernployee.

2. Find the highest paid employee in the departrnent with d'id 55.

3. Find the highest paid ernployee over all departnHmts with lJ'ndget less than 100,000.

4. Find the highest paid enlployee over all departlnents with budget less than ~300,000.

5. Find the a;verage salary over all departnrents with budget less than ~300,OOO.

6. Find the salaries of all rnanagers.

7. Find the salaries of all rnanagers who rn::mage a departrnent with a budget less than
300,000 and eaTll rnore than 100,000.

8. Print the eids of all elnployees, ordered by increasing salaries. Each processor is connected
to a separate printer, and the answer can appear as severaJ sorted lists, cadI printer] by
a different processor, as long as we can ol)tain a fully sorted list by concatenating the
printed lists (in sorne order).

Exercise 22.4 Consider the saIne scenario as in Exercise 22.:3, except 1.h;':1t the relations are
originally partitioned using range partitionirlg on the sal and fnulget fields.

Exercise 22.5 Repeat Exercises 22.~) and 22.4 \vith (i) 1 processor, ,1nd (ii) lelO processors.

Exercise 22.6 COllsicler the Ernployees (-uHIDepartments relations descril)cd in Ex.(~rcise

22.~3. rIhey are now stored in a distributed DBl\!lS with all of Eluployees stored at Naples
<'lnd all of Departlnents stored at Berlin. There arc no indexes on these relations. 'rhe cost of
various operations is as describecl in Exercise 22.:3. Consider the query:
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SELECT *
FROM EInployees E) Dcpartrncnts D
WHEREE.eid = I).Ingrid

7t)7

'The query is posed at Delhi, and you are told that only 1 percent of ernployees are IIlanagers.
Find the cost of answering this query using each of the following plans:

1. Ship Departrnents to Naples, cornpute the query at Naples, then ship the result to Delhi.

2. Ship Ernployees to Berlin, cornpute the query at Berlin, then ship the result to Delhi.

3. COInpute the query at Delhi by shipping both relations to Delhi.

4. COlnpute the query at Naples using BloOlnjoin; then ship the result to Delhi.

5. Compute the query at Berlin using Bloornjoin; then ship the result to Delhi.

6. Cornpute the query at Naples using Sernijoin; then ship the result to Delhi.

7. COInpute the query at Berlin using Sernijoin; then ship the result to Delhi.

Exercise 22.7 Consider your answers in Exercise 22.6. Which plan ll1inin1izes shipping
costs? Is it necessarily the cheapest plan? Which do you expect to be the cheapest?

Exercise 22.8 Consider the Ernployees and Departments relations described in Exercise
22.3. They are now stored in a distributed DBMS with 10 sites. The DepartInents tuples are
horizontally partitioned across the 10 sites by did, with the same nUInber of tuples assigned
to each site and no particular order to how tuples are assigned to sites. The Employees tuples
are sirnilarly partitioned, by sal ranges, with sal S; 100,000 assigned to the first site, 100,000 <
seLL::; 200,000 assigned to the second site, and so OIl. In addition, the partition sal :S 100,000
is frequently accessed and infrequently updated, and it is therefore replicated at every site.
No other EU1ployees partition is replicated.

1. Describe the best plan (unless a plan is specified) and give its cost:

(a) Cornpute the natural join of Enlployees and Departlnents by shipping all fragrnents
of the slImller relation to every site containing tuples of the larger relation.

(b) Find the highest paid ernployee.

(c) Find the highest paid clnployee with salary less than 100,000.

(d) Find the highest rn1id ernployee with sala,1'y between 400,000 and 500,000.

(e) 'Find the highest paid clnployee with salary between 4fjO,OOO and 550,000.

(f) Find the highest paid rnanager for those departnwnts stored at the query site.

(g) Find the highest pajd lnanager.

2. ASSU111ing the sarne (taUl distribution, describe the sites visited and the locks obtained
for the foll()\ving update transactions, a",:;surnillg that 8ynchTono'u8 replication is used for
the replication of Ernployees tuples \vith sal ::s 100, (}(}{):

(a) Give einployees with salary less than 100,000 a 10 percent raise, with a Inaxirnurn
saJary of 100,000 (i.e., the raise cannot incre;:lse the salary to rnore than 100,(00).

(b) Give all ernployees <1 10 percent raise. The conditions of the original partitioning
of Elnployees IIlust still be satisfied after the update.

a. AssuIning the saIne data distribution, describe the sites visited and the locks obtained
for the following update transactions, a..ssurning that rL8ynchTOn01./.,8 replication is used for
the replication of Ernployees tuples with sal :S 100,000.
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For all ernployees \vith salary less than lOOlOOO give them 11 10 percent raisc l \vith
a rnaxirmun salary of 100/)00.

Give an ernployees a 10 percent raise. After the update is conlpleted~ the conditions
of the original partitioning of Eluployecs rnust still be satisfied.

Exercise 22.9 Consider the EInployees cUll:1 .DepartInents tahles frOluExercise 22.:3. You arc
;;1 DBA and you need to decide ho\v to distribute these t\VO tables across t\VO sites, IVlanila and
Nairobi. Your D131\:18 supports only unclustered 13+ tree indexes. You have a choice between
synchronous and asynchronous replication. 1"'01' each of the following scenarios, describe hmN

you would distribute thenl and what indexes you would build at each site. If you feel that
you have insufficient inforrna.tion to 1nake a decision, explain briefly.

1. Half the departInents are located in IVlanila (l,lld the other half aTe in Nairobi. Departrnent
information, including that for ernployees in the depart1nent, is changed only at the site
where the departrnent is located, but such changes are quite frequent. (Although the
location of a depart1nent is not included in the Departrnents schclna, this inforrnation
can be obtained frorn another table.)

2. Half the departrnents are located in 1Vlanila and the other half are in Nairobi. Departrnent
information, including that for errlployees in the departrnent, is changed only at the site
where the departrnent is located, but such changes are infrequent. F'inding the average
salary for each departrnent is a frequently asked query.

~3. Half the departlnents are located in Ivlanila and the other half are in Nairobi. Ernployees
tuples are frequently changed (only) at the site where the corresponding departrrlent is lo­
cated, but the Depart1nents relation is aJulOst never changed. Finding a given ernployee's
rnanager is a frequently asked query.

4. Half the e1nployees work in l'vlanila and the other half \vork in Nairobi. E1nployees tuples
are frequently changed (only) at the site where they work.

Exercise 22.10 Suppose that the Ernployees relation is stored in l\1adison and the tuples
with sal ~ 1.00,000 are replicated at Ne\v York. Consider the following three options for lock
rnanagernent: all locks Huulaged at a s'inglf.~ site, say, 1VIilwaukee; prvirnaTy copy with l'vladison
being the primary for Ernployees; and fully di8tTilnded. For each of the lock rnanagernent
options, explain what locks are set (and at which site) for the following queries. Also state
frorn which site the page is reac1.

1. A query at Austin wants to read a page of Erllployees tuples \vith sal s: 50,()OO.

2. A qttery at I\lfadison wants to read a page of E1nployees tuples \vith sal s: 50,000.

3. A query at Ne\v ',/'ork wants to re;:ld a page of Enlployees tuples "vith sal:::; 50,000.

Exercise 22.11 Briefly answer the follcnving questions:

1. C\Hnpare the relative rnerits of centralized and hierarchic;:tl deadlock detection in a dis­
tril)lIted I)BI\/IS.

2. \iVhat is a pha:ntorn de(ullock? Give an exarnple.

:3. (.;iv(~ an example of a distributed D131\-'18 \vith three sites such that no hvo loc;::d \vaits-for
graphs reveal a deadlock, :vet there is a global deadlock.

4. C;onsider the following rnoclification to ;:I, local waits-for gn1ph: Add a neVil node '1:':1:1, and
for ever.v trans;:lc:tion 7:/ that is waiting for a lock at ;:ulOther sib~, add the edge 'Ii 7~';I:t.

A.lso ;:lch.l HJl edge T~':d --+ Ti if a tr;::lHSi:lction executing at another site is waiting for T i

to release ;:1 lock at this site.
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If there is ,1 cycle in the 11lodiHed local WEtits-for gra.ph that does not involve 7:~xt ~

what call you conclude? If every cycle involves T~~:rt., what can you conclude?

Suppose that every site is assigned a unique integer \Vhenever the lOC!:l}

waits-for graph suggests that there Blight be a global deadlock, send the local waits­
for graph to the site with tIle next higher site""id.At that site, combine the received
graph "vith the local \vaits-fc)[ grap,h. If this cornbined graph does not indictl.t:e a
deadlock, ship it on to the next site, awl so on, until either a cleadlock is detected
or we are back at the site that originated this round of deadlock detection. Is this
scheuw guaranteed to find a global deadlock if one exists?

Exercise 22.12 Tirnestarnp-based concurrency control schernes can be used in a distributed
DBivIS, but we rllust be able to generate globally unique, rllonotonicaJly increasing tirnestarnps
without a bias in favor of anyone site. One approach is to a,...':\sign timestrunps at a single site.
Another is to use the local clock tiTne and to append the site-iei. A third scherne is to use a
counter at each site. COIllpare these three approaches.

Exercise 22.13 Consieler the rIlultiple-granlllarity locking protocol described in Chapter 18.
In a distributed DB?vIS, the site containing the root object in the hierarchy can becmne a,

bottleneck. You hire a database consultant who tells you to rnodify your protocol to allow
only intention locks OIl the root and irnplicitly grant all possible intention locks to every
transaction.

1. Explain why this rnodification \vorks correctly, in that transactions continue to be able
to set locks on desired parts of the hierarchy.

2. Explain how it reduces the demand on the root.

3. Why is this idea not included as part of the standard rllultiple-granularity locking protocol
for a centralized DBTvlS?

Exercise 22.14 Briefly answer the following questions:

1. Explain the need for a cornmit protocol in a distributeclDIJf'vIS.

2. Describe 2PC. Be sure to explain the need for force-writes.

;3. vVhy are nch: HlCssages required in 2PC?

4. vVhat are the differences between 2PC; and 2PC with PresulTled Abort?

5. Give an exarnple execution sequence such that 2PC cHId 2PC 'with Presurned Abort:
generate an identical sequence of actions.

6. Give ('UI exarIlple execution sequence such that 2PC; and 2PC,; with PresuIl1ed Abort
generate different sequences of actions.

7. \Vhat is the intuition behirHI :3PC? \:Vhat are its fH'08 and cons relative to 2PC?

8. Suppose th.<1t a site gets no response frorn iJ.nother site for <'1 long tiITle. C;an the first site
tell whether .the connecting link has failed or the other site has failed? How is such a
failure handled?

9. Suppose that the coordinator inclucles a list of aU subordinates in the In'f'-]UJ,'T'C Inessage. If
thc~ coordinator fails aJter sending out either an abcrd or COTT1Jnit rnessage, call you suggest
a\va,Y for active sites to terrninate this tra.nsaction without wajting f<)I' the coordinator
to recover? Assurnf~ that sonle but not all of the abort or cornrt1:it rnessages frOln the
cocn'clinator are lost.
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III Suppose that 2PC with PresuIl1ed Abort is used as the cOInmit protocol. Explain how
the systmll recovers froIn failure and deals with a particular transaction T in each of the
following cases:

(a) A subordinate site for T fails before receiving a prepare rnessage.

(b) A subordinate site for T fails after receiving a pTcparc rnessage but before rnaking
a decision.

(c) A subordinate site for T fails after receiving a prepare lnessage and force-writing
an abort log record but before responding to the pl'eparernessage.

(d) A subordinate site for T fails after receiving a prepare message and force-writing a
prepare log record but before responding to the prepare lnessage.

(e) A subordinate site for T fails after receiving a prepare rnessage, force-writing an
abort log record, and sending a no vote.

(f) The coordinator site for T fails before sending a prepare lnessage.

(g) The coordinator site for T fails after sending a prepare lllCssage but before collecting
all votes.

(h) The coordinator site for T fails after writing an abort log record but before sending
any further rnessages to its subordinates.

(i) The coordinator site for T fails after writing a comrnit log record but before sending
any further rnessages to its subordinates.

(j) The coordinator site for T fails after writing an end log record. Is it possible for the
recovery process to receive an inquiry about the status of T frolll a subordinate?

Exercise 22.15 Consider a heterogeneous distributed DBMS.

1. Define the terms multidatabase system and gateway.

2. Describe how queries that span multiple sites are executed in a rnultidatabase systern.
Explain the role of the gateway with respect to catalog interfaces, query optirnizatiOll,
and query execution.

3. Describe how transactions that update data at rnultiple sites are executed in a lllulti­
database systern. Explain the role of the gateway with respect to lock rnanagernent,
distributed deadlock detection, Two-Phase COllnnit, and recovery.

4. SChell1aS at different sites in a llnI1tidatabase systern are probably designed independently.
T'his situation can lead to semantic heterogeneity; that is, units of rneasure rnay differ
across sites (e.g., inches versus centirneters), relatiolls containing essentially the SaIne

kind of infonnation (e.g., eIllployee salaries and ages) rnay have slightly different schernas,
and so on. vVhat ilnpact does this heterogeneity have on the end user? In particular,
COllunent on the concept of distributed data, independence in such a systcrIl.

BIBLIOGRAPHIC NOTES

\Vork on parallel algorithrns for sorting and various relational operations is discussed in the
bibliographies for Chapters 1:3 and 14. Our discussion of parallel joins follows [220], and our
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processing in ptlrallel daUthase systems.
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aspects of 8DD-1 query processing was the extensive use of 8emijoins. Theoretical studies
of Semijoins are presented in [83, 86, 414]. Query processing in R* is described in [667].
The R* query optimizer is validated in [500]; much of our discussion of distributed query
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[546], along with an alternative called 2PC with Presum.ed Cornmit. A variation of Presumed
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always a good idea, clue to processing and adlninistrative overheads. The ARIES algorithrl1
is applicable for distributed recovery, but the details of how rnessages should be handled are
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IVlultidatabase systerns are discussed in [10, IV3, 230, 2:31, 242,476, 485, 519, 520, 599, 641,
765, 797]; sec [112, 486, 684] for surveys.
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OBJECT-DATABASE

SYSTEMS

.. What are object-databa,,~'3e systerlls and what new features do they
support?

.. vVhat kinds of applications do they benefit?

(.. \Vhat kinds of data types can users de.fine?

(.. "Vhat are abstract data types and their benefits?

.. \\That is type inheritance and why is it useful?

.. What is the irnpact of introducing object ids in a database?

... How can we utilize the new features in database design?

i"'" What are the new implelncntation challenges?

.. \Vhat difFerentiates object-relational and object-oriented DBIvISs?

... Key concepts: user-defined data types, structured types, collection
types; data abstraction, rnethocls, encapsulation; inheritance, early
and late binding of rnethods, collection hierarchies; object identity,
reference types, shallow and deep equality

with Joseph M. HeHerstein
[!n,'l'ucT'sily of C:fal!~foTT1,'iaBcTkeley

--YOll knovv Iny Inethods, \~l(ttson. A.pply theIn.

Arthur Conan ])oyle, The A1CTl1.0'iT8 of She'dock 1lolro,c;8

772
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H.{-~lational datalx:hse systeros support a sruaU, fixed collection of data types
(e.g., integers, dates, strings),\vhich h&9 proven adequate for trcLClitional appli­
cation dOHHlins such as adruinistrative data processing. In tHany applic<ltion
dornains, hO'wever, rnuch 1nore eornplex kinds of data Blust be handled. I"rypi_
cally this cornplex data has been stored in OS file systerns or specialized data
structures, rather than in a DB.tvIS.Exanlples of dornains vvith cOJ.uplex data
include cornputer-aided design and rnodeling (CA.D/CAlvf.), rnultilnedia repos­
itories, and docurnent Hl8.Jlagernent.

As the arnount of data grows, the luany features offered by a DBIvISfor exarIl­
pIe, reduced application developnlent tilne, concurrency control and recovery,
indexing support, and query capabilities·······becorue increasingly attractive and,
ultirnately, necessary. To support such applications, a DBNIS HUlst support
cornplex data types. ()bject-oriented concepts strongly influenced efforts to
enhance database support for cornplex data and led to the developrnent of
object-database systelus, \vhich we discuss in this chapter.

Object-database systerlls have developed along two distinct paths:

II Object-Oriented Database Systems: Object-oriented database sys­
terns are proposed as an alternative to relational systerlls and are ainled
at application dornains where cODlplex objects playa centra,} role. 1'he
approach is heavily influenced by object-oriented prograrllrlling languages
and can be understood as an atternpt to add DBMS functionality to a
prograunning language environrnent. The ()bject Database :M:anagenlcnt
Group (()DMG) has developed a standard Object Data Model (ODM)
and Object Query Language (OQL), which are the equivalent of the
S(~I..I standard for relational database systerns.

l1li Object-Relational ])atabase Systenls: ()bject-relational database s.ys­
terns ca,n be thought of as an atternpt to extend relational databa...sc systerns
"lith the functionality necessary to support a broader class of applications
and, in nlEUl~Y '\THY-S, provide a bridge between the relational and object­
oriented paTadiguls. 1'he SC~I.I:1999 standard extends S(~L to incorporate
support for the ol)ject-relationaJ rnode1 of data.

\Ve use clcronyuls for relational, object-oriented, and object-relational datrtbase
rnanagernent systerns (RDBMS, OODBMS, ORJDBMS). In this chapter,
vve focus 011 ()HI)B~ilSs and ernphasize ho\v they can be vie\ved CbS a develop­
rnent of HJ)B1\18s, rather than CbS an entjrely different paradigrn, as exernplified
l)y the evolution of SCJL: 1999.

vVe concentrate on developing the fUlldarnental concepts rather than presc~nt­

ing S(~L:1999; sorn(~ of the features \ve discuss axe not inc.luded in SC}L:1999.
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Nonetheless, \;\le have chosen to ernpha",<:;ize concepts relevant to SQL: 1999 and
its likely future extensions. vVe also try to be consistent with SCJL:1999 for
notation, although we occasionally diverge slightly for clarity. It is hnportant
to recognize that the rnain concepts discussed are COIlllTIOn to both ()llDBJ\;ISs
and ()()DBNISs; we discuss how they are supported in the ODLjOQL standard
proposed for ()ODB)\t[Ss in Section 23.9.

RDB1\JIS vendors, including IBIVI, Inforrnix, and ()racle, are adding OIl-DBMS
functionality (to varying degrees) in their products, and it is inlportant to
recognize how the existing body of knowledge about the design and inlple­
rnentation of relational databa'3es can be leveraged to deal with the OrtDBMS
extensions. It is also ilnportant to understand the challenges and opportunities
these extensions present to database users, designers, and irnplernentors.

In this chapter, Sections 23.1 through 23.6 introduce object-oriented concepts.
The concepts discussed in these sections are COlunlon to both OODBMSs and
ORDBJVISs. We begin by presenting an example in Section 23.1 that illustrates
why extensions to the relational rnodel are needed to cope with some new
application dornains. 'This is used as a running exarnple throughout the chapter.
We discuss the use of type constructors to support user-defined structured data
types in Section 23.2. We consider what operations are supported on these new
types of data in Section 23.3. Next, we discuss data encapsulation and abstract
data types in Section 23.4. We cover inheritance and related issues, such as
rnethod binding and collection hierarchies, in Section 23.5. We then consider
objects and object identity in Section 2~3.6.

vVe consider how to take advantage of the new object-oriented concepts to do
OI{DBMS database design in Section 23.7. In Section 23.8, we discuss SOHle
of the new irnplernentation challenges posed by object-relational systerns. We
discuss ()I)L and OQL, the standards for OODBMSs, in Section 23.9, and then
present a brief cornparison of ()R,DBMSs and OC)DBwISs in Section 2;t10.

23.1 MOTIVATING EXAMPLE

As a specific exarnple of the need for object-relational systcrlls, we focus on a
new business data processing probler.n that is both harder and (in our view)
rnorc entertaining than the dollars and cents bookkeeping of previous decades.
Today, cornpanies in industries such as entertainruent are in the business of
selling bits; their basic corporate assets are not tangible products, but rather
softwa.1'c artifacts such as video (l,nd audio.

\Ve consider the fictional Dinky Entertaiurnent Corupa,ny, a laxgc IIollywood
conglornerate whose rllctin (\'ssets are a collection of cartoon characters, espe-
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cially the cuddly and internationally beloved IIerbert the \VarIll. Dinky ha..s
several IIerbert the \Vornlfihns, rnany of which are shown in theaters around
the world at any given tiTne. Dinky also rnakes a good deal of rnoney licensing
Herbert's irnage, voice, and video footage for various purposes: action figures,
video gaInes, product endOrSelllents, and so on. I)inky's database is used to
lnanage the sales and leasing records for the various IIerbert-related products,
&l) well a..s the video and audio data that rnake up IIerbert's lllany filIns.

23.1.1 New Data Types

The basic problern confronting Dinky's database designers is that they need
support for considerably richer data types than is available in a relational
DBMS:

II User-defined data types: Dinky's assets include Herbert's iIllage, voice,
and video footage, and these rnust be stored in the database. To handle
these new types, we need to be able to represent richer structure. (See Sec­
tion 23.2.) Further, we need special functions to rnanipulate these objects.
Jior example, we may want to write functions that produce a cOlnpressed
version of an irnage or a lower-resolution image. By hiding the details of the
data structure through the functions that capture the behavior, we achieve
data abstract'ion, leading to cleaner code design. (See Section 23.4.)

.. Inheritance: As the nurnber of data types grows, it is irnportant to take
advantage of the cornrnonality between different types. :For exarnple, both
cOInpressed irnages and lower-resolution irnages are, at SOlne level, just
ilnages. It is therefore desirable to inherit some features of iluage ob­
jects \vhile defining (and later Inanipulating) cOInpressed irnage objects
and lower-resolution irnage objects. (See Section 2~j.5.)

!Ill Object Identity: Given that seHne of the new data types contain very
large instances (e.g., videos), it is iInportant not to store copies of objects;
instead, we IllUSt store Tejerence8, or po'inleTs, to such objects. In turn,
this underscores the need for giving objects a unique object identity, vvhich
can be used to refer or 'point' to theln frorn elsewhere in the data. (See
Section 2:3.6.)

Flow lnight \ve address these issues in an IlI)BNIS? \Ve could store ilnages,
videos, and so on Ch') BLC)Bs in current relational syst(~lns. A binary large
object (BLOB) is just a long 8trea1n of bytes, and the DBNIS's support
consists of storing and retrieving BLC)Bs in such a rnanner that a user does not
have to worry about the size of the BLC)B; a 13LC}B can span several pages,
unlike a tnulitional attribute. All further processing of the BLC)B has to be
done by the user's clpplication progranl, in the host languclge in \vhich the
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The SQL/MM Standard: SQL/Nl:Nl is an eillerging standard that builds
upon SQL:1999's new data types to define extensions of SQL:1999 that
facilitate handling of coruplex InultiInedia data types. SQL/lv!NI is a rnul­
tipart standard. Part 1, SClL/rvUvfFl'arne\vork, identifies the SQL;1999
concepts that are the foundation for SQLj1VllVI extensions. Each of the
relnaining parts addresses a specific type of ccnnplex data: Full Text,
Spatial, Still Image, and Data Mining. SQL/lVllVi anticipates that
these l1e\v coruplex types can be used in colurnns of tables ck') field values.

. . ..

1".....

Large Objects: SQL:1999 includes a new data type called LARGE OBJECT
or LOB, with two variaJ1ts called BLOB (binary large object) and CLOB (char­
acter large object). This standardizes the large object support found in
lnany current relational DBMSs. LOBs cannot be included in priruary
keys, GROUP BY, or ORDER BY clauses. rrhey can be cornpared llsing equa.l­
ity, inequality, and substring operations. A LOB has a locator that is
essentially a unique id and allows LOBs to be rnanipulated without exten-
. .

sIve copYIng.
L()Bs are typically stored separately froIn the data records in whose fields
they appear. 1BlY1 DB2, InforInix, Microsoft SQL Server, Oracle 8, and
Sybase ASE all support LOBs.

SQL code is ernbedded. This solution is not efficient because we are forced to
retrieve all BLOBs in a collection even if rnost of the111 could be filtt~red out
of the ansvver by applying user-defined functions (within the I)B1118). It is not
satisfactory frorn a data consistency standpoint either, because the selnantics
of the data now depends heaNily on the host la,nguage application code and
cannot be enforced by the I)BlVfS.

As for structured types and inheritance, there is siInply no support in the
relational Dlodel. VVe are forced to Ina.p data 'with such cOlnplex structure
into a collection of flat tables. (vVe saw exarnples of such rnappings "vhen \ve
discussed the tnlJlS1ation frorH Ell diagrarns vvith illheritance to relations in
C:hapter 2.)

rrhis application clearly requires features not available in the relational Inode1.
As an illustration of these features, Figure 2:3.1 presents S(~L:1999 :DDL state­
rnents for a l)Ortion of Dinky's ()HJ)I31VIS sehelna used in subsequent excunples.
Al though the 1)})L is very sirnilar to that of a traditional relational systeru,
SOln(~ irnportant distinctions highlight thene\v data rnodeling capabilities of
,Ul ()JII)B1VlS. J\ quick glance at the l)DL staternents is sufficient for now; we
study thenl in detail in the next section, after presenting S0111e of the basic
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concepts that our sanlple application suggests are needed in a next-generation
l)BrvlS.

1. CREATE TABLE FralnC\'3
(}rarneno integer, 'iTrulge jpeg_image, categoT'Y integer)~

2. CREATE TABLE Categories
(c'id integer, narne text 1 If:aSL.pricc float, c01n:rncnts text);

:3. CREATE TYPE theater_t AS

ROW( tno integer, n,arne text, address text, phone text)
REF IS SYSTEM GENERATED;

4. CREATE TABLE Theaters OF theater_t REF is tid SYSTEM GENERATED;
5. CREATE TABLE Nowshowing

(jilnL integer, theater REF(theater ..,t) SCOPE rrheaters, start date,

end date);
6. CREATE TABLE FilIns

(filrnno integer, l/if;le text, staTs VARCHAR(25) ARRAY [10]),
director text, budget float);

7. CREATE TABLE Countries
(narnc text, boundary polygon, population integer, language text);

Figure 23.1 SQL:1999 DDL Staternents for Dinky Schema

23.1.2 Manipulating the New Data

Thus far, we described the new kinds of data that rnust be stored in the Dinky
database. We have not yet said anything about how to use these nevv types
in queries, so let us study two queries that I)inky's database needs to support.
The syntax of th(~ queries is not critical; it is sufficient to understand what they
express. v\le return to the specifics of the queries' syntax later.

()ur first challenge COIn8S frorn the C~log breakfast cereal cornpany. Clog pro­

duces a cereal called I)elirios and it vvants to lease an irnage of IIerbert thE:~

\\TorIn in front of a sunrise to incorporate in the I)elirios box design. A query
to present (1, collection of possible irnages (uld their le<ls8 prices can be ex.pressed
in SC~L-like syntax as in I4'iglln~ 2:3.2. I)inky has a nUJn1>er of rnethodsvvritten
in an irnperative language like .J nva a,nd registered \vith the datal)Clse systern.
These lIH~thods can be used in queries in the sallIe way as built-ill Hletllods,
such as =. ,--~, <, >, are used in a relational language like S(~L. 1'he thwrnb­
nail IJlethod in the Select clausf~ produces a srnaU version of its full-size input:
bnnge. rrhe i:L8'il'nri.se rnethod is a boolean function that analyzes an irnage
and returns tr'ue if the inHtge contains a sun.rise; the is_h(Tbcrt Inethod returns
h"u.c if the irnag(~ contains a picture ()f l1erbert. rrhe query produces the frarl1c
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code nUlnber~ irnage thurnbnail, and price for all frames that contain Herbert
and a sunrise.

SELECT F.fnuneno, thulnbnail(F.irnage), C.lease_price
FROM Fralnes F, Categories C
WHERE F.category = C.cid AND is.Bllnrise(F.irnage) AND isJlerbert(F.inlage)

Figure 23.2 Extended SQL to Find Pictures of Herbert at Sunrise

The second challenge carnes froIn Dinky's executives. They know that Delirios
is exceedingly popular in the tiny country of A.ndorra, so they want to lIlake
sure that a number of Herbert filIns are playing at theaters near Andorra when
the cereal hits the shelves. To check on the current state of affairs, the execu­
tives want to find the 11aInes of all theaters showing Herbert fihns within 100
kilorneters of Andorra. Figure 23.3 shows this query in an SQL-like syntax.

SELECT
FROM
WHERE

N. theater··--> na1ne, N. theater-> address, F. title
Nowshowing N, Filrns F, Countries C
N.film = F.filrnno AND
overlaps(C.bollndary, radius(N.theater-> address, 100)) AND
C.narne::::: 'Andorra' AND 'Herbert the Worm' = F.stars[l]

Figure 23.3 Extended SQL to Find Herbert Films Playing near Andorra

The theater attribute of the Nowshowing table is a reference to an object in
another table, which has attributes narne, addr'(~88, and location. This object
referencing allows for the notation N. theater-> narne and N. theater..···> address,
each of which refers to attributes of the theater_t object referenced in the
Nowshowing row N. The stars attribute of the tUrns table is a set of narnes of
each [ibn 's stars. The r'O,(1'i'u,8 nlethod returns a circle centered at its first argu­
lllent with radius equal to its second argurnent. ~rhe overlaps rnethod tests
for spatial overlap. Nowshowing and Filrns are joined by the equijoin clause,
\vhile Nowshowing and Countries are joined by the spatial overlap clause. The
selections to 'Andorra' and fiInls containing 'Herbert the vVorrn' cornplete the
query.

rrhcse two object-relational queries are sirnilar to SQL-92 queries but heLve SOlllC

unusual features:

l1li User-Defined Methods: User-defined abstract types are rnanipulated
via their 1nethods, for exalnple, i.'Lhcrbert (Section 23.2).

II Operators for Structured Types: A.long with the structured types
available in the deLta rnodel, ()R,DBMSs provide the natural Inethods for
those types. For exarnple, the ARRAY type supports the standard array
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operation of accessing an array elenlent by specifying the index; I?~ stars[l]
returns the first elernent of the array in the staTs cohllnn of film F (Sec­
tion 23.:3).

11III Operators for Reference Types: Reference types are dereferenced via.
an arrow (---» notation (Section 23.6.2).

Ib suuullarize the points highlighted by our 1110tivating exanlple, traditional
relational systenls offer liInited flexibility in the data types available. Data is
stored in tables and the type of each field value is lirnited to a siulple atornic type
(e.g., integer or string), with a sl11all, fixed set of such types to choose frarn.
This lirnited type systern can be extended in three Inain ways: user-defined
abstract data types, structured types, and reference types. Collectively, we
refer to these new types &'S complex types. In the rest of this chapter, we
consider how a DBl\!IS can be extended to provide support for defining new
complex types and rnanipulating objects of these new types.

23.2 STRUCTURED DATA TYPES

SQL:1999 allows users to define new data types, in addition to the built-in types
(e.g., integers). In Section 5.7.2, we discussed the definition of new distinct
types. Distinct types stay within the standard relational model, since values of
these types rnust be atornic.

SQL:1999 also introduced two type constructors that allow us to define new
types with internaJ structure. ~rypes defined using type constructors are called
structured types. This ta.kes us beyond the relational model, since field
values need no longer be atornic:

11III RDW(n1 Il, ... , nn t,n): A type representing a row, or tuple, of n fields \vith
fields 11,1, ... , Tl'n of types Ll, ... ,"tn respectively.

II base ARRAY [iJ): A type representing an array of (up to) i base-type
iterns.

The theater_t type in Figure 23.1 illustrates the IH~\V ROW data type. In
SQL:1999, the ROW type hetS ()., special role because every table is a collection of
ro\vs ...·..·every table is a set of 1'o\vs or a. rnultiset of rc)\vs. Values of other types
can appear only a..s field values.

The staT/., field of table Filrns illustrates the ne,v ARRAY type. It is an array of
upto 10 elernents, ea.ch of \vhich is of type VARCHAR(25). Note that 10 is the
rnaxirnurn nurnber of el(~rnents in the array; a.t <lny tiTne, the array (unlik(~, say,
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SQL:1999 Structured Data Types: Several conunercial systenls~ in­
cluding IBw! DB2, Infonnix tTDS, and Oracle 9i support the ROWand ARRAY
constructors. rrhe listof, bagof, and setof type constructors are :not in­
cluded in S(~L:1999. Nonetheless, cOIlunereiaJ systerIls support sorne of
these constructors to varying degrees. ()racle supports nested relations
and arrays, but does not support fully cornposing these constructors. In­
fOI'rnix supports the setof, hagof, and Ustof constructors and allows thern
to be cornposed. Support in this area varies \videly across vendors.

in C) can contain fewer elenlcnts. Since SQL:1999 does not support rnultidi­
Inensional arrays, vector rnight ha,ve been a rnore accura,te narne for the array
constructor.

The power of tyP(~ constructors cornes froIn the fact that they can be cornposed.
The following row type conta,ins a field that is an array of at Inost 10 strings:

ROW(filrnno: integer, staT's: VARCHAR(25) ARRAY [10])

The row type in SC~L:1999 is quite general; its fields can be of any SQL:1999
data type. Unfortunately, the arra.y type is restricted; elernents of an array
cannot be arrays thcrnselves. Therefore, the following definition is illegal:

(integer ARRAY [5]) ARRAY [10]

23.2.1 Collection Types

S(~L: 1999 supports only the ROW a,nel ARRAY type constructors. Other COUUllon
type constructors include

III listof(base): A. type representing <:1, sequence of base-t~ype itcrllS.

Ii setof (base): .l\ type rer)l'(~senting a set of base-type HeIns. Sets cannot
contain duplicate elen1cn1,8.

II bagof(base): j\ type representin.g a, bag or rnv,ltisct of base-type iterns.

Types llsing listof, ARRAY, bagof, or setof as the outennost type constructor
a.re sornetirnes referred to a,s collection types or bulk data types.
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~rhe lack of support for these collection types is recognized as a weakness of
SQL:1999's support for cornplex objects and it is quite possible that SODle of
these collection types "'lill be added in future revisions of the SQL standard. 1

23.3 OPERATIONS ON STRUCTURED DATA

rIhe I)131V18 provides built-in Inethods for the types defined using type con­
structors. These lnethods are analogous to built-in operations such as addition
and rIlultiplication for atcnnic types such as integers. In this section we present
the Illethods for various type constructors and illustrate ho\v SC~L queries can
create and rnanipulate values \vith structured types.

23.3.1 Operations on Rows

Given an iteul ri whose type is ROW(n1t1 , ... , TL n t n ), the field extraction rnethod
allo\vs us to ~l,ccess an individuaJ field nk llsing the traditional clot notation
'i.nk. If ro\v constructors are nested in a type definition, dots rnay be nested to
access the fields of the nestE"d row; for exarnple i.'fLk.n1/. If we have a collection
of rows, the dot notation gives us a collection as a result. :For exarnple, if i is
a list of rows, i.nk gives us a list of itcrns of type tTl; if i is a set of rows, i.nk

gives us a set of iterns of type tn.

[This rH~ste(l-dot notation is often called a path expression, because it de­
scribes a path through the nested structure.

23.3.2 ()peratiolls on Arrays

Array types support an 'alT<lY index' rnethod to allow 11sers to access array
iterns at a, particular offset. A. postfix 'square bracket' syntax is usually used.
Since the nuruber of elernents can v<try, there is an operator (CARDINALITY) that
returns the nU1nbe1' of elerIlents ill tl1E~ array. '1'he varia,hle nurnl)er of elernents
also rn.otivates an operator to C:Ollcatenate t\VO arrays. rrh(~ following exanlple
illustrates these operations on S(~L:1999 arr(\ys.

SELECT F.fillnIlo, (F.staTs II ['Brando', 'Pacino'])
FROM FilrnsF
WHERE CARDINALITY(F.stars) < :3 AND F.stars[l]::::::'Iledford'

1According to Jinl tvlelton, the editor of the SQL:19DD standard, these collection types 'l}/ere con­
sidered for inclusion but omitted because sorne problt·mls with their specifications were discovered too
late for correction in the SQL: 1999 timc-fr;lrne.
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For each fibn with Redford ctS the first star2 and fe"wer than three stars, the
result of the query contains the fihn'8 array of stars concatenated \vith the
array containing the two elcrnents 'Brando' and 'Pacino'. Observe ho\\r a value
of type array (containing Brando and Pacino) is constructed through the use
of square brackets in the SELECT clause.

23.3.3 Operations on Other Collection Types

Although only arrays are supported in SQL:1999, future versions of SQL are
expected to support other collection types, and we consider what operations are
appropriate over these types of data. provide such operations. Our discussion
is illustrative and not Ineant to be cOlnprehensive. For exarnple, one could
additionally allow aggregate operators count, surn, avg, rna.T, and rnin to be
applied to any object of a collection type with an appropriate base type (e.g.,
INTEGER). ()ne could also support operators for type conversions. For exaInple,
one could provide operators to convert a rnultiset object to a set object by
elirninating duplicates.

Sets and Multisets

Set objects can be cornpared using the traditional set methods c,~, =,:2, ~.
An iteln of type setof (faa) can be cornpared with an iteln of type faa using
the E rnethod, as illustrated in Figure 23.3, which contains the cornparison
'.fferbert the W O'T"rn' E F. stars. T\vo set objects (having elernents of the saIne
type) can be cornbined to forIlI a new object using the u, n, and --- operators.

Each of the Inethods for sets can be defined for Inultisets, taking the nUlnber of
copies of elernents into account. The U operation silnply adds up the nurnber
of copies of an elernent, the n operation counts the lesser nU1nbel' of tirnes a
given elernent appears in the two input rnultisets, Etuel _. subtracts the nurnber
of ti1nes a given e1ernent appears in the second lnultiset frorn the nUlnber of
tinles it appears in the first Inultiset. For exarnplc, using rnultiset scrnantics
U ({ 1 2 2· 2} {2 2 ')} ') --' {I ') 2 2 2 2 ,-)}. r1 ({"1 2 ') '2 '} {') ') ')} ') - {2 2}' , . I ", " , . , ,t) ..- , ....."",d, I ., ,..... , , ..... ,..... ,t.J --'.' ,d,11C

({1,2,2,2L {2,2,~3}) == {1,2}.

Lists

l'raditiona.l list operations include head, \vhich returns the first ele1nent; tail,
vvhich returns the list obtained by rCIIloving the first elernent; prepend, which
--_._ .

2Note that the first e1crnent in an SQL arra.y has index vaJue 1 (not 0, <:lAoS in sorne IanguH,ges).
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takes an elcrnent and inserts it (1.S the first elernent in a list; and append, which
appends one list to another.

23.3.4 Queries Over Nested Collections

\Ve no\v present SOHle exar11ples to illustrate ho\v relcltions that contain nested
collections can be queried, using SQL syntax. In particular, extensions of the
relational rnodel with nested sets and rnultisets have been \videly studied and
\ve focus on these collection types.

\Ve consider a variant of the FihIIS relation from Figure 23.1 in this section,
with the staTs field defined as a setof (VARCHAR [25] ), rather than an array.
Each tuple describes a filrn, uniquely identified by filrnno, and contains a set
(of stars in the filrn) a..'3 a field value.

Our first exarnple illustrates how we can apply an aggregate operator to such a
nested set. It identifies filrns with r11or8 than two stars by counting the nurnber
of stars; the CARDINALITY operator is applied once per FilnIs tuple. ~~

SELECT F.filmno
FROM Filrns F
WHERE CARDINALITY(F.stars) > 2

Our second query illustrates an operation called unnesting. Consider the
instance of Filrns shown in Figure 23.4; we have olnitted the direcloT and budget
fields (included in the Filnls schenHl in Figure 23.1) for simplicity. A flat version
of the saIne inforrna.tion is shown in Figure 23.5; for each filrn and star in the
£ibn, we have a tuple in Filrns_flat.

--r-----·-·.._--.--:..- - - ;]
star's . . .

~~ ,-

98 Casablanca {Bogart, Bergluan}
54 EaTth vVorrns Are Juicy {Herbert, vVanda}

['··---··--···--······---·-1--·-·--·---·-------fil'mno title

Figure 23.4 A Nested Relation, Films

1"11e follc)\ving quer,r generates the instance of Fihns~flat frcnn Fihns:

SELECT F Jilrnno, F. title, S AS star
FROM FilrnsF,F.stars AS S

3SQL: 1999 does not support set or rnultiset values, as we noted earlier. If it did) it would be natural
to allow the CARDINALITY operator to be applied to a set-vaJuc to count the nUluber of elernents; we
have used the operator in this spirit.
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"Figure 23.5 A Plat Version,Films~fla,t

The variable F is successively bound to tUI>les in Filrns. and for each value
v . J

of I?, the vaTiable S is successively bound to the set in the staTs field of .F'.
Conversely, we Inay "vant to generate the instance of F'ilrns frorn FilIns_fiat. We
can generate the Filrns instance using a, generalized fonn of SQL '8 GROUP BY
C011struct, as the following query illustrates:

SELECT F.fihnno, F. title, seLgen(F.star)
FROM Fihns.Jlat F
GROUP BY F.fihnno, F.title

This oxaluplc introducE~s (1, ne'w operator seLgen, to be used with GROUP BY,
that requires sorne explanation. The GROUP BY clause partitions the FihnsJlat
table by sorting on the .filTn:no attribute; all tuples in a given partition have the
sanle filrnno (and therefore the sarne title). Consider the set of values in the star
cohunn of (1, given partition. In an SC~L-92 query, this set rnust be surnluarized
by applying an aggregate operator such as COUNT. Now that we allow relations
to contain sets as field values, however, \ve can return the set of staT values as
a field value in a single anSWE~r tuple; the ans\ver tuple also contains the fihnno
of the corresponding partition. rrhe set-gen operator collects the set of star
values in a paTtition and creates a set-valued object. This operation is called
nesting. vVe can irnagine shnihtr generator functions for creating Inuitise1's,
lists. and so on. IIo\vever, such generators are not included in SQL:1999.

23..4 ENCAPSULATION AND ADTS

Consicler the Fnunes table of Figure 2:3.1. It lUls a colun111 ,zrnage of type
jpeg~image, vlhich stores a, cOlnpressed iUHlge representing a single frarne of a
fihn.I'he jpeg_image tYI)C is not one of the DBlVIS's l>uilt-in types and \VEtS

d(~fined 1)y a user for the I)inky application to store ilna,ge data cornpressed
llsingth(~ JPEC; stanclard. As another exarllple, the Countries table defined in
Line 7 of Figure 2:3.1 h;:lS a colurnn boundaT'Y of t,ype polygon, \v111ch contains
r(~presentationsof the shapes of countries' outlines on a vvorld rnap.
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.Allowing users to define arbitrary nc\v data types is a key feature of ()RDBf\,1Ss.
'1"he DBrvlS alh:)\vs users to store and retrieve objects of type jpeg_image, just
like an object of any other type, such as integer. No\v atornic data types
usually need to have t~ype-specific operations defined by the user 'who creates
thern. For exanlple~ one rnight define operations on an irnage data type such
a"s compress, rotate, shrink, and crop. rrhe ccnnbination of an atolIlic data
type and its associated rnethods is called an abstract data type, or ,A,DT.
Traditional S(~L COlnes with built-in ..l\DTs, such as integers (-with the a",ssoci­
ated arithnletic rnethods) or strings (with the equality~ cornparison, and LIKE
lllethods). Object-relational systerns include these ADT's and also allow users
to define their o\vn ADTs.

The label abstract is applied to these data types because the database systerIl
does not need to InlOW how anAD1~'s data is stored nor ho\v the ADT's rneth­
ods work. It rnerely needs to know \vhat rnethods are availa,ble and the input
and output types for the rnethods. I-Eding ADT internals is called encapsu­
lation.4 Note that even in a. relational systern, atolnic types such as integers
have associated rnethods that encapsulate the1n. In the case of integers, the
standard Inethods for the ADT are the usual aritlunetic operators and COll1­

parators. To evaluate the addition operator on integers, the database systenl
need not understand the laws of addition it l11erely needs to know how to
invoke the addition operator's code and what type of data to expect in return.

In an object-relational systenl, the Silllplification due to encapsulation is critical
because it hides any substantive distinctions between data types and allows an
OR,DB1VIS to be iInplernented \vithout anticipating the types and rnethods that
users Inight want to add. For exarnple, (l,dding integers and overlaying irnages
can be treated unifonnly by the systern, vvith the only significant distinctions
being that different code is invoked for the t\VO operations and differently typed
objects are expected to be returned froIll that code.

23.4.1 Defining Methods

rro register a rH~\V rnethod for a user-defined data type, users rnust \vrite the
code for the nlcthod and then infor1n the datalHlse systcrI1 about the Inethod.
'rhe cod.e to be \i\rritten depends on the languages supported by the DBlVIS
and, possibly, the operating systerH in question. For eXC1ruple, the OHI)Bl\;IS
Inay handle J a\ta, co(h,~ in the Linux operating systern. In this case, the lnet,hod
code nlu,st be \vritten iII Java and cOlnpiled into a .Java bytecode file stored in.
a Linux file s~vsteln. 'Then an SC~L-st~yle luethod registration eOllunand is given
to the ()I:ll)Bl\/lS so that it recognizes the nc~\v rnethod:

4SOlue OIlIJBivISs actually refer to Aryl's as opaque types beca,use they are enci::tpsula.ted a,nd
hence one cannot see their details.
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r:-'"- _._-"".,.- -._ - ,-~ -- -----.
Packaged ORDBMS Extensions: Developing a set of user-defined

. types and rnethods for a particular application·······-say, iInage management·,·,·,,·
I can involve a significant aIIlount of work and dornain-speeific expertise. As

a result, most ORDBMS vendors partner with third parties to sell prepack-
aged sets of ADrrs for particular domains. Inforn1ix calls these extensions
DataBlades, Oracle calls theln Data Cartridges, IBNI calls thern DB2 Ex­
tenders, and so on. These packages include the ADT 11lethod code, DDL
scripts to automate loading the ADTs into the system, and in some cases
specialized access methods for the data type. Packaged ADT extensions are
analogous to the class libraries available for object-oriented programIning
languages: They provide a set of objects that together address a COlnnlon
task.
SQL:1999 has an extension called SQL/MIVI that consists of several inde­
pendent parts, each of which specifies a type library for a particular kind
of data. The SQL/MM parts for Full-Text, Spatial, Still Iillage, and Data
Mining are available, or nearing publication.

CREATE FUNCTION is_sunrise(jpeg_image) RETURNS boolean
AS EXTERNAL NAME '/a/b/c/dinky.class' LANGUAGE 'java';

This statenlent defines the salient aspects of the lllethod: the type of the asso­
ciated ADT, the return type, and the location of the code. Once the method is
registered, the DBNIS uses a Java, virtual lnachine to execute the code5 . Fig­
ure 23.6 presents a nUlnber of rnethod registration cOllllnands for our Dinky
database.

1. CREATE FUNCTION thumbnail(jpeg_image) RETURNS jpeg_image
AS EXTERNAL NAME '/a/b/c/dinky.class' LANGUAGE 'java';

2. CREATE FUNCTION is_sunrise(jpeg_image) RETURNS boolean
AS EXTERNAL NAME '/a/b/e/dinky.class' LANGUAGE 'java';

3. CREATE FUNCTION isJnerbert(jpeg_image) RETURNS boolean
AS EXTERNAL NAME '/a/b/c/dinky.class' LANGUAGE 'java';

4. CREATE FUNCTION radius (polygon, float) RETURNS polygon
AS EXTERNAL NAME '/a/b/c/dinky.class' LANGUAGE 'java';

5. CREATE FUNCTION overlaps (polygon, polygon) RETURNS boolean
AS EXTERNAL NAME '/a/b/c/dinky.class' LANGUAGE 'java';

Figure 2:1.6 IVlethod H.,egistration Conunands for the Dinky Da.taha..se

._--_.
51n the case of non-portable cOIl1piled code written, for example, in a, language like C++" .....···the

D131v18 uses the operating; system's dynamic linking facility to link the method code into the databa..se
system so that it can be invoked.
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rrype definition statelnents for the user-defined atornic data types in the Dinky
scherna are given in Figure 23.7.

1. CREATE ABSTRACT DATA TYPE jpeg_image
('inte'rnallength = VARIABLE, input = jpeg~n, output = jpeg_out);

2. CREATE ABSTRACT DATA TYPE polygon
(internallength = VARIABLE, input = polyjn, 01LtP'Ut == poly_out);

Figure 23.7 Atomic Type Declaration Commands for Dinky Database

23.5 INHERITANCE

We considered the concept of inheritance in the context of the ER, model in
Chapter 2 and discussed how ER diagrarns with inheritance 'were translated
into tables. In object-database systems, unlike relational systerns, inheritance
is supported directly and allows type definitions to be reused and refined very
easily. It can be very helpful when modeling similar but slightly different classes
of objects. In object-database systerns, inheritance can be used in two ways: for
reusing and refining types and for creating hierarchies of collections of sirnilar
but not identical objects.

23.5.1 Defining Types with Inheritance

In the Dinky database, we rnodel rnovie theaters with the type theater .._t.
Dinky also wants their database to represent a new rnarketing technique in the
theater business: the theater-cafe, which serves pizza and other rneals while
screening movies. rrheater-cafes require additional inforrnation to be repre­
sented in the database. In particular, a theater-cafe is just like a theater, but
has an additional attribute representing the theater's IIlenu. Inheritance allows
us to capture this 'specialization' explicitly in the database design with the
followiIlg DDL staternent:

CREATE TYPE theatercafe_t UNDER theater_t (rn,enu text);

This staternent creates a new type, theatercaf e_t, which has the sarne at­
tributes and rnethods <:l.S theater_t, plus one Etdditional attribute rnenu of type
text. lVlethocl,s defined on theater_..t apply to objeets of type theatercafe_t,
but not viee versa. vVe sa~y that theatercaf e_t inherits the attributes and
rnethods of theater_t.

Note that the illherita,nce rnechanisrll is not rnerely a rnacro to shorten CREATE
staternents. It creates an explicit relationship in the databa..se between th(~

subtype (theatercafe_t) and the supertype (theater_t ):An object of the
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s'ublypc is also considered to be an object of the B'Upert:lJpe. This treatlnent
Ineans that an.y operations thi:tt apply to the supertype (nlcthods as \ven as
query operators, such as projection or join) also apply to the subtype. 1:'his is
generall.y· expressed in the follo\ving principle:

The Substitution Principle: C~iven a supertype A. and a subtype
Jj, it is always possible to substitute an object of type B into a legal
expression vvritten for objects of type A, without producing type errors.

This principle enables easy code reuse because queries and Inethodswritten for
the supert)rpe can be applied to the subtype vlithout I1lodification.

Note that inheritance can also be used for atc)luic types, in addition to ro\v
types. Given a supertype image_t with rnethods title(), nurnber._of_colors(),
and d'isplay(), we can define a subtype thumbnail_image_t for slllall irnages
that inherits the rnethods of image_to

23.5.2 Binding Methods

In defining a subtype, it is sornetiInes useful to replace a rnethod for the Sll­

pertype with a new version that operates differently on the subtype. Consider
the image_t type and the subtype jpeg_image_t frorH the Dinky database.
lJnfortunately, the display() rnethod for standard .iInages does not work for
JPEG irnages, which are specially cOlnpressed. Therefore, in creating type
jpeg_image_t, we write a special display() rnethod for JPEG iruages and reg­
ister it with the database systern using the CREATE FUNCTION cOIIuuand:

CREATE FUNCTION di8play(jpeg~image) RETURNS jpeg_image
AS EXTERNAL NAME '/a/b/c/jpeg.class' LANGUAGE 'java.';

Ilegistering a ne\v rnethod \vith the sarne HeHne as an aIel rnethod is called
overloading the luethod narne.

Because of over1oading~ the systern Inust understand 'which rnethod is intended
in a, particular expression. For exarnple, when the systern needs to invoke the
display () rnethod on an object of type j peg ....image _t, it uses the specialized
display rnethocL 'VIlcn it needs to invoke display on an object of type image __t
that is not otherwise subtyped, it invokes the standard display Inethod. The
process of d(~ciding which rnethod to invoke is called binding the rnethod to
tJIC ol)ject. In certa.in situations, this binding CHJl be done \vhen (tIl expn~ssiorl is
paTsed (early binding), but in other cct.~es the 1n08t specific type of HJl object
C(1,nnot be known until rl.ln-tinle, so the rnethod cannot be l)ound until then
(late binding) . Late birlding fa,cilties acId flexibility but can rnake it harder
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for the user to rea)f:;on about the Inethods that get invoked for a given query
expreSSIon.

23.5.3 Collection Hierarchies

Type inheritance was invented for object-oriented progranuning languages, and
our discussion of inheritance up to this point differs little £roln the discussion
one Inight find in a book on an object-oriented language such as C++ or Java.

I-I()\vever, because database systerns provide query languages over tabular data
sets, the lnechanisnls fronl progrannning languages are enhanced in object
databases to deal with tables and queries as well. In particular, in objeet­
relational systelIls, we can define a table containing objects of a particular
type, such &'-; the Theaters table in the Dinky sehenla. Given a new subtype,
such as theatercafe_t, we would like to create another table Theater_cafes to
store the inforrnation about theater cafes. But, when writing a query over the
Theaters table, it is sornetirnes desirable to ar;;k the saIne query over the rrhe­
ater_cafes table; after all, if we project out the additional C01UlllI1S, an instance
of the Theater_cafes table can be regarded as an instance of the Theaters table.

R,ather than requiring the user to specify a separate query for each such table,
we can infonn the systern that a new table of the subtype is to be treated as

part of a table of the supertype, with respect to queries over the latter table.
In our exalnple, we can say

CREATE TABLE Thea,ter_Cafes OF TYPE theatercafe ....t UNDER Theaters;

This staternent tells the systern that qu(~ries over the Theaters table should
actually be run over all tuples in both the rrheaters and rrheater_Cafes tables. In
such cases, if the subtype definition involves rnethod overloading, late-binding
is used to ensure that the appropriate rnethods are called for each tuple.

In general, t11.e UNDER chl11se can be used to genera,te an arbitrary tree of ta­
bles, called (1, collection hierarchy. (~ueries over a particular tal)le T in the
hierarchy are run over all tuples in rr and its descendants. Sornetirnes, a user
rnaywant the query to nUl ollly on rr and not on the descencl<tnts; additiona1
syntax, for exaInple, the key\vord ONLY, can be used in the query's FROM clause
to fl,chieve this effect.

23~6 OBJJ1:Cl-'S, OIDS, AND REFERENCE TYPES

In object-elatabase systerns, data objects can be given an object identifier
(aid), \vhich is sotne value that is unique in the database across tirne. The



790 CHAP1'ER 243

r---- - ~-················ -_ -.-................ - ------..... . -----... I
I OIDs: IBNl DB2, Inforul..ix lJDS, and Oracle 9i support REF types. I
L--._. .__._..__.. .----_~ __ __ _ __ .

DBl\iIS is responsible for generating aids and ensuring that an oid identifies an
object uniquely over its entire lifetillle. In SOHle systenls, all tuples stored in
any table are objects and autornatically assigned unique oids; in other systenls,
a user can specify the tables for 'which the tuples are to be c1ssigned aids. Often,
there are also facilities for generating oids for larger structures (e.g., tables) as
well as slnaller structures (e.g., instances of data values such as a copy of the
integer 5 or a .TPEG ilnage).

An object's aid can be used to refer to it from elsewhere in the data. An oid
has a type similar to the type of a pointer in a progralnll1ing language.

In SQL:1999 every tuple in a table can be given an aid by defining the table
in ternlS of a structured type and declaring that a REF type is associated with
it, a,'3 in the definition of the Theaters table in Line 4 of Figure 23.1. Contrast
this with the definition of the Countries table in Line 7; Countries tuples do
not have associated aids. (SQL:1999 also assigns 'oids' to large objects: This
is the locator for the object.)

REF types have values that are unique identifiers or aids. SQL: 1999 requires
that a given REF type must be associated with a specific table. For exalnple,
Line 5 of Figure 23.1 defines a cohllnn theater of type REF(theater_t). The
SCOPE clause specifies that iterns in this colurnn are references to rows in the
rrheaters table, which is defined in Line 4.

23.6.1 Notions of Equality

The distinction between reference types and reference-free structured types
raises another issue: the definition of equality. Two objects having the saIne
type are defined to be deep equal if and only if

1. The objects <1,1'e of atolnic type and have the saIne value.

2. The objects are of reference type and the deep eq'l.lals operator is true for
the two reforenced objects.

;3. rrhe objects are of structured type and the deep eqtlal.s operator is true for
all the corresponding subparts of the two objects.

Two objects that have the SaJllC reference type are defined to be shallow equal
if both refer to the saIne object (i.e., both references use the saUle aid). T'he
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definition of shallow equality can be extended to objects of arbitrary type by
taking the definition of deep equality and replacing deep eq1J,als by shallo'w elj'uals

in parts (2) and (~~).

As an exarnple, consider the cornplex objects ROW (538, tS9, 6-3-97, 8-7-97)
and ROW(538, i33, 6-3-97, 8-7-97), whose type is the type of rows in the table
Nowshowing (Line 5 of Figure 23.1). 1'hese t\VO objects are not shallow equal
because they differ in the second attribute value. Nonetheless, they rnight
be deep equal, if, for instance, the oids t89 and t33 refer to objects of type
theater_t that have the saIne value; for exarnple, tuple (54, ':Nlajestic', '115
King', '2556698').

While two deep equal objects Inay not be shallow equal, a._" the exarnple illus­
trates, two shallow equal objects are always deep equal, of course. 'The default
choice of deep versus shallow equality for reference types is different across
systenls, although typically we are given syntax to specify either semantics.

23.6.2 Dereferencing Reference Types

An item of reference type REF (basetype) is not the sarne as the basetype itenl
to which it points. To access the referenced basetype itenl, a built-in deref ()
rnethod is provided along with the REF type constructor. For example, given
a tuple from the Nowshowing table, one can access the name field of the ref­
erenced theater_t object with the syntax Nowshowing.deref (theater). narne.
Since references to tuple types are comInon, SQL:1999 uses a Java-style arrow
operator, which cOD.lbines a postfix version of the dereference operator with a
tuple-type dot operator. The narne of the referenced theater can be access(~d

with the equivalent syntax Nowshowing.theater-> narne, as in Figure 23.3.

At this point we have covered all the basic type extensions used in the Dinky
scherna in Figure 23.1. The reader is invited to revisit the scherna and exarnine
the structure and content of each table and how the new features are used in
the various sarnple queries.

23.6.3 URLs and DIDs in SQL:1999

It is instructive to note the differences between Internet lJRIJs Etnel the oids
in object systerns. First, oids uniquely identify a single object over all tirne
(at least, until the object is deleted, when the oid is undefined), vvherea,s the
'\Veb resource pointed at by an lJHJ-J can change over tirue. Second, oids are
sirnply identifiers and carry no physical infonnation about the objects they
identify this rnakes it possible to change the storage location of an object
without rnodifying pointers to the object. In contra,st, lJH.I.ls include net\'lork
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addresses and often file-syst;enl narnes (;1,,-:;; \veU, lIle<.:tning that if the resource
identified by the {JIlL has to Inove to another file or network a,ddress. then all
links to that resource are either incorrect or r(~quire a ~forwardiIlg' rnechanisH1.
rrhird, oids are aut(Hnatically generated by the I)B1\;18 for each object, \vhereas
lJIlLs are user-generated. Since users generate lJR,Ls, they often ernbed sc­
rnantic inforlllation into the {JR.L via rnachine, directory, or file names; this
can becoine confusing if the object's properties change over tilne.

For lJIlLs, deletions can be troublesorne: T'his leads to the notorious '404
Page Not Found' error. For oids, SQL:1999 allows us to say REFERENCES ARE
CHECKED as part of the SCOPE clause and choose one of several actiol1swhen a
referenced object is deleted. This is a direct extension of referential integrity
that covers oids.

23$7 DATABASE DESIGN FOR AN ORDBMS

The rich variety of data types in an OH,DBTv1S offers a database designer Inany
opportunities for a rnore natural or lllore efficient design. In this section we illus­
trate the differences between IlDBl\!lS and ()RI)BMS database design through
several exarnples.

23.7.1 Collection Types and ADTs

()ur first exarnple involves several space probes, each of which continuously
records a video. A single video strearll is associated with each probe, and while
this strearn \Vck'3 conected over a certail1 tiule period, vve assurne that it is now
a cOlllplete object associated Vilith the probe. During the tirne period over
which the video \vas collected, the probe's locatiol1\vas periodieaJly recorded
(such infonnation (;an ea.-.sily be pigg~y-backedonto the header portion of a video
streanl conforrning to the TvIPEC; sta,ndard). 1'he inforrnation associated \vith
a probe has three parts: (1) a probe ID that identifies a probe uniquely, (2) a
video s/;'r'carn, and 03) a location 8cqucn.ce of (t;inLe 1 location) pairs. \iVhat kind
of a database scherna should we use to store this infonnation?

An RDBMS Database Design

In H,11 HIJBlVJ:S, \ve rnust store each video strcanl as a BIJ)13 Etnd each location
sequellce as tuples in a tabh.~. A possible HJ.JBIVJ.S data,b~J,,'3e design follo\vs:

Probes(.E~.~~~_ integer, UTnc~:~..._~imestamp, lat:: !:_~ ..~.~_,__!!:)ng: re~.!,
carnCTa: string, 'v'ideo: BLOB)
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There is a single table caned Probes and it lu1.'3 severa,} rows for each probe. Each
of these rovvs has the saIne pid, carneT(J" and1rideo values, but different t'irne,
tat, and lcntg values. (vVe have used latitude and longitude to denote location.)
The key for this table can be represented as a functional dependency: IJTLN
-:. CY ll , '~lhere N stands for longitude. There is another dependency: p--;. (;V~

'rhis relation is therefore not in BCNT;"; indeed, it is not even in :INF. vVe ca:n
decolupose Probes to obtain a BCNF scherna:

ProbeS_bLoc(pid: integer, lirne: timestamp, tat: real, long: real)
Probes_Video(p'id: integer, carn,era:"-;'t'i='ing, 'v'ideo: BLOB)

This design is about the best we can achieve in an RDBl'v1S.Ho\vever, it suffers
frorn several dn1\vbacks.

First, representing videos aA.'3 BLOBs lI1eanS that we have to write application
code in an external language to lnanipulate a video object in the database.
Consider this query: "For probe 10, display the video recorded between 1:10
P.M. and 1:15 P.M. on lVlay 10 1996." We lnust retrieve the entire video object
associated ''lith probe 10, recorded over several hours, to display a segrnent
recorded over five rninutes.

Next, the fact that each probe has an associated sequence of location readings
is obscured, and the sequence inforrnatiol1 associated with a probe is dispersed
across several tuples. A third drawback is that vve are forced to separate the
video infonnation froTn the sequence inforrnation for a probe. rrhese lirnitations
are exposed by queries that require us to consider all the infonnation associated
v'lith each probe; for excunple, ;'Fhr each probe, print the earliest tirne at which
it recorded, and the CEtrnen.l type." T'his query 110v'l involves a join of Probes.".Loc
and Probes_Video on the p'id field.

An ORDBMS Database Design

;\n ()HJ)BlVIS supports a lnuch better solution. FirsL \ve can store the video
as an A.DT object and \vrite rnethods that c':1I)ture a.ny special rna,nipulation
\ve \vish to perforrr1. Second, 1)eCflT1Se \ve aTe allovved to store structured types
such as lists,\ve (:a,n stc)re tIl(:; loca,tion sequerlce for (1. probe in a single tuple,
along\vith thE: video infonnation. '['his layout elirnina,t;c;s the need for joins in
cIlH;ries that involve both the sequence ancl video inforrnation. An ()HI)BNIS
design for our exarrlpl(~ consists of ,1 single relation called Probes_i\llInfo:

Probes ... AIUnfo(pid: integer, loc8eq: location...seq, Ca'fTl·e'ra: string;
'video: mpeg_.stream)
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This definition involves t,vo new" types, location...seq and mpeg_stream. The
mpeg_stream type is defined as an ADT, with a Inethod display() that takes
a start tiIne and an end tirne and displays the portion of the video recorded
during that interval. This rnethod can be irnplernented efficiently by looking at
the total recording duration and the total length of the video and interpolating
to extract the segnlcnt recorded during the interval specified in the query.

Our first query in extended SQL using this display lnethod follows. We now
retrieve only the required segment of the video rather than the entire video.

SELECT display(P.video, 1:10 Po M0 May 10 1996, 1:15 Po M0 May 10 1996)
FROM Probes-.Alllnfo P
WHERE Popid = 10

Now consider the location_seq type. We could define it as a list type,
containing a list of ROW type objects:

CREATE TYPE location_seq listof
(row (time: timestamp, lat: real, long: real))

Consider the locseq field in a row for a given probe. This field contains a list
of rows, each of which has three fields. If the ORDBMS implements collection
types in their full generality, we should be able to extract the time colurnn
from this list to obtain a list of timestamp values and apply the MIN aggregate
operator to this list to find the earliest tiIne at which the given probe recorded.
Such support for collection types would enable us to express our second query
thus:

SELECT
FROM

P.piel, MIN(P.locseq.tirne)
Probes._AllInfo P

Current ()ItDBI\1Ss are not &'3 general and clean a..s this exalnple query suggests.
For instance, the systern rnay not recognize that projecting the tirne colurnn
frorn a list of rows gives us a list of tirnestarnp values; or the systcru rnay allovv
us to apply an aggregate operator only to a table and not to a nested list value.

Continuing "'lith our exa.rnple, we lnay want to do specialized operations on
our location sequences that go beyond the standard aggregate operators. For
instance, we rnay want to define a lnethod that takes a tirne interval and COIIl-

, .'
putes the distaIlce traveled by the probe during this interval. The code for this
rnethod rnust understaJnd details of a probe's trajectory and geospatial coordi­
nate systenls. FbI' these reasons, \ve rnight choose to define location_seq as
an ADT\.
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Clearly, an (ideal) ORDBIvIS gives us IIlaIlY useful design options that are not
available in an RDBMS.

23.7.2 Object Identity

\Ve now discuss S0l11e of the consequences of using reference types or aids. The
use of aids is especially significant when the size of the object is large, either
because it is a structured data type or because it is a big object such &s an
image.

Although reference types and structured types seem sirnilar, they are actually
quite different. For example, consider a structured type my_theater tuple (ina
integer, name text, address text, phone text) and the reference type theater
ref (theater_t) of Figure 23.1. rrhere are irnportant differences in the way that
database updates affect these two types:

• Deletion: Objects with references can be affected by the deletion of ob­
jects that they reference, while reference-free structured objects are not
affected by deletion of other objects. For exaluple, if the Theaters table
were dropped from the database, an object of type theater might change
value to null, because the theater_t object it refers to has been deleted,
while a similar object of type my_theater would not change value.

• Update: Objects of reference types change value if the referenced object
is updated. Objects of reference-free structured types change value only if
updated directly.

• Sharing versus Copying: An identified object can be referenced by
llluitiple reference-type iterIls, so that each update to the object is reflected
in IYlany places. ~ro get a sirnilar effect in reference-free types requires
updating all 'copies' of an object.

There are also irnportant storage distinctions between reference types and non­
reference types, \vhich rnight affect perfoI'rnance:

III Storage Overhead: Storing copies of a large value in rnultiple structured
type objects IYlay use lnnch rno1'e space than stori.ng the value once and
referring to' it elsewhere through reference type objects. This additional
storage requirelnent can affect both disk usage and buffer lnanagcrncnt (if
IIlal1Y copies are accessed at once).

III Clustering: The subparts of a structured object are typically stored to­
gether on disk. Objects with references rna,Y point to other objects that a,1'e

far a:way on the disk, and the disk ann Inay require significant rnOVClnent
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OIDs and Referential Integrity: In SQL:1999, aU the oids that ap­
pear in a cohunn of a relation are required to reference the srtrne target
rf~lation. This ~scoping' ulakes it possil)]e to check oid refere:nces for "1'e£e1'­
entiaJ. integrity' just like foreign key references are ehecked.vVhile current
OI{DB1JlS products supporting oids do not support such checks, it: is likely
that they will in future releases. This will nlake it rnnch safer to use aids.

to asserrlble the object and its references together. Structured objects can
thus be l'nor8 efficient than reference types if they are typically accessed in
their entirety.

Many of these issues also arise in traditional prograunuing languages such as C
or Pascal, which distinguish between the notions of referring to objects by value
and by refer-ence. In database design, the choice between using a structured
type or a reference type typically includes consideration of the storage costs,
clustering issues, and the effect of updates.

Object Identity versus Foreign Keys

lJsing an oid to refer to an object is silnila,r to using a foreign key to refer
to a tuple in another relation but not quite the seune: An oid can point to
an object of theater_t that is stored any'whcr-c in the database, even in a
field, whereas a foreign key reference is constrained to point to an object in a,
particular referenced relation. This restriction rnakes it possible for the DBlV1S
to provide lnuch greater support for refer(~ntial integrity than for arbitra,ry aid
pointers. In general, if an object is deleted while there an~ still oid-pointers
to it, the best the DBl\IIS can do is to recognize the situation by rnaintajning
a reference count. (Even this lirnited support becornes irnpossible if oids can
be copied freely.) Thereforc 1 the responsibility for avoiding dangling n~ferences

rests largely \'lith the user if oids are llsed to refer to objects. This burdensoIllc
responsibility suggests that vVE~ should use oids \vith great ca.ution and use
foreign keys instead \vhenever possible.

23.7.3 Extending the ER Model

The Ell rnodel, cLS described in Chapter 2, is not adequate for ()ItDB1\tlS design.
\Ve have to use an extendedEH, rnodel that supports structured attributes
(i.e., sets, lists, arra,Ys a,s attribute values) I distinguishes \vhethc~r entities have
ol)ject ids, and allc)\vs us to Inodel entities \vhose attributes include rnethods.
\Ve illustrate these connnents using an extended Ell diagrarn to describe the
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space probe data in Figure 2:.3.8; our notational conventions are ad hoc and
only for illustr;::ttivc purposes.

~ -(,~isPlay(start! end) ,._--:)
---'_-'-_.~,..__.....~ ....-----, ..-"._.......~......--

Figure 23.8 The Space Probe Entity Set

The definition of Probes in Figure 23.8 has t\VO rH~\V &,;pects. First, it has a
structured-type attrilnlte listof (row (ti'lnc, lat, lo'ng)); each value assigned to
this attribute in a Probes entity is a list of tuples with three fields. Second,
Probes has an attribute called video that is an abstract data type object, \vhich
is iIldicatecl by a dark oval for this attribute \vith a dark line connecting it to
Probes. Further, this ctttribute has an 'attribute' of its own, \vhich is a rnethod
of the J\DT.

Alternatively, we could rnodel each video as an entity by using an t~ntity set
called Videos. The association between Probes entities and Videos entities
could then be captured by defining a relationship set that links thenl. Since
each video is collected by precisely one probe and every video is collected by
se)lne probe, this relationship can be rna,intained by siInply storing a reference to
a probe object with each Videos entity; this technique is essentially the second
translation approach frorn ER, diagnuns to tables discussed in Section 2.4.1.

If we also rnake Videos a \iVeak entity set in this alternative design, we can add
a referential integrity constraint that causes a Videos entity to be deleted \vhen
the corresponding Probes entity is deleted. 1\/101'8 generally, this alternative
design illustrates a strong sirnila1'ity bet\veen storing references to objects and
foreign keys; the foreign key rnechanisT11 achieves the saIne effect as storing oids~

but in (1, controlled lUanneI'. If oids are used. the user rnusi ensure that there
are no dangling references when an object is deleted, \iVith very little support
froIll the DBlvlS.

Finally~we nofe tllat a significant extension. to the Ell rHodel is required to
support the design of nested collections. For exa.rnple~ if a location sequence
is rnodeled (J",'3 an entity, and \ve \vant to clefine an attribute of Probes that
contftins a set of such entities, there is no "vay to do this\vithont extending the
Ell rrlodeL\Vc do not disC1ISS this I)oint furtller at the level of Ell diagraIlls,
but consider an exaJnple 11E~xt that illustrat(~swhen to use a nest,ed (~ollection.
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23.7.4 Using Nested Collections

Nested collections offer great rnodeling power but also raise difficult design
decisions. Consider the following \vay to rnodel location sequences (other in­
fonnation about probes is ornitted here to sirnplify the discussion):

Probesl(pid: integer, locseq: location_seq)

rrhis is a good choice if the irnportant queries in the workload require us to look
at the location sequence for a particular probe, as in the query "For each probe,
print the earliest tirne at which it recorded and the caluera type." On the other
hand, consider a. query that requires us to look at all location sequences: "Find
the earliest tiIne at which a recording exists for laf;=5, long=90." This query
can be answered 1110re efficiently if the following scherna is used:

Probes2(pi(~: integ~r, tim~:_.timestamp, tat: real, long: real)

The choice of scherna Blust therefore be guided by the expected workload (as
always). As another example, consider the following scherna:

Can_TeachI (cid: integer, teacheTs: setof (ssn: string), sal: integer)

If tuples in this table are to be interpreted as "Course cid can be taught by any
of the teachers in the teacheTs field, at a cost sal." then we have the option of
using the following schenla. instead:

CarLTeach2( cid: integer, teachCT_8sn: st~_~~.~, sal: integer)

A choice between these two alternatives can be Inade based on hovv we expect
to query this table. On the other hand, suppose that tuples in CalL.Teachl
are to be interpreted as "Course cid can be taught by the tearnteacheT8, at
a cornbined cost of sal." CarLTeach2 is no longer a viable alternative. If we
,vanted to flatten CarLleachl, ~we would have to use (1, separate table to encode
tearns:

Can_TCcl,ch2 (.~:'~i..~~.:'..._...~.12~.~ ..~!!!_~_,_ ..!~~~(J;rrL 'id: 0 i ~, ,,(l, l: int eger)
1'earns( tid: oid, .'iBn: string)

As these exarnples illustrate, nested collections are appropriate in certain situa­
tions, but this fea,ture can ea,,'3ily be rnisused; nested collections should therefore
be used ·with care.
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The enhanced functionality of OIlDBIvlSs raises several irnp1ernentation chal­
lenges. SOlne of these are 'well understood and solutions have been irnp1enlented
in products; others are subjects of current research. In this section \ve exarnine
a few of the key challenges that arise in irnplernenting an efficient, fully func­
tional OIlDBlvfS. l\:lany rnore issues are involved than those discussed here; the

I.- ,

interested reader is encouraged to revisit the previous chapters in this book and
consider whether the irnplernentation techniques described there apply natu­
rally to ORDBJ\JISs or not.

23.8.1 Storage and Access Methods

Since object-relational databases store new types of data, ORDBMS imple­
rnentors need to revisit some of the storage and indexing issues discussed in
earlier chapters. In particular, the system lllust efficiently store ADT objects
and structured objects and provide efficient indexed access to both.

Storing Large ADT and Structured Type Objects

Large ADT objects and structured objects cornplicate the layout of data on
disk. This problern is well understood and has been solved in essentially all
ORDBMSs and OODBMSs. We present Sallie of the main issues here.

User-defined ADTs can be quite la,rge. In particular, they can be bigger than
a single disk page. Large ADTs, like BLOBs, require special storage, typically
in a different location on disk frorn the tuples that contain them. Disk-based
pointers are rnaintained frorn the tuples to the objects they contain.

Structured objects can also be large, but unlike ADrr objects, they often vary in
size during the lifetirne of a database. For exarnple, consider the stars attribute
of the film,s table in l~igure 23.1. A.s the years pEt.'3S, SOlne of the 'bit actors' in
an old rnovie rnay becorne farnous. 6 YVhen a bit actor hecornes farnous, Dinky
rnight want to advertise his or her presence in the earlier filrns. This involves
an insertion into the stars attribute of an individual tuple in filrns. Because
these bulk attributes can grow arbitrarily, flexible disk layout rnechanisrns are
required.

GA famous example is Marilyn IVlonroe, who had a bit part in the Bette Davis da..ssic All About
.E'/Jc.
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i\n additional COlllplication arises \'lith array types. 'fraditionally, array ele­
lnents are ston-xl sequentially on disk in a ro\'l-by-ro\v fashion; for exarnple

1Io\v8ver, queries rnay often request suba.rrays that are not stored contiguously
on disk (e.g., .i411 , ,;121, ... ,Arn1). Such requests can result in a very high I/O
cost for retrieving the subarray. rro reduce the nurnber of l/Os required, arrays
are often broken into contiguous chunks, vvhich are then stored in senne order
on disk. Although each chunk is sorne contiguous region of the array, chunks
need not be rovv-by-ro\v or colurnn-by-colurllll. For exalnple, a chunk of size 4
111ight be All, A12 , A21 , /122 , 'which is a square region if we think of the array
as being arranged row-by-row in two dimensions.

Indexing New Types

One ilnportant reason for users to place their data in a database is to allow
for efficient access via indexes. Unfortunately, the standard RDB11S index
structures support only equality conditions (B+ trees and hash indexes) and
range conditions (B+ trees). An irnportant issue for OR,DB1\IISs is to provide
efficient indexes for AD'I' rnethods and operators on structured objects.

Many specialized index structures have been proposed by researchers for par­
ticular applications such as cartography, genorne research, 11lultirnedia reposito­
ries, \Veb search, and so on. An OR,DBlVIS cornpany Cctnnot possibly inlplernent
every index that has been invented. Instead, the set of index structures in an
()R,DBlVfS should be user-extensible. Extensibility would allow an expert in
cartography, for exanlple, to not only register an AD1' for points on a rnap
(i.e., latitude··longitude pairs) but also irnplernent an index structure that sup­
ports natural rnap queries (e.g., the R,-tree, \vhich lnatches cOllclitions such as
"Find rne all theaters within 100 Iniles of Andorra"). (See Chapter 28 for 1110re
on Il-trees and other spatial indexes.)

One vvay to rnake the set. of index structures extensible is to publish ;:1,11 ac­
ccs.s nu~thod 'interface that lets users irnplcrnent an index structure o'llts'ide the
DEl\;IS. 'I'he index and data can be stored in a file systeIll and the DEl\;IS sirnply
issues the open, ne:l.:f, and Cl08(:~ iterator requests to the user's external index
code. Such functionality rnakes it possible for a user to connect a I)Bl\1S to
a\Neb search engine, for exauII>le. A rnain dravvback of this approach is that
data in an external index is lI0t protected l)y tIle ])B1V1S'8 support for concur­
rency and rec:over:y. 1\n alterrlativf~ is for the ()llI)B1ilS to provide a generic
'tenlphtte' irHlex structure that is sufficientl:y general to encornpass rnost index
structures that usersrn.ight irlvent. Bec<luse snell a structure is il11plc~Jnented

within theDBrvIS, it can support high concurrency and recovery. The G1C't'1,(:T-
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alized SleaTch Tree (GiS'r) is suell a structure. It is a ternplate index structure
ba.':'ed on B+ trees, \vhich aJlo\vs IllOSt of the tree index structures invented so
far to be irnplernented'with only a few lines of user-definedAD'T' code.

23.8.2 Query Processing

.A..DTs and structured types call for l1e\v functionality in processing queries
in ()RDI-3I\!ISs. rrhey also change a nurnber of a..ssuruptions that affect the
efficiency of queries. In this section we look at two functionality issues (u8er­
defined aggregates and security) and two efficiency issues (rnethod caching and
pointer swizzling).

User-Defined Aggregation Functions

Since users are allowed to define new rnethods for their ADTs, it is not unrea­
sonable to expect thern to want to define new aggregation fUllctions for their
ADTs as well. For example, the usual SQL aggregates····---CDUNT, SUM, MIN,
MAX, AVG--are not particularly appropriate for the image type in the Dinky
schema.

Most ORDBMSs allow users to register new aggregation functions \vith the
systern. To register an aggregation function, a user lnust iruplenlent three
rnethods~ which we call 'initiaIize, iterate, and terrninate. The in'it'ial'ize rnethod
initializes the internal state for the aggregation. The iterate rnethod updates
that state for every tuple seen~ "vhile the terrninate rnethod C0111putes the ag­
gregation result based on the final state and then cleans up. As an exarnple,
consider an aggregation function to cornpute the second-highest value in a, field.
1'he init'ialize call would allocate storage for the top two values~ the 'iterate call
would corupare the current tuple's value with the top two and update the top
two as necessary, and theterrn'inate call \vould delete the storage for the top
two values~ returning a copy of the second-highest value.

Method Security

AIYTs give users the pO\\'8r to a,(1d code to the DBl'vlS; this power can be
abused. A buggy or rnalicious ADT rnethod can bring do\vn the database
server or eveil corrupt the databcL'Sc. The DBNIS lnust have rnechanisrns to
prevent buggy or rnalicious user code frcHn causing probleIlls. It 1nay rnake
sense to overricle these rnechanislIls for efficiency in production environrnents
with vendor-supplied rnethods. I-Io\vever, it is irnportant for the rnechanisrns to
exist, if only to support delJugging of J\DT rnethocls; othervvise rnethod \vriters



802 CHAPTER ~3

\vould have to \vrite bug-free code before registering their rnethods with the
DBMS--not a very forgiving progralIuning environlnent.

()ne rnechanisrn to prevent problerns is to have the user rnethods be intc11Jreted
rather than cornp'iled. The DBIv1S can check that the rnethod is well behaved
either by restricting the power of the interpreted language or by ensuring that
each step taken by a rnethod is safe before executing it. Typical interpreted la.n­
guages for this purpose include Java and the procedural portions of SQL:1999.

An alternative rnechanislll is to allow user methods to be cOlnpiled frorn a
general-purpose progranuning langllage~ such as C++, but to run those rneth­
ods in a different address space than the DBMS. In this case, the DBMS sends
explicit interprocess cOl1uIlunications (IPCs) to the user rnethod~ which sends
IPCs back in return. This approach prevents bugs in the user methods (e.g.,
stray pointers) frorn corrupting the state of the DBNIS or database and prevents
rnalicious methods frorn reading or Inodifying the DBMS state or database as
well. Note that the user writing the method need not know that the DBMS is
running the method in a separate process: The user code can be linked with a
'wrapper' that turns method invocations and return values into IPCs.

Method Caching

User-defined ADT methods can be very expensive to execute and can account
for the bulk of the time spent in processing a query. During query processing,
it may 11lake sense to cache the results of methods, in case they are invoked
lllultiple times with the same arglunent. Within the scope of a single query,
one can avoid calling a Inethod twice on duplicate values in a colurnn by either
sorting the table on that colullln or using a ha,..'3h-ba'3ed scherne ruuch like that
used for aggregation (see Section 14.6). An alternative is to rnaintain a cache
of rnethod inputs and rnatching outputs as a table in the database. Then, to
find the value of a rnethod on particular inputs, we essentially join the input
tuples with the cache table. rrhese two approaches can also be cornbined.

Pointer Swizzling

In sorne applications, objects are retrieved into rnernory and accessed frequently
through their oids; dereferencin.g rnust be irnplcrnented very efficiently. 801ne
systerns rnaintain a ta,hle of oids of objects that are (currently) in InenlOI'.Y.
\Vhen an object () is In'ought into nlCnlOl'jr, they check each oid c~ontained

in 0 and replace oids of in-rrH~rnory objects by in-rncrl10ry point(~rs to those
objects. 1'his techrlique, caJled pointer swizzling, nUl-kes referenc(~s to in­
rnernory objects ver~y .fast. rfhe dO\7vnsicle is tlHtt vvhen an object is paged out,
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In the introduction of this chapter, \ve defined an O()DB:NlS as a progranlIning
language ''lith support for persistent objects.vVhile this definition reflects the
origins of OODB~1Ss accurately, and to a certain extent the irnplernentation
focus of OODBl\'1Ss, the fact that OODBl\!ISs support collecl:'ion, type" (see
Section 2:3.2.1) rnakes it possible to provide a query language over collections.
Indeed, a standard has been developed by the Object Database l\'lanagernent
Group and is called Object Query Language.

OQL is sirnilar to SQL, with a SELECT----FROM--HWHERE---style syntax (even GROUP
BY, HAVING, and ORDER BY are supported) and rnany of the proposed SC~L:1999

extensions. Notably, OQL supports structured types, including sets, bags,
arrays, and lists. 1~he OQL treatrnent of collections is rnore uniforlll than
SQL: 1999 in that it does not give special treatrnent to collections of rows;
for exalnple, ()QL allows the aggregate operation COUNT to be applied to a
list to C0111pute the length of the list. O(~L also supports reference types,
path expressions,ADrrs and inheritance, type extents, and SQL-style nested
queries. 1'here is also a standard Data Definition Language for OODB1\1Ss
(Object Data Language, or ODL) that is sirnilar to the DDL subset of
SQL but supports the additional features found in OODBMSs, such as ADT
definitions.

23.9.1 The ODMG· Data Model and ODL

'The ODl\iIG data rnodel is the basis for an OODBl\iIS, just like the relational
data 1nodel is the basis for an IlDB1\1S. A database contains a collection of ob­
jects, which are sirnilar to entities in the Ell rnode!. Every object ha.s a unique
aid, and a database contains collections of objects with Silllilar properties; such
a collection is called a class.

The properties of a class arc specified using ()l)L and are of three kinds: at­
tributes, relationships, and rnethod8. _Attributes have an atolnic type or a
structured t~ype. ODl.l supports the set, bag, list, array, and struct t,ype
constructors; these are just setof, bagof, listof, ARRAY, and ROW in the ter­
rninology of Section 2:3.2.1.

R,elationships have a type that is either a reference to an object or a collection
of such references. A relationship captures ho'v an object is related to one
or r1101'e obj(~cts of the 8e1111(' class or of ;.1 different clctss. j\ relationship in
the ()IJIvIG- rnodel is really just (1 bincl,ry relationship in the sense of theEI{
Inodel. A rela.tionship has ~l corresponding inverse relationship; intuitively,
it is the relationship 'in the other clirection.' For exarnple, if a Inovie is being
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Class == Interface + Implenlentation: Properly speaking, a cla...,s con­
sists of an interface together\vith an irnpleluentation of the interface. An
ODL interface definition is irnpleInel~ted in an OODBlYIS by translating it
into declarations of the object-oriented language (e.g., C·+"+, Snlalltalk or
Java) supported by the OODBMS. If V\Te consider C++, for instance, there
is a library of cl<:1Sses that irnplcrnent the ODL constructs. There is also an
Object Manipulation Language (OML) specific to the programlning
language (in our exanlple, C++), which specifies how database objects j
are manipulated in the progralnnl.ing .language. rr.he .goal is to seamlessly
integrate the prograrnrning language and the database features.

shown at several theaters and each theater shows several rnovies, we have two
relationships that are inverses of each other: shownAt is associated with the
class of movies and is the set of theaters at which the given movie is being
shown, and nowShowing is associated with the class of theaters and is the set
of rnovies being shown at that theater.

Methods are functions that can be applied to objects of the class. l~here is
no analog to methods in the ER or relational models.

The keyword interface is used to define a class. For each interface, we can
declare an extent, which is the narne for the current set of objects of that
class. The extent is analogous to the instance of a relation and the interface
is analogous to the scherna. If the user does not anticipate the need to work
with the set of objects of a given class-it is sufficient to manipulate individual
objects--···the extent declaration can be ornitted.

The following ()DL definitions of the lViovie and Theater cla,,'3ses illustrate these
concepts. (While these classes bear S(Hne resernblance to the Dinky databa",sc
scherna, the reader should not look for an exact parallel, since we have rnodified
the exarnple to highlight ()DL features.)

interface Iv/lovie
(extent IVlovies key rnovieNarne)
{ attribute date start;
attribute date end;
attribute string rnovienarne;
relationship Set('fheater) shownAt inverse Theater::nowSho\ving;
}

1~he collection of databa...'3c objects whose cla"ss is lVlovie is called lVIovies. No
two objects in lVIovies have the sarne rnovieNarne value, as the key declaration
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indicates. Each lnovie is shov,rn at a set of theaters and is shown during the
specified period. (It \vould be rnore realistic to c'h'Ssoeiate a different period with
each theater, since a 1110vie is typically played at different theaters over different
periods. While we can define a class that captures this detail, \ve have chosen
a sirnpler definition for our discussion.) A theater is an object of cla.o;;;s Theater,
defined a.s:

interface Theater
(extent Theaters key theaterNarne)
{ attribute string theaterName;
attribute string address;
attribute integer ticketPrice;
relationship Set (Movie) nowShowing inverse .lVlovie::shownAt;
float numshowingO raises(errorConntingMovies);
}

Each theater shows several movies and charges the same ticket price for every
movie. Observe that the shownAt relationship of Movie and the nowShowing
relationship of Theater are declared to be inverses of each other. Theater also
has a lllethod numshowing() that can be applied to a theater object to find the
number of movies being shown at that theater.

ODL also allows us to specify inheritance hierarchies, as the following class
definition illustrates:

interface SpecialShow extends lVlovie
(extent SpecialShows)
{ attribute integer I11axinnunAttendees;
attribute string benefitCharity;
}

An object of class SpecialShow is an object of class l\1ovie, with SOI11e additional
properties, as discussed in Section 23.5.

23.9.2 OQL

rIhe ODlV1G query language O(~L was deliberately designed to have syntax
sirnilar to S(~L to rnake it easy for users falniliar with S(~L to learn ()QL. Let
us begin 'with a query that finds pairs of Inovies and theaters such that the
rnovie is sho\vn at the theater and the theater is showing lHore than one rnovie:

SELECT Innarne: lVLrnovieNarn(\ tnaIne: I'.theaterNarne
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FROM
WHERE

lViovies lV1, lVLsho\vnAt T
T .nurllshowing() > 1

(~IIAPTER ~:3

The SELECT clause indicates how \ve can give Ilallles to fields in the result:
The t\VO result fields are called rnnarne and tnarr~e. The part of this query that
differs frorn S(~L is the FROM clause. The variable 1\/[ is bound in turn to each
rnovie in the extent l\lovies. For a given rnovie Ai, we bind the variable T in
turn to each theater in the collection lv1. shownA t. Thus, the use of the path
expression lvi. shownAt allows us to easily express a nested query. The follo'Vving
query illustrates the grouping construct in OQL:

SELECT

FROM
GROUP BY

T. ticketPrice,
avgNurn: AVG(SELECT P.T.nurnshowingO FROM partition P)
l'heaters l'
T .ticketPrice

For each ticket price, we create a group of theaters with that ticket price.
This group of theaters is the partition for that ticket price, referred to using
the OQL keyword partition. In the SELECT clause, for each ticket price,
we cornpute the average nunlber of rnovies shown at theaters in the partition
for that ticketPrice. OQL supports an interesting variation of the grouping
operation that is missing in SQL:

SELECT

FROM
GROUP BY

low, high,
avgNllln: AVG(SELECT P.T.nurnshowingO FROM partition P)
Theaters T
low: T.ticketPrice < 5, high: rr.ticketPrice >::::: 5

The GROUP BY clause now creates just two partitions called low and high. Each
theater object T is placed in one of these partitions bEksed on its ticket price. In
the SELECT clause, lo'wand high are boolean variables, exactly one of which is
true in any given output tuple; partition is instantiated to the corresponding
partition of theater objects. In our exarnple, 'Vve get t\VO result tuples. ()ne of
thern has lOll) equal to true and avgNuTn equal to the average nurnber of rnovies
shown at theaters \vith a low ticket price. The second tuple hEks high equal to
true a"nd avgNuTn equal to the average nurnber of Inovies shown at theaters
with a high ticket price.

The next query illustrates ()(~L support for queries that return collections other
than set and rnultiset:

(SELECT rr. theaterNarne
FROM Theaters 'T
ORDER BY T. ticketPrice DESC) [0:4]
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The ORDER BY clause nU1,kes the result a list of theater naInes ordered by ticket
price. l'"1he clcrnents of a list can be referred to by position, starting \vith
position O. Therefore, the expression [0:4] extracts a list containing the naInes
of the five theaters \vith the highest ticket prices.

OC~L also supports DISTINCT, HAVING, explicit nesting of subqueries, vie'\.\T def­
initions, and other SQL features.

23.10 COMPARING RDBMS, OODBMS, AND ORDBMS

Now that we have covered the lnain object-oriented DBMS extensions, it is
tirne to consider the two lnain variants of object-datab&'Ses, OODBlVlSs and
ORDBJVISs, and cornpare thern with RDBMSs. Although we presented the con­
cepts underlying object-databases, we still need to define the tenns OODBMS
and OR,DBMS.

An ORDBMS is a relational DBl\1S with the extensions discussed in this
chapter. (Not all ORDBMS systerlls support all the extensions in the gen­
eral forrn that we have discussed theIn, but our concern in this section is the
paradigrll itself rather than specific systenls.) An OODBMS is a progranl­
rning language with a type systern tha..t supports the ft~atures discussed in this
chapter and allows any data object to be persistent; that is, to survive across
different prograrn ex(~cutions.Many current systerns conform to neither defi­
nition entirely but are lIluch closer to one or the other and can be classified
accordingly.

23.10.1 RDBMS versus ORDBMS

COlllparing anllDBlvlS with an OI{DBMS is straightforward. An R,DBl\1S does
not support the extensions discussed in this chapter. rrhe resulting sirnplicity
of the data rnodel rnakes it easier to optirnize queries for eHicient execution~

for exanlple. A relational systern is also easier to use because there are fe-weI'
features to Illa,ster. ()n the other hand, it is less versatile than an ()HJ)BiviS.

23.10.2 OODBMS versus ORDBMS: Similarities

OODB1VlSs and ()HI)BJVISs both support user-defined ADTs, structured types,
ol)ject identity and reference types, and inheritance. Both support a cpler,)l
language for rnanipulating collection types. ()RDBlVlSs support an extended
fonn of S(~L, and 001)131\118s support C)I}L/O(~L. The sirnilarities are by no
rneans accidental ()llDBl\1Ss consciously try to add ()()DBlVfS features to an
RI)B1\118 , and ()()DB~'1Ss in turn have developed query languages based on
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relational query languages. Both OODBIvISs and OR,DBIvlSs provide DBNIS
functionality such as concurrency control and recoverv.

ii, to,- ~$

23.10.3 OODBMS versus ORDBMS: Differences

The fundaulental difference is really a philosophy that is carried all the way
through: OODBMSs try to add DBIvlS functionality to a progranllning lan­
guage, wherca'3 ORDBIvlSs try to add richer data types to a relational DBlVIS.
Although the two kinds of object-databases are converging in terrns of func­
tionality, this difference in their underlying philosophy (and for most systeIns,
their irnplementation approach) has iInportant consequences in terIllS of the
issues emphasized in the design of these DBJVISs and the efficiency with which
various features are supported, as the following comparison indicates:

II OODBMSs airn to achieve seamless integration with a programrning lan­
guage such as C++, Java, or Smalltalk. Such integration is not an im­
portant goal for an ORDBMS. SQL:1999, like SQL-92, allows us to embed
SQL commands in a host language, but the interface is very evident to the
SQL programer. (SQL:1999 also provides extended prograrnming language
constructs of its own, as we saw in Chapter 6.)

II An OODBMS is aimed at applications where an object-centric viewpoint
is appropriate; that is, typical user sessions consist of retrieving a few
objects and working on theHl for long periods, with related objects (e.g.,
objects referenced by the original objects) fetched occasionally. Objects
rnay be extrelnely large and rnay have to be fetched in pieces; therefore,
attention Inust be paid to buffering parts of objects. It is expected that
rnost applications can cache the objects they require in rnemory, once the
objects are retrieved froIn disk. rrherefore, considerable attention is paid to
rnaking references to ill-lnernory objects efficient. Tl'ansactions are likely to
be of very long duration and holding locks until the end of a transaction Inay
lead to poor perfonnance; therefore, alternatives to Two-Phase Locking
HUlst be used.

An OR,DBlVfS is optirnized for c1pplications in which large data collections
are the focus, even though objects rnay have rich structure and be fairly
large. It is expected that applications will retrieve data frorn disk ex­
tensively and optirnizing disk access is still the rnain concern for efficient
execution. Tl'a,nsactions are assurned to be relatively short and traditional
R.DB1VIS techniques are typically used for concurrency control and recovery.

iii T'he query facilities of ()(lL are not supported efficiently in rnost O()DBlVfSs,
\vhereas the query facilities are the centerpiece of an ()HI)Bl\1S. To scnne
extent, this situation is the result of different concentrations of effort in
the cleveloprnent of these systerns. '1'0 a sigrlificant (~xtenti it is also a
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consequence of the systerlls' being optirnized. for very different kinds of
applications.

23.11 REVIEW QUESTIONS

Ansvvers to the review questions can be found in the listed sections.

.. Consider the extended Dinky exarnple frorn Section 23.1. Explain how
it lllotivates the need for each of the following object-database features:
'User-defined struct'Ured types, abstract data types (AD Ts), inheritance, and
object identity. (Section 23.1)

.. What are structured data types? What are collection types, in particular?
Discuss the extent to which these concepts are supported in SQL:1999.
What irnportant type constructors are lllissing? What are the limitations
on the ROWand ARRAY constructors? (Section 23.2)

.. What kinds of operations should be provided for each of the structured
data types? To what extent is such support included in SQL:1999? (Sec­
tion 23.3)

.. What is an abstract data type? How are nlethods of an abstract data type
defined in an external programnling language? (Section 23.4)

.. Explain inheritance and how new types (called subtypes) extend existing
types (called supertypes). What are rnethod overloading and late b'inding?
What is a collect'ion hieruTchy? Contrast this with inheritance in prograrn­
Ining languages. (Section 23.5)

I!II I-Iow is an object identifier (aid) different froln a record id in a relational
DElVIS? How is it different froIn a URI./? \iVhat is a reference type? De­
fine deep and shallow equalit,y and illustrate thern through an exarnple.
(Section 23.6)

II 'The rnultitude of data types in an (}H.DBlVIS allcnvs us to design a rnore nat­
ural and efficient databa"se schcrna but introduces S(Hne nev.,r design choices.
I)iscuss OHJ)BJ\.{S database design issues and illustrate your discussion us­
ing an exalnple application. (Section 23.7)

11III Irnplernenting an ()11I)B1rfS brings new challenges. The systcrll rnust store
large ADTs and structured types that rnight be very large. Efficient and
extensible index rnechanisrns lIlUSt be provided. Exarnples of nc\v func­
tionality include 'u,8cr-def£ned aggregation ./1lnct'ions (we can define nc\v
aggrega,tion, functions for our AI)Ts) and rnethod security (the systcrIl
has to prevent user-defined rnethods fronl cornprornising the security of
the ,DB~'IS). ExarIlples of nc\v techniques to increase perfonnance include
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1nethod cachi'llg and pointeT 871J'izzling. 'The optirnizer must know about
the l1e\v functionality and use it appropriately. Illustrate each of these
challenges through an exarnple. (Section 23.8)

II Cornp<u'e OODBIvISs Vvith ()R,DB~1Ss. In particular, cornpare OQL and
SQL:1999 and discuss the underlying data rnode!. (Sections 23.9 and
23.10)

EXERCISES

Exercise 23.1 Briefly answer the following questions:

1. What are the new kinds of data types supported in object-database systcrIls? Give an
exarnple of each and discuss how the exanlple situation would be handled if only an
RDBl'v1S were available.

2. What rIlust a user do to define a new ADT?

3. Allowing users to define rIlethods can lead to efficiency gains. Give an exarnple.

4. \\That is late binding of nlCthods? Give an exarnple of inheritance that illustrates the
need for dynamic binding.

5. What are collection hierarchies? Give an exalIlple that illustrates how collection hierar-
chies facilitate querying.

6. Discuss how a DBNIS exploits encapsulation in ilnplernenting support for ADTs.

7. Give an exarnple illustrating the nesting and unnesting operations.

8. Describe two objects that are deep equal but not shallow equal or explain why this is
not possible.

9. Describe two objects that are shallow equal but not deep equal or explain why this is
not possible.

10. COlnpare RDBNISs with ORDBlVISs. Describe an application scenario for which you
would choose anRDB11S and explain why. Silnilarly, describe an application scenario
for which you would choose an ORDBl\t1S and explain why.

Exercise 23.2 Consider the Dinky schclna shown in Figure 23.1 and all related lncthocls
defined in the chapter. \\Trite the following queries in SQI... :1999:

1. How luany filrns were shm,vn at theater tno = 5 between January 1 and February 1 of
2002'1

2. \Vhat is the lowest budget for a filnl with at leaBt t\vo stars?

:3. Consider theaters (It which a fihu directed by Steven Spielberg started showing on Jan­
uary 1, 2002. For each such theater, print the narnes of all countries within a 100-ruile
radius. (You can use the o'ucrlap and nulius rnethods illustrated in Figure 2:3.2.)

Exercise 23.3 In a cornpany database, you need to store inforrnation about clnployees, de­
partrnents, and children of erIlployees. For each ernployec, identified by ssn, you rnust record
years (the number of years that the ernployee h(;1." worked for the cornpany), phone, and photo
inforrnation. There are two subclasses of ernployees: contract and regular. Salary is coru­
puted by invoking a rnethod that takes year8 as a pararneter; this rnethod ha.s a different
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irnplernentation for each subclass. Further, for each regular enlployee, you Il1USt record the
IHune and age of every child. l'he rnost conunon queries involving children are sirnilar to
"Find the average a.ge of 1301/5 children" and:'Print the narnes of all of Bob's children."

A photo is a large inmge object and call be stored in one of several irnage fonnats (e.g.,
gif, jpeg). You want to define a display rnethod for iUlage objects; display IIlust be defined
differently for each irnage fonnat. 'For each departlllcnt, identified by dno, you rnust record
dnmne, budget, and WOTkET8 infonnation. Hf(wkc'T'8 is the set of crllployees who work in a
given departrnent. Typical querie.s involving workers include, "Find the average salary of all
workers (across all departrnents)."

1. Using extended SQL, design an ORDBIVIS scherna for the cornpany databa"se. Show all
type definitions, including rnethod definitions.

2. If you have to store this infonnation in an RDBl\'1S, what is the best possible design?

3. Cornpare the ORDBrvIS and RDBIVIS designs.

4. If you are told that a COlllInon request is to display the irnages of all employees in a given
departruent, how would you use this inforulation for physical database design?

5. If you are told that an ernployee's ilnage rnust be displayed whenever any information
about the employee is retrieved, would this affect your scherna design?

6. If you are told that a COU1Inon query is to find all erTlployees who look sirnilar to a given
image and given code that lets you create an index over all irnages to support retrieval
of sinlilar iuulges, what would you do to utilize this code in an OR.DBMS?

Exercise 23.4 ORDBMSs need to support efficient access over collection hierarchies. Con­
sider the collection hierarchy of Theaters and Theater-cafes presented in the Dinky exanlple.
In your role as a DBMS illlplernentor (not a DBA), you rnust evaluate three storage alterna­
tives for these tuples:

II All tuples for all kinds of theaters are stored together all disk in an arbitrary order.

II All tuples for all kinds of theaters are stored together on disk, with the tuples that are
frOIIl TheateLcafes stored directly after the last of the non-cafe tuples.

III T'uples froIll Theater_cafes are stored separately froIll the rest of the (non-cafe) theater
tuples.

1. F'or each storage option, describe a rnechanisrn for distinguishing plain theater tuples
frorn Theater_cafe tuples.

2. For each storage option, describe hmv to handle the insertion of a new non-cafe tuple.

~i. \\Thich storage option is 1110St efficient for queries over all theaters? Over just r1'he­
ateLcafes? In terrns of the nurnber of 1/Os, how rnuch rnore efficient is the best technique
for each type of query cornpared to the other two techniques?

Exercise 23.5 Different ORDBl\!ISs use different techniques for building indexes to evaluate
queries over collection hierarchies. For our Dink:y' exarnple, to index theaters by name there
are two COIIlIIlon options:

III Build one 13+ tree index over Theaters.narne and another 13+ tree index over '1'he··
ater_caJes. narne.

II Build one B+ tree index over the union of I'heaters. Twrne and Theater __cafes. nayne.
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1. Describe how to effic.iently evaluate the following query using each indexing option (this
query is over aU kinds of theater tuples):

SELECT * FROM Theaters T WHERE T.narne= 'tvlajestic'

Give an estiInate of the nurnber of l/Os required in the two different scenarios, assurning
there are 1 rnillion standard theaters and 1000 theater-cafes. \V"hich option is Inore
efficient?

2. Perforrn the saIlIe analysis over the following query:

SELECT * FROM Theater-cafes 'I' WHERE T.nalne = '1vIajestic'

3. For clustered indexes, does the choice of indexing technique interact with the choice of
storage options? For unclustered indexes?

Exercise 23.6 Consider the following query:

SELECT thurnbnail(Lirnage)
FROM lInages I

Given that the 1. image colurnn 111ay contain duplicate values, describe how to use hashing to
avoid conlputing the thum,bnail function rnore than once per distinct value in processing this
query.

Exercise 23.7 You are given a two-dimensional, n x n array of objects. Assume that you
can fit 100 objects on a disk page. Describe a way to layout (chunk) the array onto pages so
that retrievals of square m x m subregions of the array are efficient. (Different queries request
subregions of different sizes, i.e., different m values, and your arrangement of the array onto
pages should provide good perforrnance, on average, for all such queries.)

Exercise 23.8 An ORDBJ\;IS optiruizer is given a single-table query with n expensive selec­
tion conditions, (Tn ( ... ((71 (T))). For each condition (7i, the optirnizer can estinlate the cost C\

of evaluating the condition on a tuple and the reduction factor of the condition Ti. Assurne
that there are t tuples in T.

1. How many tuples appear in the output of this query?

2. Assurning that the query is evaluated a,s shown (without reordering selections), what
is the total cost of the query? Be sure to include the cost of scanning the table and
applying the selections.

:3. In Section 2~3.8.2, it was asserted that the optiruizer should reorder selections so that
they are applied to the table ill order of increasing rank, where ranki = (Ti ~... 1)/Ci.

Prove that this assertion is optirual. 'TIHlt is, 8ho\'/ that no other ordering could result in
a query of lower cost. (Hint: It may be ea...-.,iest to consider the speciaJ ca.se where n = 2
first and generalize from there.)

Exercise 23.9 ORDBIVlSs support references as a data type. It is often clailnecl that using
references instead of ke)lforeign key relationships will give rnuch higher perfonnance for joins.
'T'his Cllwstion asks you to explore this issue.

III Consider the follmving SQL: 1999 DDL \vhich only uses straight relational constructs:

CREATE TABLE R(rkey integer, r'data text);
CREATE TABLE S(skey integer, rfkey integer);
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Assurne that we have the following straightforward join query:

SELECT S.skey, H..relata
FRO?-1 S, R
WHERE S.rfkey = R.rkey

II Now consider the following SQL:1999 ORDBIvIS schelna:

CREATE TYPE r_t AS ROW(1'key integer, rdata text);
CREATE TABLE R OF r _t REF is SYSTEM GENERATED;
CREATE TABLE S (skey integer, r REF (r_t) SCOPE R);

Assurne we have the following query:

SELECT S.skey, S.r.rkey
FROM S

81~

What algorithrll would you suggest to evaluate the pointer join in the ORDBMS scherna?
How do you think it will perform versus a relational join on the previous scherna?

Exercise 23.1.0 Ivlany object-relational systerns support set-valued attributes using some
variant of the setof constructor. For eXaInple, assurning we have a type person_t, we could
have created the table Filrns in the Dinky Schema in Figure 23.1 as follows:

CREATE TABLE Films(filrnno integer, title text, star's setof Person);

1. Describe two ways of irnpleIIlenting set-valued attributes. One way requires variable­
length records, even if the set elements are all fixed-length.

2. Discuss the irnpact of the two strategies on optimizing queries with set-valued attributes.

3. Suppose you would like to create an index on the column stars in order to look up filrns
by the narne of the star that has starred in the filIIl. For both irnplenlentation strategies,
discuss alternative index structures that could help speed up this query.

4. What types of statistics should the query optirnizer rnaintain for set-valued attributes?
How do we obtain these statistics'?

BIBLIOGRAPHIC NOTES

A nurnber of the object-oriented features described here are based in part on fairly old idea")
in the prograrnrning langui:tges cornrnunity. [42] provides a good overview of these ideas in
a database context. Stonebraker's book [719J describes the vision of OHDB:NISs ernbodied
by his company's early product, Illustra (now a product of Inforrnix). Current connnercial
DBJ\lSs ,vith object-relational support include Infonnix Universc.l! Server, U3I"v'l D13/2 CS V2,
and UniSQL. An new version of Oracle is scheduled to include OHJ)BrvlS features a,,'3 well.

IvL:rny of the idc..ls in current object-relational systerlls carne out of i:l, few prototypes built in
the 19808, especially POS'I'(jRES [72:3], Starburst (::351], and 02 [218].

The iclea of an object-oriented dataJ)c1".se wa.s first articulated in [197], \vhich described the
GernStone prototype system. Other prototypes includeDASDBS [G57], EXODlTS [1:30], nus
[27:,3], Ol:>jectStore [4G:3], ODE, [18] ORION [4::'32), SHOH.,E [1291, and 'rl-IOH [482]. 02 is
actually an early exarnple of a, systenl that ,vas beginning to rnerge the thcrnes of ORDBrvISs
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and OODBivISs ~it could fit in this list as well. [41] lists a collectioll of features that aTe

generally considered to belong in an 00DB1\18. Current cornrnercially available OODBIVISs
include GelllStone, Itasca, 02, Objectivity, ObjectStore, Ontos, Poet, and Versant. [4:31J
cornpares OODBIvISs and RDBivISs.

Database support for ADTs was first explored in the INGRES and POSTGRES projects
at U.C. Berkeley. rrhe basic ideas are described in [716]' including Inechanisllls for query
processing and optilnization with ADTs as well as extensible indexing. Support for ADTs
\vas also investigated in the Dannstadt database systern, [480]. Using the POSTGRES index
extensibility correctly required intiInate knowledge of DBTvIS-internal transaction ruechanisllls.
Generalized search trees were proposed to solve this problern; they are described in (376], with
concurrency and ARIES-based recovery details presented in [L147]. [672] proposes that users
lnust be allowed to define operators over ADT objects and properties of these operators that
can be utilized for query optiInization, rather than just a collection of lnethods.

Array chunking is described in (653]. Techniques for luethod caching and optimizing queries
with expensive lnethods are presented in [37:3, 165]. Client-side data caching in a client-server
00D131\I1S is studied in [283]. Clustering of objects on disk is studied in [741]. Work on
nested relations was an early precursor of recent research on complex objects in OOD13rvlSs
and ORD13IvISs. One of the first nested relation proposals is (504]. rvlVDs play an inlportant
role in reasoning about reduncancy in nested relations; see, for exalnple, [579]. Storage
structures for nested relations were studied in (215].

Fonnal rnodels and query languages for object-oriented databases have been widely studied;
papers include [4, 56, 75, 125, 391, 392, 428, 578, 724]. [427] proposes SQL extensions for
querying object-oriented databases. An early and elegant extension of SQL with path expres­
sions and inheritance was developed in GElY! [791]. There has been ITluch interest in cornbining
deductive and object-oriented features. Papers in this area include (44, 288, ,195, 556, 706, 793].
See [3] for a thorough textbook discussion of fonnal aspects of object-orientation and query
languages.

[4~i2~, 4~)5, 721, 796] include papers on D13l'vISs that \vould now be tenned object-relational
a"ndjor object-oriented. [794] contains a detailed overview of scherna and database evolution
in object-oriented database systenls. A thorough presentation of SQL: 1999 can be found in
[525), and advanced features, including the object extensions, are covered in [523]. A short
survey of new SQL:1999 features can be found in [2:37]. The incorporation of several SQL:1999
features into I131v1 D132 is described in [128J. OQL is described in [141]. It is based to a large
extent on the 02 query language, which is described, together with other a..'3pects of 02, in
the collection of papers [55].



24
DEDUCTIVE DATABASES

.. What is the nlotivation for extending SQL with recursive queries?

.. What important properties must recursive programs satisfy to be
practical?

.. What are least lnodels and least fixpoints and how do they provide a
theoretical foundation for recursive queries?

.. What cOlnplications are introduced by negation and aggregate opera­
tions? How are they addressed?

.. What are the challenges in efficient evaluation of recursive queries?

.. Key concepts: Datalog, deductive databases, recursion, rules, in­
feI'ences, safety, range-restriction; least model, declarative seman­
tics; least fixpoint, operational semantics, fixpoint operator; negation,
stratified program.s; aggregate operators, rnultiset generation, group­
ing; efficient evaluation, avoiding repeated inferences, Seminaive fix­
point evaluation; pushing query selections, lVlagic Sets rewriting

For 'Is' and 'Is-Not' though with Rule and Line,
And 'lJp-and-l)own' by Logic I define,
Of all that one should care to fathorn, I
vVa.s never deep in anything but-------\Vine.

.. -Rubaiyat of ()rnar !(hayyarn, Translated by Edward Fitzgerald

llelational database rnanagernent systenls have been enonnously successful for
C),chninistrative da,ta processing. In recent years, ho-wever, as people have tried to

817
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use database systerus in increasingly cornplex applications, some irnportant linl­
itations of these systellls have been exposed. For sonle applications, the query
language and constraint definition capabilities have been found inadequate. As
an exarnple, sonle cornpanies ulaintain a huge parts inventory database and
frequently want to ask questions such as, "Are 'we running Iowan any parts
needed to build a ZX600 sports car?" or "What is the total cornponent and
assernbly cost to build a ZX600 at today's part prices?" These queries cannot
be expressed in SQL-92.

vVe begin this chapter by discussing queries that cannot be expressed in rela­
tional algebra or SQL and present a rnore powerful relational language called
Datalog. Queries and views in SQL can be understood as if~then rules: "If
some tuples exist in tables mentioned in the FROM clause that satisfy the condi­
tions listed in the WHERE clause, then the tuple described in the SELECT clause
is included in the answer." Datalog definitions retain this if-then reading, with
the significant new feature that definitions can be recursive, that is, a table
can be defined in terms of itself. The SQL:1999 standard, the successor to
the SQL-92 standard, requires support for recursive queries, and a large subset
S0111e systerlls, notably IBM's DB2 DBMS, already support thelu.

Evaluating Datalog queries poses some additional challenges, beyond those en­
countered in evaluating relational algebra queries, and we discuss sonle iUlpor­
tant ilnplernentation and optimization techniques developed to address these
challenges. Interestingly, some of these techniques have been found to irnprove
perforrnance of even nonrecursive SQL queries and have therefore been imple­
rnented in several current relational DBMS products.

In Section 24.1, we introduce recursive queries and Datalog notation through
an exaruple. We present the theoretical foundations for recursive queries, lea..'St
fixpoints and least rnodels, in Section 24.2. We discuss queries that involve the
use of negation or set-difference in Section 24.3. Finally, we consider techniques
for evaluating recursive queries efficientl~y in Section 24.5.

24.1 INTR()DUCTION TO RECURSIVE QUERIES

\i\re begin with a sinlple exaJnple that illustrates the li111its of S(~L-92 queries
cUld the power of recursive definitions. Let Assernbly be a relation \vith three
fields part, 8 'ubpart, and qty. An excunple instance of Assernbly is shc)\vn in
Figure 24.1. Each tuple in Assernbly indicates IH}w Inany copies of a particular
subpart are COlltained in a given part. The first tuple indicates, for exarnple,
that (1, trike contains three "wheels. '}'he Assclnbly relation can be visuaJized a,s
a tree, as sho\vn in Figure 24.2. A. tuple is shovvn as an edge going frorn the
part to the subpaJ"t, with the qty value as the edge label.
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Figure 24.1 An Instance of Assembly Figure 24.2 Assembly Instance Seen as a Tree

A natural question to ask is, "What are the cornponents of a trike?" Rather
surprisingly, this query is inlpossible to write in SQL-92. Of course, if we
look at a given instance of the Assernbly relation, we can write a 'query' that
takes the union of the parts that are used in a trike. But such a query is
not interesting---we want a query that identifies all components of a trike for
any instance of Assembly, and such a query cannot be written in relational
algebra or in SQL-92. Intuitively, the problem is that we are forced to join the
Asselnbly relation with itself to recognize that trike contains spoke and tire,
that is, to go one level down the Assenlbly tree. For each additional level, we
need an additional join; two joins are needed to recognize that trike contains
rim, which is a subpart of tire. Thus, the ntullber of joins needed to identify
all subparts of trike depends on the height of the Assen1bly tree, that is, on
the given instance of the Assembly relation. No relational algebra query works
for all instances; given any query, we can construct an instance whose height is
greater than the nurnber of joins in the query.

24.1.1 Datalog

We now define a relation called Cornponents that identifies the cOlnponents of
every part. Consider the following program, or collection of rules:

Components (Part , SUbpart) "­
Components (Part , Subpart) .-

Assembly (Part , SUbpart, Qty) "
Assembly (Part , Part2, Qty) ,
Components (Part2 , Subpart)"

These axe rules in Datalog, a relational query language inspired by Prolog, the
\vell-known logic progranuning language; indeed, the notation follows Prolog.
The first rule should be read as follo\vs:

For all values of Part, Subpart, and (~ty,
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if there is a tuple (Part, Subpart, (~ty) in Assclnbly,
then there IJlUSt be a tuple (Part, Subpart) in (;olnponents.

rThe second rule should be read as follovols:

For all values of Part, Part2, Subpart, a.nd Qty,
if there is a tuple (Part, Part2, Qty) in Assernbly and

a tuple (Part2, Subpart) in Components,
then there HUlst be a, tuple (Part, Subpart) in C()lnponents.

The part to the right of the :- sYlnbol is called the body of the rule, and
the part to the left is called the head of the rule. The syrnbol :- denotes
logical irnplication; if the tuples lIlentioned in the body exist in the database,
it is irnplied that the tuple rnentioned in the head of the rule rnust also be
in the database. (Note that the body could be ernpty; in this case, the tuple
rnentioned in the head of the rule rnust be included in the database.) 1'herefore,
if we are given a set of Assenlbly and Cornponents tuples, each rule can be
used to infer, or deduce, sorne new tuples that belong in COlnponents. This
is why database systerns that support Datalog rules are often called deductive
database systems.

By assigning constants to the variables that appear in a rule, we can infer a spe­
cific Coruponents tuple. For example, by setting Part:::::: trike, Subpart::::::wheel,
and Qty=S, we can infer that (tTike, wheel) is in eoulponents. Each rule is
really a ternplate for Inaking inferences: An inference is the use of a rule to
generate a new tuple (for the relation in the head of the rule) by substituting
constants for varia,bles in such a way that every tuple in the rule body (after
the substitution) is in the corresponding relation instance.

By considering each tuple in Asselnbly in turn, the first rule allows us to infer
that the set of tuples obtained by taking the projection of Assernbly onto its
first two fields is in CCHnponents.

The seco11d rule then allo\vs us to cOlnbine previously discovered Cornponents
tuples with Assernbly tuples to infer new Cornponents tuples. \Ve can apply
the second rule by considering the cross-product of Assernbly and (the current
instance of) Cornponents and assigning values to the variables in the rule for
each rO¥l of the cl'oss-product, one row at a titne. ()bserve ho\v the repeated
use of the varial)le Part2 prevents certain ro\vs of the cross-product fronl con­
tributing any ne\v tuples; in effect, it specifies an equality join condition on
AssenIbly and Cornpouents. The tuples obtained by one application of this
rule are shown in Figure 24.:t (In addition, COlnponents contains the tuples
obtained l)y applying the first rule; these are not shown.)
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trike spoke
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trike rirn
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Figure 24.4 Components Tuples Obtained by
Applying the Second Rule Twice

The tuples obtained by a second application of this rule are shown in Figure
24.4. Note that each tuple shown in Figure 24.~~ is reinferred. Only the last
two tuples are new.

Applying the second rule a third time does not generate additional tuples. rrhe
set of Components tuples shown in Figure 24.4 includes all the tuples that can
be inferred using the two Datalog rules defining Cornponents and the given
instance of Assembly. rrhe components of a trike can now be obtained by
selecting all Cornponents tuples with the value trike in the first field.

Each application of a Datalog rule can be understood in ternlS of relational
algebra. The first rule in our exarnple program simply applies projection to the
Assernbly relation and adds the resulting tuples to the Cornponents relation,
which is initially ernpty. The second rule joins Assernbly with COlllponents and
then does a projection. The result of each rule application is cornbined with
the existing set of Cornponents tuples using union.

The only Datalog operation that goes beyond relational algebra is the repeated
application of the rules defining CCHnponents until no new tuples are generated.
This repeated application of a set of rules is called the jiJ.:point operation, and
\ve develop this idea further in the next section.

vVe conclude this section by rewriting the Datalog definition of Cornponents
using S(~L:1999 syntax:

WITH RECURSIVE Cornponents(Part, Subpart) AS
(SELECT A1.Part, AJ.Subpart FROM Assernbly .,A.I)
UNION
(SELECT A2.Part, Cl.Subpart
FROM Assernbly A2; Cornponents C1
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WHERE A2.Subpart = Cl.PaTt)

SELECT * FROM COlllponents C2

The WITH clause introduces a relation that is part of a query definition; this
relation is shnilar to a view, but the scope of a relation introduced using WITH
is local to the query definition. The RECURSIVE key\vord signals that the table
(in our exarnple, Cornponents) is recursively defined. The structure of the
definition closely parallels the Datalog rules. Incidentally, if we wanted to find
the cornponents of a particular part, for exanlple, tTikc, we can sirnply replace
the last line ¥lith the following:

SELECT * FROM Cornponents C2
WHERE C2.Part = 'trike'

24.2 THEORETICAL FOUNDATIONS

We classify the relations in a Datalog prograln as either output relations or in­
put relations. Output relations are defined by rules (e.g., COluponents), and
input relations have a set of tuples explicitly listed (e.g., Assembly). Given
instances of the input relations, we Inust compute instances for the output re­
lations. The meaning of a Datalog prograrIl is usually defined in two different
ways, both of which essentially describe the relation instances for the output
relations. Technically, a query is a selection over one of the output relations
(e.g., all Components tuples C with C. paTt = tTike). However, the lueaning of
a query is clear once we understand how relation instances are associated with
the output relations in a Datalog progranl.

rrhe first approach to defining the sernantics of a Datalog progralll, called the
least '{nodel sC'lnantics, gives users a way to understand the prograrn without
thinking about how the prograrn is to be executed. That is, the sernanties is
declarative, like the sernantics of relational calculus, and not o]JfTo,tional like
relational algebra sClnantics. This is irnportant becC111se recursive rules lnake it
difficult to understand a· prograIll in tcrrns of an evaluation strategy.

The second approach, called the least fi~rpoint 8crnantic8, gives a conceptu<tl
evaluation strategy to COlnpute the desired relation insta..nces. This serves a..'3
the basis for recursive query evaluation in a I)Brv:rS. 1I10re efficient evaluation
strategies are used in an actual iInplernentation, but their correctness is sho\vI1
by dernonstntting their equivalence to the lea"st fixpoint approach. rrhe fixpoint
sClnantics is thus operational and. plays a. role analogous to that of relational
algebra sernalltics for nonrecursive queries.
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vVe \¥ant users to be able to understand a Datalog progTarn by understanding
each rule independent of other rules, vvith the lneaning: If the body 'istT'ue, the
head is alsotT'ue. This intuitive reading of a rule suggests that, given certain
relation instances for the relation naines that appear in the body of a rule,
the relation instance for the relation rnentioned in the head of the rule 111USt
contain a certain set of tuples. If a relation Harne R.. appears in the heads of
several rules, the relation instance for R IIlUSt satisfy the intuitive reading of
all these rules. However, we do not want tuples to be included in the instance
for R, unless they are necessary to satisfy one of the rules defining R,. That is,
we want to cornpute only tuples for R that are supported by SaIne rule for R.

To lnake these ideas precise, we need to introduce the concepts of rnodels and
least models. A model is a collection of relation instances, one instance for each
relation in the prograrn, that satisfies the following condition. For every rule in
the prograrll, whenever we replace each variable in the rule by a corresponding
constant, the following holds:

fr every tuple in the body (obtained by our replaceUlent of variables
with constants) is in the corresponding relation instance,

I 1hen the tuple generated for the head (by the assignrnent of constants
to variables that appear in the head) is also in the corresponding rela­
tion instance.

Observe that the instances for thE~ input relations are given, and the definition
of a rnodel essentially restricts the instances for the output relations.

Consider the rule

Components (Part , Subpart) '- Assembly (Part , Part2, Qty) ,
Components (Part2, Subpart).

Suppose we replace the variable Part by the constant wheel, Part2 by 'tin:, (~ty

by 1, and Subpart by rirn:

Components (wheel , rim) '- Assembly(wheel, tire, 1),
Components (tire , rim).

Let A be an instance of Assernbly and C be an instance of COlnpouents. If A
contains the tuple (udu~el, Lire, 1) and C contains the tuple (UTe, Tim,), then
C rrulst also contain the tuple ('wheel, rirn) for the pajr of instancc~s A. and C
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to be a rnodel. ()f course, the instances A and (; rnust satisfy the inclusion
requirenlent just illustrated for every assignruent of constants to the variables
in the rule: If the tuples in the rule body are in.A. and C, the tuple in the head
Inus1; be in C.

As an exarnple, the instances of Asscrnbly shown in Figure 24.1 and Cornpo­
nents shovvn in F'igure 24.4 together fornl a rnodel for the Conlponcnts prograll1.

C;iven the instance of Assernbly shown in Figure 24.1, there is no justification
for including the tuple (spok~e, pedal) to the COlnponents instance. Indeed,
if we add this tuple to the cornponents instance in Figure 24.4, '-'Te no longer
have a lllodel for our program, a.s the following instance of the recursive rule
derllonstrates, since (wheel, pedal) is not in the Cornponents instance:

Components (wheel , pedal) :- Assembly(wheel, spoke, 2),
Components(spoke, pedal).

However, by also adding the tuple (wheel, pedal) to the Cornponents instance,
we obtain another rnodel of the Components prograrll. Intuitively, this is un­
satisfactory since there is no justification for adding the tuple (spoke, pedal)
in the first place, given the tuples in the Assembly instance and the rules in
the prograln.

We address this problern by using the concept of a least rllodel. A least model
of a prograrn is a rnodel M such that for every other model M2 of the sarne
progranl, for each relation Il in the progranl~ the instance for R in ]\II is contained
in the instance of R in 1\12. The 1nodel forIned by the instances of Assernbly
and COlnponents shown in Figures 24.1 and 24.4 is the least rHodel for the
CC)lnponents progralll vvith the given Assernbly instance.

241&2,,2 The Fixpoint Operator

A fixpoint of a function f is a value v such that the function applied to the
value returns the saIIle value, that is, f(v) = 'U. Consider a function applied
to a set of values that also returns a set of values. For eXH,rnple, we carl define
double to l)e a function tllat Illuitiplies every elenlcnt of the input set by two
and d(YlJ,blc+ tobe double U idenhty. T'hus, d()'ublc( {1,2,5} ) == {2,4,lO}, and
double+( {1,2,5} ) ::::::: {1,2,4.,5,lO}.The set of all even integers which happens
to be an infinite set-is a fixpoint of the function double-+. Another fixpoint
of the function dO'lLble-f- is the set of all integers. l'he first fixpoint (the set of
all (~ven integers) is .';'(nailer than the second fixpoint (the set of all integers)
because it is contained in the latter.
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The least fixpoint of a function is the fixpoint that is slnaller than every other
fixpoint of that function. In general, it is not glHlranteed that a function has
a loa.",t fixpoint. For exaIl1ple, there lnay be t'\¥o fixpoints, neither of \vhich is
81na11er than the other. (Does double have a least fixpoint? What is it?)

No\V let us turn to functions over sets of tuples, in particular, functions defined
using relational algebra expressions. The Cornponents relation can be defined
by an equation of the fonn

C!orrLponents = Jrl,5 (Assernbly [)<J2=1 Cornponents) U 7Tl,2 (Assernbly)

1'his equation has the forn1

Cornponents = f(Cornponents,Assembly)

where the function f is defined using a relational aJgebra expression. For a
given instance of the input relation Assernbly, this can be sirnplified to

C7ornponents = f(C f o1nponents)

The least fixpoint of f is an instance of Cornponents that satisfies this equa­
tion. Clearly the projection of the first two fields of the tuples in the given
instance of the input relation Assernbly rnust be included in the (instance that
is the) least fixpoint of Cornponents. In addition, any tuple obtained by joining
Components with Assernbly and projecting the appropriate fields IllUst also be
in Components.

A little thought shows that the instance of Components that is the least fixpoint
of f can be ccnnputed using repeated applications of the Datalog rules sho\vn
in the previous section. Indeed, applying the two Datalog rules is id(~ntical to
evaluating the relational expression used in defining COlnponcnts. If an appli­
cation generates Cornponents tuples that are not in the current instance of the
Cornponents relation, the current instance cannot be the fixpoint. Therefore,
we add the new tuples to Cornponents <tnd evalu<.tte the relational expression
(equivalently, the two Datalog rules) again. T'his process is repeated until ev­
ery tuple generated is already in the current instance of Cornponents. \\Then
applying the rules to i,he currerlt set of tuples does not produce any rl(~\V tuples,
\ve have reached a fixpoint. If CC)lnponents is initialized to the erupty set of
tuples. intuitively vve infer only tuples that (1,1'e necessary b:y the definition of a
fixpoint, and the fixpoint cornputed is the least fixpoint.

24.2.3 Safe Datalog Programs

(~onsider the follovving p1'ograrn:

ComplexYarts (Part) : - Assembly(Part, Subpart, Qty) , Qty > 2.
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According to this rule, a cOlnplex part is defined to be any part that ha" Inore
than t\VO copies of anyone subpart. :1:01' each part lnentioned in the Asselnbly
relatioIl, \ve can cac.;ily check \vhether it is a cOll1plex part. In contrast, consider
the following prograrn:

PriceYarts (Part, Price) '-
Assembly (Part , Subpart, Qty) , Qty> 2.

This variation seeks to associate a price with each cornplex part. IIowever, the
variable Price does not appear in the body of the rule. This Ineans that an
infinite number of tuples must be included in any model of this progralll. To
see this, suppose we replace the variable Part by the constant trike, SubPart by
wheel, and Qty by 3. This gives us a version of the rule with the only remaining
variable being Price:

PriceYarts(trike,Price) :- Assembly (trike , wheel, 3), 3 > 2.

Now, any assignment of a constant to Price gives us a tuple to be included in
the output relation Price__.Parts. For example, replacing Price by 100 gives us
the tuple Price_Parts(trike,lOO). If the least Inodel of a progralIl is not finite,
for even one instance of its input relations, then we say the program is unsafe.

Database systems disallow unsafe programs by requiring that every variable
in the head of a rule also appear in the body. Such progralns are said to
be range-restricted, and every range-restricted Datalog prograln has a finite
least model if the input relation instances are finite. In the rest of this chapter,
we &'3SUllle that prograrns are range-restricted.

24.2.4 Least Model =Least Fixpoint

Does a Datalog prograln always have a least rnodel? ()r is it possible that
there are two rnodels, neither of which is contained in the other'? Sirnilarly,
does every Datalog progranl have a least fixpoint? VvThat is the relationship
between the least rnodel and the least fixpoint of <t Datalog prograln?

As we noted earlier, not every function has a lea"st fixpoint. Fortunately, every
function defined in tenns of relational algebra expressions tl1at do not contain
set-difference is ,guaranteed to have a least fixpoint, and the least fixpoint can
be cornputed by repeatedly evaluating the functic)ll. l'his tells us that every
l)atalog prograrn has a le~t.st fixpoint and that it can l)e cOlnputed by repeatedly
applyi11g the rules of th(~ l)rogranl on the given instances of the input relations.

F\u·ther, every I)atcl.log progr(un is glla.r<lnteed to have a least rnodel <lud the
least rnodel is equal to the least fixpoint of the I>l'ograln. These results (whose
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proofs we do not discuss) provide the bclSis for Datalog query processing. 'Users
can understand a progTarn in terms of 'If the body is true, the head is also true,'
thanks to the least l1lodel sClnantics. rrhe DBNIS can COlllpute the answer by
repeatedly applying the prograrn rules, thanks to the least fixpoint sernantics
and the fact that the least nlodel and the least fixpoint are identical.

24.3 RECURSIVE QUERIES WITH NEGATION

Unfortunately, once set-difference is allo\ved in the body of a rule, there r11ay
be no least rnodel or least fixpoint for a program. Consider the following rules:

Big(Part):- Assembly (Part , Subpart, Qty) , Qty> 2,
NOT Small (Part) .

Small (Part) :- Assembly (Part , Subpart, Qty) , NOT Big(Part).

These two rules can be thought of as an attenlpt to divide parts (those that
are mentioned in the first colulnn of the Asselubly table) into two classes, Big
and Small. The first rule defines Big to be the set of parts that use at least
three copies of some subpart and are not classified as small parts. The second
rule defines Small as the set of parts not classified as big parts.

If we apply these rules to the instance of Assembly shown in Figure 24.1, trike is
the only part that uses at least three copies of senne subpart. Should the tuple
(trike) be in Big or SUlall? If we apply the first rule and then the second rule,
this tuple is in Big. To apply the first rule, we consider the tuples in Asselubly,
choose those with Qty > 2 (which is just (trike)), discard those in the current
instance of Srnal1 (both Big and Small are initially elnpty), and add the tuples
that are left to Big. 1'herefore, an application of the first rule adds (trike) to
Big. Proceeding siInilarly, \ve can see that if the second rule is applied before
the first, (tTike) is added to Srnall instead of Big.

rrhis prognun has hvo fixpoints, neither of 'which is srnaller than the other, as
shown in Figure 24.5. (rhe first fixpoint 11&\) a Big tuple that does not appear in
the second fixpoint; therefore, it is not sInaBer than the second fixpoint. 1'he
second fixpoint ha,s a 81na11 tuple that does not appear in the first fixpoint;
therefor(\ it is D.ot sr11a11e1' than the first fixpoint. The order ill \vhich \ve

apply the rul(~s detennines \vhich fixpoint is cOlnputed; this situation is very
unsatisfactory.\Ve want users to be able to understand their queries vvithout
thinking (1)out exactly" ho\v the evaJuation proceeds.

]'he root of the problerH is the use of NOT. \Vhen \ve apply the first rule, senne
irlferences (1re disallc:)\~red because of the presence of tuples in 8rna11. PcLrts
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Figure 24.5 Two Fixpoints for the Big/Small Program

that satisfy the other conditions in the body of the rule are candidates for
addition to Big; we remove the parts in 8rna11 frorn this set of candidates.
Thus, sorne inferences that are possible if 8ruall is ernpty (as it is before the
second rule is applied) are disallowed if SInall contains tuples (generated by
applying the second rule before the first rule). Here is the difficulty: If NOT
is used, the addition of tuples to a relation can disallow the inference of other
tuples. Without NOT, this situation can never arise; the addition of tuples to a
relation can never disallow the inference of other tuples.

Range-Restriction and Negation

If rules are allowed to contain NOT in the bodYl the definition of range-restriction
rnust be extended ensure that all range-restricted prograrJlS are safe. If a re­
lation appears in the body of a, rule preceded by NOT 1 we call this a negated
occurrence. Relation occurrences in the body that are not negated are called
positive occurrences. A prograrn is range-restricted if every variable in
the head of the rule appears in sorne positive relation occurrence in the body.

24.3.1 Stratification

A widely used solution to the problern caused by negation, or the use of NOT,
is to irnpose certain syntactic restrictions on prograrlls. rrhese restrictions can
be ea~sily checkecl and progrcuns that satisfy thern have a natural lneaning.

\Ve say that a tableT depends on a table 8 if sorne rule with T in the head
contains 5", or (recursively) contains a predicate that depends on 8 ~ in the
bod:y. A recursively defined predicate always depends on itself. For exarnple,
Big depends on Sruall (and on itself). Indeed, the tables Big and Srnall (l,re
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nlutually recursive, that is, the definition of 'Big depends on SrnaU and vice
versa. ,"Ve say that a table 'T depends negatively on a tal)le 8 if SCHne rule
\vith 'T in the head contains NOT S, or (recursively) contains a predicate that
depends negatively on S, in the body.

Suppose \ve classify the tables in a prograrll into strata or layers as follows.
The tables that do not depend on any other tables aTe in straturll O. In our
Big/S1nall exarnple, ASSCIIlbly is the only table in stratu1Il O. Next, \ve identify
tables in straturll 1; these are tables that depend only on tables in stratuln 0
or straturn 1 and depend negatively only on tables in straturn O. Higher strata
are sirnilarly defined: '}'he tables in straturni are those that do not belong to
lOVvTer strata, depend only on tables in stratuIll i O[ lower strata, and depend
negatively only on tables in lo\;ver strata. A stratified program is one whose
tables can be classified into strata according to the above algoritlull.

rrhe Big/Sruall progralIl is not stratified. Since Big and Snlall depend on each
other, they 1nust be in the sarne straturn. Ho\vever, they depend negatively
on each other, violating the requirc1Ilent that a table can depend negatively
only on tables in lower strata. Consider the following variant of the Big/Srnall
progra1Il, in which the first rule has been rnodified:

Big2(Part) :- Assembly (Part , Subpart, Qty) , Qty> 2.
Smal12(Part) :- Assembly (Part , Subpart, Qty) , NOT Big2(Part).

This prograrn is stratified. Slnall2 depends on Big2 but Big2 does not depend
on 8111a1l2. Assernbly is in stratu111 0, Big is in straturn 1, and Srna1l2 is in
straturn 2.

A stratified prograrn is evaluated stratu1n-by-straturn, starting with stratunl
O. 'To evaluate a straturn, we cornpllte the fixpoint of all rules defining tables
in this straturn. "Fhen evaluating a straturn, any occurrence of NOT involves
a table frorH a lower straturn, \\'hich has therefore been corupletely evaluated
by no\\'. The tuples in the negated table still disallow sorne inferences, but the
effect is cornpletely deterrninistic, given the straturn-by-straturn evaJuation. In
the c~xa.Inple, Big2 is C01uput8(1 before 81na1l2 because it is in ('t loviler straturIl
than 8rna112: (triA,~e) is added to Big2. Next, 'when we cornpute 81na112, \ve
recognize that (trike) is not in 8rna112 l)ecause it is already in Big2.

Incidentally, note that the stratified Big/Srnall progranl is not even recursive. If
\ve repla,ce ..Assernbl.y b)l" Cornponents, \ve obtain a recursive, stratified prograrn:
}\,sscrnbly is in straturn 0, Cornponents is in stratlull 1, Big2 is also in straturn
1~ and 81na112 is in straturn 2.
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Consider the stratified version of the Big/Slnall prograrll. The rule defining
Big2 forces us to add (l:T'ike) to Big2 and it is natural to a"C;;SUlne that (tirike) is
the only tuple in Big2, because \ve have no supporting evidence for any other
tuple being in Big2. The rninirnal fixpoint conrputecl by stratified fixpoint
evaluation is consistent \vith this intuition. However, there is another rninhnal
fixpoint: \Ve can place every part in Big2 and rnake Srna1l2 be ernpty. \\Thile
this assignrllent of tuples to relations seeIns unintuitive, it is nonetheless a
rninimal fixpoint.

rrhe requirernent that prograrns be stratified gives lIS a natural order for eval­
uating rules. When the rules are evaluated in this order, the result is a unique
fixpoint that is one of the minirnal fixpoints of the prograrll. The fixpoint
C0111puted by the stratified fixpoint evaluation usually corresponds well to our
intuitive reading of a stratified prograrll, even if the program has rnore than
one rllininlal fixpoint.

For nonstratified Da.talog progranls, it is harder to identify a natural model
frorn arnong the alternative rninirnal rnodels, especially when we consider that
the Ineaning of a prograrll must be clear even to users who lack expertise in
Dlathelnatical logic. Although considerable research has been done on identi­
fying natural rnodels for nonstratified prograrns, practical irnplernentations of
Datalog have concentratt~d on stratified prograrns.

Relational Algebra and Stratified Datalog

Every relational algebra query can be written as a range-restricted, stratified
Datalog progra.rn. (Of course, not all Datalog progranls can be expressed in
relational algebra; for exarnple, the Cornponents prograrn.) 'We sketch the
translation frorn algebra to stratified Datalog by writing a Datalog progra.rn for
each of the b::l..sic algebra operations, in terrns of two eXC1rnple tables R, and S,
each with t¥lO fields:

Selection:
Projection:
Cross-product:
Set-difference:
lJnion:

Ilesult(Y) :- Il(X,Y), X=c.
Itesult(Y) :- H(X,Y).
Ilesult(X:,Y,lJ,V) :- Il(X,YL S(lJ,V).
11esult(X,Y) :- Il(X,yT), NOT S(U,V).
H.esult(X,Y) :- R,(X,Y).
Result(X,Y) :- S(X,Y).

\Ve conclude ()ur discussion of stratification l>y noting that S(~L:1999 requires
prograrns to be stratified. rrhe stratified Big/Sruall prograrn is shovvn belovl in
SCJL: 1999 notation, vvith a final additional selection on Big2:
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SQL:1999 and Datalog Queries: A Datalog rule is linear recursive
if the body contains at Illost one occurrence of any table that depends on
the table in the head of the rule. A linear recursive program contains
only linear recursive rules. All linear recursive Datalog progranls can be
expressed using the recursive features of SC~L:1999. IIowever, these features
are not in Core SQL.

WITH
Big2(Part) AS

(SELECT A1.Part FROM Assernbly Al WHERE Qty > 2)
Srnall2(Part) AS

((SELECT- A2.Part FROM Assernbly A2)
EXCEPT
(SELECT Bl.Part fron1 Big2 Bl))

SELECT * FROM Big2 B2

24.4 FROM DATALOG TO SQL

To support recursive queries in SQL,we lllust take into account the features
of SQL that are not found in Datalog. Two central SQL features rnissing in
Datalog are (1) SQL treats tables as Tntlltisets of tuples, rather than sets, and
(2) SQL pennits grouping and aggregate operations.

The rnultiset selnantics of SQL queries can be preserved if we do not check for
duplicates after applying rules. Every relation instance, including instances of
the recursively defined tables, is a lllultiset. rrhe nurnber of occurrences of a
tuple in a relation is equal to the nurnber of distinct inferences that generate
this tuple.

The second point can be addressed by extending Data.logwith grouping and
aggregation operations. Tlhis rnust be done\vith rnultiset sernantics in rnind,
as \ve no\v illustrate. Consider the following prograrn:

NumPartsCPart, SUM((Qty))) :- AssemblyCPart, Subpart, Qty).

'fhis prograrn is equivalent to the SC~L query

SELECT A.Part, SUM (A.Qty)
FROM Assernbly r'\
GROUP BY A.Part
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The angular brackets (... ) notation \va"s introduced in the LDL deductive sys­
teln~ one of the pioneering deductive database prototypes developed at IVICC
in the late 19808. VVe use it to dell0te TlH1ULsct geneTat'ion~ or the creation of
rnultiset-values. In principle, the rule definil1gNurnParts is evaluated by first
creating the telnporary relation ShO\Vll in Figure 24.(3. \Ve create the ternporary
relation by sorting on the part attribute (which appears on the left side of the
rule, along with the (...) terrn) and collecting the I11ultiset of qtU values for
each po,Tt value. vVe then apply the SUM aggregate to each lllultiset-value in the
second colu111n to obtain the ans\ver ~ \vhich is sho\vn in Figure 24.7.

-.......""""""""........

trike 4
f--._.,_.•

fran1e 2
---

wheel 3
tire 2_..

l part [SUM ( (qty) 'I
trike {3,l}

1--.

frarne {l,l}
~•..__.

wheel {2,l}
...._.__.

tire -'{1,l}
'~_.""-',"-"-

I part I (qty) I

Figure 24.6 Temporary Relation Figure 24.7 The Tuples in NumParts

The telnporary relation shown in Figure 24.6 need not be nlC1terialized to corn­
pute NurnParts; for exalllplc, SUM can be applied on-the-fly or Assenlbly can
sirnply be sorted and aggregated as described in Section 14.6.

The use of grouping and aggregation, like negation, causes cOlnplicatiol1s when
applied to a partially cOlnputed relation. rrhe difficulty is overcorne by adopt­
ing the sarne solution used for n(~gation, stratification. Consider the following
prograrn: 1

TotParts(Part, Subpart, SUM«(Qty))) :- BOM(Part, Subpart, Qty).
BOM(Part, Subpart, Qty) :- Assembly (Part , Subpart, Qty).
BOM(Part, Subpart, Qty) :- Assembly(Part, Part2, Qty2) ,

BOM(Part2, Subpart, Qty3) , Qty=Qty2*Qty3.

The idea is to count the l111rnber of copies of Subpart for each Part. By ~1ggre­

gating over B()l\II rather than Assernbly, we count subparts at any level in the
hierarchy instead of just irnrnediate subparts. This prograrn is a version of a
vvell-known problcrl1 called Bill-of-1Vlo,terials and variants of it are probably the
lnost \vide1)" used recursive queries in practice.

'rhe irnportant point to note in this exarnple is that we Inust vvait until the
relation BC)]VI has been cornpletely evaluated l)(·Jore \ve apply the rrotParts
~"ule. ()thervvis8, \ve obta.in incornplete counts. T1his situation is analogous to
theprobler11 we faced 'with negation; we have to (~valuate the negated rel[\,tion

1The reader should write this in SQL: 1999 syntax, as a sirnple exercise.
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~~:1999Cycle D~~:tion:-~~e Da;~~~~ qU;~~~-thatd~~ot l~::ith-l
111etie operations have finite answers and the fixpoint evaluation is guaran- !
teed to halt. Unfortunately, recursive SQL queries Ina)' have infinite answer
sets and query eva1ua,tion rnay not halt. l'here are tvvo independent rea,..

I sons for this: (1) the use of aritlnnetie operations to generate data values
I that are not stored in input tables of a query, and (2) rTIultiset scrnantics
1

1

"'1 for rule applications; intuitively, problems arise from cycles in the data.
, (To see this, consider the Cornponents prograrn on the Assenlbly instance
I shown in Figure 24.1 plus the tuple (tube, 'wheel, 1).) SQL: 1999 provides
I_special constructs to check for such cycles. _~

cornpletely before applying a rule that involves the use of NOT. If a prograrn is
stratified with respect to uses of (... ) as well as NOT, stratified fixpoillt evalua­
tion gives us 111eaningful results.

There are two further aspects to this exarnple. First, we rnust understand the
cardinality of each tuple in BOlVI, based on the rnultiset sernantics for rule
application. Second, we rnust understand the cardinality of the multiset of Qty
values for each (Part, Subpart) group in TotParts.

I part .._[ subpart] ···qtyl
0---- .

frarue
_..._.

trike 1
... ._~

-·'"'trike seat 1
fra.rne seat 1
frame pedal 2

.~.~...

seat cover 1
~-".... _........ ".'"-

Figure 24.8 Another Instance of Assembly

trike

y~,,-
wheel frame

A A
spoke tire seat pedal

~
nm tube

Figure 24.9 Assembly Instance Seen a,..s a Graph

\Ve illustrate these t\VO points using the instance of Assernbly shown in Figures
24.8 and 24.9. f\pplying the first BONI rule, we add (one copy of) every tuple in
Assernbly to BOl\J1. Applying the second BOIVI rule, \ve ctdd the follo\ving four
tuples to B()l\JI: (trike, scat, 1), (trike, pedal, 2) \ (trike, coveT, 1), and (frarne,
coveT, 1). ()bserve that the tuple (trike, seat, 1) \vas (11r(~ady in BOl\/f because
it \vas generated by ctpplying the first rule; therefore, rnultiset sernantics for
rule application gives us two copies of this tuple. Applying the second BC)IVI
rule on the new tuples, we generate the tuple (b'ike, cover, 1) (using the tuple
(fran~e, cover, 1) for BaNI in t.he body of the rule): this is our second copy of
the tuple. i\pplying the second rule again on this tupl(~ does not generate any



834 CHAPTER 24,

tuples, and the cOInputation of the BO:NI relation is now cOlnplete. The BaM
instance at this stage is sho\vn in Figure 24.10.

trike frarne 1
trike seat 1
frame seat 1
fraIne pedal 2
seat cover 1
trike seat 1
trike pedal 2
trike cover 1
frame cover 1
trike cover 1

Figure 24.10 Instance of BON! Table

trike fraIlle {1}
trike seat {1,1}
trike cover {1,1}
trike pedal {2}
fram.e seat {1}

f---fr-aI-n-e-l--p-e-d-a-1--+-·T2T···_·
-+-----+-~:;,-----l

seat cover {I}
frame cover {I}

Figure 24.11 Temporary Relation

Multiset grouping on this instance yields the temporary relation instance shown
in Figure 24.11. (This step is only conceptual; the aggregation can be done on
the fly without materializing this terllporary relation.) Applying SUM to the
rllultisets in the third column of this temporary relation gives us the instance
for TotParts.

24.5 EVALUATING RECURSIVE QUERIES

rrhe evaluation of recursive queries has been widely studied. While all the
problems of evaluating nonrecursive queries continue to be present, the newly
introduced fixpoint operation creates additional difficulties. A straightforward
approach to evaluating recursive queries is to cornpute the fixpoint by repeat­
edly applying the rules as illustrated in Section 24.1.1. One application of all
the prograrn rules is caIled an iteration; we perfonn as rnany iterations as nec­
essary to reach the le&'3t fixpoint. This approach has two rnain disadvantages:

II Repeated Inferences: As Figures 24:.:3 and 24.4 illustrate, inferences are
repeated across iterations. That is, the sarne tuple is inferred repeatedly
in the ",arne way, using the ScHne rule and the seune tuples for tables in the
body of the rule.

11II Unnecessary Inferences: Suppose we want to find the cornponents of
only a wheel. Cornputing the entire Cornponents table is \ve:lsteful and does
not take advantage of inforrnation in the query.
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In this section, we discuss how each of these difficulties can be overcorne. \Ve
consider only Datalog progralns without negation.

24.5.1 Fixpoint Evaluation without Repeated Inferences

COlnputing the fixpoint by repeatedly applying all rules is called Naive fix­
point evaluation. Naive evaluation is guaranteed to cornpute the least fix­
point, but every application of a rule repeats all inferences lllade by earlier
applications of this rule. We illustrate this point using the following rule:

Components (Part , Subpart) :- Assembly (Part , Part2, Qty) ,
Components (Part2, Subpart).

When this rule is applied for the first time, after applying the first rule defining
Components, the Components table contains the projection of Assembly on
the first two fields. Using these Components tuples in the body of the rule, we
generate the tuples shown in Figure 24.3. For example, the tuple (wheel, rim)
is generated through the following inference:

Components (wheel , rim) :- Assembly(wheel, tire, 1),
Components (tire, rim).

When this rule is applied a second tilne, the Components table contains the
tuples shown in Figure 24.3 in addition to the tuples that it contained before
the first application. Using the Components tuples shown in Figure 24.3 leads
to new inferences; for example,

Components(trike, rim) :- Assembly(trike, wheel, 3),
Components (wheel, rim).

However, every inference carried out in the first application of this rule is also
repeated in the second application of the rule, since all the Assernbly and
Cornponents tuples used in the first rule application are considered again. For
exarnple, the inference of (wheel, TiTr~) shown above is repeated in the second
application of this rule.

1~he solution to this repetition of inferences consists of rernelnbering which
inferences were carried out in earlier rule applications and not carrying theln
out again. vVe can 'relnclnber' previously executed inferences efficiently by
sirnply keeping track of which COlnponents tuples were generated for the first
tiIne in the rnost recent applica.,tion of the recursive rule. Suppose \ve keep
track by introducing (1, new relation called delta._Clornponcnts and storing just
the newly generated Cornponents tuples in it. Now, we can use only tlH~ tuples
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in deUeL G1(nnponents in the next application of the recursive rule; any inference
using other COIuponents tuples should have been carried out in earlier rule
Etpplications.

This refincrllcnt of fixpoint evaluation is called Seminaive fixpoint evalua­
tion.Let us trace Serninaive fixpoint evaluation on our exarllple prognllTI. The
first application of the recursive rule produces the Cornponents tuples shown in
Figure 24.3, just like Naive fixpoint evaluation, and these tuples are placed in
delta_ C:on~ponents. In the second application, however, only delta_ C;()'{nponents
tuples are considered, which rneans that only the following inferences are carried
out in the second application of the recursive rule:

Components (trike , rim) :- Assembly(trike, wheel, 3),
delta_Components(wheel, rim).

Components (trike , tube) :-Assembly(trike, wheel, 3),
delta_Components(wheel, tube).

Next, the bookkeeping relation delta_Cornponents is updated to contain just
these two Cornponents tuples. In the third application of the recursive rule, only
these two delta_ Cornponents tuples are considered and therefore no additional
inferences can be nlade. The fixpoint of Cornponents has been reached.

To irnplernent Serninaive fixpoint evaluation for general Datalog prograrns, we
apply all the recursive rules in a prograrll together in an iteration. Iterative
application of all recursive rules is repeated until no new tuples are generated in
SOHle iteration. 10 surnrnarize how Serninaive fixpoint evaluation is carried out,
there are two irnportant differences with respect to Naive fixpoint evaluation:

iIII WTe rnaintain a delta version of every recursive predicate to keep track of the
tuples generated for this predicate in the Inost recent iteration; for excunple,
delta_ Cornponents for COHlponents. rrhe delta versions are updated at the
end of each iteration.

II 1'he original prograrn rules are re\vritten to ensure that every inference uses
at least one delta tuple; that is, one tuple that\vas not kno\vn before the
previous iteration. This property guarantees that the inference could not
have been caxriccl out in earlier iterations.

\JVe do lI0t discuss details of Serninaive fixpoint evaluation (such fiB the a.lgo­
ritlun for rc\vriting progranl rules to ensure the use of a delta tuple in each
inference) .
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Consider a nonrecursive vievv definition. If \ve \vant only those tuples in the
viC\\T that satisfy an additional selection condition, the selection can be aJlded
to the plan as a final operation, and the relational algebra transforlnations
for conunuting selections with other relational operators all<)\v us to 'push'
the selection ahead of rnore expensive operations such as cross-products (;l,nd
joins. In effect, \ve restrict the cornputation by utilizing selections in the query
specification. 1'he problerIl is rnore cOlnplicated for recursively defined queries.

\Ve use the following progranl as an exarnple in this section:

8ameLevel(81 , 82)

8ameLevel(81 , 82)

Assembly(P1, 81, Q1),
Assembly(Pl, 82, Q2),
Assembly(Pl, 81, Qi),
8ameLevel(Pl, P2), Assembly(P2, 82, Q2).

Consider the tree representation of Assernbly tuples illustrated in Figure 24.2.
1"here is a tuple (81,82) in SarneLevel if there is a path froln 81 to 82 that
goes up a certain nUlnber of edges in the tree and then CaInes down the saIne
nurnber of edges.

Suppose we want to find all SalneLevel tuples with the fIrst fIeld equal to
spoke. Since SalneLevel tuples can be used to COlupute other SarneLevel tuples,
we cannot just cornpute those tuples with spoke in the first field. For exa.rnple,
the tuple (1uheel, frarne) in SarneLevel allows us to infer a SarneLevel tuple
with spoke in the first field:

8ameLevel(spoke, seat) '- Assembly(wheel, spoke, 2),
8ameLevel (wheel , frame),
Assembly(frame, seat, i),

Intuitively, we have to conlpute all SarneLevel tllpleswhose first field conta,ins
a. value on the path froln .spoke to the root in Figure 24.2. Each such tuple has
the potentia1 to contribute to (lnS\Vers for the given query. On the other hand,
cornputing the entire SarneLevel table is wasteful; for exarnple, the SalneLevel
tuple (l'ir'e, 8(:'0,1:) cannot be used to infer (lIly (1118\Ver to the given query (or,
indeed, to infer any tuple that can in turn be used to infer an ans\ver tuple).
\iVe define (1, new table, \vhich \ve call l\1agic_SaIneLevel, such that each t11ple
in this table identifies a value Tn for \vhich"ve have to cornpute all SarneLevel
tuples with Tn in the first colulun to ansvver the given query:

Magic_SameLevel (Pi) : - Magic_.SameLevel (81), Assembly(P1, 81, Ql).
Magic ...8ameLevel (spoke) '-
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Consider the tuples in lVlagic_SanleLevel. Obviously we have (spoke). lJs­
ing this lVlagic_SalneLevel tuple and the Assernbly tuple ('LV heel , spoke, 2), we
can infer that the tuple (wheel) is in J\1agic_SarneLevel. lJsing this tuple aJld
the Assernbly tuple (tT'ike, 'wheel, a), \ve can infer that the tuple (tT'ike) is in
Nlagic_SarneLevel. Thus, J\tIagic_SarneLevel contains each node that is on the
path frorn spoke to the root in Figure 24.2. The Magic_SarneLcvel table can be
llsed as a filter to restrict the computation:

5ameLevel(51 , 52) :- Magic_5ameLevel(51) ,
Assembly(P1, 51, Q1), Assembly(P2, 52, Q2).

5ameLevel(51 , 52) :- Magic,._5ameLevel(51) , Assembly(Pl, 51, Ql),
5ameLevel(Pl, P2), Assembly(P2, 52, Q2).

These rules together with the rules defining rvlagic_SarneLevel give us a pro­
granl for cornputing all SanleLevel tuples with spoke in the first column. Notice
that the new progranl depends on the query constant spoke only in the sec­
ond rule defining lVlagic_SameLevel. Therefore, the program for cornputing all
SameLevel tuples with seat in the first column, for instance, is identical except
that the second Magic_SarneLevel rule is

Magic_5ameLevel(seat) :- .

~rhe nurnber of inferences rnade llsing the Magic program can be far fewer than
the nurnber of inferences nlade using the original progranl, depending on just
how rnuch the selection in the query restricts the cornputation.

24.5.3 The Magic Sets Algorithm

We illustrated the intuition behind the Magic Sets algorithrn on the SarneLevel
prograrn, which contains just one output relation and one recursive rule.

The intuition behind the rewriting is that the rows in the Magic tables cor­
respond to the subqueries whose answers are relevant to the original query.
By evaluating the rewritten prograrn instead of the original prograrn, \ve can
restrict cornputation by intuitively pushing the selection condition in the query
into the recursion.

rIhe algorithrn, however, ca..Il be applied to any Datalog prograrn. T'he input to
the algorithrn consists of the prograrn and a query pattern, which is a relation
we want to query plus the fields for which a query will provide constants. The
output of the algorithrn is a rewritten prograrn.

The l\1a,gic Sets prognun rewriting algorithrn can be surnrnarized a..'3 follows:
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1. Generate the Adorned Prograln: In this step~ the progranl is re\vritten
to l1lake the pattern of queries and subqueries explicit.

2. Add Magic Filters: IVlodify each rule in the Adorned Prograrn by adding
a IVlagic condition to the body that acts a'S a filter on the set of tuples
generated by this rule.

~~. Define the Magic Tables: We create nc\v rules to define the l\tlagic
tables. Intuitively, froIll each occurrence of a table R in the body of an
Adorned PrograIu rule, we obtain a rule defining the table ~1.agi(>_I{.

vVhen a query is p()sed~ we add the corresponding Iv1agic tuple to the rewrit­
ten prograrl1 and evaluate the least fixpoint of the prograrIl (using Serninaive
evaluation).

We rernark that the Magic Sets algorithrll has turned out to be quite effective
for cornputing correlated nested SQL queries, even if there is no recursion~ and
is used for this purpose in rnany cornrnercial DBlVISs, even systenls that do not
currently support recursive queries.

We now describe the three steps in the Magic Sets algorithrIl using the SarneLevel
program as a running exalllple.

Adorned Program

We consider the query pattern 8 ameLevelbf . Thus, given a value c~ we want
to cornpute all rows in 8arneLevel in which c appears in the first eolurnn. \Ve
generate the Adorned Prograrn pad frorn the given prograrn P by repeatedly
generating adorned versions of rules in [J for every reachable query pattern,
with the given query pattern as the only reachable pattern to begin with;
additional reachable patterns are identified during the course of generating the
A,dorned Prograrll as described next.

Consider a rule in? whose head contains the sarne table as sorne reachable
pattern. rrhe adorned version of the rule depends on the order in \vhichwe
consider the predicates in the body of the rule. l'b sirnplify our discussion, ,ve
assurne that this is ahvays left-to-right. I~-'irst~ we replace the head of the rule
,vith the rnatching query pattern. After this step, the recursive SarneLevel rule
looks like this:

8arncLeveZbf (S1, 82) : - Assembly(P1, 81, Q1),
8ameLevel(P1, P2), Assembly(P2, 82, Q2).

Next, we proceed left-to-right in the l)ody of the rul(~ until 'we encounter the
first recursive predicate. .A.11 cohullns that contain a consUl,ut or a variable that
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appears to the left are rnarked b (for bound) and the rest are rnar,ked f (for free)
in the query pattern for this occurrence of the predicate. vVe add this pattern
to the set of reachal)le patterns and Inodify the rule accordingly:

SaTrLeLevelbf (Sl,82) :- Assembly(Pl, 81, Ql),

SarneLeveZbf (Pi, P2), Assembly CP2, 82, Q2).

If there are additional occurrences of recursive predicates in the body of the
recursive rule, we continue (adding the query patterns to the reachable set and
rllodifying the rule). (()f course, in linear recursive progralns, there is at illOSt
one occurrence of a recursive predicate in a rule body.)

\Ve repeat this until we have generated the adorned version of every rule in P
for every reachable query pattern that contains the same table as the head of
the rule. The result is the Adorned Program pad, which, in our example, is

SameLeveZbf C81, 82) : - AssemblyCP1, 81, Ql),
AssemblyCP1, 82, Q2).

SameLeveZbf (81, 82) : - AssemblyCP1, 81, Q1),
SameLeveZbf CP1, P2), Assembly CP2, 82, Q2).

In our exarnple, there is only one reachable query pattern. In general, there
can be several. 2

Adding Magic Filters

Every rule in the Adorned Prograrn is rllodified by adding a 'nlagic filter' pred­
icate to obtain the rewritten prograrn:

Sarne-Levelbf (81, 82) : - 1\dag'ic~k9arneLeveZbf (81) ,
Assembly(Pl, 81, Q1), Assembly(P2, 82, Q2).

SarneLeveZbf (S1, S2) : - J\;lag'ic...,San1eLevelbf CS1),
Assembly(Pl, 81, Ql), 8arneLevelbf (P1, P2),
Assembly(P2, 82, Q2).

The filter predicate is (:l, copy of the head of the rule, 'with 'IVlagic' a..s a prefix
for the table nhrne and the variables in colllrnns corresponding to free deleted,
as illllstrc:ited in these two rules.

2 As an exarnple: consider a variant of the SameLevel program in which the variables PI and 1"'J2
are interchanged in the body of the recursive rule (Exercise 24.5)
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Consider the Adorned Prograrl1 after every rule has been rnodified a,,') described.
FrorH each occurrence 0 of a recursive predicate in the body of a rule in this
rIlodified prograrl1, ,ve generate a rule that defines a .NIagic predicate. T'he
algorithrl1 for generating this rule is as fo11o\:vs: (1) Delete everything to the
right of occurrence () in the body of the rllodified rule. (2) i\dd the prefix
'1I1agic' and delete the free colulnns of (). (~)) Move 0, "with these changes, into
the head of the rule.

FroIn th~~ recursive rule in our example, after steps (1) and (2) we get:

Sam,eLevelbf (81, 82) : - ]vIagic_SarneLevelbf (S1) ,

Assembly(P1, 81, Q1), AIag'ic_SameLevelbf (P1) .

After step (3), we get:

Magic.,_SameLevel bf (P1) : - A1ag'ic_Sam,eLevelbf (S1) ,
Assembly(Pl, 81, Q1).

The query itself generates a row in the corresponding Magic table, for exarnple,
l\Iagic.._SarneLevelbf (seat).

24.6 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

III Describe Datalog prograrIlS. lJse an exarnple Datalog prograrn to explain
why it is not possible to write recursive rules in SQL-92. (Section 24.1)

l1li Define the terrns rnodel and least '(node!. vVhat can you say about least
rnodels for Datalog prograrns? \\Thy is this approach to defining the rnean­
ing of a Datalog prograrll called declarative? (Section 24.2.1)

III Define the tenns .fi:rpoint and least ji:Epoint. \iVhat can you say about 1e&5t
fixpoints for IJatalog prograrlls? vVhy is this approach to defining the
rneaning o{ a Datalog prograrIl said to be operational? (Section 24.2.2)

l1li \Vhat is a safe prograrn? \\lllY is this property irIlportant? \\That is range­
restriction and how does it ensure safety'? (Section 24.2.3)

l1li \Vhat is the connection between lccl.':lt lnodels and lea..st fixpoints for I)atalog
prograrIls? (Section 24.2.4)



842 CHAPTER 24

• Explain ~why prograIIls with negation rnay not have a lea.'3t model or least
fixpoint. Extend the definition of Tange-Testriction to prograrns with nega­
tion. (Section 24.3)

• vVhat is a stratified prograIn? lIow does stratification address the probleln
of identifying a desired fixpoint? Show how every relational algebra query
can be \vritten as a stratified Datalog prograrIl. (Section 24.3.1)

• Two ilnportant aspects of SQL, rnultiset table8 and aggr'egation 'with group­
ing, are rnissing in Datalog. Hovv can we extend Datalog to support these
features? Discuss the interaction of these two new features and the need
for stratification of aggregation. (Section 24.4)

• Define the terms infeTence and iteration. What are the two main challenges
in efficient evaluation of recursive Datalog programs? (Section 24.5)

• Describe Sem,inaive fixpoint evaluation and explain how it avoids repeated
inferences. (Section 24.5.1)

• Describe the Magic Sets program transformation and explain how it avoids
unnecessary inferences. (Sections 24.5.2 and 24.5.3)

EXERCISES

Exercise 24.1 Consider the Flights relation:

Flights(fino: _~~teger, from: string, to: string, distance: integer,
departs: time, arrives: time)

Write the following queries in Datalog and SQL:1999 syntax:

1. Find the fino of all flights that depart from Madison.

2. Find the .flrw of all flights that leave Chicago after Flight 101 arrives in Chicago and no
later than 1 hour after.

:3. Find the fino of all flights that do not depart from NIadison.

4. Find aJI cities reachable frOlll l\iladison through a series of one or 1I10re connecting flights.

5. Find all cities reachable from IVladison through a chain of one or rnore connecting flights,
with no 1I1Ore than 1 hour spent on any connection. (That is, every connecting flight
must depart < within an hour of the arrival of the previous flight in the chain.)

6. Find the shortest tilne to fly frOl11 ~IIadison to i\dadras, using a chain of one or 1nore
connecting flights.

7. Find the Jlno of all flights that do not depart [1'0111 ~!Iadison or a city that is reacha.ble
frolIlrvladison through a chain of flights.

Exercise 24.2 Consider the definition of Cornponents in Section 24.1.1. Suppose that the
second rule is replaced by
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Components (Part, Subpart) : -Components (Part, Part2),
Components (Part2 , Subpart).

U-:I;v

1. If the rnodified prograIn is evaluated on the ASS€lnbly relation in Figure 24.1~ how Inany
iterations does Naive fix point evaluation take and what COlllponents facts are generated
in each iteration?

2. Extend the given instance of Asselllbly so that Naive fixpoint iteration takes two rnore
iterations.

3. 'i\lrite this prograrn in SQL:1999 syntax, using the WITH clause.

4. vVrite a progranl in Datalog syntax to find the part with the Inost distinct subparts; if
several parts have the saIne Inaxinlllm number of subparts, your query should return all
these parts.

5. How would your answer to the previous part be changed if you also wanted to list the
number of subparts for the part with the Inost distinct subparts?

6. Rewrite your answers to the previous two parts in SQL:1999 syntax.

7. Suppose that you want to find the part with the rnost subparts, taking into account
the quantity of each subpart used in a part, how would you rllodify the COlnponents
program? (Hint: To write such a query you reason about the nuruber of inferences of
a fact. For this, you have to rely on SQL's nlaintaining as many copies of each fact as
the nurnber of inferences of that fact and take into account the properties of Seulinaive
evaluation. )

Exercise 24.3 Consider the definition of Components in Exercise 24.2. Suppose that the
recursive rule is rewritten as follows for Seminaive fixpoint evaluation:

Components (Part , Subpart) :- deLta__Components(Part, Part2, Qty) ,

deLta_Components (Part2 , Subpart).

1. At the end of an iteration, what steps Illust be taken to update delta_Cornponents to
contain just the new tuples generated in this iteration? Can you suggest an index on
Cornponents that Inight help to lIHlke this faster?

2. Even if the delta relation is correctly updated, fixpoint evaluation using the preceding
rule does not always produce all answers. Show an instance of Assembly that illustrates
the probleru.

3. Can you suggest a way to rewrite the recursive rule in tenns of delt(LC;Olnponents so
that Scrninaive fixpoint evaluation ahvays produces all answers and no inferences are
repeated across iterations?

4. Show how your version of the rewritten prograrn perfonns on the exa,rnple instaJICe of
Assernbly that you used to illustnlte the problern with the gi"ven rewriting of the recursive
rule.

Exercise 24.4 Consider the definition of SarneLevel In Section 24.5.2 and the Assernbly
instance shown in Figure 24.1.

1. Re\vrite the recursive rule for Selninaivf~ fixpoint evaluation and shc)\,v ho\v Serninaive
evaluation proceeds.

2. Consider the rules defining the relation Nlagic, \vith spoke as the query constant. For
Sernil1aive evaluation of the 'Nlagic' version of the SarneLevel prognllu, all tuples in Ivlagic
are cornputed first. Show how 8erninaive evaluation of the I\rlagic relation proceeds.
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~3. After the fvI;:lgic relation is cmnputed, it can be treated Cl"S a fixed database relation, just
like AsseInbly, in the Senlinaive fixpoint evaluation of the rules defining SarneLeveI in
the 'IVIagic' version of the prograrn. Rewrite the recursive rule for Selninaive evaluation
and show how Scrninaive evaluation of these rules proceeds.

Exercise 24.5 Consider the definition of SanleLevel in Section 24.5.2 and a query in which
the first argulnent is bound. Suppose that the recursive rule is rc\vritten as folIovls, leading
to rnultiple binding patterns in the adorned prognnn:

8ameLevel(81 , S2) :- Assembly(Pl, 81, Ql),
Assembly(P1, 82, Q2).

8ameLevel(81 , S2) :- Assembly(Pl, S1, Ql),
SameLevel(P2, P1), Assembly(P2, S2, Q2).

1. Show the adorned progranl.

2. Show the J\1agic program.

3. Show the Magic program after applying Seminaive rewriting.

4. Construct an example instance of Assenlbly such that the evaluating the optirnized pro­
grarn generates less than 1% of the facts generated by evaluating the original prograrn
(and finally selecting the query result).

Exercise 24.6 Again, consider the definition of SameLevel in Section 24.5.2 and a query in
which the first argurnent is bound. Suppose that the recursive rule is rewritten as follows:

SameLevel(Sl, 82) :- Assembly(Pl, 81, Ql),
Assembly(Pl, S2, Q2).

SameLevel(Sl, 82) :- Assembly(P1, S1, Ql),
SameLevel(P1, Rl), SameLevel(Rl, P2), Assembly(P2, S2, Q2).

1. Show the adorned program.

2. Show the l\!Iagic prograln.

~3. Show the rv1agic prograul after applying Serninaive rewriting.

4. Construct an exarnple instance of Asselnbly such that the evaluating the optimized pro­
granl generates less than 1% of the facts generated by evaluating the original progranl
(and finally selecting the query result).

BIBLIOGRAPHIC NOTES

'1'he use of logic as a query language is discussed in several papers [296, 5~:W], "which arose out
of influential workshops. (jood textbook discussions of deductive databases can be found in
[747, :-3, 14:-"3, 794, '50~3]. [614] is a recent survey article that provides an overview and covers
the rnajor prototypes in the area, including LI)L [177], Glue-Nail! [214, 549] EKS-Vl [758],
Aditi [615], Coral [612], LOLA [804], and XSB [644].

l'he fixpoint sernantics of logic programs (and deductive databases a..., a special case) is pre­
sented in [751], which also shows equivalenc(~ of the fixpoint seInantics to a lea.st-rnodd se­
Irul,ntics. The use of stratification to give a natural sernantics to prograrns with negation \va..s
developed independently in [:37, 154, 559,752].
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Efficient evaluation of deductive database queries has been widely studied, and [58J is a
survey and cOlnparison of several early techniques; [611] is a more recent survey_ Serninaive
fixpoint evaluation wa.." independently proposed several tiInes; a good treatuwut appears in
[54]. r1'he Ivlagic Sets technique is proposed in [57] and generalized to cover all deductive
database queries without negation in [77]. 'The Alexander rnethod [G~nJ was independently
developed and is equivalent to a variant of l'vIagic Sets called Supplernentary Atagic Sets in [77].
[553] shows how lVIagic Sets offers significant perfonnance benefits even for nonrecursive SQL
queries. [ti73] describes a version of l'vlagic Sets designed for SQL queries with correlation, and
its irnplernentation in the Starbufst systern (which led to its iInplenlentation in IBNI's DB2
DBNIS). [670] discusses ho\v lVlagic Sets can be incorporated into a Systenl R style cost-based
optimization framework. The ~lagic Sets technique is extended to prograIIls with stratified
negation in [53, 76] _ [121] cOlnpares tvlagic Sets with top-do\vn evaluation strategies derived
froIn Prolog.

[642] develops a prograrn rewriting technique related to lVlagic Sets called lVlagic Counting.
Other related methods that are not based on progranl rewriting but rather on fun- tirne control
strategies for evaluation include [226, 429, 756, 757]. The ideas in 1.226] have been developed
further to design an abstract rnachine for logic prograll1 evaluation using tabling in [609, 727];
this is the basis for the XSB systell1 [644].



25
DATA WAREHOUSING AND

DECISION SUPPORT

.. Why are traditional DBIvISs inadequate for decision support?

.. What is the multidimensional data nlOdel and what kinds of analysis
does it facilitate?

.. What SQL:1999 features support rnultidiInensional queries?

.. How does SQL:1999 support analysis of sequences and trends?

.. How are DBMSs being optimized to deliver early answers for interac­
tive analysis?

.. What kinds of index and file organizations do OLAP systerlls require?

.. VVhat is data warehousing and why is it irnportant for decision sup­
port?

.. Why have rnaterialized views becorne iInportant?

.. How can we efficiently Inaintain rnaterialized views?

.. Key concepts: OLAP, rnultirnensional rnodel, dinlellsions, nleasures;
roll-up, drill-clown, pivoting, cross-tabulation, CUBE; WINDOW queries,
[rallleS, order; top N queries, online aggregation; bitllli:tp indexes, join
indexes; data warehouses, extract, refresh, purge; rnaterialized views,
incrernental rnaintenancc, rnaintaining warehouse views

Notlling is lnore difficult, and therefore rnore precious, than to be
(1)1<" to decide.

. NCtI)oleon Bonaparte

846
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Dcl.tabase luanagclncnt systerIls are widely used by organizations for rnaintain­
ing data that docurnents their everyday operations. In applications that update
such operational data7 transactions typically rnake srna11 changes (for exalnple,
adding a reservation or depositing a check) and a large nU111ber of transactions
H1USt be reliably and efficiently processed. Such online transaction process­
ing (OLTP) applications have driven the gruwth of the DBlVIS industry in the
past three decades and "vill doubtless continue to be irnportant. DB1VISs have
traditionally been optirnized extensively to perforn1 vvell in such applications.

H,ecently, ho\vever, organizations have incrc&':lingly crnphasized applications in
which current and historical data is coruprehensively analyzed and explored,
identifying useful trends and creating sununaries of the data, in order to support
high-level decision rnaking. Such applications are referred to clS decision sup­
port. ~1ainstrearn relational DBlVlS vendors have recognized the irnportance
of this rnarket segment and are adding features to their products to support it.
In particular, SQL has been extended with new constructs and novel indexing
and query optirl1ization techniques are being added to support cornplex queries.

The use of views has gained rapidly in popularity because of their utility in
applications involving cornplex data analysis. While queries on views can be
answered by evaluating the view definition when the query is subrnitted, pre­
cornputing the view definition can rnake queries run Inuch faster. Carrying
the r11otivation for preconlputed views one step further, organizations can con­
solidate inforrnation from seven:tl databases into a data warehouse by copying
tables fror11 rnany sources into one location or rnaterializing a view defined over
tables fr01n several sources. Data '\varehousing has becorne widespread, and
Il1any specialized products are no\v available to create and rnanage warehouses
of data frorH 1l1ultiple databases.

vVe begin this chapter with an overview of decision support in Section 25.1.
\Ve introduce the rnultirnensional rnodel of data in Section 25.2 and consider
database design issues in 25.2.1. vVe discuss the rich cla..ss of queries that it
naturally supports in Section 25.;3. \Ve discuss how new SQL:1999 constructs
allc)vl us tel express rnultidilnensional queries in 25.3.1. In Section 25.4, vve
discuss S(~L:1999 extensions that support queries over relations tLS ordered
collections .\\'"8 consider hOVl to optirnize for fa,st generation of initial ansvvers
in Sectioll 25.5. 1'11C rnany query language extensions required in the ()LA.P
envirolllnentprornpted the developrnent of llC\V irnplcrncntation techniques; we
discuss these in Section 25.6. In Section 25.7, \ve exarnirl(~ the issues involved
in creating and rnaintaining a data \varehouse. FraIn a technical sta,ndpoint, a
key issue is how to Ilutintain \vctrehouse inforrnation (replicated tables or views)
·when the llnderl.ying source infonnation changes. After covering tlH~ iUlportcl,nt
role played byvic\vs in OLAP and \vaxehousing irl Section 25.8, we consider
IIuLintenance of rnaterialized vievvs in Sections 25.9 and 25.10.
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25.1 INTRODUCTION TO DECISION SUPPORT

()rganizational decisioll rnaking requires a cOlnprehensive vievv of all aspects of
an enterprise, so 111any organizations created consolidated data warehouses
that contain data drawn frcHn several databa..,;es ll1atntained by different busi­
ness units together vvith historical and SUlnlna,ry inforInation.

The trend toward data warehousing is c0I11plelnented by an increa.sed ernphasis
on po"Vverful analysis tools. lVlany characteristics of decision support queries
make traditional SQL systenls inadequate:

• 11 he WHERE clause often contains rnany AND and OR conditions. As we saw
in Section 14.2.3, OR conditions, in particular, are poorly handled in rnany
relational DBJV1Ss.

• Applications require extensive use of statistical functions, such as standard
deviation, that are not supported in SQL-92. Therefore, SQL queries rnust
frequently be ernbedded in a host language progrcun.

• Many queries involve conditions over time or require aggregating over time
periods. SQL-92 provides poor support for such time-series analysis.

• Users often need to pose several related queries. Since there is no conve­
nient way to express these cOlnnlonly occurring families of queries, users
have to write thern as a collection of independent queries, \vhich can be
tedious. Further, the DBlVIS has no way to recognize and exploit optimiza­
tion opportunities arising froln executing nlany related queries together.

Three broad classes of analysis tools are available. First, SOIne systerIls support
a elc-1SS of stylized queries that typically involve group-by and aggregation oper­
ators and provide excellent support for cOlnplex boolean conditions, statistical
functions, and features for tilne-series analysis. Applications dominated by
such queries are called online analytic processing (OLAP). 'These systerns
support a querying style in which the data is best thought of &9 a rnultidi­
lnensional array and are influenced by end-user tools, such as spreadsheets, in
addition to database query languages.

Second, sorne DBwISs support traditional S(~L-style queries but are designed
to also support OLAP queries efficiently. Such systenls can be regarded (1",,,

relational DB1'v1Ss optirnized for decision support applications. 'Nlany vendors of
relational DBIVISs are currently enhancing their products in this direction and,
over tilne, the distinction bet\veen specialized OLAP systerns and relational
DBIVISs enhEtnced to support ()LAP queries is likely to dirninish.

The third class of analysis tools is rllotivated by the desire to find interesting
or unexpected trends and patterns in large data sets rather than the conlplex
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SQL:1999 and OLAP: In this chapter, ,,'Ie discuss a nUInber of features
introduced in SQL:1999 to support OLAP. In order not to delay publica­
tion of the SQL: 1999 standard, these features \vere actually added to the
standard through an amendment called SQL/OLAP.

query characteristics just listed. In exploratory data analysis, although an
analyst can recognize an :interesting pattern' "vhen shown such a pattern, it is
very difficult to fannulate a query that captures the essence of an interesting
pattern. For exalnple, an analyst looking at credit-card usage histories Illay
want to detect unusual activity indicating Inisuse of a lost or stolen card. A
catalog lllerchant lnay want to look at custolner records to identify pro111ising
custoiners for a new proillotion; this identification would depend on inccnIle
level, buying patterns, delllonstrated interest areas, and so all. The alllount
of data in Inany applications is too large to perrnit rnanual analysis or even
traditional statistical analysis, and the goal of data mining is to support
exploratory analysis over very large data sets. We discuss data rnining further
in Chapter 26.

Clearly, evaluating OLAP or data rnining queries over globally distributed data
is likely to be excruciatingly slow. Further, for such cOlnplex analysis, often
statistical in nature, it is not essential that the IllOSt current version of the data
be used. The natural solution is to create a centralized repository of all the
data; that is, a data warehouse. Thus, the availability of a warehouse facilitates
the application of ()LAP and data rnining tools and, conversely, the desire to
apply such analysis tools is a strong 1Ilotivation for building a data warehouse.

25.2 OLAP: MULTIDIMENSIONAL DATA MODEL

aLAI' applications are dOlninated by ad hoc, cOlnplex queries. In SQL terllls,
these are queries that involve group-by and aggregation operators. l'he natural
\vay to think about typical ()LAP queries, ho\vever, is in tenns of a rnultidilnen­
sinnal data rllodel. In this section, \ve present the rnultidirnensional data Illodel
and corupare it with a relational representation of data. In subsequent sec­
tions, we describe ()LAP queries in. terrns of the rllultidirnensional data rnodel
and consider .. scnne ne,v irnplernentation techniques designed to support such
queries.

In the rnultidirnensional data rnodel, the focus is on a collection of nurneric
measures. Each Inea..sure depends on a set of dirnensions. vVe use a running
exarnple based on sales data.. The rncc'tsure attribute in our exarnple is sales.
The dirnensions are Product, Location, and Tirne. (jiven a product, a location;
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and a tinle, 'ATe have at I110st one associated sales value. If we identify a product
by a unique identifier pid and, sirnilarly, identify location by locid and tiIne
by tirrLeid, we can think of sales inforrnation Ct.') being arranged in a three­
dirnensional array Sales. This array is shown in Figure 25.1; for clarity, we
show only the values for a single loeid value, locid- 1, which can be thought of
as a slice orthogonal to the lacid axis.

rr.......

"0 N.....
0..

............

locid/'/~-"'-
/

2

timeid

3

Figure 25.1 Sales: A rvlulticlimensional Dataset

'This view of data as a multiclhnensional array is readily generalized to rnore
than three dirnensions. In OLAP applications, the bulk of the data can be
represented in such a rnultidiInensional array. Indeed, some OLAP systerns
actually store data in a rnultidiInensional array (of course, irnplenlented with­
out the usual prograrnrning language asslunption that the entire array fits in
rnelnory). 0 LAP systerns that use arrays to store rnultidirnensiona.l datasets
are called nlultidimensional OLAP (MOLAP) systcrl1s.

The data in a 11lultidirnensional array can also be represented c1As a relation,
as illustrated in Figure 25.2, which shows the SeHne data as in Figure 25.1,
with additional rovvs corresponding to the 'slice' locid==- 2. Tlhis relation, which
relates the dirnensions to the rneasure of inten~st, is called the fact table.

NO\~l let us tun1 to dirnensions.Each dirnension can have a set of associated
attributes. For exarnple, the Location dilTlension is identified by the loc'id at­
tribute, \vhich \ve used to identify a location in the Sales table. "'Fe aSSUlnc
that it also has ~),ttributes cau'ntry, state, and city. \Ve further assurne that
the Product dirnension has ctttributes pnanu:, category, and pTice in additi(Jn
to the identifier pid. 'rhe catcgoTy of a product indicates its general nature;
for exarnple, a product pant could have category value appaTcl. \Ve assurne
that the rI'inlc dirnension has attributes date, 71JCek, Tnonth, quar-fcT, ycaT, and
holiday.)lag in addition to the identifier tirneid.
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Figure 25.2 Locations, Products, and Sales H.eprf~sent:ed as Helations
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For each dinlension, the set of associated values can be structured a" a hierar­
chy. For exarnple, cities belong to states, and states belong to countries. Dates
belong to weeks and rIlonths, both 'weeks and 1110nths are contained in quaT­
tel's, and quarters are contained in years. (Note that a vveek could span two
rnonths; therefore, weeks are not contained in rnonths.) SCHne of the attributes
of a diruension describe the position of a dirnensioll valuevvith respect to this
underlying hierarchy of dirnensioll values. The hierarchies for the Product, Lo­
cation, and ~rirne hierarchies in our exarnple are sho\vn at the attribute level in
Figure 25.3.

PRODUCT

category

pname

TIl\tIE

year

I
quarter

week month

~/
date

Figure 25.3 Dimension Hierarchies

LOCATION

country

state

city

Infonnation about dirnensions can also be represented &s a collection of rela­
tions:

Locations( lo~..id: intege:!:> city: string, state: string, country: string)
Products(pid: int.~..~er, pnam,e: string, category: string, price: real)
Tirnes(t'irnei~: integer, date: string, week: integer, rnonth: integer,

quarter: integer, year: integer, holiday~.. fiag: boolean)

These relations arc luuch srnalIer than the fact table in a typical 0 I..lAP appli­
cation; they are called the diInension tables. OLAP systcrl1s that store all
inforrnation, including fact tables, as relations are called relational OLAP
(ROI.JAP) systcrns.

1'he Tinlcs table illustrates the attention paid to the T'irne dirnension in typical
OLAP applications. SC~L's date and tirnestaulp data types are not adequctte;
to support slunrnarizations that reflect business operations, infonnation such
as fiscal quarters, holiday status, and so on is rnaintained for ea,ch tirne value.
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25.2.1 Multidimensional Database Design

Figure 25.4 shows the tables in our running sales exarnple. It suggests a star,
centered at the fact table Sales; such a cornbination of a fact table and di­
rncnsion tables is called a star schema. This schelna pattern is very COIIUIlon
in databc"kses designed for 0 LAP. IThe bulk of the data is typically in the fact
table, which ha..'3 no redundancy; it is usually in BCNF. In fact, to Ininimize
the size of the fact table, dirnension identifiers (such as p'id and t'irneid) are
systcrn-generated identifiers.

PRODUCTS LOCATIONS

SALES

Figure 25.4 An Example of a Star Schema

holiday_flag

Inforrnation about dinlension values is rnaintained in the dirnension tables. Di­
111ension tables are usually not nonnalized. The rationale is that the dimension
tables in a database used for OL,AP are static and update, insertion, and dele­
tion anoillalies are not irnportant. Further, because the size of the database is
dorninated by the fact table, the space saVE-xi by norrnalizing dilnension tables
is negligible. Therefore, rnini111izing the cornputation tilllC for cOlllbining facts
in the fact table with dirnension inforrnation is the rnain design criterion, which
suggests that we avoid breaking a dirnension table into srnaller tables (which
rnight lead to additional joins).

Snlall response tirnes for interactive querying are irnportant in OLAP, and rnost
systerns support the Hlaterialization of SUrl1Inary tables (typically generated
through queries using grouping). Ad hoc queri(~s posed by users are answered
using the original ta,bles along with precornputed surnrnaries. A very irnportant
design issue is which sunnnary tables should be rnaterialized to achieve the
best use of available rnerllory and answer cOHnI1only a.sked ad hoc queries with
interactive response tirnes. In current OLAP systerns, deciding "vhich surnnlary
tables to rnaterialize rnay \vell be the Inost irnportant design decision.

Finally, new storage structures and indexing techniques have been developed to
support ()LAP and they present the database designer \'lith additional physical
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design choices. \Vc cover BOIHe of these hnplclnentatiol1 techniques in Section
')!:"" t'.... d.t>.

25.3 MULTIDIMENSIONAL AGGREGATION QUERIES

Now that \ve have seen the rnulticliInensiol1alluoclel of data, let us consider how
such data can be queried and rnanipulatecl. The operations supported by this
Inodel are strongly influenced by end user tools such as spreadsheets. The goal
is to give end users v.rho are not SQL experts an intuitive and po\verful interface
for cornnlon business-oriented analysis tasks. Users are expected to pose ad hoc
queries directly, without relying on database application prograrrnners.

In this section, we asslllne that the user is working with a multidirnensional
dataset and that each operation returns either a different presentation or a
sunllnary; the underlying dataset is always available for the user to 1nanipulate,
regardless of the level of detail at which it is currently viewed. In Section 25.3.1,
we discuss how SQL:1999 provides constructs to express the kinds of queries
presented in this section over tabular, relational data.

A very C01111non operation is aggregating a rneasure over one or 1nore dimen­
sions. The following queries are typical:

.. Find the total sales.

II Find total sales for each city.

II Find total sales for each state.

'These queries can be expressed as S(~L queries over the fact and dirnension
tables. When we aggregate a rnea.'3ure OIl one or rnore di1nensions, the aggre­
gated 1118'1.SUre depends on fewer diInensioIls than the original Ineasure. For
exanlple, when we cornpute the total sales by city, the aggregated rneasure is
total sales and it depends only on the Location di1nension,whereas the original
sales rneasure depended on the Locatioll,Tirne, a,nd Product dirnensions.

Another use of aggregation is to SU1Ilrnarize at different levels of a dirnension
hierarchy. If \ve are given total sales per city, we can aggregate 011 the Location
dinlension to obtain sales per state. This operation is called roll-up in the
OLAI' literature. 1 1he inverse of roll-up is drill-down: Given total sales by
state, \ve can Etsk for a 1Ilore detailed presentation by drilling down on Location.
\\"T k f' I I· . t I I ·t £ I tIt t (·tl I( .' ..:1 'f '-', - ,- 1 1"" .' " '"'j ," ~'i .,~ . - r "J ".'''' -". ,.,~ ~, i' ::}"1 . .,. '.,. 0. '. ..,. I{ ",~ .".1 .)'" - :~. -", I." " :.\ ,.,...., " :.\-~C Cdn <1S01 t;d. LS J) (,1tJ 01 .J US, SeL CS J) C1 Y 01 d, t;C CC iCC S ,<:1,c WI, 1 set cs
presented on a per-state basis for the rernaining states, riS before). We can
also drill dowll on a diluension other than Location. For exarnple, \ve can ask
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for total sales for each product for each state, drilling do\vn OIl the Prodnet
diInension.

Another C0111ll10n operation is pivoting. Consider a, tabulax presentation of
the Sales table. If Vle pivot it on the Location and Titne dirnensions, we obtain
a table of total sales for each location for each tillle value. This infoI"luation
can be presented <:1..'; a tvvo-dirnensional chart in which the axes are labeled
'with location and titne values; the entries in the chart correspond to the total
sales for that location and tirnt~. Therefore, values that appear in colurnns
of the original presentation becoIne labels of axes in the result presentation.
The result of pivoting, called a cross-tabulation, is illustrated in Figure 25.5.
Observe that in spreadsheet style, in addition to the total sales by year and
state (taken together), we also have additional sunlillaries of sales by year and
sales by state.

WI CA Total

1995

1996

1997

Total

63 81 144
~,-,._-

38 107 145
.~.~.~_ ..._.

75 35 110

176 223 399
----

Figure 25.5 Cross-Tabulation of Sales by Year and State

Pivoting can also be used to change the dirnensions of the cross-tabulation;
froIn a presentation of sales by year and state, we can obtain a presentation of
sales by produet and year.

Clearly, the OLAP frarnework rnakes it convenient to pose a broad class of
queries. It also gives catchy naInes to sorne farniliar operations: Slicing a
dataset arnonnts to an equality selection on one or rIlore dirnensions, possibly
also with SC)lne dirnensions projected out. Dicing a dataset arl10unts to a range
selection. These terrllS corne frcnl1 visuaJizing the effect of these operations on
a cube or cross-tabulated representation of the data.

A Note on Statistical Databases

lVlany ()LAP concepts c],re present in earlier work on statistical databases
(SDBs), which are databaBe systerl1s designed to support statistical applica­
tions, although this connection has not been sufficiently recognized because
of differences in application dornains and tern.linology. The rnultidirnensional
data rllodel, 'with the notions of a rneasure associated with dirnensions (lond
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classification hierarchies for dirncIlsion vahles, is also used in SDBs. OLAP
operations such as roll-up and drill-dovlJl have counterparts in SDBs. Indeed,
sorne irnplcrnentation techniques developed for OLAP are also applied to SDBs.

Nonetheless~ senne differences arise frorn the different dOlnains ()L.LLlP and SDBs
\vere developed to support. For exarnple, SnBs are used in socioeconornic appli­
cations, where classification hierarchies and privacy issues are very ilnportant.
This is reflected in the greater cornplexity of classification hierarchies in SDBs,
along with issues such as potential breaches of privacy. (The privacy issue
concerns whether a user with access to sUllunarized data can reconstruct the
original, unsununarized data.) In contrast, OLAP has been ailned at business
applications with large volulnes of data and efficient handling of very large
datasets has received lnore attention than in the SDB literature.

25.3.1 ROLLUP and CUBE in SQL:1999

In this section, we discuss how lnany of the query capabilities of the rnultidi­
111ensionalrlloclel are supported in SQL:1999. Typically, a single OLAP opera­
tion leads to several closely related SQL queries with aggregation and grouping.
For exarnple, consider the cross-tabulation shown in Figure 25.5, which was ob­
tained by pivoting the Sales table. To obtain the saIne inforrnation, we would
issue the following queries:

SELECT
FROM
WHERE
GROUP BY

rr.year, 1.state, SUM (S.sales)
Sales S, T'irnes T, Locations L
S.tirneid=T.tiIneid AND S.locid=L.locid
T.year, 1.state

This query generates the entries in the body of the chart (outlined by the dark
lines). The surllluary cohunn on the right is generated by the query:

SELECT
FROM
WHERE
GROUP BY

]".year, SUM (S.saJes)
Sales S1 ,]~ilncs T
S · ·1 T' ·1'" .tuneu = .tunclC
T.year

l'hc~ sunnnary ro\v at the bottorl1 is generated l)y the query:

SELECT
FROM
WHERE
GROUP BY

L.state, SUM (S.sales)
Sales S, Locations L
S.locid=L.locicl
I".state

l'he C>UI11111ative SUITl in the bottonl-right corner of the ch;:ut is produced by the
query:
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SELECT
FROM
WHERE

SUM (S.sales)
Sales S ~ Locations L
S.loc:id=L.locid

The exarnple cross-tabulation can be thought of as roll-up on the entire dataset
(Le., treating everything as one big group), on the Location dirnension, on the
rrirne dirnensioIl, and on the Location and Tinle dinlensions together. Each
roll-up corresponds to a single SQL query with grouping. In general, given a
rneEtSUre with k a..ssociated dirnensions, we can roll up on any subset of these k
diInensions; so \ve have a total of 2k such SQL queries.

Through high-level operations such as pivoting, users can generate lTlany of
these 2k~ SQL queries. R,ecognizing the cornrnonalities between these queries
enables r110re efficient, coordinated COlTlputation of the set of queries.

SQL: 1999 extends the GROUP BY construct to provide better support for roll-up
and cross-tabulation queries. The GROUP BY clause with the CUBE keyword is
equivalent to a collection of GROUP BY statenlents, with one GROUP BY state­
nlE~nt for each subset of the k dirnensions.

Consider the following query:

SELECT
FROM
WHERE
GROUP BY

rr.year, L.state, SUM (S.sales)
Sales S, Tirnes T, Locations L
S.tirneid=T'.tirneid AND S.1ocid=L.locid
CUBE (T.year, L.state)

The result of this query, shown in Figure 25.6, is just a tabular representation
of the cross-tabulation in Figure 25.5.

SQL: 1999 also provides variants of GROUP BY that enable cornputatioll of sub­
sets of the cross-tabulation cornputed using GROUP BY CUBE. For exarnple, \VC

call replace the grouping clause in the previous query \ivith

GROUP BY ROLLUP Cr.y(~ar, L.state)

In contrast to GROUP BY CUBE, Vile aggregate by an pairs of year ltnd state values
etnel by each ~year, and. cornpute an overall SlIHl for the entire dataset (the la.st
rCNl in Figure 25.6), but \VC do not aggregate for 8(1,ch state value. 1'11e result
is identical to that sho\vn inF'igure 25.6, except that the rows with 'nl1,ll ill the
T. ycru' COhUIlll and non-nvJl valuc~s in tlH~ L.,'itatc colurnn are not cornputed.

CUBE pid, locid, tirneid BY SUM Sales
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1995 63
81
144

CA
null

1995
-r--------t---,

1995
1996 \V1 38
1996 CA 107
1996
1997

1H,dl
WI

145
75

1997 CA 35
110
176
223

null
,--+---

WI
CA

null
--+--~---t---

null

1997

null null 399

Figure 25.6 The Result of GROUP BY CUBE on Sales

rrhis query rolls up the table Sales on all eight subsets of the set {pid, locid,
tirneid} (including the empty subset). It is equivalent to eight queries of the
fonn

SELECT SUM (S.sales)
FROM Sales S
GROUP BY grouping-list

The queries differ only in the grouping-list, which is sorne subset of the set {pid,
locid, tirneid}. We can think of these eight queries a'3 being arranged in a lattice,
as shown in Figure 25.7. The result tuples at a node can be aggregated further
to cornpute the result for any child of the node. This relationship between the
queries arising in a CUBE can be exploited for efficient evaluation.

{pid. locid, timeid}

~I~
{pid, locid} {pid, timeid} {Iocid, timeid}

\><1><1
{pid} {Iocid} {timeid}

~I~
{ }

Figure 25.7 'l'he Lattice of GROUP BY Queries ill a CUBE Query
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25.4 WINDOW QUERIES IN SQL:1999
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The tiIne dirnension is very important in decision support and queries involving
trend analysis have traditionally been difficult to express in SQL. To address
this, SQL: 1999 introduced a fundamental extension called a query window.
Examples of queries that can be written using this extension, but are either
difficult or iInpossible to write in SQL without it, include

1. Find total sales by rnonth.

2. Find total sales by rnonth for each city.

3. Find the percentage change in the total monthly sales for each product.

4. Find the top five products ranked by total sales.

5. Find the trailing n day moving average of sales. (fbI' each day, we must
compute the average daily sales over the preceding n days.)

6. Find the top five products ranked by cumulative sales, for every month
over the past year.

7. Rank all products by total sales over the past year, and, for each product,
print the difference in total sales relative to the product ranked behind it.

The first two queries can be expressed as SQL queries using GROUP BY over the
fact and dinlension tables. The next two queries can be expressed too, but are
quite complicated in SQL-92. The fifth query cannot be expressed in SQL-92
if n is to be a pararneter of the query. The last query cannot be expressed in
SQL-92.

In this section, we discuss the features of SQL: 1999 that allow us to express all
these queries and, obviously, a rich class of sirnilar queries.

The rnain extension is the WINDOW clause, which intuitively identifies an ordered
'window' of rows 'around' each tuple in a table. Tihis allows us to apply a rich
collection of aggregate functions to the windovv of a row and extend the row
with the results. F'or exarnple, we can associate the average sales over the past
3 days with every Sales tuple (each of which records 1 day~s sales). This gives
us a 3-day Illoving average of sales.

\Vhile there is sorne sirnilarity to the GROUP BY and CUBE clauses, there are
ilnportant differences as vvell. For exarnple, like the WINDOW operator, GROUP
BY all()\~ls us to create partitions of rows and flT)ply aggregate functions such as
SUM to the rows in a pa.,rtition. lIo\vever, unlike WINDOW, there is a single output
row per pa.rtition, rather than one output row for each ro\v, and E~ach partition
is an unorder(~d collection of 1'O\\7's.
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\Ve now illustrate the "window concept through an exalnple:

CHAPTER 25
t

SELECT L.state, rr.IIlonth , AVG (S.sales) OVER "vV AS Inovavg
FROM Sales S, Tinles rr, Locations L
WHERE S.tirneid=T.tirIleid AND S.1ocid=L.locid
WINDOW VV~ AS (PARTITION BY L.state

ORDER BY 'f.lnonth
RANGE BETWEEN INTERVAL '1' MONTH PRECEDING
AND INTERVAL '1' MONTH FOLLOWING)

The FROM and WHERE clauses are processed as usual to (conceptually) generate
an interrnediate table, which we refer to a.'3 Ternp. vVindows are created over
the TeHIp relation.

There are three steps in defining a window. First 1 we define part'it'ions of the
table, using the PARTITION BY clause. In the exarnple, partitions are based on
the L.8tate colurnn. Partitions are sitnilar to groups created with GROUP BY, but
there is a very important difference in how they are processed. To understand
the difference, observe that the SELECT clause contains a column, T. month,
which is not used to define the partitions; different rows in a given partition
could have different values in this colulun. Such a colurnn cannot appear in the
SELECT clause in conjunction with grouping, but it is allowed for partitions.
'The reason is that there is one answer row for each row in a partition of Ternp,
rather than just one answer row per partition. The window around a given row
is used to COlnpute the aggregate functions in the corresponding answer row.

The second step in defining a \vindow is to specify the ordeTir~g of rows within
a partition. We do this using the ORDER BY clause; in the exarnple, the rows
within each partition are ordered by T. 'Tnonth.

The third step in window definition is to !Ta'Tne windo\vs; that is, to establish
the boundaries of the window associated with each row in terrns of the ordering
of rows within partitions. In the exalnple, the window for a row includes the
ro\v itself plus all rows whose rnonth value is within a Inonth before or after;
therefore~ a row \,those Tnonth value is .Jllne 2002 has a window containing all
rows with Tnonth equal to !\Ilay, June, or July 2002.

1'he answer ro\v corresponding to a given 1'0\\,' is constructed by first identifying
its \vindo\v. Then~ for each ansvver colurun defined using a window aggregate
function, we cornpute the a,ggregate llsing the ro\vs in the V\Tindo\v.

In our exarnple~ each ro\v of l"elnp is essentially a ro\v of Sales, tagged with
extra details (about the location and tirne dirnensions). There is one partition
for ea.ch state (tnd every ro\v of Ternp belongs to exactly one partition. Consider
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a ro\v for a store in \Visconsin. ~rhe row states the sales for a given product, in
that store~ at a certain tirHe. The \'lindc)\1\;' for this ro\.\! includes all ro\vs that
describe sales in \Visconsin vvithin the previous or next Inonth and 1novavg is
the average of sales (over all products) in \Visconsin \vithin this period.

\\To note that the ordering of ro\vs 'ivithin a partition for the purposes of windoVvT
definition does not extend to the table of answer ro\vs. The ordering of ansvver
ro\vs is nondeterlninistic, unless, of course, \ve fetch therIl through (1, cursor and
use ORDER BY to order the cursor's output.

25.4.1 Framing a Window

There are two distinct ways to fra1118 a window in SQL: 1999. l'he exarnple
query illustrated the RANGE construct, which defines a window based on the
values in SOllle cohulln (rnonth in our exarnple). The ordering colu111n has to
be a nU111eric type, a datetillle type, or an interval type since these are the only
types for which addition and subtraction are defined.

The second approach is based on using the ordering directly and specifying how
Illany rows before and after the given row are in its window. Thus, we could
say

SELECT L.state, T.rnonth, AVG (S.sales) OVER \V AS Inovavg
FROM Sales S, Tilll(~S T, Locations L
WHERE S.tirneid=T'.tinlE~id AND S.locid=L.locid
WINDOW W AS (PARTITION BY L.state

ORDER BY T.IIlonth
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)

If there is exactly one row in Tenlp for each IIlonth, this is equivalent to the
previous query. IIo\vever ~ if c\, given lnonth has no rows or lnultiple l"(nvs, the
t\VO queries produce different results. In this case, the result of the second query
is hard to understand because the \vindc)\vs for different rows do not align in a,
Ilfttllralway.

The second approach is appropriate if, in tcnns of our exarnple~ there is exactly
one 1'o\v per lllonth. C·eneralizing frOIrI this, it is also appropriate if there is
exactly one i·o\v for every vahle in the sequence of ordering COhll1Ul values.
·UnJike the first approach, 'where the ordering has to be specified over a single
(rullneric, datetinl€-\ or interval type) colurnn, the ordering can be based on a
cornposite key.
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\rYe can also define \vindows that include all rcnvs that are before B, given row
(UNBOUNDED PRECEDING) or all r0\VS after a given row (UNBOUNDED FOLLOWING)
'within the row~s partition.

25.4.2 New Aggregate Functions

\:Vhile the standard aggregate functions that apply to rnultisets of values (e.g.,
SUM, AVG) can be used in conjunction \vith Willdo\ving, there is a lleed for a
new class of functions that operate on a !'ist of values.

The RANK function returns the position of a row within its partition. If a
partition ha..'3 15 rows, the first rovv (according to the ordering of rows in the
window definition over this partition) ha.s rank 1 and the last row has rank 15.
The rank of intermediate rows depends on whether there are multiple (or no)
rows for a given value of the order.ing colurnn.

Consider our running example. If the first row in the Wisconsin partition has
the lllonth January 2002, and the second and third rows both have the rnonth
February 2002, then their ranks are 1, 2, and 2, respectively. If the next row
has rllonth March 2002 its rank is 4.

In contrast, the DENSE_.RANK function generates ranks without gaps. In our
exalnple, the four rows are given ranks 1, 2, 2, and 3. The only change is in
the fourth row, whose rank is now 3 rather than 4.

The PERCENT...RANK function gives a lneasure of the relative position of a row
within a partition. It is defined as (RANK-1) divided by the Innnber of rows
in the partition. CUME-DIST is sirnilar but based on actual position within the
ordered partition rather than rank.

25.5 FINDING ANSWERS QUICKLY

A recent trend, fueled in part by the popularity of the Internet, is an ernphasis
011 queries for which a user vvants only the first fevill, or the 'best' few, ansvvers
quickly. \Vhcn users pose queries to a search engine such as AltaVista, they
rarely look beyond the first or second page of results. If they do not find
what they are looking for, they refine their query and resubrnit it. '.rhe senne
phen()lneuon occurs in decision support applications and scnne DBl\;1S products
(e.g., DB2) already support extended SQL con.structs to specify sueh queries. A
related trend is that, for cornplex queries, users would like to ~ee an approxirnat(~

answer quickly and then have it 1Je continually refined, rather than \vait until
the exact ansvver is availablc~. \Ve now discuss these 1,""0 trends l)riefly.
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25.5.1 Top N Queries
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An analyst often wants to identify the top-selling handful of products, for ex­
alnple. \Ve can sort by sales for each product and return answers in this order.
If \ve have a Inillion products and the analyst is interested only in the top 10,
this straightforward evaluation strategy is clearly \vasteful. It is desirable for
users to be able to explicitly indicate how rnany answers they want, rnaking
it possible for the DB1VlS to optirnize execution. l-'he follo\ving exarnple query
asks for the top 10 products ordered by sales in a given location and tiIne:

SELECT P.pid, P.pnarne, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid==l AND S.tiIneid=3
ORDER BY S.sales DESC
OPTIMIZE FOR 10 ROWS

The OPTIMIZE FOR N ROWS construct is not in SQL-92 (or even SQL:1999), but
it is supported in IBM's DB2 product, and other products (e.g., Oracle 9i) have
sirnilar constructs. In the absence of a cue such as OPTIMIZE FOR 10 ROWS, the
DBMS computes sales for all products and returns thenl in descending order
by sales. The application can close the result cursor (i.e., tenninate the query
execution) after consulning 10 rows, but considerable effort has already been
expended in cornputing sales for all products and sorting them.

Now let us consider how a DBMS can use the OPTIMIZE FOR cue to execute the
query efficiently. The key is to sOlnehow cornpute sales only for products that
are likely to be in the top 10 by sales. Suppose that we know the distribution
of sales values because we rnaintain a histogran1 on the sales cohuun of the
Sales relation. We can then choose a value of sales, say, c, such that only
10 products have a larger sales value. For those Sales tuples that rneet this
condition, we can apply the location and tirne conditions as well and sort the
result ..Evaluating the following query is equivalent to this approach:

SELECT
FROM
WHERE
ORDER BY

P.pid, P.pnarne, S.sales
Sales S, Products P
S.pid=P.picl AND S.locid=1 AND
S.sales DESC

S.tirneid::::::~3 AND S.sales > c

This approach is, of course, ruuch faster than the alternative of cornputing all
product sales and sorting thern, but there are SOIne in1portant problerns to
resolve:

1. flow do 'we choose the sales cntoff value c? EIistograrns and other systeln
statistics can be used for this rn1rI)()SC, but this can be a tricky issue. For
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one thing~ the statistics rnaintained by a DBtv.IS are only approxirnate.
For another, even if \ve choose the cutoff to reflect the top 10 sales values
accurately, other conditions in the query Inay elirninate SOHle of the selected
tuples, leaving us with fewer than 10 tuples in the result.

2. ~'Vhat 'if we have 'fnon~ than 10 t'll]Jlesin the 'result? Since the choice of
the cutoff c is approxirnate, \'Ie could get 1nore than the desired nurnber
of tuples in the result. rrhis is easily handled by returning just the top
10 to the user. \Ve still save considerably with respect to the approach
of cornputing sales for all products, thanks to the conservative pruning of
irrelevant sales infonnation, using the cutoff c.

3. What 'if we have fewer' than 10 tuples in the. resv,lt? Even if \ve choose the
sales cutoff c conservatively, we could still cOlnpute fe\ver than 10 result
tuples. In this case, we can re-execute the query with a srnaller cutofF value
C2 or sirnply re-execute the original query \vith no cutoff.

The effectiveness of the approach depends on how well we can estirnate the
cutoff and, in particular, on rninimizing the nurnber of tiules we obtain fewer
than the desired nurnber of result tuples.

25.5.2 Online Aggregation

Consider the following query, which asks for the average sales arIlount by state:

SELECT
FROM
WHERE
GROUP BY

L.state, AVG (S.sales)
Sales S, Locations L
S.locid=L.locid
L.state

This can be an expensive query if Sales and Locations are large relations. \Ve
cannot a.chieve fast response tirnes with the traditional approach of cornputing
the anwer in its entirety when the query is presented. One alternative, as we
have seen, is to use precornputation. Another alternative is to cornpute the
ans\ver to the query when the query is presented l)ut return an approxirnate
ansvver to the user as soon as possible. A.s the cornputation progresses, the
ans\ver quality ,is continually refined. This approach is called online aggrega­
tion. It is very attra,ctive for queries involving aggregation, beca,use efficient
techniques for cornputing and refining approxirnate ans\\rers are available.

Chllinf: aggregation is illustrated in Figure 25.8: For CeLeb statc" ""the grouping
criterion for our exarnple query . the current value for average sales is displayed,
together with a confidence interval 11he entry for Alaska tells us that the
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J
~.-~'

Arizona 6,432.5 98% 52.3\~)

Wyoming 4,243.5

Figure 25.8 Online Aggregation

current estiInate of average per-store sales in Alaska is $2,8~32.50, and that this
is within the range $2,700.30 to $2,964.70 with 93% probability. rrhe status
bar in the first column indicates how close we are to arriving at an exact value
for the average sales and the second cohllnn indicates 'whether calculating the
average sales for this state is a priority. Estimating average sales for Alaska
is not a priority, but estimating it for Arizona is a priority. As the figure
indicates, the DBlVIS devotes Inore systern resources to estiInating the average
sales for high-priority states; the estirnate for Arizona is Inucll tighter than that
for Alaska and holds with a higher probability. Users can set the priority for
a state by clicking on the Prioritize button at any tilne during the execution.
This degree of interactivity, together with the continuous feedback provided by
the visual display, rnakes online aggregation an attractive technique.

To irnplernent online aggregation, a DEl\!IS lIlust incorporate statistical tech­
niques to provide confidence intervals for approxiInate answers and use non­
blocking algorithms for the relational operators. An algorithnl is said to
block if it does not produce output tuples until it has consurned all its input
tuples. For exarnple, the sort-Illerge join algoritlun blocks because sorting re­
quires all input tuples before detennining the first output tuple. Nested loops
join and hash join are therefore preferable to sort-rnerge join for online aggrega­
tion. Sirnilarly, hash-based aggregation is better than sort-based aggregation.

25.6 IMPLEMENTATION TECHNIQUES FOR OLAP

In this section we survey 80r11e irnplernentatioll techniques rllotivated by the
()LAP envirornnent. rrhe goal is to provide a feel for how ()LAP systerIls differ
fron1 1nore traditional S(~L systerns; our discussion is faT frorn cornprehensive.
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Beyond B+ Tl~ees: Complex queries have rnotivated the addition of
powerful indexing techniques to DBMSs. In addition to I3:+ tree indexes,
Oracle 9i supports bitlnap and join indexes and Inaintains these dynalni- i

cally as the indexed relations are updated. Oracle 9i also supports indexes
on expressions over attribute values, such as 10 * sal + bonus. Microsoft
SQL Server uses bitrnap indexes. Sybase IQ supports several kinds of
bitrnap indexes, and rnay shortly add support for a linear h&'3hing based
index. Informix UDS supports R trees and Inforrnix XPS supports bitlIlap
indexes.

l--- ~__. ..

The rIlostly-read environruent of OLAP systerns rnakes the CPU overhead of
rnaintaining indexes negligible and the requireruent of interactive response tinles
for queries over very large datasets rnakes the availability of suitable indexes
very important. This combination of factors has led to the developrnent of new
indexing techniques. We discuss several of these techniques. We then consider
file organizations and other OLAP implenlentation issues briefly.

We note that the ernphasis on query processing and decision support appli­
cations in OLAP systems is being cornplemented by a greater erllphasis on
evaluating cOlnplex SQL queries in traditional SQL systerIls. Traditional SQL
systerns are evolving to support OLAP-style queries more efficiently, supporting
constructs (e.g., CUBE and window functions) and incorporating irnpleruentation
techniques previously found only in specialized 0 LAP systems.

25.6.1 Bitmap Indexes

Consider a table that describes custorners:

Custoruers( custid: integer, narne: string, gender': boolean, rating: integer)

The rating value is an integer in the range 1. to 5, and only two values are
recorded for gender. Cohllnns with few possible values are called sparse. vVe
can exploit sparsity to construct a new kind of index that greatly speeds up
queries 011 these cobulins.

Th(~ idea is to r.i'ecord values for sparse colurnns as a sequence of bits, one for
each possible value. FbI' exarnple, a, gender value is either 10 or en; a 1. in
the first position denotes ruale, and 1. in the second position denotes fe1nale.
Similarly, 10000 denotes the rai'ing value 1, and 00001 denotes the rating value
5.
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If we consider the gender values for all rows in the Custorners table, vve can
treat this as a collection of two bit vectors, OIle of which has the a.,')sociated
value ~/I(ale) and the other the associated value F(ernale). Each bit vector has
one bit per row in the Custorners table, indicating vvhether the value in that
row is the value associated with the bit vector. The collection of bit vectors for
a COhUllIl is called a bitrnap index for that colurnn.

An exaInple instance of the Customers table, together with the bitlnap indexes
for gender and rating, is shown in Figure 25.9.

.----"

0 0 1. 0 0
0 0 0 0 1
0 0 0 0 1.
0 0 0 1. 0

I ·;11 ..•1J··.·.].·.···.·.·.·.···ld·······I··········;4·····.....[!J
112 Joe M 3

... ,,-

115 RaIn M 5
...

119 Sue F 5
112 Woo M 4

.:::.:=
1. 0
1 0
0 1.
1 0

!M!Fj

Figure 25.9 Bitmap Indexes on the Customers Relation

Bitmap indexes offer two important advantages over conventional hash and tree
indexes. First, they allow the use of efficient bit operations to answer queries.
For example, consider the query, "How Inany Inale custolllers have a rating
of 5?" We can take the first bit vector for gender and do a bitwise AND with
the fifth bit vector for rating to obtain a bit vector that has 1. for every male
custoIner with rating 5. We can then count the number of Is in this bit vector
to answer the query. Second, bitmap indexes can be much luore cOInpact than
a traditional B+ tree index and are very cunenable to the use of cornpression
techniques.

Bit vectors correspond closely to the rid-lists used to represent data entries in
Alternative (3) for a traditional B+ tree index (see Section 8.2). In fact, we can
think of a bit vector for a given age value, say, as an alternative representation
of the rid-list for that value.

This suggests away to combine bit vectors (and their advantages of bitwise
processing) with B+ tree indexes: We can use Alternative (3) for data entries,
using a bit vector representation of rid-lists. A caveat is that, if an rid-list is
very slnall, the bit vector representation rnay be Illuch larger than a list of rid
values, even if the bit vector is cornpressed. Further, the use of corupression
leads to decornprcssion costs, offsetting sorne of the C0I11putational advantages
of the bit vector representation.

A Inore flexible approach is to usc a standard list representation of the rid-list
for S01ne key values (intuitively, those that contain few clernents) and a bit
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vector representation for other key values (those that contain rnany elenlents,
and therefore lend themselves to a cOInpact bit vector representation).

This hybrid approach, 'which can easily be adapted to work \\lith hash indexes
a,,~ well as B+ tree indexes, haa.') both advantages and disadvantages relative to
a standard list of rids approach:

1. It can be applied even to cohllnns that are not sparse; that is, in ,vhich are
Tnany possible values can appear. The index levels (or the hashing scheIue)
allow us to quickly find the 'list' of rids, in a standard list or bit vector
representation, for a given key value.

2. Overall, the index is Tnore cornpact because we can use a bit vector rep­
resentation for long rid lists. \Ve also have the benefits of f&'3t bit vector
processIng.

3. On the other hand, the bit vector representation of an rid list relies on
a Inapping fron1 a position in the vector to an rid. (This is true of any
bit vector representation, not just the hybrid approach.) If the set of
rows is static, and we do not worry about inserts and deletes of rows, it
is straightforward to ensure this by assigning contiguous rids for rows in
a table. If inserts and deletes Inust be supported, additional steps are
required. For exanlple, we can continue to assign rids contiguously on a
per-table basis and sirnply keep track of which rids correspond to deleted
rows. Bit vectors can now be longer than the current nUlnber of rows, and
periodic reorganization is required to cOlllpact the 'holes' in the assignrnent
of rids.

25.6.2 Join Indexes

Cornputing joins with sIllall response tirnes is extrernely hard for very large
relations. One approach to this problern is to create an index designed to speed
up specific join queries. Suppose that the Custorners table is to be joined ~with

(1, table called Purchases (recording purchases Inacle by custorners) on the c,ltsUd
field.vVe can create a collection of (c, p) pairs, where p is the rid of a Purchases
record that joins \vith a Custc)lners recol'c! with cusUd c.

This idea can be generalized to support joins over ruore than t\VO relations. \Ve
discuss the special case of a star scherna., in \vhich the fact table is likely to
be joined with several dirnension tables. Consider a join query that joins fact
table F vvith dilnension tables D1 and D2 and includes selection conditions on
cohunn [:1 of tal)le 1)1 Etnd colurnn (:12 of table D2. \Ve store a tuple ('tl' ('2, r)
irl the join index if T1 is the rid of a tuple in table 1)1 with value ('1 in cohunn
C1

1 , '1'2 is the rid of a tuple in table D2 ,vith value C2 in colllrnn (:12 , and T is the
rid of a tllple in the fact ta,ble F, (uHl tJlcsethree tUl)les join with each other.
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~:~p~ex Queries: The IBM DB2 o;;:izer recognizes star join~:::l
and perfOfIns rid-b&ged sernijoins (using BIoarn filters) to filter the fact III

table. 1'hen fact table rO\V8 are rejoined to the dimension tables. Cornplex .
(rnnltitable) dirnension queries (called snowflake qucrvlcs) are supported.
DB2 also supports CUBE using SlnclJ't algorithrns that rninhnize sorts.~1i­

crosoft SQL Server optiInizes star join queries extensively. It considers
taking the cross-product of srnall dirnension tables before joining with the
fact table, the use of join indexes, and rid-basedserniJoins. Oracle 9i also
allows users to create diInensions to declare hierarchies and functional de­
pendencies. It supports the CUBE operator and optirnizes star join queries
by elinlinating joins when no colunlll of a dirnension table is part of the
query result. DBMS products have also been developed specifically for
decision support applications, such as Sybase IQ.

_~__~ •__<,., ••_"•." .•_ ••••• • ---.J

The drawback of a join index is that the nurnber of indexes can grow rapidly
if several colurnns in each dirnension table are involved in selections and joins
with the fact table. An alternative kind of join index avoids this problem.
Consider our exarnple involving fact table F and dirnension tables Dl and D2.
Let G1 be a column of Dl on which a selection is expressed in some query that
joins Dl with F. Conceptually, we now join F with Dl to extend the fields of F
with the fields of Dl, and index F on the 'virtual field' G1: If a tuple of Dl with
value Cl in colurnn C\ joins with a tuple of F with rid r, we add a tuple (C1' r)
to the join index. We create one such join index for each colurnn of either Dl
or D2 that involves a selection in SOHle join with F; C1 is an exarnple of such a
COIUllUl.

The price paid with respect to the previous version of join indexes is that join
indexes created in this way have to be cornbined (rid intersection) to deal with
the join queries of interest to us. This can be done efficiently if \ve rnake the
ne\v indexes bitrnap indexes; the result is called a, bitrnapped join index.
The idea works especiaJly W(~ll if cohunns such a"s Cil are sparse, and therefore
well suited to bitrnap indexing.

25.6.3 File Organizations

Since rllFtny OLAP queries involve just a fev\! colurnns of a large relation, vertical
partitioning becornes attractive. IIcrwever, storing a. relation colurnn-\vise can
degrade perfoI"rnance for queries that involve several colurnns. An alternative
in a, rl1ostly-read envirollrnent is to store the relation rOvv-vvise, but also store
each COlUH1Il separatel:y.
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A rnore radical file organization is to regard the fact table as a large Illuitidi­
rnensional array and store it and index it as such. This approach is taken in
NI0LAP systerns. Since the array is lIluch larger than available lnain lnelnory,
it is broken up into contiguous chunks, as discussed in Section 23.8. In addition,
traditional B+- tree indexes axe created to enable quick retrieval of chunks that
contain tuples "'lith values in a given range for one or rnore diInensions.

25.7 DATA WAREHOUSING

Data warehouses contain consolidated data from many sources, augrnented with
sunnnary inforrnation and covering a long time period. Warehouses are lnuch
larger than other kinds of databases; sizes ranging frorn several gigabytes to ter­
abytes are cornman. Typical workloads involve ad hoc, fairly cOlllplex queries
and fast response tilnes are important. These characteristics differentiate ware­
house applications from OL'TP applications, and different DBMS design and
irnplerrlentation techniques nUlst be used to achieve satisfactory results. A dis­
tributed DBMS with good scalability and high availability (achieved by storing
tables redundantly at more than one site) is required for very large warehouses.

External Data Sources

FJ
r=J

Operational Databases

EXTRACT
CLEAN
TRANSFORM
LOAD
REFRESH

----·-.--------------------------1

Metadata Repository

---_.-------
Data Warehouse

SERVES

Visualization

OLAP

Figure 25.10 A rrypical Data \Varehousing Architecture

A typical data warehousing architecture is illustrated in Figure 25.10. An orga­
nization's daily operations access and rnodify operational databases. Data
fror11 these oIlfSrational databases and other external sources (e.g., custorner
profiles supplied by external consultants) are extracted by using interfaces
such as JI)BC (see Section 6.2).
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25.7.1 Creating and Maintaining a Warehouse
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l\!Iany challenges rnust be Inet in creating and Inaintaining a large data ware­
house.A good datab&'3e scherua nlust be designed to hold an integrated collec­
tion of data copied froIn diverse sources. For exarnple, a cornpany warehouse
rnight include the inventory and personnel departrnents' databa.'3es, together
with sales databases rnaintained by offices in different countries. Since the
source databases are often created and rnaintained by different groups, there
are a nUlnber of selnantic Inisrnatches across these databases, such as different
currency units, different narnes for the saIne attribute, and differences in how
tables are nornlalized or structured; these differences Inust be reconciled when
data is brought into the warehouse. After the warehouse schenla is designed,
the warehouse must be populated, and over tirne, it Inust be kept consistent
with the source databases.

Data is extracted from operational databases and external sources, cleaned
to Inininlize errors and fill in Inissing information when possible, and trans­
formed to reconcile semantic Inismatches. Transforlning data is typically ac­
cOlnplished by defining a relational view over the tables in the data sources
(the operational databases and other external sources). Loading data consists
of ruaterializing such views and storing therll in the warehouse. Unlike a stan­
dard view in a relational DBMS, therefore, the view is stored in a database
(the warehouse) that is different frorn the database(s) containing the tables it
is defined over.

The cleaned and transfonned data is finally loaded into the warehouse. Ad­
ditional preprocessing such &'3 sorting and generation of surnrnary infornuttion
is carried out at this stage. Data is partitioned and indexes are built for effi­
ciency. Due to the large vohllue of elata, loading is a slow process. Loading a
terabyte of data sequentially can take 'Y"eeks, and loading even a gigabyte can
take hours. Parallelisul is therefore iInportant for loading warehouses.

AJter data is loaded into a warehouse, additional rneasures rnust be taken to
ensure that the data in the vvarehouse is periodically refreshed to reflect
updates to the data sources and periodically purge old data (perhaps onto
archival rnedia). Observe the connection between the problern of refreshing
warehouse tables and a,synchronously rnaintaining replica.." of tables in a dis­
tributed DBMS. Maintaining replicas of source relations is an essential part of
warehousing, and this application clornain is an iInportant factor in the popu­
larity of a.synchronous replication (Section 22.11.2), even though asynchronous
replication violates the principle of distributed data independence. The prob­
lern of refreshing warehouse tables (\vhich are rnaterialized views over tables in
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the source databEkses) has also rene\ved interest in inerernental Illaintenance of
rna.terialized vic\vs. ("VVe discuss rnaterialized vie\\Ts in Section 25.8.)

An irnportant tC4sk in Inainta,ining a warehouse is keeping track of the data
currently stored in it; this bookkeeping is done by storing infofrnation about
the \varehouse data in the systenl catalogs. rrhe systerIl catalogs associated 'with
a \varehouse are very large and often stored and 111anaged in a separate database
called a metadata repository. The size and cornplexity of the catalogs is in
part due to the size and cOlnplexity of the warehouse itself and in part because
a lot of adrninistrative inforrnation rnust be Inaintained. For excunple, we HlllSt
keep track of the source of each warehouse table and when it was last refreshed,
in addition to describing its fields.

1'he value of a warehO"use is ultin1ately in the analysis it enables. The data in a
warehouse is typically accessed and analyzed using a variety of tools, including
OLAP query engines, data. mining algorithrns, inforrnation visualization tools,
statistical packages, and report generators.

25.8 VIEWS AND DECISION SUPPORT

Views are widely used in decision support applications. Different groups of
analysts within an organization are typically concerned with different aspects
of the business, and it is convenient to define views that give each group insight
into the business details that concern it. Once a view is defined, we can write
queries or new view definitions that use it, as we saw in Section 3.6; in this
respect a view is just like a base table. Evaluating queries posed against views
is very ilnportant for decision support applications. In this section, we consider
how such queries can be evaluated efficiently after placing views within the
context of decision support applications.

25.8.1 Views, OLAP, and Warehousing

Views are closely related to OLAP and data warehousing.

OLAP queries are typically aggregate queries. Analysts want fa.st answers to
these queries over very large datasets, and it is natural to consider precoluputing
vievvs (see SectiorlS 25.9 and 25.10). In particular, the CUBE operator~ 'discussed
in Section 25.3""'gives rise to several aggregate queries that are closely related.
The relationships that exist betvveen the Inany aggregate queries that arise froln
a single CUBE operation can be exploited to develop very effective precornpu­
tation strategies. The idea is to choose a subset of the aggregate queries for
Inaterialization in such a. vvay that typical CUBE queries can be quickly answered
by using the Inaterialized views arld doing S(Hne additional cornplltation. The
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choice of views to 111ateria1ize is influenced by ho\v lllany queries they can po­
tentially speed up and by the aillount of space required to store the Inaterialized
view (since we have to \vork with a given alnount of storage space).

A data \varehouse is just a collection of &csynchrollously replicated tables and
periodically synchronized views. A Wareh(HIS(~ is characterized by its size, the
nuruber of tables involved, and the fact that IllOSt of the underlying tables
are froln external, independently lnaintained databases. Nonetheless, the fun­
daluental probleln in warehouse lnaintenance is asynchronous rnaintenance of
replicated tables and materialized views (see Section 25.10).

25.8.2 Queries over Views

Consider the following view, RegionalSales, which cornputes sales of products
by category and state:

CREATE VIEW RegionalSales (category, sales, state)
AS SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L
WHERE P.pid = S.pid AND S.locid = L.locid

The following query computes the total sales for each category by state:

SELECT H,. category, It.state, SUM (R.sales)
FROM RegionalSales H,
GROUP BY R.category, R,.state

\\1hile the SQL standard does not specify how to evaluate queries on views, it
is useful to think in ternlS of a process called query modification. rrhe idea is
to replace the occurrence of RegionalSales in the query by the view definition.
The result on this query is

SELECT
FROM

GROUP BY

H,.category, R.state, SUM (R.sales)
( SELECT P.category, S.sales, L.state
FROM Products P, Sales S, Locations L
WHERE P.piel = S.pid AND S.locid == L.locid ) AS R,
R,.category, H,.state

25.9 VIEW MATERIALIZATION

vVe can ansvver a query on a view by using the query rnodification technique
just described. Often, however, queries against cornplex view definitions Illust
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be answered very fast because users engaged in decision support activities re­
quire interactive response tirIles. Even with sophisticated optilnization and
evaluation techniques, there is a lirnit to how fa.."t we can answer such queries.
Also, if the underlying tables are in a rernote database, the query rIlodifica­
tion approach rnay not even be feasible because of issues like connectivity and
availability.

An alternative to query rnodification is to precornpute the view definition and
store the result. When a query is posed on the view, the (unrllodified) query is
executed directly on the precornputed result. This approach, called view ma­
terialization, is likely to be rnuch fa,;ter than the query modification approach
because the complex view need not be evaluated when the query is computed.
Materialized views can be used during query processing in the sarne way a'S
regular relations; for exarnple, we can create indexes on nlaterialized views to
further speed up query processing. The drawback, of course, is that we must
maintain the consistency of the precomputed (or m,aterialized) view whenever
the underlying tables are updated.

25.9.1 Issues in View Materialization

Three questions must be considered with regard to view nlaterialization:

1. What views should we rnaterialize and what indexes should we build on
the rnaterialized views?

2. Given a query on a view and a set of materialized views, can we exploit
the rnaterialized views to answer the query?

3. I-Iow should we synchronize rnaterialized views with changes to the under­
lying tables? The choice of synchronization technique depends on several
factors, such a.c; whether the underlying tables are in a rernote database.
We discuss this issue in Section 25.10.

'rhe answers to the first two questions are related. 'fhe choice of vievvs to
rnaterialize and index is governed by the expected workload, and the discussion
of indexing in Chapter 20 is relevant to this question ac; well. The choice of
views to rnaterialize is rnore cornplex than just choosing indexes on a set of
database tables, however, because the range of alternative views to rnaterialize
is wider. The goaJ is to rnaterialize a srnaU, carefully chosen set of views that
can be utilized to quickly answer rnost of the irnportant queries. COIlversely,
once vve have chosen a set of views to rnaterialize, we have to consider how they
can be used to ansvver a, given query.

Consider the RJ~gi()nalSales view. It involves a JOIn of Sales, Products, and
Locations and is likely to be expensive to cornpute. On the other hand, if it
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is rnaterialized and stored with a clustered B+ tree index on the search key
(category, state, sales), we Gall ans\ver the exarnple query by an index-only
searl.

Given the rnaterialized view and this index, we can also answer queries of the
follo\ving forrn efficiently:

SELECT
FROM
WHERE
GROUP BY

R.state, SUM (R.sales)
RegionalSales R
ILcategory == 'Laptop'
R.state

To answer such a query, we can use the index on the Inaterialized view to locate
the first index leaf entry with category == 'Laptop' and then scan the leaf level
until we come to the first entry ¥lith category not equal to Laptop.

The given index is less effective on the following query, for which we are forced
to scan the entire leaf level:

SELECT
FROM
WHERE
GROUP BY

R,.state, SUM (R.sales)
R,egionalSales R
R.state == 'Wisconsin'
R.category

This exanlple indicates how the choice of views to materialize and the indexes
to create are affected by the expected workload. ~rhis point is illustrated further
by our next exarnple.

Consider the following two queries:

SELECT
FROM
WHERE
GROUP BY

SELECT
FROM
WHERE
GROUP BY

P.category, SUM (S.sales)
Products P, Sales S
P.pic! == S.pic!
P.category

L.state, SUM (S.sales)
I . I S 1 S...JocatIons ,,;, . a es ~

.L .locid = S.locid
L.state

'These two queries require us to join the SaJes table (which is likely to be very
large) with another table and aggregate the result. IIO'w can vve use rnaterializa­
tion to speed up these queries? The straightforward approach is to precornpute
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each of the joins involved (Products with Sales and Locations with Sales) or to
preconlpute each query in its entirety. An alternative approach is to define the
following view:

CREATE VIEW rrotalSaJes (pid, locid, total)
AS SELECT S.pid, S.locid, SUM (S.sales)

FROM Sales S
GROUP BY S.pid, S.locid

The view TotalSales can be rnaterialized and used instead of Sales in our two
exalnple queries:

SELECT
FROM
WHERE
GROUP BY

SELECT
FROM
WHERE
GROUP BY

P.category, SUM (T.total)
Products P, TotalSales T
P.pid = T.pid
P.category

L.state, SUM (T.total)
Locations L, TotalSales T
L.locid = rr .locid
L.state

25.10 MAINTAINING MATERIALIZED VIEWS

A materialized view is said to be refreshed when we rnake it consistent with
changes to its underlying tables. rrhe process of refreshing a view to keep it
consistent with changes to the underlying table is often referred to as view
maintenance. Two questions to consider are

1. flow do vie refresh a view' when an underlying table is nlodified? Two issues
of particular interest are how to Inaintain vie\vs incTcrnentally, that is,
without recornputing frolI! scratch when there is a change to an underlying
table; and how to rnaintain vie\vs in a distributed environrnent such as a
data vvarehouse.

2. vVhcn should \ve refresh a view in response to a change to an underlying
table?

25.10.1 Incremental View Maintenance

A straightforward approach to refreshing a vie\v is to sirnply reeolnpute the
view \.vhen an underlying table is rnodified. This rnay, in fact, be a reason­
able strateKY in sorne ca."es. For exarnple, if the underlying tables are in a
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rernote databa..'3c, the view can be periodically recornputed and sent to the data
warehouse \vhere "the vie\v is Hlaterialized. This ha.'3 the advantage that the
underlying tables need not be replicated at the vvarehouse.

\Vhenever possible, however, algorithrns for refreshing a view should be incre­
mental, in that the cost is proportional to the extent of the change rather than
the cost of recornputing the vie\\r fr(Hn scratch.

To understand the intuition behind incrernental view rnaintenance algorithnls,
observe that a given row in the rnaterialized view can appear several thnes,
depending on how often it was derived. (R.ecall that duplicates are not elirni­
nated fro111 the result of an SQL query unless the DISTINCT clause is used. In
this section, we discuss rnultiset sernantics, even when relational algebra nota­
tion is used.) The rHain idea behind incremental rnaintenance algorithrIls is to
efficiently compute changes to the rows of the view, either new rows or changes
to the count associated with a row; if the count of a row becornes 0, the row is
deleted frorH the view.

We present an incrernental 11Ulintenance algorithnl for views defined using pro­
jection, binary join, and aggregation; we cover these operations because they
illustrate the rHain ideas. The approach can be extended to other operations
such as selection, un.ion, intersection, and (rnultiset) difference, as well as ex­
pressions containing several operators. The key idea is still to rnaintain the
nurnber of derivations for each view row, but the details of how to efficiently
conlpute the changes in view rows and associated counts differ.

Projection Views

Consider a view V defined in tenns of a projection on a tableR; that is,
y"" = n(R). Every row v in V has an associated count, corresponding to the
nurnber of tirnes it can be derived, \vhich is the nurnber of rows in R that yield '1)

when the projection is applied. Suppose we 1nodifyR by inserting a collection
of rows Il i and deleting a collection of existing 1'o\vs R d .1 vVe cornpute n(l1."'i)
and add it to \l. If the rnultisetrr(R.i ) contains a row T \vith count c and r
does not appear in 11 , \ve add it to V"with count c. If T is in V, we add c to
its count. vVe also cornpute n(Rd) and subtract it fronl 1/. ()bserve that if r

appe~:trs in neRd) \\rith count c, it 111USt also appear in y"" with a higher count;2
we subtract c frOTH r's count in V".
__'''. "n__

1'These collections can be multisets of rows. \'/e can treat a ro\v rnodification a.s an insert follO\'1ed
by 1:1 delete, for sirnplici ty.

2 As a simple exercise, consider why this rnust be so.
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As an exanlple, consider the view Jrsales(Sales) and the instance of Sales shown
in Figure 25.2. _Each ro\v in the vie\v has a single cohunn; the (n)\vwith) value
25 appears vvith count 1, and the value 10 appears vvith count 3. If \lve delete
one of the rows in Sales \vith sales 10, the count of the (l'()\V \vith) value 10 in
the vie"v becornes 2. If \ve insert a new row into Sales with sales 99, the vie"'!
no\v has a row with value 99.

An hnportant point is that \ve have to rnaintain the counts associated vvith rows
even if the view definition uses the DISTINCT clause, rneaning that duplicates
are elilninated frorn the view. Consider the saIne view with set selnantics~­

the DISTINCT clause is used in the SQL view definition··------and suppose that we
delete one of the rows in Sales with sales 10. Does the view now contain a
row with value 10'1 To deterrIline that the answer is yes, we need to maintain
the rOw counts, even though each row (with a nonzero count) is displayed only
once in the Inaterialized view.

Join Views

Next, consider a view V defined as a join of two tables, R [X] S. Suppose we
modify R by inserting a collection of rows R'i and deleting a collection of rows
Rd. We cornpute Ri [X] S and add the result to V. We also C0111pute Rd r><J S
and subtract the result fror11 V. Observe that if r appears in Rd [X] S with
count C, it rnust also appear in V with a higher count>J

Views with Aggregation

Consider a view V defined over R using GROUP BY on colUllln G and an ag­
gregate operation on colu1nn A. Each row v in the vi(~w surnrnarizes a group
of tuples in R and is of the fonn (g, 8'u,'rrLrnary) , where 9 is the value of the
grouping colulnn G and the sununary inforInation depends on the aggregate
operation. To lnaintain such a view incrernentally, in general, we have to keep
a lnore detailed surrllnary than just the inforrnation included in the view. If
the aggregate operation is COUNT, we need to Inaintain only a count c for each
rovv v in the vieVvT. If a ro\v r is inserted intoR, and there is no I'o,v v in "\;7

with 'v.G = T.G, we add <1 new row (r.G, 1). If there is a ro,v 'I) \vith v.C} = r.G,
we incrernent its count. If a row r is deleted fro111 R, \ve decrcrnent the count
for the row v "vith v.Ci = T.C}; v can be deleted if its count becornes 0, because
then the last row in this group ha.'3 been deleted frorn .R.

If the aggregate operation is SUM, we have to lllaintain a SUIll :3 and also a count
c. If a row T is inserted into If, and there is no renv '1) in ~! "lith v.C; = T.C:,
--_..- ...- .....

:{ As another simple exercise, consider why this mllst be so.
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we add a new row ('r.C, a, 1). If there is a, row (T.G, 8, c), we replace it by
(r.Ci, /3 +" a, C -t 1). If a rO\1ll T is deleted frolll Il, \ve replace the row (r.G, S, c)
with {T.G,8 - a, C - 1); 1) can be deleted if its count becornes O. Observe that
without the count, \-ve do not know when to delete 'u, since the Slun for a group
could be 0 even if the group contains SCHne rows.

If the aggregate operation is AVG, \ve have to lllaintain a Slun s, a count c,
and the average for each row in the vie\v. The SlUll and count are rnaintained
incrernentally as already described, and the average is corllputed as s / c.

The aggregate operations MIN and MAX are potentially expensive to rnaintain.
Consider MIN. For each group in R, we rnaintain (g, rn, c), where rn is the
Ininilnurn value for colUllln A in the group g, and c is the count of the nUlllber
of rows l' in R with T.G == 9 and r.A == m. If a row l' is inserted into Rand
r.G == g, if r.A is greater than the miniriulill m for group g, we can ignore r. If
r.A is equal to the 111iniInurll m for r's group, we replace the summary row for
the group with (g, m, c+ 1). If r.A is less than the minirllum m for r's group, we
replace the SUlnrnary for the group with (g, T.A, 1). If a row r is deleted frorn
Rand T.A is equal to the minimurIl rrt for T'S group, then we HUlst decrernent
the count for the group. If the count is greater than 0, we sinlply replace the
surnmary for the group with (g, rn, c-_· 1). However, if the count becomes 0, this
Ineans the last row with the recorded rninimum A value has been deleted from
R and we have to retrieve the sInallest A value among the relnaining rows in
R with- group value r.G-and this might require retrieval of all rows in 11, with
group value T.G.

25.10.2 Maintaining Warehouse Views

The views rnaterialized in a data warehouse can be based on source tables
in rernote databases. rIhe asynchronous replication techniques discussed in
Section 22.11.2 allow us to connnunicate changes at the source to the warehouse,
but refreshing vie\vs incrernentally in a distributed setting presents sorne unique
challenges. To illustrate this, we consider a sirnpleview that identifies suppliers
of Toys.

CREATE VIEW ToySuppliers (sid)
AS SELECT S.sid

FROM Suppliers S, Products P
WHERE S.pid == P.piel AND P.category == 'Tbys'

Suppliers is a new table introduced for this exarnple; let us &ssurne that it
hEkS just two fields, sid aIld pid, indicating that supplier s'id supplies part pill.
rrb.c location of th(~ tables Proclucts and Suppliers and the vie\v ToySuppliers
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influences hovv we IIlaintain the vh~\v. Suppose that all three are rnaintained
at a single site. vVe can Inaintain the view increlnentally using the techniques
discussed in Section 25.10.1. If a replica of the vie\v is created at another site,
we can 1l1onitor changes to the Inaterialized vie\v and apply thcIn at the second
site using the a..synchronous replication techniques froIn Section 22.11.2.

But, what if Products and Suppliers are at one site and the view is Inaterialized
(only) at a second site? To rnotivate this scenario, "we observe that, if the first
site is used for operational data and the second site supports cornplex analysis,
the two sites lnay well be adrninistered by different groups. The option of
lnaterializing ToySuppliers (a view of interest to the second group) at the first
site (run by a different group) is not attractive and may not even be possible; the
adnlinistrators of the first site may not ,vant to deal with someone else's views,
and the a(hninistrators of the second site n1ay not want to coordinate with
sonleone else whenever they Inodify view definitions. As another motivation
for rnaterializing views at a different location froIn source tables, observe that
Products and Suppliers may be at two different sites. Even if ·we rnaterialize
ToySuppliers at one of these sites, one of the two source tables is reillote.

Now that we have presented Inotivation for rnaintaining rroySuppliers at a loca­
tion (say, Warehouse) different froIn the one (say, Source) that contains Prod­
ucts and Suppliers, let us consider the difficulties posed by data distribution.
Suppose that a new Products record (with category == 'Toys') is inserted. We
could try to rnaintain the view incren1entally as follows:

1. The Warehouse site sends this update to the Source site.

2. 1'0 refresh the view, we need to check the Suppliers table to find suppli­
ers of the itern, and so the v\larehouse site asks the Source site for this
inforrnation.

3. The Source site returns the set of suppliers for the sold iteln, and the
vVarehouse site incrernentally refreshes the view.

This works when there are no additional changes at the Source site in between
steps (1) and (3). If there are changes, ho\vever, the Inaterializecl view can
becorne incorrect reflecting a state that can never arise except for anornalies
introduced by the preceding, naive, increInental refresh algorithrn. To see this,
suppose that Pr,oducts is enlpty and Suppliers contains just the row \81, 5)
initially, and consider the following sequence of events:

1. Product pid = 5 is inserted \vith category = 'Toys'; Source notifies\Vare­
house.

2. Warehouse asks Source for suppliers of product pid = 5. (The only such
supplier at this instant is 81.)
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3. The row (82,5) is inserted into Suppliers; Source notifies \Varehouse.

4. To decide whether 82 should be added to the vie\v, vve need to kno\v the
category of product pid = 5, and \Varehouse asks Source. (ltVarehouse has
not received an anS7.lJer to its previous quest1:on.)

5. Source now processes the first query frorn \tVarehouse, finds two suppliers
for part 5, and returns this inforrnation to Warehouse.

6. \tVarehouse gets the answer to its first question: suppliers 81 and 82, and
adds these to the view, each with count 1.

7. Source processes the second query frorn \Varehouse and responds with the
inforll1ation that part 5 is a toy.

8. Warehouse gets the answer to its second question and accordingly incre­
Hlents the count for supplier 82 in the view.

9. Product pid == 5 is now deleted; Source notifies Warehouse.

10. Since the deleted part is a toy, Warehouse decrements the counts of nlatch­
ing view tuples; 81 has count 0 and is relnoved, but s2 has count 1 and is
retained.

Clearly, 82 should not rernain in the view after part 5 is deleted. This example
illustrates the added subtleties of incremental view rnaintenance in a distributed
environment, and this is a topic of ongoing research.

25.10.3 When Should We Synchronize Views?

A view maintenance policy is a decision about when a view is refreshed,
independent of whether the refresh is incrernental or not. A view can be re­
freshed within the sallIe transaction that updates the underlying tables. This
is called immediate view Iuaintenance. The update transaction is slowed
by the refresh step, and the irupact of refresh increc1.'3es with the nurnber of
materialized views that depend on the updated table.

Alternatively, we can defer refreshing the vie\v. Updates are captured in a log
and applied subsequently to the rnaterialized vic\vs. There are several deferred
view maintenance policies:

1. Lazy: The rnaterialized vie\v\l is refreshed at the tilne a query is evaluated
using V, if V is not already consistent vvith its underlying base tables. This
approach sl()\vs down queries rather than updates, in contra-st to iHnnediate
vic",-! rnaintenance.
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I~iews for De-cision Su;ort: ;-BMS ven~rs are e:hancing ;ieir m~~­
I relational products to support decision support querip.s. IBM DB2 sup..
I ports materialized views with transaction-consistent or user-invoked main-
I tenance. l\1icrosoft SQL Server supports partition views, \vhich are
I unions of (ruany) horizontal partitions of a table. These aJ'e airned at
I a warehollsing envirOllrnent where each partition could be, for exalnple, a

rnonthly update. Queries on partition vie\vs are opthnized so that only rel­
evant partitions are accessed. Oracle 9i supports 111aterialized views with
transaction-consistent, user-invoked, or tilne-scheduled nlaintenance.

L_.~ _

2. Periodic: The lllaterialized view is refreshed periodically, say, once a day.
The discussion of the Capture and Apply steps in asynchronous replication
(see Section 22.11.2) should be reviewed at this point, since it is very rel­
evant to periodic view lllaintenance. In fact, many vendors are extending
their asynchronous replication features to support lllaterialized views. Ma­
terialized views that are refreshed periodically are also called snapshots.

3. Forced: rrhe rnaterialized view is refreshed after a certain nurnber of
changes have been made to the underlying tables.

In periodic and forced view nlaintenance, queries rllay see an instance of the
IIlaterialized view that is not consistent with the current state of the underlying
tables. That is, the queries would see a different set of rows if the view definition
was recornputed. This is the price paid for fast updates and queries, and the
trade-off is sirnilar to the trade-off rnade in using asynchronous replication.

25.11 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

II vVhat are decision support applications? :Oiscuss the relationship of co'rnple:r:
8(2L q'lteries, OLA.P, data rnining, and data 1uarehousing. (Section 25.1)

IIiI Describe the rnultidirnensional data luodel. Explain the distinction between
rneasurcs and dirnensions and between fact tables and din~en8ion tables.
\\That is a sip:r 8chenz,a? (Sections 25.2 and 25.2.1)

II Cornrnon OLAP operations have received special naInes: roll-up, drill­
deY/on" pivohng7 slicing, and dicing. Describe each of these operations and
illustrate thern using exarnples. (Section 25.3)

II I)escribe the SCJL:1999 ROLLUP and CUBE features and their relationship to
the ()LAP operations. (Section 25.3.1)
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• Describe the SQL:1999 WINDOW feature, in particular, frarning and ordering
of windows. How does it support queries over ordered data? Give exarnples
of queries that are hard to express without this feature. (Section 25.4)

• New query paradigrns include top N q'ue-ries and online aggTegation. Ex­
plain the nlotivation behind these concepts and illustrate then1 through
exaruples. (Section 25 .. 5)

• Index structures that are especially suitable for OLAP systen1s include
bitrnap indexes and join indexes. Describe these structures. How are
bitrnap indexes related to B+ trees? (Section 25 .. 6)

III Information about daily operations of an organization is stored in opeTa­
tional databases. Why is a data waTeho'i.LSe used to store data frolH oper­
ational databases? What issues arise in data warehousing? Discuss data
extTaction, cleaning, transjoTrnation, and loading. Discuss the challenges in
efficiently TejTeshing and pUTging data. (Section 25 .. 7)

III Why are views irnportant in decision support environments? How are views
related to data warehousing and OLAP? Explain the queTy mod~fication

technique for answering queries over views and discuss why this is not
adequate in decision support environrnents. (Section 25 ..8)

III What are the rnain issues to consider in maintaining materialized views?
Discuss how to select views to materialize and how to use rnaterialized
views to answer a query. (Section 25.9)

• How can views be rnaintained incTernentally? Discuss all the relational
algebra operators and aggregation. (Section 25 .. 10.1)

• Use an exarnple to illustrate the added cornplications for incrernental view
maintenance introduced by data distribution. (Section 25.10.2)

III Discuss the choice of an appropriate rnaintenance policy for when to refresh
a view. (Section 25.10.3)

EXERCISES

Exercise 25.1 Briefly answer the following questions:

1. How do warehousing, OLAP, and data rnining cornplernent each other?

2. vVhat is the relationship between datawan~housingand data replication? Which fornl of
replication (synchronous or a.csynchronous) is better suited for data w(trehOllsing? \Vhy?

:J. \\That is the role of the rnetadata repository in a data warehouse'? How does it differ
frorn a catalog in (1 relational IJB:NIS?

4. \Vhat considenttions are involved in designing a data warehouse'?
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5. Once a warehouse is designed and loaded 1 how is it kept current with respect to changes
to the source databases?

fl. One of the advantages of a waxehouse is that we can use it to track how the contents of
a relation change over titue; in contrast 1 we have only the current snapshot of a relation
in a regular DBJ'vfS. Discuss how you would maintain the history of a relation R, taking
into account that 'old' infonnation lllust sOlnehow be purged to rnake space for Hew
infonnatioll.

7. Describe dilnensions and rneasures in the multidirnensional data model.

8. What is a fact table, and why is it so irnportant frOIn a performance standpoint?

9. Vvhat is the fundarnental difference between ~fOLAP and ROLAP systems?

10. \Vhat is a star scheIna? Is it typicaU:y in BCNF? Why or why not?

11. How is data rnining different from OLAP?

Exercise 25.2 Consider the instance of the Sales relation shown in Figure 25.2.

1. Show the result of pivoting the relation on pid and tirneid.

2. Write a collection of SQL queries to obtain the same result as in the previous part.

3. Show the result of pivoting the relation on pid and lacid.

Exercise 25.3 Consider the cross-tabulation of the Sales relation shown in Figure 25.5.

1. Show the result of roll-up on lacid (i.e., state).

2. Write a collection of SQL queries to obtain the same result as in the previous part.

3. Show the result of roll-up on lacid followed by drill-down on pid.

4. Write a collection of SQL queries to obtain the same result as In the previous part,
starting with the cross-tabulation shown in Figure 25.5.

Exercise 25.4 Briefly answer the following questions:

1. What is the difIerences between the WINDOW clause and the GROUP BY clause'?

2. Give an example query that cannot be expressed in SQL without the WINDOW clause but
that can be expressed with the WINDOW clause.

:3. What is the fTCLrne of a window in SQL: 19997

4. Consider the fonowing simple GROUP BY query.

SELECT
FROM
WHERE
GROUP BY

T.year, SUM (S.sales)
Sales 5, Tilnes T
S.tilneid='T.timeid
T.year

Can you write this query in SQL:1999 without using a GROUP BY cIa.use? (Hint: Use the
SQL:1999 WINDOW clause.)

Exercise 25.5 Consider the Locations, Products, and Sales relations shown in Figure 25.2.
\iVrite the following queries in SQL:1999 llsing the WINDOW clause whenever you need it.

1. Find the percentage change in the total IJ10nthly sales for each location.

2. Find the percentage chc.tnge in the total quarterly sales for each product.
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3.FLnd the average daily sales over the preceding ;30 days for each product.

4. For each week, find the maximulu uloving average of sales over the preceding four \veeks.

5. Find the top three locations ranked by total sales.

6.F'ind the top three locations ranked by curnulative sales, for every month over the past
year.

7. Rank all locations by total sales over the past year, and for each location print the
difference in total sales relative to the location behind it.

Exercise 25.6 Consider the CustOIuers relation and the bitmap indexes shown in Figure
25.9.

1. For the same data, if the underlying set of rating values is assuIued to range froIlI 1 to
10, show how the bitnlap indexes would change.

2. How would you use the bitIllap indexes to answer the following queries? If the bitmap
indexes are not useful, explain why.

(a) How many customers with a rating less than 3 are male?

(b) What percentage of custoIners are male?

(c) How rnany customers are there?

(d) How many custonlers are named Woo?

(e) Find the rating value with the greatest number of custoIl1erS and also find the nUIll­
bel' of custorners with that rating value; if several rating values have the maxirnurn
number of custoIllers, list the requested infonuation for all of theIn. (AssuIne that
very few rating values have the same nUluber of customers.)

Exercise 25.7 In addition to the Customers table of Figure 25.9 with bitrnap indexes on
gender' and 'rating, assurne that you have a table called Prospects, with fields ruting and
prospectid. This table is used to identify potential customers.

1. Suppose that you also have a bitrnap index on the rating field of Prospects. Discuss
whether or not the bitnlap indexes would help in corllputing the join of Custorners and
Prospects on rating.

2. Suppose you have no bitrnap index on the rating field of Prospects. Discuss whether or
not the bitrnap indexes on CustOIuers would help in conlputing the join of Custorners
and Prospects on nLting.

~1. Describe the use of a join index to support the join of these two relations with the join
condition c'Ust'id=prospectid.

Exercise 25.8 Consider the instances of the Locations, Products, and Sales relations shown
in Figure 25.2.

1. Consider the basic join indexes d€~scribed in Section 25.6.2. Suppose you want to optiInize
for the following two kinds of queries: Query 1 finds sa.les in a given city, and Query 2
finds sa.les in a given state. Show the indexes you would create on the excunple instances
shown in Figure 25.2.

2. Consider the bitIIulpped join indexes described in Section 25.6.2. Suppose you want to
optirnize for the following two kinds of queries: Query 1 finds sales in a given city, and
Query 2 finds sales in a given state. Show the indexes that you would create on the
exanlple instances shown in Figure 25.2.



886 CHAPTER 25
II

~3. Consider the basic join indexes described in Section 25.6.2. Suppose you want to optiInize
for these two kinds of queries: Query 1 finds sales in a given city for a given product
I1alne~ and Query 2 finds sales in a given state for a given product category. Show the
indexes that you would create on the exarl1ple instances shown in Figure 25.2.

4. Consider the bitmapped join indexes described in Section 25.6.2. Suppose you want to
optirnize for these two kincls of queries: Query 1 finds sales in a given city for a given
product narne, and Query 2 finds sales in a given state for a given product category.
Show the indexes that you would create on the example instances shown in Figure 25.2.

Exercise 25.9 Consicler the view NurnReservations defined as:

CREATE VIEW NumReservations (sid, snarnc, nUlures)
AS SELECT S.sid, S.snarne, COUNT (*)

FROM Sailors S, Reserves R
WHERE S.sid = R.sid
GROUP BY 8.sid, S.sname

1. How is the following query, which is intended to find the highest number of reservations
nlade by smne one sailor, rewritten using query modification?

SELECT

FROM

MAX (N .numres)
NurnReservations N

2. Consider the alternatives of cornputing on deluand and view materialization for the
preceding query. Discuss the pros and cons of materialization.

3. Discuss the pros and cons of materialization for the following query:

SELECT N.snarlle, MAX (N.numres)
FROM NumReservations N
GROUP BY N.sname

Exercise 25.10 Consider the Locations, Products, and Sales relations in Figure 25.2.

1. To decide whether to rnaterialize a view, what factors do we need to consider?

2. Assurne that we have defined the following lnaterialized view:

SELECT

FROM
WHERE

L.state~ S.sales
Locations I-i, Sales S
8.locid=L.locid

(a) Describe what auxiliary infornlatioll the algorithnl for incrernental view rnainte­
nance frorn Section 25.10.1 maintains and how this data helps in lnainta.ining the
view incrernentally.

(b) Discuss the pros and cons of ruaterializing this view.

:3. Consider the rnaterialized view in the previous question. Assume that the relations
Locations and Sales are stored at OIle site, but the view is rnaterialized on a second site.
Why would we"ever want to luaintain the view at a second site? Give a concrete exarnple
where the view could become inconsistent.

4. ASSUITW that we have defined the following rnaterialized view:

SELECT

FROM
WHERE

GROUP BY

T.year, I..state, SUM (S.sales)
Sales 8, 'rirnes '1', Locations L
S. tirneid=T. tilneid AND S.locid=L.locid
rr.year, L.state
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(a) Describe what auxiliary infoflnation the algorithnl for incrernental view rnainte­
nance frOIn Section 25.10.1 luaintains, and how this data helps in rnaintaining the
view increluentaJly.

(b) Discuss the pros and cons of 11laterializing this view.

BIBLIOGRAPHIC NOTES

A good survey of data warehousing and OLAP is presented in [161], which is the source of
Figure 25.10. [686] provides an overview of OLAP and statistical database research, showing
the strong parallels between concepts and research in these two areas. The book by Kirnball
[436], one of the pioneers in warehousing, and the collection of papers in [(2) offer a good prac­
tical introduction to the area. The term OLAP was popularized by Codd's paper [191]. For a
recent discussion of the performance of algorithms utilizing bitmap and other nontraditional
index structures, see [575].

Stonebraker discusses how queries on views can be converted to queries on the underlying
tables through query modification [713]. Hanson cmnpares the perfornlance of query modifi­
cation versus immediate and deferred view maintenance [365]. Srivastava and Roterll present
an analytical model of materialized view maintenance algorithnls [707]. A number of papers
discuss how rnaterialized views can be incrementally maintained as the underlying relations
are changed. Research into this area has become very active recently, in part because of the
interest in data warehouses, which can be thought of as collections of views over relations from
various sources. An excellent overview of the state of the art can be found in [348], which
contains a number of influential papers together with additional rnaterial that provides con­
text and background. The following partial list should provide pointers for further reading:
[100, 192, 193, 349, 369, 570, 601, 635, 664, 705, 800].

Gray et al. introduced the CUBE operator [~~35], and optirnization of CUBE queries and efficient
maintenance of the result of a CUBE query have been addressed in several papers, including
[12, 94, 216, 367, 380, 451, 634, 6~38, 687, 799]. Related algorithrns for processing queries
with aggregates and grouping are presented in [160, 166]. Rao, Badia, and Van Gucht address
the irnplelnentation of queries involving generalized quantifiers such as a rnajor'ity of [618].
Srivastava, Tan, and LUIIl describe an access ruethod to support processing of aggregate
queries [708]. Shannlugasundaranl et al. discuss how to ruaintain cornpressed cubes for
approxirnate answering of aggregate queries in [675].

SQL: 1999's support for OLAP, including CUBE and WINDOW constructs, is described in [52:'3].
The windowing extensions ::tre very sirnilar to SQL extension for querying sequence data,
called SRQL, proposed in [610]. Sequence queries have received a lot of attention recently.
Extending relational systeills, \vhich deal with sets of records, to deal with sequences of records
is investigated in [473, 665, 671].

There has been recent interest in one-pass query evaluation algorithnls and database rnanage­
rnent for data streaIns. A recent survey of data rnanagernent for data streams and algorithrns
for data stream processing can be fonnd in [49J. Exarnples include quantile and order-statistics
cOlnputation [340, 50G], estirnating frequency rnornents and join sizes [;34, :'35], estirnating
correlated aggregates [:310], rllultidirnensionaJ regression analysis [17J], etnd cornputing one­
dirnensional (i.e., single-attribute) histograrns and Haar wavelet clecmnpositioI1s [:U9, :345].

Other work includes techniques for incrementally IllElintaining equi-depth histograms [:31:3]
and Baal' wavelets [515], rnaintaining sarnples and siluplc statistics over sliding \vindows [201],
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as well as general~ high-level architectures for stremll databa.,ge systenlS [50}. Zdonik et al. de­
scribe the architecture of a database systern for Hl0nit;oring data streaU1S [795J. A language
infrastructure for developing data streaIll applications is described by Cortes 8t al. [199].

Carey and Kossrnann discuss how to evaluate queries for which only the first few answers are
desired [1:3.5, 1:36]. Donjerkovic and Ralnakrishnan consider how a probabilistic approach to
query optiInization call be applied to this probleul [229]. [120] compares several strategies
for evaluating Top N queries. Hellerstein et al. discuss how to return approxiInate answers
to aggregate queries and to refine thern 'online.' [47, :374]. This work ha..9 been extended to
online cOlnputation of joins [354], online reordering [617] and to adaptive query processing
[48].

There has been recent interest in approximate query answering, where a small synopsis data
structure is used to give fast approxiruate query answers with provable perforrnance guarantees
[7, 8, 61, 159, 167, 314, 759].
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DATA MINING

.. What is data mining?

.. What is lliarket basket analysis? What algorithms are efficient for
counting co-occurrences?

i"- What is the a priori property and why is it important?

.. What is a Bayesian network?

.. What is a cla..'Ssification rule? What is a regression rule?

... What is a decision tree? How are decision trees constructed?

... What is clustering? What is a salllple clustering algorithln?

... What is a similarity search over sequences? How is it implmuented?

.. How can data mining models be constructed increluentally?

.. What are the new mining challenges presented by data strealllS?

.. Key concepts: data nlining, KDD process; market basket analysis,
co-occurrence counting, a..'Ssociation rule, generalized association rule;
decision tree, cla..'Ssification tree; clustering; sequence similarity search;
incrernental model llIaintenallce, data streanls, block evolution

1i he secret of success is to know sornething nobody else knows.

·-·Aristotle Onassis

Data luining consists of finding interesting trends or patterns in large data,sets
to guicle decisions about future activities. There is a genera] expectation that

889
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data ruining tools should be able to identify these patterns in the data \vith
minirnal user input. The patterns identified by such tools can give a data
analyst useful and unexpected insight that can be Illore carefully investigated
subsequently, perhaps using other decision support tools. In this chapter, we
discuss several widely studied data luining tasks. COllunercial tools are avail­
able for each of these tasks frorll major vendors, and the area is rapidly gTowing
in ilnportance as these tools gain acceptance in the user cornrnunity.

We start in Section 26.1 by giving a short introduction to data mining. In
Section 26.2, we discuss the irnportant task of counting co-occurring items. In
Section 26.3, we discuss how this ta"k arises in data mining algorithms that
discover rules froln the data. In Section 26.4, we discuss patterns that represent
rules in the forln of a tree. In Section 26.5, we introduce a different data rnining
task, called clustering, and describe how to find clusters in large datasets. In
Section 26.6, we describe how to perform siInilarity search over sequences. We
discuss the challenges in rnining evolving data and data streams in Section 26.7.
We conclude with a short overview of other data mining tasks in Section 26.8.

26.1 INTRODUCTION TO DATA MINING

Data nlining is related to the subarea of statistics called exploratory data anal­
ysis, which has siruilar goals and relies on statisticalrueasures. It is also closely
related to the subareas of artificial intelligence called knowledge discovery and
rnachine learning. The important distinguishing characteristic of data rnining
is that the volume of data is very large; although ideas froln these related areas
of study are applicable to data nlining problems, scalability with respect to data
size is an important new criterion. An algorithm is scalable if the running
tirne grows (linearly) in proportion to the dataset size, holding the available
systenl resources (e.g., arnount of rnain rnemory and CPU processing speed)
constant. Old algorithms must be adapted or new algorithnls developed to
ensure scalability when discovering patterns fn)In data.

Finding useful trends in datasets is a rather loose definition of data 111ining: In a
certain sense, all database queries can be thought of as doing just this. Indeed,
we have a continuurn of ana.lysis and exploration tools with SQL queries at one
end, OLAP queries in the rniddle, and data ruining techniques at the other end.
SQL queries are, constructed! using relational algebra (with sorne extensions),
OLAP provides higher-level querying idiorlls ba"sed on the rnultidirnensional
data rn.odel, and data rnining provides the rnost abstract analysis operations.
vVe can think of different data rnining tasks a,,') cornplex 'queries' specified at
a high level, with a few panuneters that are user-defina.ble, and for which
specialized algorithrns are ilnplernented.
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SQL/MM: Data Mining SQL/MM: The SQLfMtvi: Data IViining ex­
tension of the SQL:1999 standard supports four kinds of data mining
nlodels: frequent itenLsets and associat'ion 'rules, clusters of records, re­
g'ression tn~es, and classification trees. Several new data types are intro­
duced. These data types play several roles. SaIne represent a particular
class of model (e.g., DM~egressibnMod.el,D}JLClusteringModel); some
specify the input parameters for a mining algorithm (e.g., DM-RegTask,
DM_ClusTask); some describe the input data (e.g., DM..LogicalDataSpec,
DM-MiningData); and sornerepresent the result of executing a rnining algo­
rithm (e.g., DM....RegResult, DM_ClusResult). Taken together, these classes
and their methods provide a standard interface to data mining algorithms
that can be invoked frorn any SQL:1999 database systern. The data min­
ing rnodels can be exported in a standard XML format called Predictive
Model Markup Language (PMML); models represented using PMML
can be hnported as well.

In the real world, data rnining is much more than sirnply applying one of these
algorithnls. Data is often noisy or inconlplete, and unless this is understood and
corrected for, it is likely that rnany interesting patterns will be rnissed and the
reliability of detected patterns will be low. Further, the analyst nlust decide
what kinds of rnining algoritlulls are called for, apply them to a well-chosen
subset of data sarnples and variables (i.e., tuples and attributes), digest the
results, apply other decision support and mining tools, and iterate the process.

26.1.1 The Knowledge Discovery Process

The knowledge discovery and data mining (KDD) process can roughly
be separated into four steps.

1. Data Selection: The target subset of data and the attributes of interest
are identified by exalnining the entire raw dataset.

2. Data Cleaning: Noise and outliers are relnoved, field values are trans­
fonned to cornrnon units and SOUIC l1C\V fields are created by cornbining
existing fields to facilitate a,nalysis. The data is typically put into a, rela­
tional fonnat, and several tables rnight be cornbined in a denoTTnal'ization
step.

3. Data Mining: \Ve apply data rnining algorit1ll11S to extract interesting
patterns.

4. Evaluation: The patterns are presented to end-users ill an understandable
fonn, for ex<unple, through visualization.
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1"he results of any step in the I<:DD proce:ss lllight lead us back to an earlier step
to redo the process with the ne\v knowledge gained. In this chapter, however,
we lilnit ourselves to looking at algoritlnns for SaIne specific data rnining tasks.
\¥e do not discuss other aspects of the I(DD process.

26.2 COUNTING CO-OCCURRENCES

\Ve begin by considering the probleln of counting co-occurring iterns, which is
rnotivated by problelTIs such as lllarket basket analysis. A market basket is a
collection of items purchased by a custOlner in a single customer transaction.
A cnstorner transaction consists of a single visit to a store, a single order through
a mail-order catalog, or an order at a store on the Web. (In this chapter, we
often abbreviate customer transaction to transaction when there is no confusion
with the usual nleaning of transaction in a DBlVlS context, which is an execution
of a user program.) A COIIlIllon goal for retailers is to identify items that are
purchased together. This inforrnation can be used to improve the layout of
goods in a store or the layout of catalog pages.

I .·transid ·1 c1tstidl date item .. ··l.qtyl
5/1/99

.•
111 201 pen 2

1'-'

5/1/99 ink111 201 1
5/1/99 milk

-'-
111 201 3
111 201 5/1l9'9 juice 6_ .••.

-"-

112 105 6/3/99 pen 1-_•.
6/3/99112 105 ink 1

" "., ..._-
112 105 ....6/3/99 milk 1-_ ....

r t~~
5/10'/99

.- ..
113 pen 1
113 5/io/99 Inilk

..._-
1

.....
'·-"'-6/1/99 ....-

114 201 pen 2
. ...._.. 6/1/99-.....114 201 ink 2

f--_.._- ...

114 201 6/1/99 juice 4,......-...__.

6/1/99
---

114 201 water 1
. "- ... ....-

Figure 26.1 'I'he Purcha'3es Relation

26.2.1 Frequent Itemsets

'vVe use the Purchases relation shovvn in Figure 26.1 to illustrate frequent item­
sets. rrhe records are shoVi.rn sorted into groups by transaction. All tuples in
a group have the saIne tr-ansid, and together they describe a custorner trans­
action, which involves purcha..ses of one or Inore iterns. A transaction occurs
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on a given date, and the nanle of each purcha..lSed itenl is recorded, along \vith
the purella,sed quantity. ()bserve that there is redundancy in Purchases: It can
be decolnposed by storing tTansid"c"lJ,8l'i,d~~date triples in a separate table and
dropping c'lud'id and date froln Purchases; this nlay be ho\v the data is actually
stored. Hc)\vever, it is convenient to consider the Purcha..ses relation, as shov.rn
in Figure 26.1, to corupute frequent iternsets. Creating such "denonnalized'
tables for ease of data rnining is cOIIllllonly done in the data cleaning step of
the I(DD process.

By ex<:unining the set of transaction groups in Purcha,..~es, we can rnake obser­
vations of the fornl: "In 751() of the transactions a pen and ink are purchased
together." rrhis stateulent describes the transactions in the database. Ex­
trapolation to future transactions should be done with caution, as discussed in
Section 26.3.6. Let us begin by introducing the terminology of rnarket basket
analysis. An itemset is a set of itelTIS. The support of an itelnset is the frac­
tion of transactions in the database that contain all the iterus in the iterllset.
In our exaIupl.e, the itelllset {pen, ink} has 75% support in Purchases. We can
therefore conclude that pens and ink are frequently purchased together. If we
consider the itelllset {milk, juice}, its support is only 25%; milk and juice are
not purchased together frequently.

Usually the nUlnber of sets of itenlS frequently purchased together is relatively
sInall, especially as the size of the itenlsets increases. We are interested in
all iterllsets whose support is higher than a user-specified minimUIl1 support
called m,insnp; we call such itemsets frequent itemsets. For exarnple, if the
IIlinirl1Unl support is set to 70%, then the frequent iterllsets in our example
are {pen}, {ink}, {nlilk}, {pen, ink}, and {pen, 111ilk}. Note that we are
also interested in iternsets that contain only a single iteru since they identify
frequently purchased iterl1s.

\Ve show an algorithrn for identifying frequent iterllsets in Figure 26.2. This
algorithrn relies on a sirnple yet fundarnentaJ property of frequent iterIlsets:

The a Priori Property: Every subset of a frequent iterllset is also a
frequent itelnset.

'fhe algorithnl proceeds iteratively, first identifying frequent iterIlsets 'with just
one itcrll. In Bach subsequent iteration, frequent iterl1sets identified in the
previous iteration are extended with another itern to generate larger candidate
itcrnsets. By considering only iterllsets obtained by enlarging frequent iternsets,
we greatly reduce the nurnber of candidate frequent itcrllsets; this optirnization
is crucial for efficient execution. ~rhe a priori property guarantees that this
optilnizatic)ll is correct; that is, \ve do not Iniss any frequent iterllsets. A single
scan of all trans(l,(tions (the Pllrchas(~s relation in our exarnple) suffices to
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f oreach itelll, Level 1
check if it is a frequent iternset II appears in > 'rnins'l1,p transactions

k=l
repeat / / Iterative, level-wise identification of frequent itelllsets

f oreach new frequent iterllset I k with k iterlls / / Level k + 1
generate all iterl1sets lk+l with k + 1 itelllS, lk C Ik+l

Scan all transactions once and check if
the generated k + 1-iterIlsets are frequent
k=k+1

until no new frequent itemsets are identified

Figure 26.2 An Algorithm for Finding Frequent Itemsets

determine which candidate iterllsets generated in an iteration are frequent.
The algorithm terminates when no new frequent itemsets are identified in an
iteration.

'We illustrate the algorithrn on the Purchases relation in Figure 26.1, with
minsup set to 70%. In the first iteration (Levell), we scan the Purchases
relation and deterllline that each of these one-iterll sets is a frequent iternset:
{pen} (appears in all four transactions), {ink} (appears in three out of four
transactions), and {rnilk} (appears in three out of four transactions).

In the second iteration (Level 2), we extend each frequent itemset with an
additional itenl and generate the following candidate iterIlsets: {pen, ink}, {pen,
milk}, {pen, juice}, {ink, rnilk}, {ink, juice}, and {rnilk, juice}. By scanning the
Purchases relation again, we deterrnine that the following are frequent ite111sets:
{pen, ink} (appears in three out of four transactions), and {pen, rnilk} (appears
in three out of four transactions).

In the third iteration (Level 3), we extend these itelllsets with an additional
iteHl and generate the following candidate itcrl1sets: {pen, ink, nl/ilk} , {pen,
ink, juice}, and {pen, rnilk, fuice}. (Observe that fink, rnilk, juice} is not
generated.) A third sca.n of the Pllrchc1E,es relation aJlows us to deterrnine that
none of these is a frequent iterTlset.

The sirnple algoritlnll presented here for finding frequent iternsets illustrates the
principal feature of Inore sophisticated algorithrns, naruely, the iterative gener­
ation and testing of candidate itcrnsets. vVe consider one irnportant refincrnent
of this sirnple algorithrn. Cjenerating candidate iternsets by adding an itCHl
to a known frequent iternset is an atterIlpt to lirnit the rnunber of candidate
itcrIlsets using the a priori property. rrhe a priori property ~rnplies that a can-
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dida,te iternset can be frequent only if all its subsets are frequent. Thus, we can
reduce the nUlnber of candidate iternsets further··..··--a priari, or before scanning
the PurchEhses databaBe··........_·by checking whether all subsets of a newly generated
candidate itcIIlset are frequent. Only if all subsets of a candidate iternset are
frequent do we cOlnpute its support in the subsequent databa'3c scan. COln­
pared to the sirnple algoritlun, this refined algoritlull generates fewer candidate
itenlsets at each level and thus reduces the arnount of conlputation perfonned
during the database scan of Purchases.

Consider the refined algorithrn on the PurchclSes table in Figure 26.1 with
rn:inStlp= 70%. In the first iteration (Level 1), we deterrnine the frequent item­
sets of size one: {pen}, {ink}, and {ntilk}. In the second iteration (Level 2),
only the following candidate itemsets rernain when scanning the Purchases ta­
ble: {pen, ink}, {pen, 'm-ilk} , and {ink, rnilk}. Since {juice} is not frequent, the
iterllsets {pen, juice}, {ink, juice}, and {rnilk, juice} cannot be frequent as well
and we can elirninate those iterIlsets a priori, that is, without considering therll
during the subsequent scan of the Purchases relation. In the third iteration
(Level 3), no further candidate itemsets are generated. The iternset {pen, ink,
m,ilk} cannot be frequent since its subset {ink, milk} is not frequent. Thus, the
irnproved version of the algorithrll does not need a third scan of Purchases.

26.2.2 Iceberg Queries

We introduce iceberg queries through an exaillple. Consider again the Pur­
chases relation shown in Figure 26.1. Assurne that we want to find pairs of
custorners and iterns such that the custorner has purchased the item rllore than
five thnes. We can express this query in SQL as follows:

SELECT
FROM
GROUP BY
HAVING

P.custid, P.itern, SUM

Purch~h"es P
P.custid, P.itern
SUM (P.qty) > 5

(P.qty)

rrhink about how this query would be evaluated by a relational DBMS. Con­
ceptually, for each (c'usLid, 'itcrn) pair, we need to check whether the surn of the
qty field is greater than 5. One approach is to rnake a scan over the Purchases
relation and rnaintain running surns for each (c'Ustid, itern) pair. T'his is a fea­
sible execution ,strategy a.s long as the nurnber of pairs is sruaU enough to fit
into lIlain rncIIlory. If the nurnber of pairs is larger than rnain Inernory, lnorc
expensive query evaluation plans,\vhich involve either sorting or hashing, have
to be used.

The query has an irnporta"nt property not exploited by the preceding execution
strategy: Even though the Purcha..'3cs relation is potentially very large and the
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nurnber of (cltstid, 'itern) groups CaJl be huge, the Cyutput of the query is likely to
be relatively sInall because of the condition in the HAVING clause. ()nly groups
where the custorner ha..9 pnrchaEied the itCHl Inure than five tiInes appear in the
output. fihr exarllple, there are nine groups in the query over the Purcha.'3es
relation ShOVlll in Figure 26.1, although the output contains only three records.
The nurnber of groups is very large, but the answer to the query---·-the tip of
the iceberg------is usually very sInan. Therefore, ,ve call such a query an iceberg
query. In general, given a relational scherna H. with attributes A.1. A 2, ... "
Ak, and B and an aggrega,tion function aggr, an iceberg query has the follo\ving
structure:

SELECT
FROM
GROUP BY
HAVING

R.Al, Il.A2, ... , R,.Ak, aggr(R.B)
H,elation H,
R,.AI, ... , R.Ak
aggr(ILB) >= constant

Traditional query plans for this query that use sorting or hashing first cornpute
the value of the aggregation function for all groups and then elirninate groups
that do not satisfy the condition in the HAVING clause.

Cornparing the query with the probleur of finding frequent itenlsets discussed in
the previous section, there is a striking sirnilarity. Consider again the Purchases
relation shown in Figure 26.1 and the iceberg query froIn the beginning of this
section. We are interested in (custid, itern) pairs that have SUM (P.qty) > 5.
lJsing a variation of the a priori property, we can argue that we only have to
consider values of the c'Ust'id field where the custorner has purchased at least
five it-eurs. We can generate such iterns through the following query:

SELECT
FROM
GROUP BY
HAVING

P.cllstid
Purchases P
P.cllstid
SUM (P.qty) > 5

Sirnilarly, we can restrict the candidate values for theitern field through the
following query:

SELECT
FROM
GROUP BY
HAVING

P.itern
Purchases P
P.iteul
SUM (P.qty) > 5

If \ve restrict th(~ corrlputation of the original ic(~berg query to (C'a8t'id~ 'itern)
groups \vhe1'e the field values aTe in the output of the previous t\VO queries,
vve elirninate a large nUlllber of (c''lJ,stid1 'ite1n) pElirs a priori. So, a possible
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evaluation strategy is to first COlnpute candidate values for the C'tlstid and 'itcTn
fields, and use eornbinations of only these values in the evaluation of the original
iceberg query. '~!e first generate candidate field values for individual fields and
use only those values that survive the a priori pruning step as expressed in
the t,vo previous queries. 'Thus, the iceberg query is arnenable to the salIle
bottorn-up evaluation strategy used to find frequent iternsets. In particular, \ve
can use the a priori property a.'s follovls: vVe keep a counter for a group only if
each individual cOlnponent of the group satisfies the condition expressed in the
HAVING clause. The perfonnance irnprovernents of this alternative evaluation
strategy over traditional query plans can be very significant in practice.

Even though the botto111-UP query processing strategy elinlinates lnany groups
a priori, the nlunber of (c1lstid, itern) pairs can still be very large in practice;
even larger than Inain lllernory. Efficient strategies that use sall1pling and lllore
sophisticated hashing techniques have been developed; the bibliographic notes
at the end of the chapter providt~ pointers to the relevant literature.

26.3 MINING FOR RUI~ES

Many algorithrIls have been proposed for discovering various fonns of rules that
succinctly describe the data. We now look at some widely discussed fonns of
rules and algorithnls for discovering thenl.

26.3.1 Association Rules

We use the Purcha.ses relation shown in Figure 26.1 to illustrate ck'3sociation
rules. By eXcl1nining the set of transactions in Purchc1..ses, we can identify rules
of the forrn:

{pen} =? {ink}

This rule should be read as follows: "If a pen is pUfcha.sed in a transaction, it is
likely that in}( is also be purchased in that transaction.'~ It is a staternent that
describes the transactions in the databa.se; extrapolation to future tranSctctions
should be done \vith caution, ChS discussed in Section 26.~3.6. More generally,
an association rule has the forIn LJIS::::} RHS, where both LIIS andRJIS'
are sets of iterns. The interpretation of such a, rule is that if every itern in
LIIS is purchased in a transaction, then it is likely that the iterIlS in IlllS are
purcha",sed as well.

rThere are hvo irnportEtnt rnecl,sures for (1,n association rule:

IIIl Support: The support for a set of iterns is the percentage of transa,ctions
that contain all these iterIls. rl~he support for a rule LIIS =} J~llS is the
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support for the set of itenlS LHS Rf!S. For exalnple, consider the rule
{pen} =:> {ink}. The support of this rule is the support of the itenlset {pen,
ink}, which is 75%.

• Confidence: Consider transactions that contain all iterIls in LHS. The
confidence for a rule LlIS =? RHS is the percentage of such transactions
that also contain all iterIls in RHS. More precisely, let S1lp(LHS) be the
percentage of transactions that contain LllS and let s'up(LliS U RHS) be
the percentage of transactions that contain both LllS and RHS. rrhen the
confidence of the rule LHS => RHS is sup(LHSU RIIS) / sup(LHS). The
confidence of a rule is an indication of the strength of the rule. As an
exalnple, consider again the rule {pen} =? {ink}. The confidence of this
rule is 75%; 75% of the transactions that contain the itenlset {pen} also
contain the iternset {ink}.

26.3.2 An Algorithm for Finding Association Rules

A user can ask for all association rules that have a specified minimum support
(minsvp) and mininlum confidence (rninconf) , and various algorithrns have
been developed for finding such rules efficiently. These algorithms proceed
in two steps. In the first step, all frequent itemsets with the user-specified
minimum support are computed. In the second step, rules are generated using
the frequent itemsets as input. We discussed an algorithm for finding frequent
iternsets in Section 26.2; we concentrate here on the rule generation part.

Once frequent iteulsets are identified, the generation of all possible candidate
rules with the user-specified minirnum support is straightforward. Consider a
frequent iternset X with support sx identified in the first step of the algorithrn.
To generate a rule fronl X, we divide X into two iternsets, LHS and RJIS. The
confidence of the rule LllS =} RHS is Sx / SLlIS, the ratio of the support of X
and the support of LHS. Frorn the a priori property, we know that the support
of LllS is larger than rninsup, and thus we have C0111puted the support of L1IS
during the first step of the algoritlnn. \rYe can cornpute the confidence values
for the candidate rule by calculating the ratio support(X)/support(LlIS) and
then check how the ratio cornpares to 'Tnincon!

In general, the expensive step of the algorithnl is the cornputation of the fre­
quent itenlsets, and lnany different algorithrns have been developed to perfonn
this step efficiently. R,ule generation .... given that all frequent itcrl1sets have
been identified·.....·..····is straightforward.

In the rest of this section, we discuss SOlne generalizations of the problern.
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26.3.3 Association Rules and ISA Hierarchies

89Q

In rnany ca.'3es, an ISA hierarchy or category hierarchy is iInposed on the
set of iterl1s. In the presence of a hierarchy, a transaction contains, for each
of its iteuls, irnplicitly all the iteln's ancestors in the hierarchy. For example,
consider the category hierarchy shown in Figure 26.3. Given this hierarchy,
the Purcha.,es relation is conceptually enlarged by the eight records shown in
Figure 26.4. rrhat is, the Purchases relation has all tuples shown in Figure 26.1
in addition to the tuples shown in Figure 26.4.

The hierarchy allows us to detect relationships between iterns at different levels
of the hierarchy. As an exarnple, the support of the itemset {ink, juice} is 50%,
but if we replace juice with the more general category beverage, the support of
the resulting itemset {ink, beverage} increases to 75%. In general, the support
of an itemset can increase only if an item is replaced by one of its ancestors in
the ISA hierarchy.

Assulning that we actually physically add the eight records shown in Figure
26.4 to the Purchases relation, we can use any algorithm for computing frequent
itemsets on the augmented database. Assuming that the hierarchy fits into
rnain memory, we can also perforln the addition on-the-fly while we scan the
database, as an optimization.

Stationery

1\
Beverage

1\
Pen Ink Juice Milk

, Figure 26.3 An ISA Category Taxonomy

item
111 201 5/1/99 stationery 3
111 201 5/1/99 beverage 9

- .
6/3/99112 105 stationery 2
6/3/99

..._..-.-
112 105 beverage 1
113 106 5/10/99 stationery 1

----
5/10/99 beverage11~3 106 1

':::;::--"- - ..._._----
114 201 6/1/99 stationery 11
114 201 6/1/99 beverage 5

Figure 26.4 Conceptual Additions to the Purchases Relation with ISA Hierarchy
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26.3.4 Generalized Association Rules

Although association rules have been rnost \videly studied in the context of
rnarket basket analysis, or analysis of cllstorner transactions, the concept is
rno1'e general. Consider the Purcha.ges relation as sh()\vn in Figure 26.5, grouped
by c'Ust'id. By exanlining the set of custorner groups, we can identify association
rules such as {pen} ::::} {rnilk}. rThis rule should now be read as follows: "If a
pen is purchased by a custorner, it is likely that Inilk is also be purchased by
that custcuner." In the Purchases relation shown in Figure 26.5, this rule ha.s
both support and c()nfidE~nce of 1000/(-).

I transid. I···. c'Ustid .. .1 date
112 105 '6'73/99 pen 1

..•
6/3/99 "-112 105 ink 1

f------------

112 105 6/3/99 milk 1
5/10/99

.....:::..

113 106 pen 1
.........

5/10/99 rnilk113 106 1
_....

5/15/99114 201 pen 2
-" 5/15/99 ink114 201 2

114 201 5/15/99 juice 4_..

114 201 6/1/99 water 1
- ...._...

5/1/99
,.,~.....

111 201 pen 2
~-._._.

5/1/99111 201 ink 1
- _. ----

III 201 5/1/99 rnilk 3
-

111 201 5/1/99 juice 6._-- .......................

Figure 26.5 The Purchases Helation Sorted on Customer ID

SiInilctrly, we can group tuples by date and identify association rules that de­
scribe purchase behavior on the SeHne day. As an exalnple consider again the
Purchases relation. In this case, the rule {pen} =} {rnilk} is now interpreted
as follc)\vs: "On a da.y when a pen is purclut.sed, it is likely that luilk is also be
purchased."

If we use the date field ct.s grouping attribute, we call consider a rnore genenll
prolJlern called calendric rnarket basket analysis. In calendric rnarket bas­
ket analysis, the user specifies a collection of calendars. A, calendar is any
group of dates, such as every l..9v,rulay 'iTt the yeaT 1.999, or eucTy fiT8t of the
'fnonth. A rule holds if it holds on every day in the calendar. Civen a calendar.
we can cornpute a.ssociatiol1 rules over the set of tuples \vhose date field falls
\vithin the c:alendar.
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By specifying interesting calendars, 'we can identify rules that rnight not have
enough support and confidence \vith respect to the entire datahase but have
enough support and confidence on the subset of tuples that fall \vithin the
calendar. On the other hand, even though a rule rnight have enough support
and confidence \vith respect to the c0l11plete database, it Inight grtin its support
only £'1'0111 tuples that fall within a calendar. In this case, the support of the
rule over the tuples within the calendar is significantly higher than its support
with respect to the entire database.

As an exarnple, consider the Purchases relation with the calendar every first of
the m,onth. \Vithin this calendar, the association rule pen:::;. ju:ice has support
and confidence of 100%, \vhere&'3 over the entire Purcha.ses relation, this rule
only has 50% support. On the other hand, within the calendar, the rule pen
=> m,ilk; has support of confidence of 50%, wherca'3 over the entire Purch&'3es
relation it has support and confidence of 75%.

More general specifications of the conditions that rIlust be true within a group
for a rule to hold (for that group) have also been proposed. We rnight want to
say that all items in the LHS have to be purchased in a quantity of less than
two itelTIS, and all itenls in the RHS rnust be purchased in a quantity of more
than three.

lJsing different choices for the grouping attribute and sophisticated conditions
as in the preceding exarnples, we can identify rules Inore cornplex than the
basic association rules discussed earlier. These Inore cornplex rules, nonetheless,
retain the essential structure of an association rule as a condition over a group
of tuples, with support and confidence rneasures defined c1..'3 usual.

26.3.5 Sequential Patterns

Consider the Purchases relation sho\vn in Figure 26.1. Each group of tuples,
having the sarne c'l18tid value, can be thought of clS a sequence of trans~tctions

ordered by date. rrhis allo¥ls us to identify frequently arising buying patterns
over tirne.

vVe begin b,Y introducing the concept of a sequence of itel11sets. Each transac­
tion is represeqted by a set of tuples, and by looking at the values in the itern
colurnn, \ve get a set of iterns purchased in that transaction. 1'here£o1'e, the
sequence of transactions associated \vith a cllstorner corresponds naturally to
a sequence of itelnsets rnlrchELsed by the custorner. For exalnplc, the sequence
of purc!HL'3CS for cllstorner 201 is ({pen, ink, 'tn-ilk, juice}, {pen, 'iT/jIG, In'ice}).
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A subsequence of a sequence of iternsets is obtained by deleting one or 11101'e
itcrnsets, and is also a sequence of itenlsets. We say that a sequence (aI, ... , arn )

is contained in another sequence S if S has a subsequence (b t , ... ,bIn) such that
a'i C bi , for 1 < 'i < rn. Thus, the sequence {{pen,}, {ink, rnilk} , {pen" ju'ice}) is
contained in ({pen, link}, {shir·t} , {ju'ice, ink, m,ilk} , {juice, pen, rn'ilk}) . Note
that the order of itenlS within ectCh iterllset does not rnatter. However, the
order of iterllsets does lllatter: the sequence ({pen}, {ink, rn'ilk} , {pen, flL'ice})
is not contained in ({pen, 'ink}, {shirt}, {juice, pen, rnilk} , {juice, nLilk, 'ink}).

The support for a sequence S of iternsets is the percentage of custorner se­
quences of which 8 is a subsequence. The problenl of identifying sequential
patterns is to find all sequences that have a user-specified rllinimurll support.
A sequence (aI, a2, a3, ... ,am) with minimurn support tells us that custorners
often purchase the itelns in set al in a transaction, then in sonle subsequent
transaction buy the itcrlls in set a2, then the items in set a3 in a later transac­
tion, and so on.

Like association rules, sequential patterns are staternents about groups of tuples
in the current database. Cornputationally, algorithms for finding frequently
occurring sequential patterns resernble algorithrns for finding frequent itemsets.
Longer and longer sequences with the required rninirnum support are identified
iteratively in a nlanner very similar to the iterative identification of frequent
iternsets.

26.3.6 The Use of Association Rules for Prediction

Association rules are widely used for prediction, but it is inlportant to rec­
ognize that such predictive use is not justified without additional analysis or
dornain knowledge. Association rules describe existing data accurately but can
be rnisle::1ding when used naively for prediction. For exaruple, consider the rule

{pen} => {ink}

The confidence a"ssociated with this rule is the conditional probability of an ink
purchase given a pen purcha...se over the given database; that is, it is a descriptive
rueasure. We rnight use this rule to guide future sales prornotions. For exalllple,
\ve rnight offer a discount on pens to increase the sales of pens and, therefore,
aIso increase sales of ink.

Flowever, such a prorllotion ct.'3SU1l1CS that pen purchases are good indicators
of ink purchases in future custC)Iuer transactions (in addition to transactions
in the current database). This a..ssurnption is justified if there is a cav,8al hnk
between pen purchases and ink purcha.,scs; that is, if buying pens causes the
buyer to also buy ink. Ifowever,we can infer a,,')sociation rules\vith high support
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and confidence in SOlnc situations \\There there is no causal link between L118
and RIIS. For exarnple, suppose that pens are ahvays purchased together with
pencils, perhaps because of customers' tendency to order writing instrulllents
together. vVe would then infer the rule

{pencil} =? {ink}

with the saBle support and confidence as the rule

{pen} :::} {ink}

However, there is no causal link between pencils and ink. If we prornote pencils,
a custolner who purchases several pencils due to the pronlotion has no rea..son
to buy Inore ink. Therefore, a sales prolnotion that discounted pencils in order
to increase the sales of ink would fail.

In practice, one would expect that, by exallllnlng a large database of past
transactions (collected over a long tirne and a variety of circumstances) and
restricting attention to rules that occur often (i.e., that have high support),
we rninirnize inferring lnisleading rules. However, we should bear in rnind that
nlisleading, noncausal rules lnight still be generated. Therefore, we should
treat the generated rules as possibly, rather than conclusively, identifying causal
relationships. Although association rules do not indicate causal relationships
between the LHS and RHS, we elllphasize that they provide a useful starting
point for identifying such relationships, using eithE~r further analysis or a dornain
expert's judgrnent; this is the reason for their popularity.

26.3.7 Bayesian Networks

Finding causal relationships is a challenging task, as we saw in Section 2G.3.6.
In general, if certain events are highly correlated, there are rnany possible
explanations. f""'cH' exalnple, suppose that pens, pencils, and ink are purchased
together frequently. It rnight be that the purchase of one of these itelIlS (e.g.,
ink) depends causally on the purchase of another itern (e.g., pen). ()r it Blight
be that the purchase of one of these iterns (~.g., pen) is strongly correlated with
the purchase of another (e.g., pencil) because of sorne underlying phenornenon
(e.g., users' tendency to think about \vriting instrulnents together) that causally
influences both purchcL.':'cs. IIc)\v can we identify the true causal relationships
that hold between these events in the real world?

One approach is to consider each possible cOlnbination of causal relationships
arnong the varial)les or events of interest to us and evaluate the likelihood of
each cornbination on the basis of the data el,vail::l,ble to us. If we think of ceLeh
cornbination of causal relationships as a rnodel of the real world underlying the
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collected data, we can assign a score to' each ruode! by considering ho\v consis­
tent it is (in tenns of probabilities, 'with senne sin1plifying assuInptions)\vith
the observed data. Bayesian nebNorks are graphs that can be used to describe
a ChlSS of such Il1odels, with one node per variable or event, and arcs between
nodes to indicate causality. For exarnpIe, a good Iuodel for our running exarn­
pIe of pens, pencils, and ink is sho\vn in Figure 26.6. In general, the nurnber of
possible Inodels is exponential in the nurnber of variables, and considering all
rnodels is expensive, so SOUle subset of all possible rnodels is evaluated.

Figure 26.6 Bayesian Network Showing Causality

26.3.8 Classification and Regression Rules

Consider the following view that contains inforrnation froln a rnailing carnpaign
perforrned by an insurance cornpany:

InsuranceInfo( age: integer, cartype: string, highrisk: boolean)

The Insurancelnfo vie\v ha..." inforrnation about current cllston1ers. Each record
contains a cllstolner's age and type of ear as ,veIl as a flag indicating whether
the person is considered a high-risk custorner. If the flag is true, the cllstorner
is considered high-risk. vVe would like to use this information to identify rules
that predict the insurance risk of new insurance applicants whose age and car
type are known. :For exarnple, one such rule could be: "If age is bet\veen IG
and 25 a.n.d caTtypc is either Sports or.Truck, then the risk is high."

Note that the rules we want t.o find have a specific structure.vVe are not inter­
ested in rules that predict the age or type of car of a person: "\ve are interested
only in rules that predict the insurance risk. T'hus, there is one designated
attribute vvhose value we wish to predict, and\ve call this attribute the de­
pendent attribute. rrhe other attributes aTe called predictor attributes. In
our exarnple, the dependent attribute in the Insurancelnfo vic\v is the highrisk
attribute arld the predictor attributes are age and cartype. The general foru1
of the types of rules \ve \Vcl,nt to discover is
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The predictor attributes Xl, ... ,")(k are used to predict the value of the depen­
dent attribute}"". Both sides of a rule can be interpreted as conditions on fields
of a tuple. The Pi (Xi) are predicates that involve attribute ..gi. The fornl of
the predicate depends on the type of the predictor attribute. \rVe distinguish
two types of attributes: numerical and categoricaL For numerical attributes,
we can perfOrIn nurnerieal cornputations, such EL'3 cornputing the average of t\VO
values; whereas for categorical attributes, the only allowed operation is test­
ing "\vhether two values are equal. In the InsuranceInfo view, age is a nUlllerical
attribute whereas cartype and highrisk are categorical attributes. Returning to
the forrn of the predicates, if Xi, is a nUlllerical attribute, its predicate Pi, is
of the forln l'i < Xi < hi; if ..)(i is a categorical attribute, Pi is of the forIll
X'i E {Vl, ... ,Vj}.

If the dependent attribute is categorical, we call such rules classification rules.
If the dependent attribute is nurnerical, we call such rules regression rules.

For exarnple, consider again our exaInple rule: "If age is between 16 and 25
and caTtype is either Sports or Truck, then highr-i8k is true." Since highrisk is a
categorical attribute, this rule is a classification rule. We can express this rule
fonnally as follows:

(16 < age < 25) /\ (car-type E {Sports, Truck}) ===? highri8k = true

We can define support and confidence for classification and regression rules, as
for association rules:

III Support: ffhe support for a condition C is the percentage of tuples that
satisfy C. The support for a rule G'11===? C:2 is the support for the condition
CI/\ C2.

III Confidence: Consider those tuples that satisfy condition (71. The confi­
dence for a rule Cl =} G'12 is the percentage of such tuples that also satisfy
condition (;2.

As a further generalization, consider 1,118 right-hand side of a classification or
regression rule: y~ =. c..Each rule predicts a v,lJue of Y- for a given tuple based
on the vaJues of predictor attributes Xl, ... ,Xk. \Ve can consider rules of the
fonn

where f is sonlC function. VVe do not discuss such rules further.

Classification H,1l<1 regression rules differ fr0111 clssociation rules by considering
continuous and categorical fields, rather than only one field that is set-valued.
Identifying such rules efficiently presents a ne\v set of challenges; vve do not
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discuss the general case of discovering such rules. We discuss a special type of
such rules in Section 26.4.

Cla.-ssification and regression rules have many applications. Exarnples include
ela'3sification of results of scientific experirnents, where the type of object to
be recognized depends on the InCa'3Urernents taken; direct lllail prospecting,
where the response of a given customer to a prolnotion is a function of his 01'

her inCOlue level and age; and car insurance risk assesslnent, where a customer
could be classified as risky depending on age, profession, and car type. Example
applications of regression rules include financial forecasting, where the price of
coffee futures could be SOIne function of the rainfall in Colornbia a month ago,
and Inedical prognosis, where the likelihood of a tUInor being cancerous is a
function of Illeasured attributes of the tUlnor.

26.4 TREE·STRUCTURED RULES

In this section, we discuss the problem of discovering classification and regres­
sion rules from a relation, but we consider only rules that have a very special
structure. The type of rules we discuss can be represented by a tree, and
typically the tree itself is the output of the data mining activity. Trees that
represent classification rules are called classification trees or decision trees
and trees that represent regression rules are called regression trees

Figure 26.7 Insurance lUsk Example Decision Tree

A.s an exalnple, consider the decision tree ShO\Vll in Figure 2G.7. Each path froln
the root node ti) a leaf node represents one claBsification rule. For exa,rnplc, the
path fron1 the root to t11e leftrnost leaf node represents the classification rule:
"If a person is 25 y(~a,rs or .younger and drives a sedan, then he or she is likely
to have a lo\v insurance risk." ~rhe path fforn the root to the right-Inost leaf
node represents tlle cla,,':)sification rule: "If a person is older than 25 years, then
he or she is likely to have a low insurance risk."
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Tree-structured rules are very popular since they are easy to interpret. E<l.'3e of
understanding is very hllportant because the result of any data rninillg activity
needs to be cOlllprehensible by nonspecialists. In addition, studies have shown
that, despite Ihnitations in structure, trCt'-structured rules are very accurate.
There exist efficient algorithrl1s to construct tree-structured rules fronl large
databases. vVe discuss a sample algorithrIl for decision tree construction in the
rernainder of this section.

26.4.1 Decision Trees

A decision tree is a graphical representation of a collection of classification
rules. Given a data record, the tree directs the record frOIn the root to a
leaf. Each internal node of the tree is labeled with a predictor attribute. This
attribute is often called a splitting attribute, because the data is 'split' based
on conditions over this attribute. The outgoing edges of an internal node are
labeled with predicates that involve the splitting attribute of the node; every
data record entering the node must satisfy the predicate labeling exactly one
outgoing edge. T'he cornbined information about the splitting attribute and
the predicates on the outgoing edges is called the splitting criterion of the
node. A node with no outgoing edges is called a leaf node. Each leaf node of
the tree is labeled with a value of the dependent attribute. We consider only
binary trees where internal nodes have two outgoing edges, although trees of
higher degree are possible.

Consider the decision tree shown in Figure 26.7. The splitting attribute of the
root node is age, the splitting attribute of the left child of the root node is
car-type. The predicate on the left outgoing edge of the root node is age :s; 25,
the predicate on the right outgoing edge is age> 25.

"'e can no\v aBsociate a classification rule with each leaf node in the tree as

follows. Consider the path frorH the root of the tree to the leaf node..Each edge
on that path is labeled with a predicate. 'The conjunction of all these predicates
rnakes up the left-hand side of the rule. rrhe value of the dependent attribute
at the leaf node rnakesup the right-ha,nd side of the rule. Thus, the deeision
tree represents a, collection of claA~sification rules, OIle for ea..ch leaf node.

A decision tree ,is usuaJly constructed in t\VO pha"ses. In phase onc, the growth
phase, an overly large tree is constructed. ]~his tree represents the records
in the input database very cLccurately; for exaluple, the tree rnight contain
leaf nodes for inclividual records frorn the input dataJ:>Hse. Tn phase t\VO, the
pruning phase, the final size of the tree is deterrnined. ]~he rules represented
by the tn~e constructed in p}laS(~ one a,rc usuall:y overspecialized. By reducing
the size of the tree, we generate a srnaller nUlnber of lllore general rules that
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are better than a very large nUlllbcr of very specialized rules. Algorithrns for
tree pruning are beyond our scope of discussion here.

Classification tree algorithrlls build the tree greedily top-down in the following
\vay. At the root node~ the database is exarnined and the locally'best' splitting
criterion is cornputed. rrhe database is then partitioned, according to the root
node's splitting criterion, into t"W{) parts, one paTtition for the left child and one
pa,rtition for the right child. The algoritlull then recurses on each child. rrhis
schcrua is depicted in Figure 26.8.

Inr.ut: !loden, partition D, split selection ruethod S
.Qutput: decision tree for D rooted at node n

Top-Down Decision Tree Induction Schema:
BuildTree(Node 11, data partition D, split selection rnethod S)
(1) Apply S to D to find the splitting criterion
(2) if (a good splitting criterioll is found)
(3) Create two children nodes n 1 and n2 of n

(4) Partition D into D 1 and D2
(5) BuildT'ree(nl, D 1 , S)
(6) Build rTree(n2, D2, S)
(7) endif

Figure 26.8 Decision Tree Induction Schema

T'he splitting criterion at a node is found through application of a split selec­
tion method. A split selection rnethod is an algorithrIl that takes as input
(part of) a relation and outputs the locally 'best' splitting criterion. In our
exarnple, the split selection rnethod exarnines the attributes cartype and age,
selects one of thern as splitting attribute, and then selects the splitting pred­
icates. IVlany different, very sophisticated split selection rnethods have been
developed; the references provide pointers to the relevant literature.

26.4.2 An Algorithm to Build Decision Trees

If the input database fits into rna,in Inernory, ~Te can directly follow th.e clas­
sification tree induction schcrna shown in Figure 26.8. flovv can we construct
decision trees when the input relation is larger than rnain rncrJlory? In this ca.se,
step (1) in Figllre 26.8 fails, since the input database does not fit in Inenl0ry.
But we can rnake one irnportant observation about split selection Inethods that
helps us to reduce the rnain rnerllory requircluents.

Consider a node of the decision tree. The split selection rnethod ha.s to Inake
two decisions after exarllining the partition at that node: It ha.'3 to select the
splitting attribute: and it ha,s to select th(~ splitting predicates for tIle outgo-
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23 Sedan false
~iO Sj)orts false
~36 Sccran--- false
25 Truck true
~lO Sedan false

........." ..........

2~~ Truck true
30 Truck false
25 Sports true
18 Sedan false

Figure 26.9 The Insurancelnfo Relation
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ing edges. After selecting the splitting criterion at a node, the algorithrn is
recursively applied to each of the children of the node. Does a split selection
rnethod actually need the cornplete database partition as input? Fortunately,
the answer is no.

Split selection rnethods that cornpute splitting criteria that involve a single
predictor attribute at each node evaluate each predictor attribute individually.
Since each attribute is exarnined separately, we can provide the split selection
rnethod with aggregated inforulation about the database instead of loading
the cornplete database into rnain rnenlory. Chosen correctly, this aggregated
inforrnation enables us to cornpute the senne splitting criterion as we would
obtain by exarnining the conlplete database.

Since the split selection rnethod exanlines all predictor attributes, we need
aggregated inforrnation about ceLeh predictor attribute. vVe call this aggregated
inforrnation the AVe set of the predictor attribute. The AVe set of a predictor
attribute X <tt noden is the projection of 'n's database partition onto ..:X" and
the dependent attribute where counts of the individual values in the dorllain
of the dependent attribute are aggregated. (AVe; stands for Attribute-Value,
Class label, because the values of the dependent attribute are ofterl called class
labels.) For exarnple, consider the Insurancelnfo relation as shown in Figure
26.9. rrhe AVe set of the root node of the tree for predictor attribute age is
the result of the following databEtse query:

SELECT FLage, Il.highrisk, COUNT (*)
FROM Insurancelnfo Il
GROUP BY R.age, H,.highrisk

The AVe set for the left child of t1H'~ root node for predictor attribute car-type
is the result of the following query:
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SELECT
FROM
WHERE
GROUP BY

Itcartype, H,.highrisk, COUNT
Insurancelnfo R,
R.-age <= 25
ILcartype, H..highrisk

(*)

CHAPTER~6

The t\VO .A.VC sets of the root node of the tree are shown in Figure 26.10.

[ Ca~~ype
... ,

highrisk
'--

falsetrue
""'•..~

Sedan 0 4
- -

Sports 1 1
f---..._..

Truck 2 1
- .-

"'-"'-

Age
highrisk

true false
-- _. ... _.-

18 0 1
23

""-

1 1.
25 2 0

..-

~30 () 3
......-

36 0 1.
....."'.. --"'-

Figure 26.10 AVe Group of the Root Node for the InsuranceInfo Relation

We define the AVe group of a node n to be the set of the AVe sets of all
predictor attributes at node TL Our exarnple of the Insurancelnfo relation has
two predictor attributes; therefore, the AVe group of any node consists of two
AVe sets.

How large are AVe sets? Nate that the size of the AVe set of a predictor
attribute X at node n depends only on the nurnber of distinct attribute values
of X and the size of the dornain of the dependent attribute. For exarnple,
consider the AVe sets shown in Figure 26.10. The AVe set for the predictor
attribute cartype has three entries, and the AVe set for predictor attribute age
has five entries, although the Insuraneelnfo relation as shown in Figure 26.9
has nine records. For large databases, the size of the AVe sets is independent
of the nurnber of tuples in the databa.'3e, except if there are attributes with very
large dOITlains, for exarnple, a real-valued field recorded at a very high precision
with rnany digits after the decirnal point.

If we 1nake the sirnplifying assurnption that all the AVe sets of the root node
together £it into rnain rnernory, then \ve can construct decision trees frOTH very
large clataba,,~es as follo\vs: \Ve rnake a scan over the database and construct
the AVe group of the root node in rneIllory. Then \ve run the split selection
rnethod of our choicc\vith t11e i\Ve group as input. .AJ'ter the split selection
1netllod cornputes the splitting attribute and the splitting predicates on the
outgoing 1H)des 1 \ve partition the databa,se and recurS8. Note that this algo­
rithrIl is very sirnihu' to the original algorithrn shovvn in Figure 26.8; the only
rnodification necessa.r;y is shown in Figure 2(L 11. In additioll 1 this algoritlll11 is
still independent of the aetuaJ split selection rnethod involved.
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Input: node n, partition D, split selection 111ethod S
2..~~_~;EI:!.~: decision tree for D rooted at node 11

Top-Down Decision Tree Induction Schenla:
BuHdTree(Node n, data partition D, split selection method S)
(la) Ivlake a scan over D and construct the AVe group of n in-nlCIIlory
(1b) Apply S to the AVe group to find the splitting criterion

Figure 26.11 Cla...'>sification rn-ee Induction Refinement with AVe Groups

26.5 CLUSTERING

911

In this section we discuss the clustering problem. The goal is to partition
a set of records into groups such that records within a group are shnilar to
each other and records that belong to two different groups are dissimilar. Each
such group is called a cluster and each record belongs to exactly one cluster. 1

Sirnilarity between records is Ineasured cOlnputationally by a distance func­
tion. A distance function takes two input records and returns a value that is
a measure of their silnilarity. Different applications have different notions of
similarity, and no one rneasure works for all domains.

As an exarnple, consider the scherna of the Custol11erlnfo view:

CustornerInfo( age: int, salary: real)

We can plot the records in the view on a two-dil11ensional plane as shown in
Figuf(~ 26.12. The two coordinates of a record are the values of the record's
salaTyand age fields. \Ve can visually identify three clusters: yToung cllstorners
wh.o have low salaries, young cllstorners with high salaries, and older cnstorners
with high salaries.

{Jsnally, the output of a clustering algorithrll consists of a, summarized rep­
resentation of each cluster. The type of sUIrllnarized representation depends
strongly on the type and shape of clusters the algoritlull cornputes. For ex­
arnple, a.'3S111ne that we have spherical clusters as in the exalllple shuwn in
Figure 26.12. vVe can surnrnarize each cluster by its centeT (often also called
the rnea'n) and its Tndi'l1,t), which are defined as follo\vs. C;iven a collection of
records '/'1, ... '17"11' their center C: and radius .R are defined fL.'3 follows:

. n I -·-..... n 'f'

(
'1 1 '" ..1 I:::> IL-i=l (r'i - C)" == - .L..t. Ti, aI1C .1 = '\ .....-....--.....:.--.---.---

n . . V n(=1

1There are clustering algorithrns that allow overlapping clusters, \vhere a record could belong to
several clusters.
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Figure 26.12 Records in CustomerInfo

There are two types of clustering algorithlns. A partitional clustering algo­
rithnl partitions the data into k groups such that SOUle criterion that evaluates
the clustering quality is optirnized. The nurnber of clusters k is a parameter
whose value is specified by the user. A hierarchical clustering algorithnl gen­
erates a sequence of partitions of the records. Starting with a partition in which
each cluster consists of one single record, the algorithrn rnerges two partitions
in each step until only one single partition rernains in the end.

26.5.1 A Clustering Algorithm

Clustering is a very old problern, and nurnerous algorithnls have been developed
to cluster a collection of records. Traditionally, the nurnber of reeords in the
input database \vas assurned to be relatively slnall and the cornplete database
wa.s assurned to fit into Inain rnernory. In this section,we describe a clustering
algoritlnn called BIllCII that handles very la.rge datab~1.ses. rrhe design of
BIR,CII reflects the follovving two a",ssurnptions:

II 1'he rnunber of records is potentially very large, and therefore we \\Tant to
rnake only one scan over the da.ta,b(~se.

II Only a lirnited arnount of rnain rnenlory is available.

j\ user can set t\VO pararneters to control the BIRfJII algoritllln. The first
is a thresl10lcl on the arnount of rnain luernory available. This HUlin rncrnory
threshold translates into a lllaxirnurn nurnber of cluster SUIJlrnaries k that can
be lIutintained in rncrllory. 'The second pararneter f is EUI ini tied threshold for
the radius of an,Y cluster. 1]H~ value of E is an upper bound on the radius of
any cluster and controls the nUlnber of clusters that the algorithrn discovers.
If (' is slnalI, \eve discover TnaDy sInaII clusters; if E is large; we discover very fe\v
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clusters, each of which is relatively large. \Ve say that a cluster is compact if
its radius is s1na11e1' than t.

BIF.{,CH always lTlaintains k~ or fc\ver cluster sU1nrnaries (C/i ~ R~i) in rnain Hlcnl0ry,
"vhere C:i is the center of cluster 'i and lii is the radius of cluster ,i. The a1gorithrn
ahvays rnaintains cornpact clusters; that is, the radius of each cluster is less
than E. If this invariant cannot be rnaintained with the given arIlount of rnain
lnerno1'y, E is increased t=ts described next.

The algoritlnl1 reads records frorn the database sequentially and processes the1l1
as follows:

1. Cornpute the distance betVileen record T' and each of the existing cluster
centers. Let i be the cluster index such that the distance between rand
C i is the srnallest.

2. Cornpute the value of the new radius R~ of the ith cluster under the as­
sumption that r is inserted into it. If R~ < E, then the ith cluster rernains
cornpact, and we assign T to the ith cluster by updating its center and
setting its radius to R~. If R:z, > E, then the ith cluster would no longer be
cOlnpact if we insert r into it. Therefore, we start a new cluster containing
only the record T.

The second step presents a problern if we already have the rnaxinnun nurnber
of cluster sUIInnaries, k. If we now read a record that requires us to create a
new cluster, we lack the rnain rne1nory required to hold its surnrnary. In this
case, we increase the radius threshold E-----using SOHle heuristic to detennine
the increase--- in order to rner:qe existing clusters: An increase of c has two
consequences. First, existing clusters can accorl1rnodate rnore records, since
their rnaxirnurn radius has increased. Second, it Blight be possible to rnerge
existing clusters such that the resulting cluster is still cornpact. rrhus, an
increase in ( usually reduces the l1ulIlber of existing clusters.

The cornplete BlItCH algorithrl1 uses a balanced in-rnernory tree, which is sirn­
ilar to a B-·t- tree in structure, to quickly identify the closest cluster center for
a neV\r record. A description of this data structure is beyond the scope of our
discussion.

26.6 SIMILARITY SEARCH OVER S~=QUENCES

A lot of inforrnation stored in datal)ases consists of sequences. In this section,
w(~ introduce the problern of siInilarity search over a collection of sequences.
Our query Inode} is very sirnple: vVe assurne that the user specifies a query
sequence andvvants to retrieve all data sequences that are silnilar to the
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Commercial Data Mining Systems: There area number of data
ruining products on the rnarket tod~y, such as SASEnterprise Nliner,
SPSS Clenlcntine, CART froIn Salford SystenlS, Ariegaputer PolyAnaJyst,
ANGOSS I<nowledgeStudio. We highlight t\VO that have strong database
ties.

IBM's Intelligent Miner offers a wide ra,ngeof algorithlns, including
association rules, regression, cla.'3sification, and clustering. The enlpha'3is
of Intelligent Miner is on scalability-·~·theproduct contains versions of all
algorithllls for parallel cOlnputers and is tightly integrated with IBM's
DB2 database systenl. DB2's object-relational capabilities can be used to
define the data Inining classes of SQL/MM. Of course, other data 111ining
vendors can use these capabilities to add their own data mining models
and algorithms to DB2.

Microsoft's SQL Server 2000 has a component called the Analysis Server
that lnakes it possible to create, apply, and lnanage data mining models
within the DBMS. (SQL Server's OLAP capabilities are also packaged in
the Analysis Server component.) The basic approach taken is to represent
a mining rrlodel as a table; clustering and decision tree models are
currently supported. The table conceptually has one row for each possible
combination of input (predictor) attribute values. The model is created
using a staternent analogous to SQL's CREATE TABLE that describes the
input on which the model is to be trained and the algorithrn to use in
constructing the model. An interesting feature is that the input table
can be defined, using a specialized view rnechanisnl, to be a nested table.
For exalnple,we can define an input table with one row per custolner,
where one of the fields is a nested table that describes the eustolner's
purchases. The SQL/Ml\;1 extensions for data ruining do not provide this
capability because SQL: 1999 does not currently support nested tables
(Section 23.2.1). Several properties of attributes, such f}",C; whether they
are discrete or continuous, can also be specified.

.J.~ rnodel is trained by inserting rows into it, using the INSERT cornlnand.
I t is applied to a llC\V dataset to lnake predictions using a new kind of
join called PREDICTION JOIN; in principle, each input tuple is nlatched !
with the corxesponding tuple in the rnining lllodel to detennine the value I
of the predicted attribute. Thus, end users can create, train,and apply I,.

decision trees and clustering using extended SQL. 'There are aJso cornrnands
i

to browse rnodels. Unfortnnately, users cannot add new rnodels or new i

algorithrlns for models, a capability that is supported in the SQL/MlVI I
proposa. I

L._ __..~ _ _.__ ~__~ _ __~_ _ _ _ __''.._ .1
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query sequence. Sinlilarity search is different frorH 'llornlal' queries in that \ve
are interested not only in sequences that rnatch the query sequence exactly but
also those that differ only slightly frorn the query sequence.

We begin by describing sequences and sirnilarity between sequences. A data
sequence X is a series of nurnbers X = (;1~1,"" Xk). S0111etirIles X is also
called a time series. \lVe call k the length of the sequence. A subsequence
Z = (Zl' ... ,Zj) is obtained frolll another sequence X = (Xl, ... ,Xk) by deleting
nurnbers froln the front and back of the sequence X. ForInally, Z is a subse-
quence of X if Z1 = Xi, Z2 == Xi+l, ,Zj = Zi-tj-l for SaIne i E {I, ... , k- j + I}.
Given two sequences .iY = (Xl, ,Xk) and Y = (Yll" . ,Yk), we can define the
Euclidean Darrri as the distance between the two sequences as follows:

k

IIX - YII == L(Xi - Yi)2

i=l

Given a user-specified query sequence and a threshold pararneter E, our goal is
to retrieve all data sequences that are within E-distance of the query sequence.

Sirnilarity queries over sequences can be classified into two types.

• Complete Sequence Matching: The query sequence and the sequences
in the database have the sarne length. Given a user-specified threshold
paranleter E, our goal is to retrieve all sequences in the database that are
within E-distance to the query sequence.

II Subsequence Matching: rrhe query sequence is shorter than the se­
quences in the database. In this case, we want to find all subsequences of
sequences in the databc1.Se such that the subsequence is within distance E

of the query sequence. We do not discuss subsequence rnatching.

26.6..1 An Algorithm to Find Similar Sequences

Given a collection of data sequences, a query sequence, and a distance thresh­
old f, henv can we efficiently find all sequences within f-distance of the query
sequence?

()ne p()ssibilit~y is to scan the databa.se, retrieve each data sequence, and C0111­

pute its distance to the query sequence. \Vhile this algorithrn has the rnerit of
being sirnple, it ahvays retrieves every data sequence.

Because \V(~ consider the conlplete sequence lnatehing problenl, all data se­
quences and the query sequ(~nce have tllC seune length. \Ve can think of this
sirnilarity search (1.,"1 a. high-dirnensional indexing probleul. Each data, sequence
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and the query sequence can be represented as a point in a k-dirnensionaJ space.
Therefore, if we insert all data sequences into a Illuitidirnensional index, we can
retrieve data sequences that exactly ll1atch the query sequence by qllerying the
index. But since 'we \vant to retrieve not only dat~l sequences that Inatch the
query exactly but also all sequences within (-distance of the query sequence, \ve
do not use a point query as defined by the query sequence. Instead, we query
the index 'with a hyper-rectangle that has side-length 2E and the query sequence
as center, and \ve retrieve all sequences that fall within this hyper-rectangle.
\Ve then discard sequences that are actually further than c away froln the query
sequence.

ITsing the index allows us to greatly reduce the nurnber of sequences we con­
sider and decreases the thne to evaluate the sirnilarity query significantly. The
bibliographic notes at the end of the chapter provide pointers to further irn­
provernents.

26.7 INCREMENTAL MINING· AND DATA STREAMS

Real-life data is not static, but is constantly evolving through additions or
deletions of records. In sorne applications, such as network Inonitoring, data
arrives in such high-speed strearns that it is infeasible to store the data for
offline analysis. We describe both evolving and strearning data in terlns of
a framework called block evolution. In block evolution, the input dataset
to the data mining process is not static but periodically updated with a new
block of tuples, for exarnple, every day at rnidnight or in a continuous strealn.
A block is a set of tuples added siInultaneously to the database. For large
blocks, this Inodel captures comrnon practice in rnany of today's data warehouse
installations, where updates from operational databases are batched together
and perforrned in a block update. For srnall blocks of data-~····-at the extrerne,
each block consists of a single record····-····-this rnodel captures strealning data.

In the block evolution rnodel, the datab~"kqe consists of a (conceptually infinite)
sequence of data blocks D 1 , [J2 , . .. that arrive at tilnes I, 2, ... ,\Vhe1'8 each
block D i consists of a set of records. 2 \¥e call 'i the block identifier of block 13i .

~rherefore, at a,ny titHe t 1 the database consists of a finite sequence of blocks of
data (Dl 1 ••• ,I)t;) that arrived at tirnes {I, 2, ... ,t}. The databc1se at tilne t,
\vhic.h we denot.e by 1)[1, t], is the union of the databa",se at tiIne t - 1 and the
block that arrives at tirue t, Dl .

For evolving data, t\VO classes of problerns are of particular interest: rnodel
Inaintenance and change detection. rIhe goal of 1110del maintenance is to
---"-"

2In general, a block specifies records to change or delete, in addition to n~cords to insert. \Ve only
consider inserts.
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rnaintain a data rnining ulodcl under insertion and deletions of blocks of data.
To incrernentally cornpute the data mining rnodel at tirne t,\vhich \ve denote by
l\:I(D[l, t)), we HUlst consider only Af(D[l, t -- 1]) and .Dt ; \ve cannot consider
the data that arrived prior to tiIne t. Further, a data analyst rllight specify
tirne-dependent subsets of D [1, t], such as a window of interest (e.g., all the data
seen thus far or last week's data). 1\I10re general selections are also possible,
for exarnple, all weekend data over the P<:k~t year. Given such selections, we
Hlllst incrernentally CCHupute the rnodel on the appropriate subset of .D[l, t] by
considering only [Jt and the model on the appropriate subset of 1)[1, t - 1].
'Alrnost' incrernental algoritlulls that occasionally exarnine older data rnight
be acceptable in warehouse applications, where incrementality is lTIotivated by
efficiency considerations and older data is available to us if necessary. This
option is not available for high-speed data strearns, where older data may not
be available at all.

The goal of change detection is to quantify the difference, in terrns of their
data characteristics, between two sets of data and determine whether the change
is rneaningful (i.e., statistically significant). In particular, we rnust quantify
the difference between the rllodels of the data as it existed at sonle tiIne tl
and the evolved version at a subsequent ·tirne t2; that is, we Blust quantify the
difference between 1\1(D[I, tl]) and 1\1(D[1, t2]). We can also measure changes
with respect to selected subsets of data. Several natural variants of the problem
exist; for exarnple, the difference between M(D[l, t - 1]) and 1\1(Dt ) indicates
whether the latest block differs substantially frorn previously existing data. In
the rest of this chapter, we focus on rnodel rnaintenance and do not discuss
change detection.

Incrernental rnodel rnaintenance has received rnuch attention. Since the quality
of the data rllining rnodel is of utrnost irnportance, incrernental rnodel rnain­
tena,nce a1gorithrns have concentrated on cornputing exactly the sarne Inode1
HAS cOlnputed by running the basic rnodel construction algoritlul1 on the union
of old and new data. ()ne \videly used scalability technique is localization of
changes due to new blocks. For exarnple, for density-based clustering algo­
ritluns, the insertion of a ne"v record affects only clusters in the neighborhood
of the record, and thus efficient algorithrlls can localize the change to a fe\v
clusters and avoid reccHnputing all clusters. As another exarllple, in decision
tree construction, \ve rnight be able to shovv that the split criterion at a, node of
the tree changes only within acceptably srnall confidence intervals vvhen records
are inserted, if we a..ssurne tha,t the underlying distribution of training records
is static.

()nc-pclSS rnodel construction over data strearllS ha,,"~ received particular atten­
tion, since data arrives and rnust be processed continuously in several ernerg­
ing application dCHnains. For exarnple, network installations of la,rge TelecOll1
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and Internet service providers have detailed usage inforruation (e.g., eall-detail­
records, router p<:1Cket-flovv and trace data) froln different parts of the underly­
ing network that needs to be continuously analyzed to detect interesting trends.
Other exanlples include webserver logs, streaI11S of transactional data froI11 large
retail chains, and financial stock tickers.

\\Then working with high-speed data strearlls, algoritlulls lllUSt be designed to
construct data rnining rnodels while looking at the relevant data iterrlS only
once and in a .fixed order (deternlined by the strearn-arrival pattern), with a
lirnited arnount of main 111eI1l0ry. Data-strearn coruputatioll has given rise to
several recent (theoretical and practical) studies of online or one-pass algo­
rithrlls with bounded HIeIIIory. Algorithrns have been developed for one-pass
cornputation of quantiles and order-statistics, estirnation of frequency I1l0Inents
and join sizes, clustering and decision tree construction, estimating correlated
aggregates, and cOInputing one-dirnensional (i.e., single-attribute) histogranls
and 1Iaa1' wavelet decolllpositions. Next, we discuss one such algorithIn, for
incremental rnaintenance of frequent itemsets.

26.7.1 Incremental Maintenance of Frequent Itemsets

Consider the Purchases Relation shown in Figure 26.1 and assurne that the
minimum support threshold is 60%. It can be easily seen that the set of frequent
iternsets of size 1 consists of {pen }, {ink}, and {rnilk} with supports of 100%,
75%, and 75%, respectively. T'he set of frequent itell1Sets of size 2 consists of
{pen, ink:} and {pen, milk}, both with supports of 75%. The Purchases relation
is our first block of data. Our goal is to develop an algorithrIl that rnaintains
the set of frequent itcrl1sets under insertion of nevv blocks of data.

As a first exarnple, let us consider the addition of the block of data shovvn
in Figllre 26.13 to our original database (Figure 26.1). V'nder this addition,
the set of frequent itcrIlsets does not change, although their support values do:
{pen}, {i'nk}, and {Tn'ilk} now have support values of 100%, 60%, and 60%,
respectively, and {pen, ink} and {pen, 'In'ilk} now have 609() support. Note that
we could detect this case of 'rlO change' sirnply by rnaintaining the nurnber of
rnarket b::1.,>kets in which (~ach iternset occured. Irl this exaInple, vve update the
(al)solute) support of itcrnset {pen} by 1.

Figure 26.13 The Purchases Relation Block 2
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Figure 26.14 The Purchases Relation Block 2a

In general, the set of frequent itemsets Illay change. As an exalnple, consider
the addition of the block shown in Figure 26.14 to the original datab&'3e shown
in Figure 26.1. vVe see a transaction containing the itern water, but we do
not know the support of the iterllset {water}, since water was not above the
InininUlm support in our original database. A sirnple solution in this case is to
rnake an additional scan over the original database and cornpute the support of
the itenlset {water}. But can we do better? Another innnediate solution is to
keep counters for all possible iterllsets, but the nUlnber of all possible itemsets
is exponential in the nurnber of iterns-·-and most of these counters would be 0
anyway. Can we design an intelligent strategy that tells us which counters to
ruaintain?

We introduce the notion of the negative border of a set of iternsets to help
decide which counters to keep. The negative border of a set of frequent itemsets
consists of all iterllsets X such that X itself is not frequent, but all subsets of
X are frequent. For example, in the case of the database shown in Figure 26.1,
the following iternsets rnake up the negative border: {juice}, {water}, and {ink,
milk}. Now we can design a more efficient algorithm for maintaining frequent
iternsets by keeping counters for all currently frequent iternsets and all iterllsets
currently in the negative border. ()nly if an iternset in the negative border
becomes frequent do we need to read the original data..set again, to find the
support for new candidate itemsets that Blight be frequent.

We illustrate this point through the following t\VO exarnples. If we add Block
2a shown in Figure 26.14 to the original database shown in Figure 26.1, we
increase the support of the frequent iterllset {Tn'ilk} by one, and we increase the
support of the iternset {water}, which is in the negative border, by one as well.
But since no iternset in the negative border beearne frequent, we do not have
to re-scan the original database.

In eontrast, cbnsider the addition of Block 2b shown in Figure 26.15 to the
original database shown in Figure 26.1. In this CCl"se, the iternset {juice}, which
was originally in the negative border, becornes frequent with a support of 60%.
rrhis rneans that now the following itcrnsets of size two enter the negative
border: {juice, pen}, {juice, ink}, and {juice, Tnilk}. (vVe know that {juice,
'Water} cannot be frequent since the iteulset {water} is not freqlient.)
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Figure 26.15 The Purcha.."es Rt~lation Block 2b

26.8 ADDITIONAL DATA MINING rfASKS

CHAPTER 2t6

vVe focused on the problern of discovering patterns frorn a databa,sc, but there
are several other equally inlportant data ruining tasks. vVe now discuss SOllIe

of these briefly. The bibliographic references at the end of the chapter provide
luauy pointers for further study.

.. Dataset and Feature Selection: It is often irnportant to select the
'right' dataset to rnine. Dataset selection is the process of finding which
datasets to uline. Feature selection is the proeess of deciding which at­
tributes to include in the mining process.

II Sampling: One way to explore a large dataset is to obtain one or luore
samples and analyze them. The advantage of sampling is that we can
carry out detailed analysis on a sarnple that would be infeasible on the en­
tire dataset, for very large datasets. The disadvantage of scunpling is that
obtaining a representative salllple for a given task is difficult; we rnight rniss
irnportant trends or patterns because they are not reflected in the san1ple.
Current databa..'Se systerns also provide poor support for efficiently obtain­
ing sanlples. Irnproving database support for obtaining sarnples with var­
ious desirable statistical properties is relatively straightforward and likely
to be available in future DBMSs. Applying sarnpling for data ruining is an
area for further research.

II Visualization: Visualization techniques can significantly assist in under­
standing cornplex datasets and detecting interesting patterns, and the iln­
portance of visualization in data ruining is \videly recognized.

26.9 REVIEW QUESTIONS

Answers to the revie\v questions can be fuunel in the listed sections.

IIlI vVl1at is the role of data rnining in theKI)I) process? (Secti.on 26.1)

II \Vhat is the a priori property? I)escribe an algorithnl for' firlding frequent
itcrIlsets. (Section 26.2.1)
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III IInw are iceberg queries related to frequent iterIlsets? (Section 26.2.2)

• (jive the definition of an associat'ian rule. '\Vhat is the difference betv'leen
support and confidence of a rule? (Setion 26.3.1)

III Can you explain extensions of association rules to ISA hierarchies? "Vhat
other extensions of association rules are you farniliar v'lith? (Sections
26.3.3 and 26.3.4)

III "Vhat is a sequential pattern? How can we cornpute sequential patterns?
(Section 26.3.5)

II Can we use association rules for prediction? (Section 26.3.6)

III What is the difference bet\'leen Bayesian Networks and association rules?
(Section 26.3.7)

.. Can you give exanlples of classification and regression rules? How is sup­
port and confidence for such rules defined? (Section 26.3.8)

.. vVhat are the cOlnponents of a decision tree? I{ow are decision trees con­
structed? (Sections 26.4.1 and 26.4.2)

II What is a cluster? What inforrnation do we usually output for a cluster?
(Section 26.5)

.. How can we define the distance between two sequences? Describe an algo­
rithnl to find all sequences similar to a query sequence. (Section 26.6)

• Describe the block evolution Inodel and define the problclllS of increlnental
rnodel maintenance and change detection. \Vhat is the added challenge in
rnining data strearns? (Section 26.7)

11II Describe an incrernental algorithnl for conlpllting frequent iternsets. (Sec­
tion 26.7.1)

III Give exarnples of other tasks related to data rnining. (Section 26.8)

EXERCISES

Exercise 26.1 Briefly ans\ver the following questions:

1. Define 8uppor>t, and confidence for (111 association 1"ule.

2. Expla.in why association rules cannot be used directly for prediction, \vithout further
anal.'1lsis or clornain knowledge.

:3. \\7ha1; axe the differences between a88oc'iat:ion 'rlde8, classification rules, (;1,11(1 regression

'r'lLles?

4. \Vhat is the difference bet\veen cla88ijic(JJio'Tl and cZ.u8tcrin,g?
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Figure 26.16 The Purchases2 Relation
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5. What is the role of information visualization in data mining?

6. Give exarrlples of queries over a database of stock price quotes, stored as sequences, one
per stock, that cannot be expressed in SQL.

Exercise 26.2 Consider the Purchases table shown in Figure 26.1.

1. Simulate the algorithrn for finding frequent iterllsets on the table in Figure 26.1 with
minsup=90 percent, and then find association rules with m,inconJ=90 percent.

2. Can you modify the table so that the same frequent itemsets are obtained with 'fninsup=90
percent as with 11Linsup=70 percent on the table shown in Figure 26.1?

3. Sirllulate the algorithrIl for finding frequent iternsets OIl the table in Figure 26.1 with
rn'insup=lO percent and then find association rules with rninconj=90 percent.

4. Can you rnodi~y the table so that the sarne frequent iternsets are obtained with rnin-'i1lp=10
percent as with minsvp=70 percent OIl the table shown in Figure 26.1?

Exercise 26.3 Assulne we are given a, data:set D of rnarket baskets and have computed the
set of frequent iternsets X in 1) for a given support threshold rnin,B'up. Assume that we would
like to add. another data'Set D' to D, and rnaintain the set of frequent itmnsets with support
threshold 'fn'in8up in D U IJ'. Consider the following algorithrIl for incrernental Inaintenance
of a set of frequent iternsets:

l.vVe run the a p'T-ioT'i algoritlun OIl D' and find all frequent iterllsets in D' and their
support. The result is a set of iterllsets .Y'. \Ve also cornpute the support of all itcrnsets
-,y E "Y in J)'.

2. \Ve then rnake a scan over D to cornpute the support of all iternsets in .y'.

Answer the follo:\ving questions about the algorithm:
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• The last step of the algorithm is rnissing; that is, what should the algorithm output'?

• Is this algorithm lllore efficient than the algorithm described in Secti0n 26.7.1'1

Exercise 26.4 Consider the Purchases2 table shown in Figure 26.16.

• List all iterllsets in the negative border of the dataset.

• List all frequent itelnsets for a support threshold of 50%.

• Give an exaruple of a database in which the addition of this database does not change
the negative border.

• Give an exarnple of a database in which the addition of this database would change the
negative border.

Exercise 26.5 Consider the Purchases table shown in Figure 26.1. Find all (generalized)
association rules that indicate the likelihood of items being purchased on the same date by
the same customer, with minsup set to 10% and minconj set to 70%.

Exercise 26.6 Let us develop a new algorithm for the computation of all large itemsets.
Assume that we are given a relation D siInilar to the Purchases table shown in Figure 26.1.
We partition the table horizontally into k parts D 1 , ... , D k .

1. Show that, if itemset X is frequent in D, then it is frequent in at least one of the k parts.

2. Use this observation to develop an algorithm that cornputes all frequent itemsets in two
scans over .D. (Hint: In the first scan, compute the locally frequent itemsets for each
part Di , i E {I, ... , k}.)

3. Illustrate your algorithm using the Purchases table shown in Figure 26.1. The first
partition consists of the two transactions with transid 111 and 112, the second partition
consists of the two transactions with transid 113 and 114. Assulne that the minimum
support is 70 percent.

Exercise 26.7 Consider the Purchases table shown in Figure 26.1. Find all sequential pat­
terns with minsup set to 60%. (The text only sketches the algorithm for discovering sequential
patterns, so use brute force or read one of the references for a complete algorithm.)

Exercise 26.8 Consider the SubscriberInfo Relation shown in Figure 26.17. It contains
information about the marketing cmnpaign of the DB Aficionado magazine. The first two
colurnns show the age and salary of a potential customer and the subscription colurnn shows
whether the person subscribes to the rnagazine. \Ve want to use this data to construct a
decision tree that helps predict whether a person will subscribe to the 11lagazine.

1. Construct the AVC-group of the root node of the tree.

2. Assume that the spliting predicate at the root nod€~ is age S; 50. Construct the AVC­
groups of the two children nodes of the root node.

Exercise 26.9 Assurne you are given the following set of six records: (7,55), (21, 202),
(25,220), (12,7:3), (8,61), and (22,249).

1. Assurning that all six records belong to a single cluster, cornpute its center and radius.

2. Assurne that the first three records belong to one cluster and the second three records
belong to a different cluster. COlnpute the center and radius of the two clusters.

3. \Vhich of the two clusterings is 'better' in your opinion and why?

Exercise 26.10 Asslune you are given the three sequences (1, :3, 4), (2, :3, 2), (:3,3, 7). COln­
pute the Euclidian Bonn between all pairs of sequences.
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Figure 26.17 The SubscriberInfo Relation

BIBLIOGRAPHIC NOTES

Discovering useful knowledge from a large database is lllore than just applying a collection
of data rnining algorithms, and the point of view that it is an iterative process guided by
an analyst is stressed in [265] and [666]. \'Fork on exploratory data analysis in statistics, for
example [745], and on rnachine learning and knowledge discovery in artificial intelligence was
a precursor to the current focus on data lTlining; the added ernphasis on large volunles of data
is the inlportant new elernent. Good recent surveys of data mining algorithms include [267,
397, 507]. [266] contains additional surveys and articles on many aspects of data mining and
knowledge discovery, including a tutorial on Bayesian networks [:371]. The book by Piatetsky­
Shapiro and Frawley [595] contains an interesting collection of data rnining papers. The
annual SIGKDD conference, run by the AClVI special interest group in knowledge discovery
in databases, is a good resource for readers interested in current research in data mining
(25, 162, 268, 372, 613, 691]' as is the ]o'urnal of Knowledge D'iscovery and Data Alining.
[363, 370, 511, 781] are good, in-depth textbooks on data nlining.

The problern of mining association rules was introduced by Agrawal, Itnielinski, and Swami
[20]. l\!1any efficient algorithnls have been proposed for the cornputation of large iternsets,
including [21,117,364,683,738,786].

Iceberg queries have been introduced by F'ang et al. [264]. There is also a large body of
research on generalized forrns of <lssociation rules; for ex<:unple, [700, 701, 703]. The problem
of finding rnaxirnal frequent itelnsets ha'3 also received significant attention [13, 67, 12G, ;H6,
~~47, 479, 787]. Algorithrns for rnining association rules with constraints are considered in
[68,462, 56;'{, 590, 591, 70:3].

Parallel algorithnls are described in [2:3] and [655]. Recent papers on parallel data ruining can
be found in [788], and work on distributed data 111ining can be found in [417].

[291] presents an aigoritlull for discovering association rules over a continuous nUllwric at­
tribute; association rules over numeric attributes are also discussed in [78:3J. 1'he general
fornl of association rules, in which attributes other than the transaction id are grouped is de­
veloped in [529]. Association rules over iterns in a hierarchy are discllssed in [:361, 700]. F'llrther
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extensions and generalization of a,,'3sociation rules are proposed in [67, 115, 56~3]. Integration
of rnining for frequent itcrHsets into datalxLse systcrns has been addressed in [654, 74a]. 'rhe
problern of Inining sequential patterns is discussed in [24}, and further algorithrIls for rnining
sequential patterns can be found in [510, 702].

General introductions to classification and regression rules can be found in [~362, 5a2]. The
classic reference for decision and regression tree construction is the CART book by Breilnan,
Friccl!nau, Olsheu, and Stone [111]. A lnachine learning perspective of decision tree con­
struction is given by Quinlan [603]. Recently, several scalable algorithnls for decision tree
construction have been developed [309, 311, 521, 619, 674J.

'rhe clustering problern has been studied for decades in several disciplines. Sample textbooks
include [232, 407, 418]. Scalable clustering algorithuls include CLARANS [562], DBSCAN
[249, 250], BIRCH [798], and CURE [344]. Bradley, Fayyad, and Reina address the problem
of scaling the K-lVIeans clustering algorithm to large databases [108, 109]. The problern of
finding clusters in subsets of the fields is addressed in [19]. Ganti et al. exauline the problerll
of clustering data in arbitrary rnetric spaces [302]. Algorithrlls for clustering caterogical data
include STIRR [315J and CACTUS [301]. [651] is a clustering algorithm for spatial data.

Finding siulilar sequences from a large database of sequences is discussed in [22, 262, 446,
606,680].

Work on incrernental rnaintenance of association rules is considered in [174, 175, 736]. Ester
et al. describe how to nlaintain clusters incrernentally [248], and Hidber describes how to
rnaintain large iteulsets incrernentally [378]. There has also been recent work on rnining data
strearns, such as the construction of decision trees over data streams [228, 309, 39~)] and
clustering data streanlS [343,568]. A general framework for ruining evolving data is presented
in [299]. A framework for measuring change in data characteristics is proposed in [300J.
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The field of inforlnation retrieval (IR) has studied the problenl of sea,rching
collections of text docurnents since the 19508 and developed largely indepen­
dently of database systenls. The proliferation of text docunlents on the Web
lllade docurnent search an everyday operation for 1110st people and led to re­
newed research on the topic.

The database field's desire to expand the kinds of data that can be managed in
a DB~IS is well-established and reflected in developments like object-relational
extensions (Chapter 23). Documents on the Web represent one of the rnost
rapidly growing sources of data, and the challenge of rnanaging such documents
in a DBMS has naturally become a focal point for database research.

The Web, therefore, brought the two fields of database rnanagement systenls
and information retrieval closer together than ever before, and, as we will see,
XML sits squarely in the middle ground between thenl. We introduce IR sys­
tems as well as a data model and query language for XML data and discuss
the relationship with (object- )relational database systerns.

In this chapter, we present an overview of information retrieval, Web search,
and the emerging XML data model and query language standards. We begin
in Section 27.1 with a discussion of how these text-oriented trends fit within
the context of current object-relational database systeIns. We introduce in­
forrnation retrieval concepts in Section 27.2 and discuss specialized indexing
techniques for text in Section 27.3. We discuss Web search engines in Section
27.4. In Section 27.5, we briefly outline current trends in extending database
systems to support text data and identify SOllle of the irnportant issues in­
volved. In Section 27.6, we present the XML data lllodel, building on the XML
concepts introduced in Chapter 7. We describe the XQuery language in Section
27.7. In Section 27.8, we consider efficient evaluation of XQuery queries.

27.1 COLLIDING WORLDS: DATABASES, IR, AND XML

'The \i\Teb is the rnost widely used doculnent collection today, and search on the
vVeb differs froIn traditional IR-style docurnent retrieval in iluportant ways.
First, there is great ernphclsis on scalability to very large document collections.
IR systerns typically dealt with tens of thousands of documents, wherea.'3 the
vVeb contains l)illions of pages.

Second, the vVeb has significantly changed how docurnent collections are created
and used. Traditionally, III systerlls were aiIned at professionals like librarians
and legal researchers, who were trained in using sophisticated retrieval engines.
Docurnents were carefully prepared, and docllrnents in a given collection were
typically on related topics. On thevVeb, docurnents are created by an infinite
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variety of individuals for equally lllClny purposes, and reflect this diversity in
size and content. Searches aTe carried out by ordinary people with no training
in using retrieval software.

The ernergence of Xl\/lL has added a third interesting diInensioI1 to text search:
Every cloClunent can no\v be rnarked up to reflect additional infol'lnation of
interest, such as authorship, source, and even details about the intrinsic content.
This he),s changed the nature of a '"docurnent" froIn free text to textual objects
\vith a..')sociated fields containing metadata (data about data) or descriptive
infonnation. Links to other docurnents are a particularly irnportant kind of
lnetadata, and they can have great value in searching docurnent collections on
the vVeb.

The Web also changed the notion of what constitutes a docunlent. Documents
on the Web may be multinledia objects such as irnages or video clips, with
text appearing only in descriptive tags. We must be able to Inanage such
heterogeneous data collections and support searches over thern.

Database rnanagernent systenls traditionally dealt with simple tabular data. In
recent years, object-relational database systerns (ORDBMSs) were designed to
support complex data types. Images, videos, and textual objects have been
explicitly rnentioned as exaruples of the data types ORDBMSs are intended to
support. Nonetheless, current database systerns have a long way to go before
they can support such cOlnplex data types satisfactorily. In the context of text
and XML data, challenges include efficient support for searches over textual
content and support for searches that exploit the loose structure of XNIL data.

27.1.1 DBMS versus IR Systems

I)atabc1.se and IR, systcrns have the COllllnon objective of supporting searches
over collections of data. However, rnany irnportant differences have influenced
their developrnent.

11II Searches versus Queries: IR, systerns are designed to support a special­
ized class of qlH~ries that \ve also call searches. Searches are specified in
ternlS of a. fo",T search terms, and the underlying data is usually a collec­
tion of unstructured text docurnents. III addition, an irnportant feature of
TH, searches is that search resultsrnay be ranked, or ordered, in tcrrns of
hovv '\vell' the search results rnatch the search tenns. In contra.'3t, databa"sc
systerns support a very general class of queries, and the underlying data is
rigidly structured. Unlike III systerns~ database systerns have traditionally
returnedunranked sets of results. (Even the recent S(~L/()L,AP extensions
that support earl:y results and searches over ordered data (secl, Chapter 25)
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do not order results in terlTIS of how ""veIl they rnatch the query. Relational
queries are pTeC'i8e in that a ro\v is either in the answer or it is not ; there
is no notion of 'how vvell a row rnatches~ the query.) In other ""rords, a
relational query only assigns two raJlks to a row, indicating 'whether the
row is in the ans\ver or not.

• Updates and Tr'ansactions: IR systelns are optirnized for a read-Illostly
workload and do not support the notion of a transaction. In traditional
IR systerlls, ne\v docurnents are added to the doculnent collection frorH
tirne to titne, and index structures that speed up searches are periodically
rebuilt or updated. Therefore, docllrnents that are highly relevant for a
search rnight exist in the IR systeln, but not be retrievable yet because of
outdated index structures. In contrast, databa...'3e systerns are designed to
handle a wide range of workloads, including update-intensive transaction
processing workloads.

These differences in design objectives have led, not surprisingly, to very dif­
ferent research elnphases and system designs. Ilesearch in IR studied ranking
functions extensively. For example, arllong other topics, research in IR investi­
gated how to incorporate feedback frOITl a user's behavior to modify a ranking
function and how to apply linguistic processing techniques to improve searches.
Database research concentrated on query processing, concurrency control and
recovery, and other topics, as covered in this book.

The differences between a DB1\tIS and an III systenl from a design and irnple­
mentation standpoint should become clear as we introduce IR systerlls in the
next few sections.

27.2 INTRODUCTION TO INFORMATION RETRIEVAL

There are two COrllr110n types of searches, or queries, over text collections:
boolean queries and ranked queries. In a boolean query~ the user spE~ci­

fies an expression constructed using terlllS and boolean operators (And, Or,
Not). For exalnple,

database And (lvlicT08ojt Or IBM)

This query a..sks for all docurnents that contain the terrn database and in addi­
tion, either PvficT080jt or IBN!.

In a ranked query the user specifies one or rnore terrlls, a,rlcl the result of the
query is a list of docurllents ranked by their relevance to the query. Intuitively,
docurnents at the top of the result list are expected to 'rnatch' the search
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agent Janles agent
agent rnobile cornputer
J ames Madison Inovie

J anles Bond movie

Figure 27.1 A Text Database with Four Records

CHAPTER 2$7

condition ruore closely, or be 'rnore relevant', than doculnents lower in the result
list. While a document that contains Microsoft satisfies the search' Microsoft,
IBM,' a document that also contains IBM is considered to be a better match.
Similarly, a docunlent that contains several occurrences of Microsoft might be
a better rnatch than a document that contains a single occurence. Ranking the
docurnents that satisfy the boolean search condition is an important aspect of
an IR search engine, and we discuss how this is done in Sections 27.2.3 and
27.4.2.

An important extension of ranked queries is to ask for documents that are most
relevant to a given natural language sentence. Since a sentence has linguistic
structure (e.g., subject-verb-object relationships), it provides more informa­
tion than just the list of words that it contains. We do not discuss natural
language search.

27.2.1 Vector Space Model

We now describe a widely-used franlework for representing docurnents and
searching over docurnent collections. Consider the set of all terrns that ap­
pear in a given collection of documents. We can represent each document as a
vector with one entry per ternl. In the shnplest 1'01'111 of doclunent vectors, if
terrn j appears k tirnes in dOCUlnent i, the document vector for docurnent i
contains value k in position j. The docurnent vector for i contains the value 0
in positions corresponding to terrns that do not appear in i.

Consider the exaInple collection of four docurnents shown in Figure 27.1. rrhe
docUluent vector representation is illustrated in Figurf~ 27.2; each row represents
a docurnent. This representation of docurnents a,,'3 terrn vectors is called the
vector space model.
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Figure 27.2 Document Vectors for the Example Collection

27.2.2 TFIIDF Weighting of Terms

We described the value for a terril in a document vector as simply the term
frequency (TF), or nurnber of occurrences of that terrn in the given document.
This reflects the intuition that a term which appears often is more iInportant
in characterizing the document than a terrn that appears only once (or a term
that does not appear at all).

However, some terms appear very frequently in the document collection, and
others are relatively rare. The frequency of terms is eITlpirically observed to
follow a Zipfian distribution, as illustrated in Figure 27.3. In this figure, each
position on the X-axis corresponds to a terrll and the Y-axis corresponds to
the nUlnber of occurrences of the term. Terms are arranged on the X-axis in
decreasing order by the nurnber of tirnes they occur (in the docurnent collection
as a whole).

As rnight be expected, it turns out that extremely COmlTIOn terms are not very
useful in searches. Examples of such common terms include a, an, the etc.
Terrns that occur extremely often are called stop words, and docunlents are
pre-processed to elirilinate stop words.

Even after eliminating stop words, we have the phenorilenon that some words
appear nluch luore often than others in the docurnent collection. Consider the
words Lirnl;E and kernel in the context of a collection of dOCUlnents about the
Linux operating systern. While neither is COlnrnon enough to be a stop word,
Linux is likely to appear much rnore often. Given a search that contains both
these keywords, we are likely to get better results if we give Inore irnportance
to docurnents that contain kernel than docurnents that contain Linux.

vVe ca.'!} capture this intuition by refining the docurnent vector representatioll as

follows. The value associated with ternl j in the docurnent vector for docurnent
i, denoted a.." 'Wij, is obtained by rnultiplying the terrIl frequency tij (the nuruber
of tirnes tenn j appears in docurnent i) by the inverse docurnent frequency
(IDF) of terrn j in the docurnent collection. IDF of a tenn j is defined aAS
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log(lVInj); where 1'1 is the total rHnnber of dOCUlnents, and nj is the nurnber of
cloClllnents that tenn j appears in. This effectively increases the weight given
to rare tenns. As an exarnple, in a collection of 10,000 docurnents, a terrIl that
appears in half the docurnents has an IDF of 0.3, and a tenll that occurs in
just one docurnent has an IDF of 4.

Length Normalization

Consider a docurnent !J. Suppose that we lnodify it by adding a large nUlllber of
new terrns. Should a the weight of a terrn t that appears in D be the saIne in the
doclunent vectors for D and the rnodified dOCUlTlent? Although the TFjIDF
weight for t is indeed the saIne in the two document vector, our intuition
suggests that the weight should be less in the 1110dified document. Longer
docul'llents tend to have lnore terms, and lnore occurrences of any given terrn.
Thus, if two doculnents contain the saIne nUlnber of occurrences of a given
tenll, the importance of the ten'll in characterizing the document also depends
on the length of the docull1ent.

Several approaches to length nornlalization have been proposed. Intuitively,
all of ther'll reduce the irnportance given to how often a term occurs as the fre­
quency grows. In traditional IR systelns, a popular way to refine the sirnilarity
Inetric is cosine length normalization:

* tvij

Wij = l'£~=l 11I[

In this formula, t is the nurnbei' of tenns in the dOCulnent collection, 'Wij is the
TFjIDF weight without length norrnalization, and tvij is the length adjusted
TFjlDF weight.

Tenns that occur frequently in a doculnent are particularly problenlatic on
the "Veb because webpages are often deliberately rnodified by adding rnany
copies of certain words···· for exarnple, sale, free, sex to increase the likelihood
of their being returned in response to queries. l:'or this reason, \:Veb search
engines typically norrnalize for length by ilnposing a lnaxirnurn value (usually
2 or 3) for terrIl frequencies.

27.2.3 Ranking Document Similarity

\Ve no\v consider ho\\-' the vector space representation allows us to rank dOCll­

rnents in the result of a ranked query. A key observation is that a ranked query
can itself be thought of EL'S a docUlllent, since it is just a collection of terrl1s.
1'his allows us to use document similarity as the ba",sis for ranking query
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results".... -..,-the doculnent that is rnost sirnilar to the query is ranked highest, and
the one that is least sirnilar is ranked lowest.

If a total of t teru18 appear in the collection of docurnents (t is 8 in the exaulple
sho\~ln in Figure 27.2), \\"e can visualize docunH:~nt vectors in a t-diInensional
space in \vhich each axis is labeled with a te1'1n. This is illustrated in Figure
27.4, for a two-dirnensional space. The figure shows doculuent vectors for t\VO
documents, D 1 and .D2 , &'3 \vell (;1",'3 a query Q.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TERMB

Q :;:: (0.4, 0.8)

01:;:: (0.8, 0.3)

D2:;:: (0.2, 0.7)Q

02

~

:E
ffi
E-

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1-......
RARE WORDS

....-:
STOP WORDS

Figure 27.3 Zipfian Distribution of Term
Frequencies

Figure 27.4 Document Similarity

The traditional rneasure of closeness between two vectors, their dot prodlJ,ct,
is used as a lneasure of docurnent siInilarity. The siInilarity of query Q to a
doculnent IJi is Illea8Ured by their dot produet:

t

sim,(Q,Di ) ---... , LQj·7LJ7j
.1=1

In the excunple shown in Figure 27.4, si'nt(Q, D l ) (0.4 * 0.8) .+ (0.8 *
0.3) = 0.56, and si1n(Q, D2) = (0.4 * 0.2)-+- (0.8 *0.7) = 0,64. Accordingly,
D2 is ranked higher than 1)1 in the search result.

In the context ,of the VVeb, docurnent sirnila1'ity IS one of several IneaSU1'es
that can be used. to rank results, but should not be used exclusively. First,
it is questionable vvheth,er users want dOCllrnents that are sirnilar to the query
(which typically consists of OIle or tvvo 'words) or dOCUll.lenS that contajn useful
inforrnation n~lated to the quer,Y te1'111S. IntuitivelY,we "vant to give ilnportance
to the Q'uality of a Web page \vhile ranking it, in addition to reflecting the
sirnilarity of tlH.~ page to a given query. Links between pages provide valuable
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additional inforrnation that can be used to obtain high-quality results. We
discuss this issue in Section 27.4.2.

27.2.4 Measuring Success: Precision and Recall

Two criteria are cornnlonly used to evaluate information retrieval systerlls. Pre­
cision is the percentage of retrieved documents that are relevant to the query.
Recall is the percentage of relevant docurnents in the database that are re­
trieved in response to a query.

Retrieving all documents in response to a query trivially guarantees perfect
recall, but results in very poor precision. The challenge is to achieve good
recall together with high precision.

In the context of search over the Web, the size of the underlying collection is
on the order of billions of docuruents. Given this, it is questionable whether
the traditional measure of recall is very useful. Since users typically don't look
beyond the first screen of results, the quality of a Web search engine is largely
deterlnined by the results shown on the first page. The following adapted
definitions of precision and recall rnight be more appropriate for Web search
engInes:

• Web Search Precision: The percentage of results on the first page that
are relevant to the query.

• Web Search Recall: rrhe fraction N / M, expressed as a percentage, where
M is the nUluber of results displayed on the front page, and of the M ruost
relevant documents, N is the number displayed on the front page.

27.3 INDEXING FOR TEXT SEARCH

In this section, we introduce two indexing techniques that support the evalu­
ation of boolean and ranked queries. 'The 'inverted index structure discussed
in Section 27.3.1 is widely used due to its sirnplicity and good perforlnance.
Its rnain disadvantage is that it imposes a significant space overhead: The size
can be up to 300 percent the size of the original file. The signature file index
discussed in Section 27.::3.2 has a sInall space overhead and offers a quick filter
that elirninates rnost nonqualifying docurnents. However, does not scale as well
to larger dataha..')c sizes because the index has to be sequentially scanned.

Before a doeuruent is indexed, it is typically pre-processed to elirninate stop
words. Since the size of the indexes is very sensitive to the nurnber of tern1S
in the docurnent collection, elirninating stop words can greatly reduce index
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size. IR, systcrns also do certain other kinds of pre-processing. :For instance,
they apply stelnming to reduce related terrns to a ca,nonical forrn. This step
also reduces the nUluber of terrn8 to be indexed, but equally irnportantly, it
allows us to retrieve documents that lnay not contain the exact query terrIl but
contain S(Hne variant. As an exarnple, the terrns T1ln, T'lLnning, and T'unncr all
stern to 'run. The terrIl run is indexed, and every occurrence of a variant of this
term is treated as an occurrence of run. A query that specifies rtLnneT finds
docurnents that contain any word that stenlS to T'UTt.

27.3.1 Inverted Indexes

An inverted index is a data structure that enables fast retrieval of all doc­
uments that contain a query terr11. For each ternl, the index rnaintains a list
(called the inverted list) of entries describing occurrences of the tenn, with
one entry per docurnent that contains the ternl.

Consider the inverted index for our running example shown in Figure 27.5. The
term 'Jarnes' has an inverted list with one entry each for documents 1, 3, and
4; the term 'agent' has entries for docurnents 1 and 2.

The entry for document d in the inverted list for terrn t contains details about
the occurrences of term t in document d. In Figure 27.5, this information
consists of a list of locations within the document that contain term t. Thus,
the entry for document 1 in the inverted list for terrn 'agent' lists the locations
1 and 5, since 'agent' is the first and fifth word of docurnent 1. In general,
we can store additional information about each occurrence (e.g., in an HTML
docurnent, is the occurrence in the 1'ITLE tag?) in the inverted list. We can
also store the length of the docurnent if this is used for length norlnalization
(see below).

The collection of inverted lists is called the postings file. Inverted lists can be
very large for large doeurnent collections. In fact, Web search engines typically
store each inverted list on a separate page, and Inost lists span rnultiple pages
(and if so, are rnaintained &'S a linked list of pages). In order to quickly find
the inverted list for a, query terrn, all possible query terrns are organized in a
second index structure such as a B+ tree or a. hash index.

The second index, called the lexicon, is Inuch srnaller than the postings file
since it only contains one entry per terrn, and further, only contains entries for
the set of terl11S that aTe retained after elirninating stop words, and applying
stenlluing rules. An entry consists of the terlIl, SOH1C surnrnary inforrnation
about its inverted list, and the address (on disk) of the inverted list. In Figure
27.5, the SllIl1lnary inforrnation consists of the lllllllber of entries in the inverted
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lexicon (in-memory) Postings file (on disk)
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Figure 27.5 Inverted Index for Example Collection

list (i.e., the nurnber of documents that the terl11 appears in). In general, it
could contain additional infonnation such as the IDF for the terrIl, but it is
il11portant to keep the entry's size as slllall as possible.

The lexicon is rua.intained in-lllelnory, and enables fast retrieval of the inverted
list for a query terrn. rrhe lexicon in Figure 27.5 uses a hash index, and is
sketched by showing the hash value for the terrn; entries for terms are grouped
into hash buckets by their hash value.

Using an Inverted Index

A_ query containing a single tenn is evaluated by first searching the lexicon
to find the address of the inverted list for the terrIl. Then the inverted list
is retrieved, the docids in it are rnapped to physical doculnent addresses, and
the corresponding docurnents are retrieved. If the results are to be ranked, the
relevance of each docurnent in the inverted list to the query term is C01l1puted,
and docurnents are then retrieved in order of their relevance rank. ()bserve that
the inforrna,tion needed to cornpute the relevance 1neEU3ure described in Section
27.2 - -the frequency of the query ternl in the dOCu1nent, the IDF of the terrn in
the docurnent collection, and the length of the docurnent if it is used for length
nonnalizatioll-------are all available in either the lexicon or the inverted list.

\"lhen inverted lists are very long, as in\Veb search engines, it is useful to
consider \vhether we should precornpute the relevance of each dOCUlnent in the
inverted list for a terrn (with respect to that terrn) and sort the list by relevance
rather than docurnent id. This would speed up querying because we can just
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look at a prefix of the inverted list, since users rarely look at 11101'0 than the
first fc\v results. II(ywever 1 Ina.intaining lists in sorted order by relevance can
be expensive. (Sorting by dOcUll1cnt id is convenient because nevv dOCUlnents
are assigned increasing ids, and we can therefore sirnply <1ppend entries for new
dOCUlnents at the end of the inverted list. Further, if the sirnilarity function is
changed, \ve do not have to rebuild the index.)

A query with a conjunction of several terrns is evaluated by retrieving the
inverted lists of the query terrns one at a tiTne and intersecting theln. In order
to rninirnize 111en10r,}T usage, the inverted lists should be retrieved in order of
increasing length. A query with a disjunction of several terrns is evaluated by
ruerging all relevant inverted lists.

Consider the exaruple inverted index shown in Figure 27.5. To evaluate the
query 'JaUles', we probe the lexicon to find the address of the inverted list for
'Ja1nes', fetch it from disk and then retrieve docurIlent 1. To evaluate the query
,Jarnes' AND 'Bond', we first retrieve the inverted list for the tenn 'Bond' and
intersect it with the inverted list for the terrn 'Janles.' Crhe inverted list of
the terrn 'Bond' has length two, whereas the inverted list of the terrIl 'Jarnes'
has length three.) rrhe result of the intersection of the list (1,4) with the list
(1, ~~, 4) is the list (1,4) and doculuents 1 and 4 are therefore retrieved. 'fa
evaluate the query '.lalnes' OR 'Bond,' we retrieve the two inverted lists in any
order and merge the results.

for ranked queries with lnultiple tenns, we 1nust fetch the inverted lists for
all terrl1s, COlllpute the relevance of every doclunent that appears in one of
these lists with respect to the given collection of query terrns, and then sort
the docurnent ids by their relevance before fetching the docluuents in relevance
rank order. Again, if the inverted lists are sorted by the relevance rnea,sure,
we can support ranked queries by typically processing only sluall prefixes of
the the inverted lists. (()bserve that the relevance of a docuIllent with respect
to the query is easily cornputed froIn its relevance with respect to each query
term.)

27.3.2 Signature Files

A signature fi,le is another index structure for text data.JH-:kse systerns that
supports efficient evaluation of boolean queries. A signature file contains an
index record for each docurnent in the database. This index record is called
the signature of the dOClunent. F~ach signature has a fixed size of b bits; b is
called the signature width. rrhe bits that are set depend on the words that
appear in the docllrnent. vVe rnap words to bits by applying a hash function
to ea,ch vvord in the docurnent and we set the bits that appear in the result of
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1 agent J arnes Bond good agent 1100
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4 JaInes Bond rnovie 1110_ ... ---

Figure 27.6 Signature File for Example Collection

the hash function. Note that unless we have a bit for each possible word in the
vocabulary, the same bit could be set twice by different words because the hash
function maps both words to the saIne bit. We say that a signature S 1 matches
another signature 82 if all the bits that are set in signature 82 are also set in
signature 8 1 . If signature 8 1 Inatches signature 8 2 , then signature 8 1 has at
least as many bits set as signature 8 2 .

For a query consisting of a conjunction of terms, we first generate the query
signature by applying the hash function to each word in the query. We then scan
the signature file and retrieve all documents whose signatures match the query
signature, because every such document is a potential result to the query. Since
the signature does not uniquely identify the words that a docuInent contains,
we have to retrieve each potential rnatch and check whether the docunlent
actually contains the query terms. A docurnent whose signature matches the
query signature but that does not contain all terms in the query is called a false
positive. A false positive is an expensive rnistake since the docurnent has to
be retrieved froln disk, parsed, stemrned, and checked to determine whether it
contains the query terms.

For a qUf~ry consisting of a disjunction of tenns, we generate a list of query
signatures, one for each terrn in the query. The query is evaluated by scanning
the signature file to find docurnents whose signatures rnatch any signature in
the list of query signatures.

As an exarllple, consider the signature file of width 4 for our running exarnple
shown in Figure 27.6. rrhe bits set by the hashed values of all query terrns are
shown in the figure. To evaluat(~ the query 'Jal11es,' we first cOlnpute the hash
value of the terrn; this is 1000. 'fhen we scan the signature file a11(1 find rnatch­
ing index recol~ds. As \lve can see fronl Figure 27.6, the signatures of all records
have the first bit set. We retrieve all doculnents and check for false positives;
the only false positive for this query is docurnent with rid 2. (lJnfortunately,
the ha..shed value of the terrn 'agent' also happened to set the very first bit in
the signature.) C~onsider the query \Jarnes' And 'Bond.' ~rhe query signature
is llOO and three docurnent signatures rnatch the query signature. Again, \ve

retrieve one false positive. As another exarnple of a conjunctive query, con-
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sider the query 'rnovie' And ':Nladison.' The query signature is 0011, and only
one doclunent signature lnatches the query signature.N0 false positives are
retrieved.

Note that for each query we have to scan the cOlllplete signature file, and there
are a" 11lany records in the signature file as there are documents in the database.
To reduce the anlount of data that has to be retrieved for each query, we can
vertically partition a signature file into a set of bit slices, and we call such an
index a bit-sliced signature file. The length of each bit slice is still equal to
the number of doculllents in the database, but for a query with q bits set in
the query signature we need only to retrieve q bit slices. The reader is invited
to construct a bit-sliced signature file and to evaluate the exarnple queries in
this paragraph using the bit slices.

27.4 WEB SEARCH ENGINES

Web search engines rIlust contend with extreruely large nurubers of doculllents,
and have to be highly scalable. Docurnents are also linked to each other, and
this link infonnation turns out to be very valuable in finding pages relevant
to a given search. These factors have caused search engines to differ frorn
traditional IR systerns in irnportant ways. Nonetheless, they rely on sorne forn1
of inverted indexes as the basic indexing mechanism. In this section, we discuss
Web search engines, using Google as a typical example.

27.481 Search Engine Architecture

'Veb search engines crawl the web to collect docurnents to index. 'Ihe crawling
algorithrn is sirrlple, but crawler software can be cornplex because of the details
of connecting to millions of sites, minimizing network latencies, parallelizing
the crawling, dealing with tirneouts and other connection failures, ensuring
that crawled sites are not unduly stressed by thE~ cra\vler, and other practical
concerns.

The search algorithrn used by a crawler is a graph traversal. Starting at a
collection of pages with rnany links (e.g. ,Yahoo directory pages), all links on
cra\vled pages a,re follo\\red to identify ne\v pages. This step is iterated, keeping
track of which pages have been visited in order to avoid re-visiting thenl.

The collection of pages retrieved through crawling can be enonnous, on the
order of billions of pages. Indexing thern is a very expensive ta"sk. Fortunately,
tlle ta",sk is highly parallelizable: Each docurnent is independently arlalyzed
to create inverted lists for the terrns that appear in the docurnent. T'hese
per-doCUlnent lists are then sorted b~y terrn and luerged to crcclte cornplete per-
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terrn inverted lists that span all dOCllrnents. Ternl statistics such as IDF can
be cornputed during the lnerge phase.

Supporting searc~hes over such vast indexes is another luanulloth undertaking.
Fortunately, again, the task is readily parallelized using a cluster of inexpensive
Inachines: \Ve can deal with the anlount of data by partitioning the index across
several rnachines. Each Inachine contains the inverted index for those terms
that are Inapped to that luachine (e.g., by hashing the tenn). Queries 111ay
have to be sent to luultiple Inachines if the terrl1S they contain are handled by
different rnachines, but given thatvVeb queries rarely contain rnore than two
terrns, this is not a serious probleln in practice.

We rnust also deal \vith a huge volume of queries; Google supports over 150
lllillion searches each day, and the nUlnber is growing. This is acc(nnplished
by replicating the data across several machines. vVe already described how the
data is partitioned across Inachines. For each partition, we now a..ssign several
nlachines, each of which contains an exact copy of the data for that partition.
Queries on this partition can be handled by any rnachine in the partition.
Queries can be distributed across rnachines on the basis of load, by hashing on
IP addresses, etc. Replication also addresses the problern of high-availability,
since the failure of a Inachine only increases the load on the remaining rnachines
in the partition, and if partitions contain several rnachines the ilnpact is sIuall.
Failures can be rnade transparent to users by routing queries to other Inachines
through the load balancer.

27.4.2 Using Link Information

webpages are created by a variety of users for a variety of purposes, and their
content does not always lend itself to effective retrieval. The rnost relevant
pages for a search rnay not contain the search terrns at all and are therefore
not returned by a boolean keyvvord search! For exarnple, consider the query
ternl 'Web browser.' A boolea,11 text query using the tenns does not return the
relevant pages of Netscape Corporation or }\trierosoft, because these pages do
not contain the terrn 'Web browser' at all. Sirnilarly, the horne page of 'Yahoo
does not contain the terrn 'search engine.' The problenl is that relevant sites
do not necessarily describe their contents in a ¥,ray that is llseful for boolean
text queries.

Until no\v, ¥,re only considered infonnation 'within a single \vebpage to estirnate
its relevance to a query. But webpages are connected through h:yperlinks, and
it is quite likely that there is a \VebpEtge containing the terrn 'search engine'
that has a link to Yahoo's horne page. Can we use the inforrnation hidden in
such links'?
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Building on research in the sociology literature, an interesting analogy between
links and bibliographic citations suggests a \vay to exploit link infoI'Ination: Just
as influential authors and pubications are cited often, good 'Vvebpages are likely
to be often linked to. It is useful to distinguish between two types of pages,
authorities and hubs. An authority is a page that is very relevant to a certain
topic and that is recognized by other pages as authoritative on the subject.
These other pages, called hubs, usually have a significant nUll1ber of hyperlinks
to authorities, although they tlH~nlselves are not very well known and do not
necessarily carry a lot of content relevant to the given query. Hub pages could
be cOlnpilatiol1s of resources about a topic on a site for professionals, lists of
reco111mended sites for the hobbies of an individual user, or even a part of the
bookIllarks of an individual user that are relevant to one of the user's interests;
their Blain property is that they have IHany outgoing links to relevant pages.
Good hub pages are often not well known and there may be few links pointing
to a good hub. In contrast, good authorities are 'endorsed' by rnany good hubs
and thus have many links froln good hub pages.

This symbiotic relationship between hubs and authorities is the basis for the
HITS algoritlun, a link-based search algorithm that discovers high-quality pages
that are relevant to a user's query terrns. The HITS algorithIll rnodels \iVeb as a
directed graph. Each webpage represents a node in the graph, and a hyperlink
froIn page A to page B is represented as an edge between the two corresponding
nodes.

Assulne that we are given a user query with several terIns. The algorithIll
proceeds in two steps. In the first step, the sarnpling step, we collect a set of
pages called the base set. The ba..se set 11lOSt likely includes very relevant pages
to the user's query, but the base set can still be quite large. In the second step,
the itera"tion step, we find good authorities and good hubs arnong the pages in
the ba.."c set.

The salnpling step retrieves a set of webpages that contain the query terrns,
using sorne traditional technique. For exarnple, 'we can evaluate the query et.e;

a boolean key-word search and retrieve all webpages that contain the query
terrns. vVe call the resulting set of pages the root set. 1'he root set Inight not
contain all relevant pages because senne <\'uthoritative pages rnight not include
the user query \vords. But \ve expect that at lea."t SOlne of the pages in the root
set contain hyperlinks to the rnost relevant authoritative pages or that SCHne
authoritative pages link to pages in the root set. rrhis rnotivates our notion of
a link page. \¥e call a page a link page if it ha.." a hyperlink to sorne page in
the root set or if a page in the root set has a hyperlink to it. In order not to
Iniss potentially relevant pa,ges, \ve auglnent the root set by all link pages and
vve call the resulting set of pages the base set. rrhus~ the base set includes all
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root pages and all link pages; \ve refer to a webpage in the base set as a base
page.

Our goal in the second step of the algorithrn is to find out which base pages are
good hubs and good authorities and to return the best authorities and hubs
a,." the answers to the query. To quantify the quality of a base page as a hub
and as an authority, we associate vvith each base page in the base set a hub
weight and an authority weight. The hub weight of the page indicates the
quality of the page as a hub, and the authority weight of the page indicates
the quality of the page as an authority. We cornpute the weights of each page
according to the intuition that a page is a good authority if rnany good hubs
have hyperlinks to it, and that a page is a good hub if it has rnany outgoing
hyperlinks to good authorities. Since we do not have any a priori knowledge
about which pages are good hubs and authorities, we initialize all weights to
one. We then update the authority and hub weights of base pages iteratively
as described below.

Consider a base page p with hub weight hp and with authority weight ap' In
one iteration, we update ap to be the SU1U of the hub weights of all pages that
have a hyperlink to p. Formally:

ap = L hq

All base pages q that have a link to p

Analogously, we update hp to be the SUlll of the weights of all pages that p
points to:

hp == L aq

All base pages q such that p has a link to q

Cornparing the algorithrn with the other approctches to querying text that
we discussed in this chapter, we note that the iteration step of the lIlT'S
algorithln-·m·the distribution of the weights·· does not take into a,ccount the
'Vvards on the ba,,'3c pages. In the iteration step, \ve are only concerned about
the relationship between the base pages as represented by hyperlinks.

l'he lIlTS algorithrIl usually produces very good results. For exarnple, the five
highest ranked results frorn (ioogle ("rhich uses a variant of the lIIT'S algorithrn)
far the query '.R,aghuH.arnakrishnan' are the follo'Vving webpages:

www.cs.wisc.edu/~raghu/raghu.html

www.cs.wisc.edu/~dbbook/dbbook.html

www.informatik.uni-trier.de/
~ley/db/indices/a-tree/r/Ramakrishnan:Raghu.html

www.informatik.uni-trier.de/
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Computing bub and authority weights: We can use luatrix notation
to write the updates for allhllband cLuthotity weights in orle step. Assume
that we nUluber aU pages in the base set {I, 2, "'1 n}.The·adjaeCIJ.CY matrix
B of the ba.se set is an n x n matrix whose entries are either Oor 1. The
rnatrix entry (i, j) is set to 1 if page 'ihas a hyperlink to page j; it is set
to 0 otherwise. We can also write the hub weightshand authority weights
a in vector notat.ion: h == (h1, ... ,hn ) and a == (al,'" ,an)' We can now
rewrite our upda,te rules as follo\vs:

h :::;: B . a, and a =::BT . h .

Unfolding this equation once, corresponding to the first iteration, we ob­
tain:

h == BBTh:::;: (BBT)h, and a == BTBa == (BTB)a .

After the second iteration, we arrive at:

Results from linear algebra tell us that the sequence of iterations for the
hub (resp. authority) weights converges to the principal eigenvectors of
BET (resp. B TB) if we normalize the weights before each iteration so
that the suru of the squares of all weights is always 2 . n. Furthermore,
results from linear algebra tell us that this convergence is independent of
the choice of initial weights, as long as the initial weights are positive.
Thus, our rather arbitrary choice of initial weights··--we initialized all hub
and authority weights to l-·u·-~does not change the outcolne of the algorithm.

._---~--_ _ _--------------'

Google's Pigeon Rank: Google corIlputes the pigeon rank (PRJ for a
webpage A using the following forrIlula, which is very sirnilar to the H.ub­
Authority ranking functions:

'T1 ... Tn are the pages that link (or 'point') to A, C(Ti ) is the rllllnber of
links going out of page T i , and d is a heuristically chosen constant (Google
uses 0.85). Pigeon ranks fOflll a probability distribution over all webpages;
the Slun of ranks over all pages is 1. If we consider a rnodel of user behavior
in which a user randornly chooses a page and then repeatedly clicks on links
until he gets bored and randoll1ly chooses a new page, the probability that
the user visits a page is its Pigeon rank. 1]le pages in the result of a search
are ranked using a cornbination of an lIt-style relevance l11etric and Pigeon
rank.
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SQL/M:rvl: Full Text 'Fun text.' is described as data that can be searched,
unlike simple charac~ter strings, and a ne\v data type called FullText is
introduced to support it. The Inethods associated 'with this type support
searching for individual \vords, phrases, words that 'sound like' a query
terlll, etc. Three 11lethods are of particular interest. CONTAINS checks if a
FullText object contains a specified search terln (word or phrase). RANK
returns the relevance rank of a FullText object with respect to a specified
search terln. (I-Iow the rank is defined is left to the hnplementation.) IS

I
ABOUT detennines whether the FullText object is sufficiently related to I

I the specified search term. (The behavior of IS ABOUT is also left to the I
i iInplelllentation.) ,

LRelational DB1'ISs fnnn IBIvI, Microsoft, and Oracle all support text fields'~j
although they do not currently conforrll to the SQL/JV1NI standard.
--~.. -"~ '" - - - -

-ley/db/indices/a-tree/s/Seshadri:Praveen.html
www.acm.org/awards/fellows_citations_n-z/ramakrishnan.htmI

The first result is Rarnakrishnan's horne page; the second is the horne page for
this book; the third is the page listing his publications in the popular DBLP
bibliography; and the fourth (initially puzzling) result is the list of publications
for a forrner student of his.

27.5 MANAGING TEXT IN A DBMS

In preceding sections, we saw how large text collections are indexed and queried
in JR, systerns and vVeb search engines. We now consider the additional chal­
lenges raised by integrating text data into databa",se systerns.

The basic approach being pursued by the SQI.I standards cornrnunity is to treat
text docllrnents a..'S a ne\v data type, FullText, that can appear as the value of a
field in a table. If \ve define a table w'ith a single cohunn of type FullText, each
row in the table corresponds to a docurnent in a dOClllnent collection. IVlethods
of Fulll'ext can be llsed in the WHERE clause of SQL queries to retrieve rows
containing text objects that Inatch an IR-style search criterion. The relevance
rank of a FullText object can be explicitly retrieved using the RANK rnethod,
fUld this can be llsed to sort results by relevance.

Several points ruust be kept in rnind as '\Te consider this approach:

Ii This is an extrernely general (l,pproach, a,nel the perforlnance of a SC~L sys­
tern that supports such an extension is likely to be inferior to a specialized
III SystCIIl.
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• The rnodel of data does not ad.equately reflect docurnents with additional
rnetadata. If "\ve store docurnents in a table with a FullText colurnn and
use additional cohl1nns to store rnetadata--for exarnple, author, title, SUIll­
Inary, rating, popularitY---~'relevancerneasures that cornbine nletadata 'with
IR, similarity rnea..'3ures 11lUSt be expressed using lle\V user-defined rneth­
ods, because the RANK rnethod only has access to the F\lllText object, and
not the rnetadata. The ernergence of XML docurnents, which have non­
uniforrn, partial rlletadata, further cornplicates nlatters.

• The handling of updates is unclear. As we have seen, IR indexes are corll­
plex, and expensive to 111aintain. Requiring a systern to update the indexes
before the updating transaction cOl1ullits can irnpose a severe perfonnance
penalty.

27.5.1 Loosely Coupled Inverted Index

The irrlplenlcntation approach used in current relational DBMSs that support
text fields is to have a separate text-search engine that is loosely coupled to the
DBMS. The engine periodically updates the indexes, but provides no transac­
tional guarantees. Thus, a transaction could insert (a row containing) a text
object and cornrnit, and a subsequent transaction that issues a. Inatching search
might not retrieve the (row containing the) object.

27.6 A DATA MODEL FOR XML

.Aswe saw in Section 7.4.1, XML provides a way to rnark up a docurnent
with rneaningful tags that irnpart SaIne partial structure to the docurnent.
Se'fnistrtLctured data rnodels, which we introduce in this section, capture rnuch
of the structure in X~fL doculnents, while abstracting away Inany deta.ils. 1

Sernistructured data Inodels have the potential to serve as a forInal foundation
for XlVIL and enable us to rigorously define the sernantics of queries over XlVIL,
which we disc-uBs in Section 27.7.

27.6.1 Motivation for Loose Structure

Consider a set of doculnents on the Web that contain hyperlinks to other doc­
UHlents. These docurnents, although not eornpletely unstructurecl~ cannot be
rnodeled naturally in the relational data rnodel because the pattern of hyper­
links is not regular across docurnents. In fa,ct, every HTl\1L docurnent ha.s

1.An iruportant aspect of XIvII..; tha.t is not captured is the ordering of elements. A more complete
data model called XData ha...,,; been proposed by the \;V:3C committee that is developing XivtL standards,
but we do not discuss it here.
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I XML Data Models: 'A number of data lnodels for XML are being con­
sidered by standards COilllnittees such as ISO and W3C.vV3C's Infoset
is a tree-structured ll10del, and each node can be retrieved through an
accessor function. A version called Post-Validation Infoset (PSVI)
serves as the data model for XML Schelna. TheXQuery language has
yet another data model associated with it. The plethora of l110dels is due
to parallel developrnent in SOllle cases, and due to different objectives in
others. Nonetheless, all these nlodels have loosely-structured trees as their
central feature.

L-- . . , , .-1

some minirnal structure, such as the text in the TITLE tag versus the text in
the docunlent body, or text that is highlighted versus text that is not. As an­
other example, a bibliography file also has a certain degree of structure due to
fields such as author and title, but is otherwise unstructured text. Even data
that is 'unstructured', such as free text or an ilnage or a video clip, typically
has some associated information such as timestamp or author infornlation that
contributes partial structure.

We refer to data with such partial structure as semistructured data. There
are rnany reasons why data might be semistructured. First, the structure of
data nlight be irnplicit, hidden, unknown, or the user Inight choose to ignore
it. Second, when integrating data froln several heterogeneous sources, data
exchange and transforrnation are inlportant problerns. We need a highly flexible
data rnodel to integrate data froIn all types of data sources including flat files
and legacy systenls; a structured data model such a",s the relational rnodel is
often too rigid. Third, we cannot query a structured database without knowing
the scheIna, but sOlnetimes we want to query the data without full knowledge of
the scherna. For exarnple, we cannot express the query "Where in the database
can ,ve find the string Malgv.d'i?" in a relational database systern \vithout
knowing the schcrna, and knowing which fields contain such text values.

27.6.2 A Graph Model

All data rnodels proposed for sernistrnctured data represent the data as scnne
kind of labeled graph. Nodes in the graph correspond to cornpound objects or
atornic values.. Each edge indicates an object-subobject or object-value rela­
tionship. Leaf nodes, Le; nodes with no outgoing edges have a value a.ssociatecl
\vith thern. rrhere is no separate scherna and no auxiliary description; the data
in the graph is self describing. For exarnple, consider the graph shown in Figure
27.7, which represents part of the XlVIL data f1'01n Figure 7.2. The root node
of the graph represents the outennost elernent, BOOKLIST. The node has three
children that are labeled with the elClnent narne BOOK, since the list of books
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consists of three individual books. The numbers within the nodes indicate the
object identifier associated with the corresponding object.

We now describe one of the proposed data models for semistructured data,
called the object exchange model (OEM). Each object is described by a
quadruple consisting of a label, a type, the value of the object, and all. object
identifier which is a unique identifier for the object. Since each object has a
label that can be thought of as a column nallle in the relational model, and each
object has a type that can be thought of as the column type in the relational
rnodel, the object exchange Illodel is self-describing. Labels in OEM should be
&'3 infol'rnative as possible, since they serve two purposes they can be used to
identify an object as well as to convey the meaning of an object. For example,
we can represent the last HaIne of an author as follows:

(lastName, string, "Feynman")

More cOInplex objects are decornposed hierarchically into srnaller objects. For
exalllple, a,n author naIne can contain a first narne and a last narne. rrhis object
is described as follows:

(authorName, set, {fiT stnarnel, lastnaTnel})
fiTsi:nantel is (firstName, string, "Richard")
lastnarnef is (lastName, string, "Feynman")

As another exarnple, an object representing a set of books is described a"s fol­
lows:

(bookList, set, {book1 , book2 , book;3} )
book} is (book, set, {(L'U,thOTl, title}, p'u,blishcd1})
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SQL and XML: XQuery is a standard proposed by the vVorld-vVide Web 1

Consortiurn (W3C). In parallel, standards con:unittees developing the SQL I
standards have been working on a successor to SQL:1999 that supports
X~fL. 1"'he part that relates to X:NIL is tentatively called SQL/XML and
details can be found at http: / / sqlx . arg.

. _ ..__ ._._~._.._ _ __ __l

bo()k~2 is (book, set, {attthor2, t-itle2, ]Jubl'ished2 })

book3 is (book, set, {aui:hoT:3, t'itle3,Published3})
authoT3 is (author, set, {!'lrstnarnJe3, lastna'Tne3})
t'itle3 is (title, string, liThe English Teacher")
pttbl'ished3 is (published, integer, 1980)

27.7 XQU'ERY: QUERYING XML DATA

Given that XlvII.. doculnents are encoded in a way that reflects (a consider­
able amount of) structure, we have the opportunity to use a high-level lan­
guage that exploits this structure to conveniently retrieve data fro111 within
such documents. Such a language would also allow us to easily translate XML
data between different DTDs, as we lllUSt when integrating data from multiple
sources. At the tirne of writing of this book, XQuery is the W3C standard
query language for XML data. In this section, we give a brief overview of
XQuery.

27.7.1 Path Expressions

Consider the XlvII.. dOCUlnent shown in Figure 7.2. The following exarnple query
returns the last nanles of all authors, assullling that our XML docurnent resides
at the location www.ourbookstore.com/books . xml.

FOR
$1 IN doc(www.ourbookstore.com/books.xml)//AUTHOR/LASTNAME

RETURN <RESULT> $1 </RESULT>

This exarnple illustrates sonle of the basic constructs of X(~uery. The FOR
clause in XQuer:y is roughly analogous to the FROM clause in SC:~L. The RETURN
clause is sirnilar to the SELECT clause. \Ve return to the general fornl of queries
shortly, after introducing an irnportant concept called a path expression.

'1'he expression

doc(www.ourbookstore.com/books.xml)//AUTHOR/LASTNAME



IR and ./YA1L ]Jata 949j)

XPath and Other XML Query Languages: Path expressions in
XQuery are derived frorn XPath, an earlier Xl\:IL query facility. Path ex­
pressions in XPath can be qualified ,vith selection conditions, and can uti­
lize several built-in functions (e.g., counting the nurnber of nodes rnatched
by the expression). l\tlany of XQuery's features areborro\vecl {roIn earlier
languages, including XML-QL and Quilt.

r'~'~~~""""""~""'"

!
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I

in the FOR clause is an exarnple of a path expression. It specifies a path
involving three entities: the docurnent itself, the AUTHOR elernents and the
LASTNAME elernents.

The path relationship is expressed through separators / and / /. The sep­
arator / / specifies that the AUTHOR elernent can be nested anywhere within
the document whereas the separator / constrains the LASTNAME elernent to be
nested immediately under (in terms of the graph structure of the docurnent)
the AUTHOR element. Evaluating a path expression returns a set of elernents
that rnatch the expression. The variable l in the example query is bound in
turn to each LASTNAME elernent returned by evaluating the path expression.
(To distinguish variable naInes fronl normal text, variable narnes in XQuery
are prefixed with a dollar sign $.)

The RETURN clause constructs the query result-·--which is also an XML docurnent-···_·
by bracketing each value to which the variable l is bound with the tag RESULT.

If the exanlple query is applied to the sarnple data shown in Figure 7.2, the
result would be the following X:NIL docurnent:

<RESULT><LASTNAME>Feynman </LASTNAME></RESULT>

<RESULT><LASTNAME>Narayan </LASTNAME></RESULT>

We use the docurnent in Figure 7.2 as our input in the rest of this chapter.

27.7.2 FLWR Expressions

The ba~sic fornl of an X(~uery consists of a FLWR expression, where the
letters denote the FOR, LET, WHERE and RETURN clauses. The FOR etHel LET

clauses bind variables to values through path expressions. These values are
qualified by the WHERE clause, and the result .XlVIL fragrnent is constructed by
the RETURN clause.

rrhe difference between a FOR and LET clause is that while FOR binds a variable
to each elernent specified by the path expression, LET binds a variable to the
whole collection of elernents. T'hus, if we change our exarnple query to:
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LET
$IINdoc(www.ourbookstore.com/books.xm1)//AUTHOR/LASTNAME

RETURN <RESULT> $1 </RESULT>

then the result of the query beconles:

<RESULT>
<LASTNAME>Feynman</LASTNAME>
<LASTNAME>Narayan</LASTNAME>

</RESULT>

Selection conditions are expressed using the WHERE clause. Also, the output of
a query is not lirnited to a single elernent. These points are illustrated by the
following query, which finds the first and last names of all authors who wrote
a book that was published in 1980:

FOR $b IN doc(www.ourbookstore.com/books.xm1)/BOOKLIST/BOOK
WHERE $b/PUBLISHED='19S0'
RETURN

<RESULT> $b/AUTHOR/FIRSTNAME, $b/AUTHOR/LASTNAME </RESULT>

The result of the above query is the following XML docurnent:

<RESULT>
<FIRSTNAME>Richard </FIRSTNAME><LASTNAME>Feynman </LASTNAME>

</RESULT>
<RESULT>

<FIRSTNAME>R.K. </FIRSTNAME><LASTNAME>Narayan </LASTNAME>
</RESULT>

For the specific DTI) in this exalnple, where a BOOK elernent hac; only one
AUTHOR, the above query can be written by using a different path expression in
the FOR clause, as follows.

FOR $a IN
doc(www.ourbookstore.com/books.xml)

/BOOKLIST/BOOK[PUBLISHED='19S0']/AUTHOR
RETURN <RESULT> $a/FIRSTNAME, $a/LASTNAME </RESULT>

rrhe path expression in this query is an instance of a branching path ex­
pression. The variable l is now bound to every AUTHOR elernent that rnatches
the path doc/BOOKLIST/BOOK/AUTHOR where the intennediate BOOK elClnent is
constrained to have a PUBLISHED elernent nested inunediatelv within it with

./

the value 1980.
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27.7.3 Ordering of Elements

951

XML data consists of ordered doculnents and so the query language IllUSt return
data in SOUle order. The selnantics of X(~uery is that a path expression returns
results sorted in document order. Thus, variables in the FOR clause are bound
in doculnent order. If however, we desire a different order, we can explicitly
order the output as shown in the follo\ving query, which returns TITLE elernents
sorted lexicographically.

FOR
$b IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK

RETURN <BOOKTITLES> $b/TITLE </BOOKTITLES>
SORT BY TITLE

27.7.4 Grouping and Generation of Collection Values

Our next example illustrates grouping in XQuery, which allows us to generate
a new collection value for each group. (Contrast this with grouping in SQL,
which only allows us to generate an aggregate value (e.g., SUM) per group.)
Suppose that for each year we want to find the last narnes of authors who
wrote a book published in that year. We group by year of publication and
generate a list of la.."t names for each year:

FOR $p IN DISTINCT
doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK/PUBLISHED
RETURN
<RESULT>

$p,
FOR $a IN DISTINCT /BOOKLIST/BOOK[PUBLISHED=$pJ/AUTHOR

RETURN $a
</RESULT>

The keyword ,DI8TINC}T elirninates duplicates fronl the collection returned by
a, path expression. Using the XML docurnent in Figure 7.2 as input, the above
query produces the following result:

<RESULT>: <PUBLISHED>1980</PUBLISHED>
<LASTNAME>Feynman</LASTNAME>
<LASTNAME>Narayan</LASTNAME>

</RESULT>
<RESULT> <PUBLISHED>1981</PUBLISHED>

<LASTNAME>Narayan</LASTNAME>
</RESULT>
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27.8 EFFICIENT EVALUATION OF XML QUERIES

X.Query operates on XKJIL data and produces XTvIL data as output. In order to
be able to evaluate queries efficiently, we need to address the follo\ving issues.

• Storage: \Ve can use an existing storage systerIl like a relational or object
oriented systerll or design a new storage forInat for X1tIL doclunents. There
are several ways to use a relational systenl to store XML. One of thern is
to store the X1VIL data as Character Large Objects (CLOBs). (CLOBS
were discussed in Chapter 23.) In this case, hc)\vever, we cannot exploit
the query processing infrastructure provided by the relational systerrl and
would instead have to process XQuery outside the database systenl. In
order to circumvent this problenl, we need to identify a scherna according
to which the XML data can be stored. rr'hese points are discussed in
Section 27.8.1.

• Indexing: Path expressions add a lot of richness to XQuery and yield
lllany new access patterns over the data. If we use a relational system for
storing XML data, then we are constrained to use only relational indexes
like the B-n·ee. However, if we use a native storage engine, then we have
the option of building novel index structures for path expressions, some of
which are discussed in Section 27.8.2.

• Query Optimization: Optirnization of queries in XQuery is an open
problern. The work so far in this area can be divided into three parts. 'rhe
first is developing an algebra for XQuery, analogous to relational algebra.
The second research direction is providing statistics for path expression
queries. Finally, SOlne work has addressed sirnplification of queries by ex­
ploiting constraints on the data. Since query optirnization for X.Query is
still at a prelirninary stage, we do not cover it in this chapter.

Another issue to be considered while designing a ne\v storage systeul for X1.1L
data is the verbosity of repeated tags. As we see in Section 27.8.1) using a
relational storage systelu addresses this problern since tag narnes are not stored
repeatedly. If on the other hand, we \vant to build a native storage systcrn, then
the rnanner in which the X.~lL data is cornpressed becornes significant. Several
cornpression. algorithrHs aTe known that achieve cOlnpression ratios close to
relational storage, 1n1t \ve do not discuss ther11 here.

27.8.1 Storing XML in RDBMS

()n(~ nEttural candidate for storing X1JIL data is a relational dataJKlse systern.
The ruain issues involved in storing XJ\;IL data in a relational systelTI are:
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Commercial database systems and XML: wiany relational and objeet­
relational database systerll vendors are currently looking into support for
XML in their database engines. Several vendors of object-oriented database

!

i
I
!

Inanagenlent systems already offer database engines that can store XML i

data 'whose contents can be accessed through graphical 11ser interfaces orJI
server-side Java extensions.

+++-,~~-~,.~."-_.~..~ ~ _ _ _._ _._~._._-_.

genre format TITLE PUBLISHED

AUTHOR

~~
FIRSTNAME LASTNAME

Figure 27.8 Bookstore X:NIL DTD Element Relationships

II C;hoice of relational scherr~a: In order to use an RDBMS, we need a scherna.
vVhat relational schema should we use even assuming that the XML data
COUles with an &'Ssociated scherna?

II Queries: Queries on XML data are in XQuery wherea" a relational systern
can only handle S(~L. Queries in XQuery therefore need to be translated
into SQL.

III Ilecon8tructioT~: rrhe output of XQuery is X~1L. T1hus, the result of a S(~L

query needs to be converted back into XNIL.

Mapping XML Data to Relations

\lVe illustrate the rnapping process through our bookstore exarnple. rrhe nesting
rela,tionships alIlong the different elernents in the DTD is sho\vn in Figure 27.8.
rrhe edges indicate the nature of the nesting.

()ne way to derive a l'clation.al schelna is as follovvs. \Ve begin at the BOOKLIST
elernent anel create (1 relation to store it. rrraversing down froIn BOOKLIST, we
get BOOK foIlc)\ving (l. * edge. This edge indic.ates that \~le store the BOOK elernents
in a separate reJation. l'r;:l,versing further down, we see that all elcrnents and
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attributes nested \vithin BOOK occur at 1I10St once. Hence, we can store thenl
in the saIne relation a.." BOOK. The resulting relational schelIla Relschernal is
shown below.

BOOKLIST( id: integer)
BOOK (booklistid: integer, author_firstna'me: string,

author_lastnarne: string, title: string,
published: string, genre: string, format: string)

BOOK. booklistid connects BOOK to BOoKLIST. Since a DTD has only one base
type, string, the only base type used in the above schelna is string. The
constraints expressed through the DTD are expressed in the relational schema.
For instance, since every BOOK must have a TITLE child, we Illust constrain the
title column to be non-null.

Alternatively, if the DrrD is changed to allow BOOK to have more than one
AUTHOR child, then the AUTHOR elements cannot be stored in the sallie relation
as BOOK. This change yields the following relational schema Relschema2.

BOOKLIST( id: integer)
BOOK (id: integer, booklistid: integer,

title: string, published: string, genre: string, for1nat: string)
AUTHoR( bookid: integer, firstname: string, lastname: string)

The column AUTHOR. bookid connects AUTHOR to BOOK.

Query Processing

Consider the following example query again:

FOR

$b IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BooK

WHERE $b/PUBLISHED='1980'

RETURN

<RESULT> $b/AUTHOR/FIRSTNAME, $b/AUTHOR/LASTNAME </RESULT>

If the nlapping between the XML data and relational tables is known, then
we can construct a SQL query that returns all colunlIls that are needed to
reconstruct the result XlvIL docuIIlent for this query. (JonditioIlS enforced by
the path expressions and the WHERE clause are translated into equivalent con­
ditions in the S(~L query. VVe obtain the following equivalent SQL query if we
use llel,C3chernal El...'3 our relational scherna.

SELECT BOOK. author.J: irstname, BOOK. author~astname
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FROM BOOK, BOOKLIST
WHERE BOOKLIST.id = BOOK.booklistid

AND BOOK.published='1980'

The results thus returned by the relational query processor are then tagged,
outside the relational systern, as specified by the RETURN clause. This is the
result of the reconstruct'ion phase.

In order to understand this better, consider what happens if we allow a BOOK
to have 111ultiple AUTHOR children. Assume that we use Rel8chema2 as our
relational schema. Processing the FOR and WHERE clauses tells us that it is
necessary to join relations BOOKLIST and BOOK with a selection on the BOOK
relation corresponding to the year condition in the above query. Since the
RETURN clause needs information about AUTHOR elements, we need to further
join the BOOK relation with the AUTHOR relation and project the jir8tname
and lastname columns in the latter. Finally, since each binding of the variable
$b in the above query produces one RESULT element, and since each BOOK is
now allowed to have more than one AUTHOR, we need to project the id column
of the BOOK relation. Based on these observations, we obtain the following
equivalent SQL query:

BOOK.id, AUTHOR. firstname , AUTHOR.lastname
BOOK, BOOKLIST, AUTHOR
BOOKLIST.id = BOOK.booklistid AND

BOOK.id = AUTHOR.bookid AND BOOK.published='1980'
GROUP BY BOOK.id

T'he result is grouped by BOOK.id. The tagger outside the database system
now receives results clustered by the BOOK element and can tag the resulting
tuples on the fly.

Publishing Relational Data as XML

Since XlV1L has elnerged as the standard data exchange forrnat for business
applications, it is necessary to publish existing business data as XML. NJost
operational business data is stored in relational systerns. Consequently, 111ech­
anisrns have be~~n proposed to publish such data as XlV1L docul11ents. These
involve a language for specifying henv to tag and structure relational data and
an irnplernentation to carry out the conversion. This 111apping is in SCHne sense
the reverse of the Xl\1:L-to-relationaJ rnapping used to store XlVIL data. 'The
conversion process Inirnics the reconstruction pha..'3c when \ve execute XQuery
using a relational systern. The published Xl\1L data can be thought of <:1...') an
.X.lVIT..; vic¥l of relational data. This view can be queried using X(~uery. One
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lnethod of executing XCluery on such vie'ws is to translate thCIIl into SQL and
thCIl construct the XrvlL result.

27.8.2 Indexing XML Repositories

Path expressions are at the heart of all proposed XIVIL query languages, in
particular XQuery. A natural question that arises is how to index X:NIL data
to support path expression evaluation. The ainl of this section is to give a
flavor of the indexing techniques proposed for this probleul. vVe consider the
OENI rnodel of senlistructured data, 'where the data is self-describing and there
is no separate scherna.

Using a B+ Tree to Index Values

Consider the following XQuery exaluple, which we discussed earlier on the
bookstore XML data in Figure 7.2. The OEM representation of this data is
shown in Figure 27.7.

FOR
$b IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK

WHERE $b/PUBLISHED='1980'
RETURN

<RESULT> $b/AUTHOR/FIRSTNAME, $b/AUTHOR/LASTNAME </RESULT>

This query specifies joins alIlong the objects with labels BOOKLIST, BOOK,
AUTHOR, FIRSTNAME, LASTNAME and PUBLISHED \vith a selection condition on
PUBLISHED objects.

Let us suppose that \ve are evaluating this query in the absence of any indexes
for path expressions. I-Io\vever, we do have a value index such as a B-T'ree that
enables us to find the ids of all objects with label PUBLISHED and value 1980.
There are several \vays of executing this query under these a'3surnptions.

For instance, \ve could begin at the docurncnt root and traverse down the data
graph through the BOOKLIST object to the BOOK objects. By further traversing
the data graph downwards, for each BOOK object we can check whether it sat­
isfies the valuc'predicate (PUBLISHED=~1980'). Finally, for those BOOK objects
that satisfy the predicate, we can find the relevant FIRSTNAME and LASTNAME
objects. This approach corresponds to a top-down evaluation of the query.

Alternatively, \ve could begin by using the value index to find all PUBLISHED
ol)jects that satisfy PUBLISHED='1980'. If the data graph can be traversed in
the reverse directiono·that is, given an object, \ve can find its parent-~~thenwe
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Figure 27.9 Path Expressions in a B-Tree

can find all parents of the PUBLISHED objects retaining only those that have
label BOOK. We can continue in this manner until we find the FIRSTNAME and
LASTNAME objects of interest. Observe that we need to perforrll all joins in the
query on the fly.

Indexing on Structure vs. Value

Now let us ask ourselves whether traditional indexing solutions like the B-Tree
can be used to index path expressions. We can use the B-Tree to rllap a path
expression to the ids of all objects returned by it. The idea is to treat all
path expressions as strings and order therIl lexicographically. Every leaf entry
in the B-Tree contains a string representing a, path expression and a list of
ids corresponding to its result. Figure 27.9 shows how such a B-Tree \vould
look. Let us contrast this with the traditional problern of indexing a well­
ordered dornain like integers for point queries. In the latter case, the nurnber
of distinct point queries that can be posed is just the rnllnber of data values
and so is linear in the data size.

The scenario \vith path indexing is fundarnentally difI(J,rent----the variety of
ways in which \ive can cornbine tags to forrn (sirnple) path expressions C011­

pled with the power of placing / / separators leads to a rnuch larger nurnber
of possible path expressions. For instance, an AUTHOR clcrnent in the exarn­
pIe in Figure 21.7 is returned &'3 part of the qllcries BOOKLIST/BOOK/AUTHOR,
/ / AUTHOR, / /BOOK/ / AUTHOR, BOOKLIST/ / AUTHOR and so OIl. The nurnber of
distinct queries can in fact be exponential in the data size (lneasured in tenns
of the rnunber of XIVIL elelnents) in the \V01'st case. This is \vhat rnotivates the
seaxch for alternative strategies to index path expressions.
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Figure 27.10 Example Path Index
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The approach taken is to represent the mapping between a path expression and
its result by means of a structural sunlIllary which takes the fornl of another
labeled, directed graph. rrhe idea is to preserve all the paths in the data graph
in the surllrnary graph, while having far fewer nodes and edges. An extent
is associated with each node in the SUllllnary. The extent of an index node
is a subset of the data nodes. The surnmary graph along with the extents
constitutes a path index. A path expression is evaluated using the index by
evaluating it against the sumrnary graph and then taking the union of the
extents of all rnatching nodes. This yields the index result of the path expression
query. The index covers a path expression if the index result is the eorrect
result; obviously, we can use an index to evaluate a path expression only if the
index covers it.

Consider the structural SUlnrnary shown in Figure 27.10. rrhis is a path index
for the data in Figure 27.7. Tlhe nurnbers shown beside the nodes correspond
to the respective extents. Let us now exarnine how this index can change the
top-down evaluation of the exaruple query used earlier to illustrate B+ tree
value indexes.

rrhe top-down evaluation a..s outlined above begins at the docurnent root and
traverses down to the BOOK objects. rrhis can be achieved rnore efficiently by
the path index. Instead of traversing the data graph, \ve can traverse the path
index down to the BOOK object in the index and look up its extent, which gives
us the ids of all BOOK objects that rnatch the path expression in the FOR clause.
The rest of the evaluation then proceeds as before. 1'hus, the path index saves
us frorn perfonning joins by essentially precorIlputing thern. VVe note here that
the path index shown in Figure 27.10 is isornorphic to the DTD schcIIla graph
ShO\Vll in Figure 27.8. This drives horne the point that the path index \vithout
the extents is a structural SUHllnary of the data.



.lR and XlvfL Data 9511

rrhe ahove path index is the Strong Dataguide. If \ve treat path expressions
as strings, then the dataguide is the trie representing thern. The trie is a
well-known data structure used to search regular expressions over text. This
shows the deeper unity between the research on indexing text and the X.NIL
path indexing work. Several other path indexes have been also proposed for
senli-structured data, and this is an active area of research.

27.9 REVIEW QUESTIONS

Ansvvers to the review questions can be found in the listed sections.

• What is information retrieval? (Section 27.1)

• What are some of the differences between DBMS and IR systems? Describe
the differences between a ranked query and a boolean query. (Section
27.2)

• What is the vector space model, and what are its advantages? (Section
27.2.1)

• What is TF/IDF terrn weighting, and why do we weigh by both? We do we
eliminate stop words? What is length norrnalization, and why is it done?
(Section 27.2.2)

• How can we measure document similarity? (Sections 27.2.3)

• What are precision and recall, and how do they relate to each other? (Sec­
tion 27.2.4)

• Describe the following two index structures for text: Inverted index and
signature file. What is a bit-sliced signature file? (Section 27.3)

• llow are web search engines architected? Ilow does the "hubs and au­
thorities" a.lgorithrn work? Can you illustrate it on a srnall set of pages?
(Section 27.4)

l1li \iVhat support is there for rnanaging text in a f)BI\1S? (Section 27.5)

II Descibe the OE~'1 data rnodel for sernistructured data. (Section 27.6)

II \iVhat are the elernents of XQuery? \;Vhat is a path expression? What is
an FLWR expression? flow can we order the output of query? flow do ,ve
group query outputs? (Section 27.7)

• Describe how XTvIL data can be stored in a relational I)B~1S.How do we
rna,p XrvlL data to relations? Can ,ve use the query processing infrastruc­
ture of the relational DBIvIS? ITovv do 'we publish relational data as XI\1L?
(Section 27.8.1)
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• I-Iow do we index collections of XNIL doeunlents? \rVhat is the difference
betvveen indexing on structure versus indexing on value? vVhat is a path
index'? (Section 27.8.2)

EXERCISES

Exercise 27.1 Carry out the following tasks.

1. Given an ASCII file, cOInpute the frequency of each word and create a plot siInilar to
Figure 27.3. (Feel free to use public dornain plotting software.) Run the progralll on
the collection of files currently in your directory and see whether the distribution of
frequencies is Zipfian. How can you use such plots to create lists of stop words?

2. The Porter stenliller is widely used, and code irnplernenting it is freely available. Down­
load a copy, and run it on your collection of docuInents.

3. One criticisIn of the vector space nlodel and its use in sirnilarity checking is that it treats
tenns as occurring independently of each other. In practice, Inany words tend to occur
together (e.g., ambulance and emergency). Write a program that scans an ASCII file and
lists all pairs of words that occur within 5 words of each other. For each pair of words,
you now have a frequency, and should be able to create a plot like Figure 27.3 with pairs
of words on the X-axis. Run this program on some sample docuIll€nt collections. What
do the results suggest about co-occurrences of words?

Exercise 27.2 Assunle you are given a docurnent database that contains SIX documents.
After stemming, the docurnents contain the following ternlS:

l-I5~i'ii~~tJ Terrns _. .__.._.__..._~

1 car rnanufacturer rionda auto
.__.._...__...~..._...-

2 auto cornputer navigation
3 Honda navigation
4 11lanufactllrer cOlnputer IB1\,1
5 IBNI personal cOInputer

-6--·--,···,,""m "."'"._.._,,-- car Beetle V\V
._---------''---------_.__._.._..- __..-

Answer the following questions.

1. 8ho\v the result of creating an inverted file on the docurncnts.

2. Show the result of creating a signature file wilh a width of 5 bits. Construct your O\Vll

hashing function that rnaps terms to bit positions.

3. Evaluate the following boolea.n queries using the inverted file and the signature file that
you created: 'car', 'IBM' AND 'COIuputer', 'IB"NP AND 'car', 'Illl\'.p OR '<.tuto', and 'IB~'I'

AND 'cornputer' AND 'rnanufacturer'.

4. Assurne that the query loacl against the docurnent databa.se consists of exactly the queries
that were stated in the previous question. Also c1SS11rne that each of these queries is
evaluated exactly OIlCC.

(a) Design <1 signature file with a width of :3 bits and design a hashing function that
minimizes the overall nurnber of false positives retrieved \vhon evaluating the
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(b) Design a signature file with a width of 6 bits and a hashing function that IlliniInizes
the overall nUlnber of false positives.

(c) Assume you want to construct a signature file. vVhat is the sInallest signature
width that allows you to evaluate all queries without retrieving any false positives?

5. Consider the following ranked queries: 'car, 'UH..I COIIlputer' l IIB~/1 car', IIBl\l auto', and
'IBl\1 COIllputer rnanufacturer'.

(a) Calculate the IDF for every tenn in the database.

(b) For each doculnent, show its doctunent vector.

(c) For each query, calculate the relevance of each doclunent in the database, with and
without the length norrnalization step.

(d) Describe how you would use the inverted index to identify the top two documents
that Illatch each query.

(e) How would having the inverted lists sorted by relevance instead of document id
affect your answer to the previous question?

(f) Replace each docurnent with a variation that contains 10 copies of the same docu­
ment. For each query, recompute the relevance of each document, with and without
the length normalization step.

Exercise 27.3 Assume you are given the following steIIllned docurnent database:

Terms
....- -

1 car car IIlanufacturer car car Honda auto

2 auto computer navigation
.......""', ._---

3 Honda navigation auto
manufacturer computer IBl\II graphics

------
4

f---.----
IBM personal IBM computer IBl\II IBl\I! IBM IBM5

6 car Beetle VW Honda_._..

Using this databa..'5e, repeat the previous exercise.

Exercise 27.4 You are in charge of the Genghis ('We execute fast') search engine. You are
designing your server cluster to handle 500 Inillion hits a day and 10 billion pages of indexed
data. Each rnachine costs $1000, and can store 10 million pages and respond to 200 queries
per second (against these pages).

1. If you were given a budget of $500,000 dollars for purchasing Inachines, and were required
to index all 10 billion pages, could you do it?

2. What is the IIlinirIlurIl budget to index all pages? If you assurne that each query can
be answered by looking at data in just one (10 rnillion page) partition, and that queries
are unifornlly distributed across partitions, what peak load (in nuruber of queries per
second) can such a cluster handle?

3. How would your answer to the previous question change if each query, on average, ac­
cessed two partitions?

4. What is the ruinirlllnl1 budget required to handle the desired load of 500 rnillion hits per
day if all queries are on a single partition? Assurne that queries are uniforrnly distributed
with respect to tirTle of day.
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5. How would your answer to the previous question change if the rllllnher of queries per day
went up to 5 billion hits per day? How would it change if the number of pages went up
to 100 billion'?

6. Assurne that each query accesses just one partition, that queries are ullifonnly distributed
across partitions, but that at any given tiulC, the peak load on a partition is upto 10
times the average load. What is the rniniIlHlnl budget for purchasing Inachines in this
scenario?

7. Take the cost for rnachines [raIn the previous question and rnultiply it by 10 to reflect
the costs of Illaintenance, adrninistration, network bandwidth, etc. This anlount is your
annual cost of operation. Assume that you charge advertisers 2 cents per page. What
fraction of your inventory (i.e., the total nUlllber of pages that you serve over the course
of a year) do you have to sell in order to make a profit?

Exercise 27.5 Assume that the base set of the HITS algorithrn consists of the set of Web
pages displayed in the following table. An entry should be interpreted as follows: Web page
1 has hyperlinks to pages 5 and 6.

I Webpage! Pages that this page has links to I
1 5 6, 7,_._..._.

2 5, 7
""'...........

3 6, 8 _.
4 .-
5 I, 2

.. -
6 1, 3
7 1, 2
8 4,--_._.__. --

1. Run five iterations of the HITS algorithlll and find the highest ranked authority and the
highest ranked hub.

2. Cornpute Google's Pigeon Rank for each page.

Exercise 27.6 Consider the following description of itelllS shown in the Eggface cornputer
rnail-order catalog.

"Eggface sells hardware and software. We sell the new PalIn Pilot V for $400; its part nUlnber
is 345. We also sell the IBM ThinkPad 570 for only $1999; its part nUIllber is :3784. Vve sell
both business and entertainrnent software. I:vlicrosoft Office 2000 has just arrived and you
can purchase the Standard Edition for only $140, part number 974; the Professional Edition
is $200, part 975. '1'he new desktop publishing software from Adobe called InDesign is here
for only $200, part 664:. \iVe carry the newest gaInes from Blizzard sofhvare. You can start
playing Diablo II for only $:30, petrt nurnber 12, and yon can purchase Starcraft for only $10,
part nlllIlber 812. Our goal is cornplete cllstorner satisfaction·····-·if we don't have what you
want in stock, we'll give you SIO off your next purchase!"

1. Design an 11'r1.1L docllrnent that depicts the itelIlS offered by Eggface.

2. Create a well-formed XrvIL doculnent that describes the contents of the Eggfi:1Ce catalog.

:'3. Create a TYr.D for your XI:vlL docurnent and rnake sure that the docuJnent you created
in the last question is valid with respect to this 1Y1'1) ,
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4. Write an XQuery query that lists all software items in the catalog, sorted by price.

5. Write an XQuery query that, for each vendor, lists all software iterl1s froIn that vendor
(i.e., one row in the result per vendor).

6. Write an XQuery query that lists the prices of all hardware itmlls in the catalog.

7. Depict the catalog data in the semistructured data model as shown in Figure 27.7.

8. Build a dataguide for this data. Discuss how it can be used (or not) for each of the above
queries.

9. Design a relational schellla to publish this data.

Exercise 27.7 A university database contains infonnation about professors and the courses
they teach. The university has decided to publish this information on the Web and you are
in charge of the execution. You are given the following information about the contents of the
database:

In the fall sernester 1999, the course 'Introduction to Database Management Systems' was
taught by Professor Ioannidis. The course took place Mondays and Wednesdays from 9~10

a.m. in room 101. The discussion section was held on Fridays fTOIn 9-10 a.m. Also in the fall
semester 1999, the course 'Advanced Database Management Systems' was taught by Professor
Carey. Thirty five students took that course which was held in room 110 Tuesdays and
Thursdays from 1-·-2 p.m. In the spring semester 1999, the course 'Introduction to Database
Management Systems' was taught by U.N. Owen on Tuesdays and Thursdays frOIn 3·_·-4 p.m.
in room 110. Sixty three students were enrolled; the discussion section was on Thursdays
from 4~5 p.m. The other course taught in the spring semester was 'Advanced Database
Management Systems' by Professor Ioannidis, Monday, Wednesday, and Friday frorn 8-9 a.m.

1. Create a well-formed XIvIL document that contains the university database.

2. Create a DTD for your XML docurnent. Make sure that the XIvIL docurnent is valid
with respect to this DTD.

3. Write an XQuery query that lists the names of all professors in the order they are listed
on the Web.

4. Write an XQuery query that lists all courses taught in 1999. The result should be
grouped by professor, with one row per professor, sorted by last narne. For a given
professor, courses should be ordered by BaIlIe and should not contain duplicates (Le.,
even if a professor teaches the sarne course twice in 1999, it should appear only once in
the result).

5. Build a dataguide for this data. Discuss how it can be used (or not) for each of the above
queries.

6. Design a relational schcrna to publish this data.

7. Describe the infonnation in a different XML docurnent--a docurnent that ha,,5 a different
structure. Create ;:'1. corresponding DTD and make sure that the docurnent is valid. Rc­
fonnulate the queries you wrote for preceding parts of this exercise to work with the new
DTD.

Exercise 27.8 C~onsider the databa..5e of the Fa..rnilyWear clothes manufacturer. F'anlily,"Vear
produces three types of clothes: wornen's clothes, Incn's clothes, and children's clothes.l\Ih.m
can choose between polo shirts and. 1'-shirts.Each polo shirt lul.s a list of available colors,
sizes, and a unifonn price. Each T-shirt ha..o;; a price, a list of available colors, and a list of
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available sizes. vVornen have the sarne choice of polo shirts and T-shirts as Iuen. In addition
wornen Ci:Ul choose between three types of jeans: sHIn fit, ea"sy fit 1 and relaxed fit jeans. Each
pair of jeans h~LS a list of possible waist sizes and possible lengths. The price of a pair of jeans
only depends on its type. Children can choose between T-shirts and baseball caps. Each
T-shirt has a price, a list of available colors, and a list of available patterns. T-shirts for
children aU have the sarne size. Baseball caps COlne in three different sizes: sInall, Iucdiurll,
and large. Each itern has an optional sales price that is offered on special occa.~ions. Write
all queries in XQuery.

1. Design an Xrv1L D1'D for FamilyWear so that FamilyWear call publish its catalog on the
Web.

2. "Vrite a query to find the most expensive iteIIl sold by F'aulilyWear.

3. Write a query to find the average price for each clothes type.

4. Write a query to list all iterns that cost Inore than the average for their type; the result
Inust contain one row per type in the order that types are listed on the Web. For each
type, the items must be listed in increasing order by price.

5. Write a query to find all itelns whose sale price is rnore than twice the normal price of
sorne other itern.

6. Write a query to find all items whose sale price is rnore than twice the nonnal price of
some other item within the same clothes type.

7. Build a dataguide for this data. Discuss how it can be used (or not) for each of the above
queries.

8. Design a relational schema to publish this data.

Exercise 27.9 With every element e in an Xl\1L document, suppose we associate a triplet
of nurnbers <begin, end, level>, where begin denotes the start position of e in the docurnent
in terms of the byte offset in the file, end denotes the end position of the element, and level
indicates the nesting level of e, with the root element starting at nesting level O.

1. Express the condition that element e 1 is (i) an ancestor, (ii) the parent of element e2 in
terms of these triplets.

2. Suppose every element has an internal system-generated id and, for every tag naUle I, we
store a list of ids of all elernents in the document having tag I, that is, an inverted list
of ids per tag. Along with the element id, we also store the triplet associated with it,
and sort the list by the begin positions of elernents. Now, suppose we wish to evaluate
a path expression allb. The output of the join rnust be <'ida, ich> pairs such that ida
and idb are ids of elements Cu with tag name a and eb with tag IlaIlle b respectively, and
Ca is an ancestor of eb. It Illust be sorted by the COlllposite key < begi:n position of ea ,

begin position of eb >.

Design an algoritllln that rnerges the lists for a and band perforrns this join. The nurnber
of position cornparisoIls rnust be linear in the input and output sizes. Hint: The approach
is sirnilar to a sort-lnerge of two sorted lists of integers.

~). Suppose that we have k sorted lists of integers where k is a constant. Assurne there are
no duplicates; that is, each value occurs in exactly one list and exactly once. Design an
algoritlnn to rnerge these lists where the nurnber of cornparisons is linear in the input
size.

4. Next, suppose we wish to perfonn the join all/a2/1... / /ak (again, k; is a constant). The
output of the join IllllSt be a list of k-tuples <id1 ,id2 , . •. ,'idk > such that 'idi is the id
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of an elernent ei with tag narne (Li a.nd Ci is an ancestor of Ci+l for all 1 ::s >i ::; k- 1.
The list lnust be sorted by the conlposite key < begin position of (;1 ~ ... be-gcin position
of Ck >. Extend the algorithnls you designed in parts (2) and (3) to cOlupllte this join.
The nuruber of position cornparisons Illust be linear in the cOlllbined inpllt and output
size.

Exercise 27.10 This exercise exalnines why path indexing for XrvlL data is different frorll
conventional indexing probleills such as indexing a linearly ordered dOlnain for point and
range queries. The following illodel has been proposed for the problenl of indexing in general:
The input to the problern consists of (i) a dOlnain of elerr18nts "D, (ii) a data instance I which
is a finite subset of 'D, and (iii) a finite set of queries Q; each query is a non··,ernpty subset of
I. This triplet < D, I, Q > represents the indexed workload. An indexing scherne S for this
workload essentially groups the data elernents into fixed size blocks of size B. Fonnally, S is
a collection of blocks {51, 52, ... ,5kJ, where each block is a subset of I containing exactly B
elements. These blocks must together exhaust I; that is, I = 51 U Eh ... U Sk;.

1. Suppose D is the set of positive integers and I consists of integers fronl 1 to n. Q consists
of all point queries; that is, of singletons {I}, {2}, ... , {n}. Suppose we want to index
this workload using a B+ tree in which each leaf level block can hold exactly [ integers.
What is the block size of this indexing schelne? What is the number of blocks used?

2. The storage redundancy of an indexing scherne S is the maxilllurn nUlllber of blocks that
contain an elenlCnt of I. What is the storage redundancy of the B+ tree used in part (1)
above'?

~3. Define the access cost of a query Q in Q under scherne S to be the rninirnum number of
blocks of S that cover it. The access overhead of Q is its access cost divided by its ideal
access cost, which is IIQI/B"l. What is the access cost of any query under the B+ tree
scheme of part (I)? What about the access overhead?

4. The access overhead of the indexing scherne itself is the ITlaxinllun access overhead mnong
all queries in Q. Show that this value can never be higher than B. What is the access
overhead of the B+ tree scherne?

5. We now define a workload for path indexing. The domain D = {i : i is a positive integer}.
This is intuitively the set of all object identifiers. An instance can be any finite subset of
'D. In order to define Q, we ilnpose a tree structure on the set of object identifiers in [.
Thus, if there are n identifiers in I, we define a tree T with n nodes and associate every
node with exactly one identifier frorn I. The tree is rooted and node-labeled where the
node labels corne fronl an infinite set of labels Z:. The root of T ha.s a distinguished label
called root. Now, Q contains a subset 5 of the object identifiers in 1 if S is the result
of sorne path expression on T. rrhe cl~hSS of path expressions we consider involves only
sirnplc path expressions; that is, expressions of the fonn PE = rooV, 1 h 82[2 ... in where
each 8 1 is a separa.tor which can either be / or / / and each lz is a label froIn }::. This
expression returns the set of all object identifiers corresponding to nodes in T tha.t have
a path rnatching P B conling in to them.

Show that for any T) there is a. path indexing workload such that any indexing scheme
with redundancy (It Iuost T will have access overhead B····.., 1.

Exercise 27.11 rrhis exercise introduces the notion of graph sim:lLlation in the context of
query Inininlization. Consider the following kind of constraints on the data: (1) llequired
parent constraints) where we can specify that the parent ()f an element of tag b always has
tag a, and (2) Required rmcestor constraints, where we can specify that that HJl elelnent of
Utg b always has an ancestor of tag a"
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1. We represent a path expres.."ion query PB = rootsllts212 .. . In, where each Si is a sepa­
rator and each Ii is a label, as a directed graph with one node for root and one for each
Ii. Edges go froIll root to 11 and from Ii to li+l. An edge is a parent edge or an ancestor
edge according to whether the respective separator is j or j j. We represent a parent
edge frOIn 11 to 'U in the text as 1L -+ v and an ancestor edge as 1L :::::> v.

Represent the path expression root/ /ajbjc a.~ a graph, as a simple exercise.

2. The constraints are also represented &'3 a directed graph in the following lnanner. Create
a node for each tag name. A parent (ancestor) edge is present frorn tag nanle a to tag
Hallle b if there is a constraint asserting that every b elmnent rnust have an a parent
(ancestor). Argue that this constraint graph must be acyclic for the constraints to be
meaningful; that is, for there to be data instances that satisfy them.

3. A simulation is a binary relation :S on the nodes of two rooted directed acyclic graphs
G 1 and G2 that satisfies the following condition: If u :S v, where u is a node in G 1 and
v is a node in G2 , then for each node 'u' ---+ u, there must be v' --)0 v such that u' :S v'
and for each u" :::::> u, there must be v" that is an ancestor of v (i.e., has smne path to
v) such that utI :S v". Show that there is a unique largest simulation relation :sm. If
u ::;m V then u is said to be sirnulated by v.

4. Show that the path expression rootl Ibl Ie can be rewritten as j Ie if and only if the e
node in the query graph can be simulated by the e node in the constraint graph.

5. The path expression Illjsj+llj+l .. . In (j > 1) is a suffix of rootsdlS2l2 .. . In. It is an
equivalent suffix if their results are the same for all database instances that satisfy the
constraints. Show that this happens if Ij in the query graph can be simulated by lj in
the constraint graph.

BIBLIOGRAPHIC NOTES

Introductory reading material on infonnation retrieval includes the standard textbooks by
Salton and McGill [646] and by van Rijsbergen [753]. Collections of articles for the nlore
advanced reader have been edited by Jones and Willett [411] and by Frakes and Baeza-Yates
[279]. Querying text repositories has been studied extensively in information retrieval; see
[626] for a recent survey. Faloutsos overviews indexing rnethods for text databases [257].
Inverted files are discussed in [540] and signature files are discussed in [259]. Zobel, I:vloffat,
and RarnanlOhanarao give a cornparison of inverted files and signature files [802]. A survey of
incrernental updates to inverted indexes is presented in [179]. Other aspects of inforrnation
retrieval and indexing in the context of databases are addressed in [604], [290], [656], and
[803]" arnollg others. [~~~~O] studies the problem of discovering text resources on the Web.
The book by Witten, ~loffat, and Bell ha'3 a lot of material on cornpression techniques for
document databases [780].

The nUlnber of citation counts as a llleasure of scientific impact has first been studied by
Garfield U307]; see also [763]. Usage of hypertextual infonna1,ion to irnprove the quality of
search engines lU1s been proposed by Spertus [699] and by Weiss e1, al. [771]. The HITS
algorithln was developed by Jon Kleinberg [438]. Concurrently, Brin and Page developed the
Pagerank (now called PigeonRank) algoritlnn, which also takes hyperlinks between page..c; into
account [116]. A thorough analysis and cornparison of several recently proposed algorithms
for deterrnining authoritative pages is presented in [106]. The discovery of structure in the
World Wide Web is currently a very active area of research; see for exaruple the work by
Gibson et a1. [~n6].
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There is a lot of research on sCluistructured data in the databa.'5e cOIluI1unity. The T'siunnis
data integration systeIn uses a s€ruistructured data Inodel to cope with possible heterogeneity
of data sources [584, 583] .. vVork on describing the structure of semistructured databa.,es can
be found in [561]. \\Tang and Liu consider scherna discovery for seInistructured documents
[766]. fvlapping between relational and XML representations is discussed in [271, 676, 103]
and [1~~4].

Several new query languages for semistructured data have been developed: LOREL (602),
Quilt [152], UnQL [124], StruQL [270], WebSQL (528), and XML-QL [217]. The current W3C
standard, XQuery, is described in [153]. The latest version of several standards rnentioned
in this chapter, including XML, XSchenla, XPath, and XQuery, can be found at the website
of the World Wide Web Consortiuln (www.w3.org). Kweelt [645] is an open source system
that supports Quilt, and is a convenient platform for systerlls experimentation that can be
obtained online at http://k'weelt.sourceforge .net.

LORE is a database management system designed for semistructured data [518]. Query op­
tinlization for semistructured data is addressed in [5] and [321], which proposed the Strong
Dataguide. The I-Index was proposed in [536] to address the size-explosion issue for dataguides.
Another XML indexing schenle is proposed in [196]. Recent work [419] aims to extend the
framework of structure indexes to cover specific subsets of path expressions. Selectivity esti­
rnation for XML path expressions is discussed in [6]. The theory of indexability proposed by
Hellerstein et al. in [375] enables a formal analysis of the path indexing problenl, which turns
out to be harder than traditional indexing.

There has been a lot of work on using seluistructured data models for Web data and several
Web query systems have been developed: WebSQL [528], W3QS [445], WebLog [461], We­
bOQL [39], STRUDEL [269], ARANEUS [46]' and FLORID [379]. [275] is a good overview
of database research in the context of the Web.
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SPATIAL DATA
MANAGEMENT

... What is spatial data, and how can we classify it?

.. What applications drive the need for spatial data nlanagenlent?

.. What are spatial indexes and how are they different in structure from
non-spatial data?

.. How can we use space-filling curves for indexing spatial data?

.. What are directory-based approaches to indexing spatial data?

.. What are R trees and how to they work?

.. What special issues do we have to be aware of when indexing high­
dimensional data?

.. Key concepts: Spatial data, spatial extent, location, boundary,
point data, region data, ra...o;;;ter data, feature vector, vector data, spa­
tial query, nearest neighbor query, spatial join, content-based image
retrieval, spatial index, space-filling curve, Z-orclering, grid file, R tree,
R+ tree, R* tree, generalized search tree, contrast.

Nothing puzzles rne more than tiTne and space; a.nd yet nothing puzzles Ine less,
as I never think about theIn.

.... Charles Larnb

IVlany applications involve large collections of spatial objects; and querying, in­
dexing, and rnaintaining such collections requires S()lne specialized techniques.
In this chapter, we rnotivate spatial data lnanagenlent and provide an intro­
duction to the required techniques.

968
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SQL/MM: Spatial The SQL/Mlvl standard supports points, lines, and
2-dirnensional (planar or surface) data.f\lture extensions are expected to
support 3-dhnensional (voIUlnetric) and Ll-din1ensional (spatia-temporal)
data as \veIl. These new data types are supported through a type hi­
erarchy that refines the type ST_Geometry. Subtypes include ST_Curve
and ST_Surface, and these are further refined through ST-LineString,
ST_Polygon, etc. The rnethods defined for the type ST_Geonl(~try sup­
port (point set) intersection of objects, union, difference, equality, contain­
ment, cornputation of the convex hull, and other siInilar spatial operations.
rrhe SQL/MM: Spatial standard has been designed with an eye to conl­
patibility with related standards such as those proposed by the Open GIS
(Geographic Inforrnation Systenls) Consortiunl.

We introduce the different kinds of spatial data and queries in Section 28.1 and
discuss several important applications in Section 28.2. We explain why indexing
structures such a') B+ trees are not adequate for handling spatial data in Section
28.3. We discuss three approaches to indexing spatial data in Sections 28.4
through 28.6: In Section 28.4, we discuss indexing techniques ba.sed on space­
filling curves; in Section 28.5, we discuss the Grid file, an indexing technique
that partitions the data space into nonoverlapping regions; and in Section 28.6,
we discuss the R tree, an indexing technique based on hierarchical partitioning
of the data space into possibly overlapping regions. Finally, in Section 28.7
we discuss S0111e issues that arise in indexing datasets with a large nurnber of
diInensions.

28.1 TYPES OF SPATIAL DATA AND QUERIES

We use the ternl spatial data in a broad sense, covering rnultidirnensional
points, lines, rectangles, polygons, cubes, and other geoilletric objects. A spa­
tial data object occupies a certain region of space, called its spatial extent,
which is characterized by its location and boundary.

FraIn the point of view of a DBMS, we can classify spatial data &'3 being either
p()'int data or Tegion data.

Point Data: A point has a spatial extent characterized cOIllpletely by its
location; intuitively, it occupies no spa..ce and has no clssociated area or voh.llne.
Point data consists of a collection of points in a InultidirrH:~nsional space. Point
data stored in a databa.se can be ba,,'3ed on direct rnCi::1Enlrernents or generated
by transfonning data obtained through rnea,surcrnents for ea.,se of storage and
querying. Raster data is an exarnple of directly rneasured point data and
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includes bitrnaps or pixel Inaps such as satellite imagery. Each pixel stores
a ruea..'3ured value (e.g., ternperature or color) for a corresponding location in
space. Another exarnple of such rneasured point data is rnedical iInagery such
<:4'1 three-dhnensional llulgnetic resonance irnaging (l\tIRI) brain scans. feature
vector's extracted frorn irnages, text, or signals, such a...') tirne series are examples
of point data obtained by transforrning a data object. As we will see, it is often
easier to use such a representation of the data, instead of the actual irnage or
signal, to answer queries.

Region Data: A region has a spatial extent with a location and a boundary.
The location can be thought of a.." the position of a fixed 'anchor point' for the
region, such as its centroid. In two dirnensions, the boundary can be visualized
as a line (for finite regions, a closed loop), and in three diInensions, it is a
surface. Region data consists of a collection of regions. Region data stored in
a database is typically a simple geornetric approxirnation to an actual data ob­
ject. Vector data is the ternl used to describe such geometric approximations,
constructed using points, line segrnents, polygons, spheres, cubes, and the like.
Many examples of region data arise in geographic applications. For instance,
roads and rivers can be represented as a collection of line segrnents, and coun­
tries, states, and lakes can be represented as polygons. Other exarnples arise
in computer-aided design applications. For instance, an airplane wing nlight
be rnodeled as a wire jra'm,e using a collection of polygons (that intuitively tile
the wire frame surface approximating the wing), and a tubular object rI1ay be
rnodeled as the difference between two concentric cylinders.

Queries that arise over spatial data are of three ruain types: spatial range
qucr'les, nearest neighbor' queries, and spatial join queries.

Spatial Itange Queries: In addition to rnultidimensional queries, such ~.kS,

"Find all ernployees with salaries between $50,000 and $60,000 and ages be­
tween 40 and 50," we can ask queries such as "Find all cities within 50 rniles of
:NIadison" or "Find all rivers in \Visconsin." A spatial range query ha~'3 an a..'3SO­

eiated region (vvith a location and boundary). In the presence of region data,
spatial fflnge queries can return all regions that overlap the specified range or
all regions contained within the specified range. Both variants of spatial range
queries are useful, and algorithrns for evaluating one variant are ea.sily adapted
to solve the other. H,ange queries occur in a \vide variety of applications, in­
cluding relational queries, cas queries, and CAD/CA1Vl queries.

Nearest Neighbor Queries: A typical query is "Find the 10 cities nearest
to wladison." \Ve usuallv want the answers ordered by· distance to Madison,

,1 ,

that is, by proxil11ity. Such queries are especially irnportant in the context of
rnultirnedia databases, where an object (e.g., irnages) is represented by a point,
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and 'siInilar' objects are found by retrieving objects whose representative points
are closest to the point representing the query object.

Spatial Jain Queries: Typical exarnples include "Find pairs of cities within
200 rniles of each other" and "Find all cities near a lake." These queries can
be quite expensive to evaluate. If we consider a relation in which each tuple is
a point representing a city or a lake, the preceding queries can be answered by
a join of this relation with itself, Vorhere the join condition specifies the distance
between two rnatching tuples. Of course, if cities and lakes are represented
in Inore detail and have a spatial extent, both the Ineaning of such queries
(are we looking for cities whose centroids are \vithin 200 Iniles of each other or
cities whose boundaries conle within 200 rniles of each other?), and the query
evaluation strategies become more cornplex. Still, the essential character of a
spatial join query is retained.

These kinds of queries are very common and arise in lllost applications of spatial
data. Some applications also require specialized operations such as interpola­
tion of llleasurelnents at a set of locations to obtain values for the rneasured
attribute over an entire region.

28.2 APPLICATIONS INVOLVING SPATIAL DATA

Many applications involve spatial data. Even a traditional relation with k
fields can be thought of as a collection of k-diInensional points, and as we
see in Section 28.3, certain relational queries can be executed faster by using
indexing techniques designed for spatial data. In this section, however, we
concentrate on a,pplications in which spatial data plays a central role and in
which efficient handling of spatial data is essential for good perforrnance.

GeogT'aphic InfoTTnat'ion SystcTns ((jIS) deal extensively with spatial data, in­
cluding points, lines, and t\\TO- or three-diInensional regions. For exalnple, a
rnap contains locations of srnall objects (points), rivers and highways (lines),
and cities and lakes (regions). A (as systern rnust efficiently rnanage two­
dirnensional and three-dirnensional data...'3cts. All the classes of spatial queries
we described axise naturally, and both point data and region data rnust b(~

handled. Cornrnercial GIS systerns such as ArcInfo are in \vide use today, and
~ v

object database systerns rtirll to support: (jIS applications as well.

()oTnptdCT- aided design and rnanufactv,T"ing (CA D/ CiA M) SystCIllS and rnedical
irnaging systcrIls store spatial objects, such as surfaces of design objects (e.g.:
the fuselage of an aircraft). A.s \vith (}IS systelI1S, both point and region data
rnust be stored. Ilange queries and spatial join queries are probably the rnost
cornrnon queries, and spatial integrity constraints, sueh c1S "There Illust be
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a rnininuUll clearance of one foot bet\veen the wheel and the fuselage," can be
very useful. (CAD/CAIVI wa" a rnajor reason behind the developlnent of object
databases. )

A1'uli'i'm,edia databases, \vhich contain rnultiIncdia objects such ct.-I;;) images, text,
and various kinds of tirne-series data (e.g., audio), also require spatial data 1na11­
agernent. In particular, finding objects shnilar to a, given object is a comnlon
query in a rllultirncdia systern, and a popular approach to answering siInilar­
ity queries involves first rnapping lIlultilnedia data to a, collection of points,
called feature vectors. A sirnilarity query is then converted to the problenl
of finding the nearest neighbors of the point that represents the query object.

In rnedical image databases, we store digitized t'wo-dirnensional and three­
dirnensional ilnages such as X-rays or J\1RI irnages. Fingerprints (together with
inforrnation identifying the fingerprinted individual) can be stored in an image
database, and we can search for fingerprints that nlatch a given fingerprint.
Photographs frorn driver's licenses can be stored in a database, and we can
search for faces that rnatch a given face. Such image database applications rely
on content-based image retrieval (e.g., find images shnilar to a given irn­
age). Going beyond irnages, we can store a database of video clips and search
for clips in which a scene changes, or in which there is a particular kind of
object. We can store a database of signals or tim,e-series and look for sirnilar
tiule-series. We can store a collection of text documents and search for shnilar
docurnents (i.e., dealing with similar topics).

Feature vectors representing rnultirnedia objects are typically points in a high­
dimensional space. For exarnple, we can obtain feature vectors froln a text
object by using a list of keywords (or concepts) and noting which keywords are
present; we thus get a vector of Is (the corresponding keyword is present) and
Os (the corresponding keyword is Inissing in the text object) whose length is
equal to the nurnber of keywords in our list. Lists of several hundred words
are cornrnonly used. vVe can obtain feature vectors froIn an inlage by looking
at its color distribution (the levels of red, green, and blue for each pixel) or by
using the first several coefficients of a mathernatical function (e.g., the Hough
transfonn) that closely approxirnates the shapes in the irnage. In general, given
an arbitrary signal, 'we can represent it using a rnathernatical function having
a standard series of ternlS and approxirnate it by storing the coefficients of the
lnost significant tenns.

vVhen rnapping rnultirnedia data to a collection of points, it is irnportant to
ensure that a there is a rneasure of distance betweent\vo points that captures
the notion of sirnilarity bct\veen the corresponding rnultilnedia objects. Thus,
two irnages that rnap to t\VO nearby points Inust be Inore sirnilar than two
irnages that rnap to t"vo points far frolH each other. ()nce objects are rnapped
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Figure 28.1 Clustering of Data Entries in B+ 'free vs. Spatial Indexes

into a suitable coordinate space, finding siInilar images, siInilar documents, or
sirnilar tilne-series can be Illodeled as finding points that are close to each other:
We map the query object to a point and look for its nearest neighbors. The rIlost
COl1UllOn kind of spatial data in lllultinledia applications is point data, and the
lllost COllllIlon query is nearest neighbor. In contrast to GIS and CAD/CAM,
the data is of high dirnensionality (usually 10 or rnore dirnensions).

28.3 INTRODUCTION TO SPATIAL INDEXES

A multidimensional or spatial index, in contrast to a B-t- tree, utilizes seHne
kind of spatial relationship to organize data, entries, with each key value seen
as a point (or region, for region data) in a k-dimensional space, where k is the
number of fields in the search key for the index.

In a B+ tree index, the t\vo-diJnensional space of (age, 8a0 values is linearized--·-­
that is, points in the two-dirnensional doruain are totally ordered····..···by sorting
on age first and then on sal. In Figure 28.1, the dotted line indicates the linear
order in which points are stored in a B-+ tree. In contrast, a spatial index. stores
data entries baA'3ed on their proxirnity in the underlying t\vo-dirnensional space.
In Figure 28.1, the boxes indicate huw points are stored in a spatial index.

I.Jct us corrlpare a 13-+· tree index on key (age, 8a0 with a spatial index on the
space of age and sal values, using several exalnple queries:

1. age < 12: The B·+ tree index perforrns very well. 1\8 we will sec, a spatial
index handles such a query qllitewell, although it cannot rnateh a B+- tree
index in this casc.
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2. sal < 20: The B-+- tree index is of no use, since it does not Inatch this
selection. In contr&')t, the spatial index handles this query just as \vell Bo,,""

the previous selection OIl age.

~3. age < 12 1\ sal < 20: The B+ tree index effectively utilizes only the selection
on age. If 1110st tuples satisfy the age selection, it perforrns poorly. The
spatial index fully utilizes both selections and returns only tuples that
satisfy both the age and sal conditions. To achieve this \vith B+ tree
indexes, we have to create two separate indexes on age and sal, retrieve
rids of tuples satisfying the age selection by using the index on age and
retrieve rids of tuples satisfying the sal condition by using the index on sal,
intersect these rids, then retrieve the tuples \vith these rids.

Spatial indexes are ideal for queries such as "Find the 10 nearest neighbors of
a given point" and, "Find all points within a certain distance of a given point."
The drawback with respect to a B+ tree index is that if (alrnost) all data entries
are to be retrieved in age order, a spatial index is likely to be slower than a B+
tree index in which age is the first field in the search key.

28.3.1 Overview of Proposed Index Structures

Many spatial index structures have been proposed. Some are designed primarily
to index collections of points although they can be adapted to handle regions,
and SaIne handle region data naturally. ExaInples of index structures for point
data include Grid files, hE trees, KDtrees, Point Quad trees, and SI~ trees.
Examples of index structures that handle regions &'3 well as point data include
Ilegion Quad trees, R trees, and SKD trees. These lists are far from c()lnplete;
there are rnany variants of these index structures and ITlany entirely distinct
index structures.

1"here is as yet no consensus on the 'best' spatial index structure. I-Iowever,
Il trees have been widely irnplcInented and found their way into cOHllnercial
DBMSs. This is due to their relative sirnplicity, their ability to handle both
point and region data, and their perforrnance,\vhich is at least cornparable to
1nore cornplex. structures.

'VVe discuss three approaches that are distinct and, taken together, illustrate of
Inany of the pr6posed indexing aJternatives. First,vve discuss index structures
that rely on space-filling c'urvcs to organize points. We begin by discussing Z­
ordering for point data, and then for region elata, which is essentiall~y the iclea
behind llegion Quad trees. Ilegion (~uad trees illustrate an indexing approach
bclEied on recursive subdivision of the rnultidiInensional space, independent of
the actual dataset. rfhere are several variants of Region (~uad trees.
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Second, we discuss Grid files, which illustrate how an Extendible Ha.-,hing style
directory can be used to index spatial data. Ivlany index structures such as
Bang files, B1.Lddy trees, and lv!'ult'ilevel Gr'id files have been proposed refining
the basic idea. Finally, \ve discuss R trees, which also recursively subdivide the
muitidilllensional space. In contra.'3t to Region Quad trees, the decolllposition
of space utilized in an R tree depends on the indexed data.,'3et. \lVe can think
of R. trees as an adaptation of the B+ tree idea to spatial data. Many variants
of R trees have been proposed, including Cell trees, HilbeTt R trees, Packed II
tr'ees, R * trees, R+ trees, TV tTees, and ..,:r trees.

28.4 INDEXING BASED ON SPACE-FILLING CURVES

Space-filling curves are based on the assulnption that any attribute value can be
represented with SaIne fixed nUlnher of bits, say k bits. The luaximulu nUluber
of values along each dirnension is therefore 2k . v\le consider a two-dimensional
dataset for sirnplicity, although the approach can handle any nUluber of diluen­
sions.

Z-ordering with two bits Z-ordering with three bits Hilbert curve with three bits
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Figure 28.2 Spa.ce Filling Curves

A space-filling curve irnposes a linear ordering on the dornain, as illustrated
in Figure 28.2. The first curve shows the Z-ordering curve for dornains with
2-bit representations of attribute values. A given datc'tset contains a subset of
the points in the dornain, and these are ShC)\Vll. as filled circles in the figure.
Dornain points Jlot in the given dataset are shown as unfilled circles. Consider
the point with X = 01 and y" = 11 in the first curve. The point ha",s Z-value
0111, obtained by interleaving the bits of the X and Y'" values; vve take the first
..\'" bit (0), then the first yr bit (1), then the second X bit (1), and finally the
secondY bit (1). In decirnal representation, the Z-value 0111 is equal to 7, and
the point X := 01 and y" = 11 has the Z-value 7 shown next to it in Figure
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28.2. l'his is the eighth dOlllain point 'visited' by the space-fining curve, which
starts at point X = 00 and Y- := 00 (Z-value 0).

The points in a datac;et are stored in Z-value order and indexed by a traditional
indexing structure such as a B+ tree. That is, the Z-vaJue of a point is stored
together \vith the point and is the search key for the B+ tree. (Actually, \ve
need not need store the X and Y'~ values for a point if we store the Z-value, since
we can COlllpute thern froln the Z-value by extracting the interleaved bits.) To
insert a point, \ve COlnpnte its Z-value and insert it into the B+ tree. Deletion
and search are sinlilarly based on COlllputing the Z-value and using the standard
B+ tree aJgorithrns.

The advantage of this approach over using a B+ tree index on S0111e cornbination
of the X and Y fields is that points are clustered together by spatial proxirnity
in the ...X"--y" space. Spatial queries over the .X_,.}T space now translate into linear
range queries over the ordering of Z-values and are efficiently answered using
the B+ tree on Z-values.

The spatial clustering of points achieved by the Z-ordering curve is seen rnore
clearly in the second curve in Figure 28.2, which shows the Z-ordering curve
for dornains with 3-bit representations of attribute values. If we visualize the
space of all points as four quadrants, the curve visits all points in a. quadra,nt
before nloving on to another quadrant. This Ineans that all points in a quadrant
are stored together. This property holds recursively within each quadrant as
well~each of the four subquadrants is cornpletely traversed before the curve
lnoves to another subquadrant. Thus, all points in a subquadrant are stored
together.

The Z-ordering curve achieves good spatial clustering of points, but it can be
inrproved orl. Intuitively, the curve occasionally Inakes long diagonal 'juInps,'
and the points connected by the jurnps, \vhile far apart in the x,·,y~ space of
points, are nonetheless close in Z-ordering. rrhe THIbert curve, shown as the
third curve in Figure 28.2, addresses this problern.

28.4.1 Region Quad Trees and Z..Ordering: Region Data

Z-ordering givE~s us a \vay to group points according to spatial proxiInity. \Vhat
if we have region data? rrhe key is to understa,nd ho\v Z-ordering recursively
decornposes the data space into quadrants and subquadrants, (1",'; illustrated in
Figure 28.~~.

The R,egion (~uad tree structure corresponds directly to the recursive decornpo­
sition of the data space. Each node in the tree corresponds to a square-shaped
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Figure 28.3 Z-Ordering and Region Quad Trees

region of the data space. As special cases, the root corresponds to the entire
data space, and S0111e leaf nodes correspond to exactly one point. Each in­
ternal node has four children, corresponding to the four quadrants into which
the space corresponding to the node is partitioned: 00 identifies the bottom
left quadrant, 01 identifies the top left quadrant, 10 identifies the bottorn right
quadrant, and 11 identifies the top right quadrant.

In Figure 28.3, consider the children of the root. All points in the quadrant
corresponding to the 00 child have Z-values that begin with 00, all points in
the quadrant corresponding to the 01 child have Z-values that begin with 01,
and so on. In fact, the Z-value of a point can be obtained by traversing the
path froIn the root to the leaf node for the point and concatenating all the edge
labels.

Consider the region represented by the rounded rectangle in Figure 28.3. Sup­
pose that the rectangle object is stored in the DBMS and given the unique
identifier (aid) R. R includes all points in the 01 quadrant of the root as well
as the points with Z-values 1 and 3,which are in the 00 quadrant of the root.
In the figure, the nodes for points 1 and 3 and the 01 quadrant of the root are
shown 'with dark boundaries. Together, the dark nodes represent the rectangle
R. ffhe three records (0001, R), (OOll, R), and (01, R) can be used to store this
infonnation. The first field of each record is a Z-valuc; the records a,re clus­
tered and indexed on this colurun using a B+ tree. Thus, a B+ tree is used to
irnplcInent a H,(~gion Quad tree, just &'3 it was used to irnplernent Z-ordering.

Note that a region object can usually be stored using fewer records if it is
sufficient to represent it at a coarser level of detail. For exarl1ple, rectangle R
can be represented using t\VO records (00, R) and (01, R). This approxirnates R
by using the bottorn-Ieft and top-left qua.drants of the root.
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1~he Region Quad tree idea can be generalized beyond two dilncnsions. In k
dirnensions, at each node we partition the space into 2k subregions; for k == 2,
\ve partition the space into four equal parts (quadrants). vVe will not discuss
the details.

28.4.2 Spatial Queries Using Z-Ordering

Range queries can be handled by translating the query into a collection of
regions, each represented by a Z-value. (vVe saw how to do this in our discussion
of region data and R,egion Quad trees.) We then search the B+ tree to find
rnatching data iterns.

Nearest neighbor queries can also be handled, although they are a little trickier
because distance in the Z-value space does not always correspond well to dis­
tance in the original X - Y coordinate space (recall the diagonal jumps in the
Z-order curve). The basic idea is to first compute the Z-value of the query and
find the data point with the closest Z-value by using the B+ tree. Then, to
rnake sure we are not overlooking any points that are closer in the X-Y space,
we cornpute the actual distance r between the query point and the retrieved
data point and issue a range query centered at the query point and with radius
r. We check all retrieved points and return the one closest to the query point.

Spatial joins can be handled by extending the approach to range queries.

28.5 GRID FILES

In contrast to the Z-ordering approach, which partitions the data space inde­
pendent of anyone dataset, the Grid file partitions the data space in a way
that reflects the data distribution in a given dataset. rrhe Inethocl is designed
to guarantee that any point q'U,CTy (a query that retrieves the illfonnation asso­
ciated with the quer:y point) can be ansvvered in, at rnost, two disk a,ccesses.

Grid files rely upon a grid directory to identify the data, page containing a
desired point. rrhe grid directory is sirnilar to the directory used in Extendible
IIashing (see Chapter 11).vVhen seaTching for a point,we first find the C01'1'e­
sponcling entry in the grid directory. The grid directory entry, like the directory
entry in Extendible flashing, identifies the page on which the desired point is
stored, if the point is in the database. To understand the Cjrid file structure,
\ve need to understand ho\v to find the grid directory entry for a giverl point.

\Ve describe the (jrid file structure for two-dirnensional data. IThe rnethod
can be generalized to any nurnber of dilnensions, but \ve restrict ourselves to
the t\vo-diInensional C(1.'3e for sirnplicity. The C;ricl file partitions sl>(1ce into
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rectangular regions using lines parallel to the axes. Therefore, we can describe
a Grid file partitioning by specifying the points at which each &,xis is 'cut.' If
the ,X axis is cut into 'i segrnents and the y" axis is cut into j segments, we have
a total of i x j partitions. The grid directory is an 'i by j array with one entry
per partition. This description is Inaintained in an array called a linear scale;
there is one linear scale per CLxis.
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Figure 28.4 Searching for a Point in a Grid File

Figure 28.4 illustrates how we search for a point using a Grid file index. First,
we use the linear scales to find the ..,X- segulent to which the .LY value of the given
point belongs and the Y segrnent to which the y" value belongs. This identifies
the entry of the grid directory for the given point. We assurne that all linear
scales are stored in rnain rnernory, and therefore this step does not require any
l/C). Next, we fetch the grid directory entry. Since the grid directory rnay be
too large to .fit in rnain rnenlory, it is stored on disk. Flowever, we can identify
the disk page containing a given entry and fetch it in one I/O because the grid
directory entries are arra,nged sequentially in either row\vise or cohuunwise
order. The grid directory entry gives us the ID of the data page containing the
desired point, and this page can now be retrieved in one l/C). 'rhus, we can
retrieve a point in t\VO l/Os . one l/C) for the directory entry and one for the
data page.

R.ange queries and nearest neighbor queries are e&l;)ily answered using the Cjrid
file.B-br rttnge queries, we use the linear scaJes to identify the set of grid
directory entries to fetch. For nearest neighbor queries, we first retrieve the
grid directory entry for the given point and search the data page to which it
POit1tS. If this data page is crnpty,\ve use the linear scales to retrieve the data
entries for grid partitions that are adjacent to the partition that contains the
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query point. We retrieve all the data points within these partitions and check
thern for nearness to the given point.

The Grid file relies upon the property that a grid directory entry points to a
page that contains the desired data point (if the point is in the databa,se). T'his
rneans that \ve are forced to split the grid directory·····and therefore a linear
scale along the splitting dirnension··-·-··-if a data page is full and a new point is
inserted to that page. To obtain good space utilization, we allow several grid
directory entries to point to the saIne page. That is, several partitions of the
space Inay be rnapped to the saIne physical page, a.s long as the set of points
across all these partitions fits on a single page.

3 4

A

B

c

2

Figure 28.5 Inserting Points into a Grid File

Insertion of points into a Grid file is illustrated in Figure 28.5, which has four
parts, each illustrating a snapshot of a Grid file. Each snapshot shows just the
grid directory and the data pages; the linear scales are ornitted for sirnplicity.
Initially (the top-left part of the figure), there are only three points, all of
which fit into a single page (A). 'rhe grid directory contains a single entry,
which covers the entire data space and points to page A.

In this exaInple, we aSSUlne that the capacity of a data page is three points.
Therefore, 'when a 11e\V point is inserted, we need an additional data page. We
are also forced to split the grid directory to accornrnodate an entry for the new
page. \¥e do this by splitting along the X axis to obtain two equal regions;
one of these regions points to page A and the other points to the new data
page B. The data points are redistributed across pages A and B to reflect the
parti tioning of the grid directory. 1'he result is shown in the top-right part of
Figure 28.5.

The next part (bottorll left) of Figure 28.5 illustrates the Grid file after two
rnore insertions. rrhe insertion of point 5 forces us to split the grid directory
again, because point 5 is in the region that points to page A, and page A is



Spatial IJata Nfanagc'rnent 981

already full. Since we split along the ...X" axis in the previous split, \ve now split
along the 1/" axis, and redistribute the points in page A acrex..,s page A and a
Ile\V data page, C. (Choosing the a.xis to split in a round-robin fashion is one of
several possible splitting policies.) ()bserve that splitting the region that points
to page A also caiuses a split of the region that points to page B, leading to t\VO

regions pointing to page B. Inserting point 6 next is straightforward because it
is in a region that points to page 13, and page B h<:1...1;) space for the new point.

Next, consider the bottonl right part of the figure. It shows the exarnple file
after the insertion of two additional points, 7 and 8. The insertion of point 7
fills page C, and the subsequent insertion of point 8 causes another split. This
tiIne, we split along the ~X axis and redistribute the points in page C across
C and the new data page, D. Observe how the grid directory is partitioned
the most in those parts of the data space that contain the rnost points-··-the
partitioning is sensitive to data distribution, like the partitioning in Extendible
Hashing, and handles skewed distributions well.

Finally, consider the potential insertion of points 9 and 10, which are shown
as light circles to indicate that the result of these insertions is not reflected in
the data pages. Inserting point 9 fills page B, and subsequently inserting point
10 requires a new data page. However, the grid directory does not have to be
split further~ points 6 and 9 can be in page B, points 3 and 10 can go to a new
page E, and the second grid directory entry that points to page B can be reset
to point to page E.

Deletion of points from a Grid file is cOITlplicated. When a data page falls below
SaIne occupancy threshold, such as, less than half-full, it luust be rnerged with
scnue other data page to rnaintain good space utilization. We do not go into
the details beyond noting that, to siInplify deletion, a conve:£'ity requirernent is
placed on the set of grid directory entries that point to a single data page: The
region defined by this set of grid directory erd'ries rnust be conve:r.

28.5.1 Adapting Grid Files to Handle Regions

There are two basic approaches to handling region data in a Grid file, nei­
ther of which is satisfactory. First, vve can represent a region by a point in a
higher-dirnens~onal space. E'or exarnple, a box in tvvo diInensions can be repre­
sented as a four-dirnensional point by storing t\VO diagonal corner points of the
box. This approach does not support nearest neighbor and spatial join queries,
since distances in the original space are not reflected in the distances between
points in the higher-dirnensional space. f'urther, this approach increases the
dirnensionality of the stored data, which leads to various problcrns (see Section
28.7).
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The second approach is to store a record representing the region object in each
grid partition that overlaps the region object. This is unsatisfactory because it
leads to a lot of additional records and 111akes insertion and deletion expensive.

In SUIJllnary, the Grid file is not a good structure for storing region data.

28.6 R TREES: POINT AND REGION DATA

The R tree is an adaptation of the B+ tree to handle spatial data, and it is a
height-balanced data structure, like the B+ tree. The search key for an Il tree
is a collection of intervals, with one interval per diInension. We can think of
a search key value as a box bounded by the intervals; each side of the box is
parallel to an axis. We refer to search key values in an R tree a'S bounding
boxes.

A data entry consists of a pair (n-dim,ensional box, riel), where rid identifies an
object and the box is the smallest box that contains the object. As a special
case, the box is a point if the data object is a point instead of a region. Data
entries are stored in leaf nodes. Non-leaf nodes contain index entries of the
forIll (n-dimensional box, pointer to a child node). The box at non-leaf node
N is the srnallest box that contains all boxes associated with the child nodes;
intuitively, it bounds the region containing all data objects stored in the subtree
rooted at node N.

Figure 28.6 shows two views of an example R tree. In the first view, we see the
tree structure. In the second view, we see how the data objects and bounding
boxes are distributed in space.

Root

1~1~- ~~':~~l
~~~~j I§4 III

R2 ---1 Itt:::-:::·:::~::::::::::::::::::::::::::·:::·::::-:::::=:~;-I

---------- --,-- --~---,.- ......,;J.. :::::::::=:::==j'j
R6 L. _
I R15 1,·-----'

Figure 28.6 Two Views of an Example R Tree

There are 19 regions in the exarnple tree. R,egiolls RB through R19 represent
data objects and are shown in the tree (1..'3 data entries at the leaf level. The
entry R.8*, for exarnple, consists of the bounding box for region Its and the
rid of the underlying data ol>ject. R,egions III through 117 represent boundirlg
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boxes for internal nodes in the tree. Region Rl, for exanlple, is the bounding
box for the space containing the left subtree, which includes data objects RB,
R9, RIO, Rll, R12, R13, and R14.

The bounding boxes for two children of a given node can overlap; for ex,unplc,
the boxes for the children of the root node, Rl and R2, overlap. rrhis 111eans
that rnore than one leaf node could accornrnodate a given data object while
satisfying all bounding box constraints. However, every data object is stored
in exactly one leaf node, even if its bounding box falls within the regions cor­
responding to two or Illore higher-level nodes. For exarnple, consider the data
object represented by R9. It is contained within both R3 and R4 and could be
placed in either the first or the second leaf node (going from left to right in the
tree). We have chosen to insert it into the left-rnost leaf node; it is not inserted
anywhere else in the tree. (We discuss the criteria used to Blake such choices
in Section 28.6.2.)

28.6.1 Queries

To search for a point, we cornpute its bounding box B, which is just the point,
and start at the root of the tree. We test the bounding box for each child of
the root to see if it overlaps the query box B, and if so, we search the subtree
rooted at the child. If more than one child of the root has a bounding box
that overlaps B, we lTIUSt search all the corresponding subtrees. This is an
irnportant difference with respect to B+ trees: The seaTch faT even a single
point can lead us down several paths in the tree. When we get to the leaf level,
we check to see if the node contains the desired point. It is possible that ·we
do not visit any leaf node------this happens when the query point is in a region
not covered by any of the boxes associated with leaf nodes. If the search does
not visit any leaf pages, we know that the query point is not in the indexed
dataset.

Searches for region objects and range queries are handled sirnilarly by COluput­
ing a bounding box for the desired region and proceeding as in the search for
an object. For a range query, when we get to the leaf level we ITlllst retrieve
all region objects that belong there and test "vhether they overlap (or are con­
tained in, depending on the query) the given range. The reason for this test
is that, even if the bounding box for an object overlaps the query region, the
object itself rnay not!

As an exalnple, suppose we want to find all objects that overlap our query
region, and the query region happens to be the box representing object R8.
We start at the root and find that the query box overlaps RJ but not R2.
l"herefore, we search the left subtree but not the right subtree. We then find
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that the query box overlaps R,3 but not RA or ItS. So we seal"eh the le:ft-rnost
leaf and find object RB. As another exarnple, suppose that the query region
coincides \vith Il9 rather than RB. A.gain, the query box overlaps RJ but not
R,2 and so we search (only) the left subtree. Now we find that the query box
overlaps both R3 and R,4 but not H,5. 'Vo therefore search the children pointed
to by the entries for R3 and HA.

As a refinernent to the basic search strategy, we can approxirnate the query
region by a convex region defined by a collection of linear constraints, rather
than a bounding box, and test this convex region for overlap with the bounding
boxes of internal nodes a'S we search down the tree. The benefit is that a convex
region is a tighter approxirnation than a box, and therefore we can sometirnes
detect that there is no overlap although the intersection of hounding boxes is
nonernpty. 'rhe cost is that the overlap test is Inore expensive, but this is a
pure CPU cost and negligible in cOillparison to the potential I/O savings.

Nate that using convex regions to approximate the regions associated with
nodes in the Il tree would also reduce the likelihood of false overlaps-----the
bounding regions overlap, but the data object does not overlap the query
region-··-but the cost of storing convex region descriptions is rlluch higher than
the cost of storing bounding box descriptions.

1'0 search for the nearest neighbors of a given point, we proceed as in a search
for the point itself. We retrieve all points in the leaves that we exarnine a.s
part of this search and return the point closest to the query point. If we do
not visit any leaves, then we replace the query point by a srnall box centered
at the query point and repeat the search. If we still do not visit any leaves, we
increase the size of the box and search again, continuing in this fashion until
we visit a leaf node. 'Ve then consider all points retrieved froIll leaf nodes in
this iteration of the search and return the point closest to the query point.

28.6.2 Insert and Delete Operations

To insert a data object with rid T, we cornpute the bounding box B for the
object and insert the pair (B, r) into the tree. We start at the root node and
traverse a single path frorH the root to a leaf (in contrast to searching, where
"vo could traverse several such paths). At each level, 'we choose the child node
\V~hose bounding box needs the least enla.rgcruent (in tenns of the increase in its
area) to cover the box [3. If several chilclren have bounding boxes that cover 13
(or that require the sarriC enlargcrnent in order to cover 13), frorn these children,
·we choose the one with the slnallest bounding box.
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At the leaf level, we insert the object, and if necessary we enlarge the bounding
box of the leaf to cover box B. If we have to enlarge the bounding box for
the leaf, this IllUSt be propagated to ancestors of the leaf-after the insertion is
cOlnpleted, the bounding box for every node IIlUst cover the bounding box for
all descendants. If the leaf node lacks space for the new object, we IllUSt split
the node and redistribute entries between the old leaf and the new node. \lVe
lllust then adjust the bounding box for the old leaf and insert the bounding
box for the new leaf into the parent of the leaf. Again, these changes could
propagate up the tree.
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Figure 28.7 Alternative Redistributions in a Node Split

It is important to minimize the overlap between bounding boxes in the R tree
because overlap causes us to search down multiple paths. The amount of overlap
is greatly influenced by how entries are distributed when a node is split. Figure
28.7 illustrates two alternative redistributions during a node split. There are
four regions, Rl, R2, R3, and R4, to be distributed across two pages. The first
split (shown in broken lines) puts Rl and R,2 on one page and R3 and R4 on
the other. The second split (shown in solid lines) puts Rl and R4 on one page
and R2 and R,3 on the other. Clearly, the total area of the bounding boxes for
the new pages is lnuch less with the second split.

Minirnizing overlap using a good insertion algorithrll is very irnportant for good
search perforrnance. A variant of the R, tree, called the R * tree, introduces the
concept of forced reinserts to reduce overlap: vVhen a node overflows, rather
than split it irnrnedia,tely, we rernove senne rnunber of entries (about ~30 percent
of the node's contents works well) and reinsert thern into the tree. This rnay
result in all entries fitting inside sorne existing page and elirninate the need for
a split. The ~,* tree insertion algoritlllIlS also try to Ininirnize box peTirneteT8
rather tha.n bo:r areas.

To delete a data object frOID an H, tree, vve have to proceed as in the search
algoritlun and potentially ex(unine several leaves. If the object is in the tree,
"ve rcrnove it. In principle,\ve can try to shrink the bounding box for the
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leaf containing the object and the bounding boxes for all ancestor nodes. In
practice, deletion is often irnplernented by sirnply rernoving the object.

Another variant, called the R+ tree, avoids overlap by inserting an object into
lllultiple leaves if necessary. Consider the insertion of an object with bounding
box B at a node lV. If box B overlaps the boxes associated with more than
one child of N, the object is inserted into the subtree associated with each
such child. For the purposes of insertion into child C with bounding box Be,
the object's bounding box is considered to be the overlap of Band Be. 1 The
advantage of the more cornplex insertion strategy is that searches can now
proceed along a single path froln the root to a leaf.

28.6.3 Concurrency Control

l'he cost of implernenting concurrency control algorithms is often overlooked in
discussions of spatial index structures. l'his is justifiable in environments where
the data is rarely updated and queries are predominant. In general, however,
this cost can greatly influence the choice of index structure.

We presented a simple concurrency control algorithm for B+ trees in Section
17.5.2: Searches proceed from root to a leaf obtaining shared locks on nodes;
a node is unlocked as soon as a child is locked. Inserts proceed from root to a
leaf obtaining exclusive locks; a node is unlocked after a child is locked if the
child is not full. This algorithrn can be adapted to R trees by lllodifying the
insert algorithm to release a lock on a node only if the locked child has space
and its region contains the region for the inserted entry (thus ensuring that the
region modifications do not propagate to the node being unlocked).

We presented an index locking technique for B+· trees in Section 17.5.1, which
locks a range of values and prevents new entries in this range frorn being inserted
into the tree. This technique is used to avoid the phantorn problern. Now let
us consider how to adapt the index locking approach to R trees. The ba..."ic idea
is to lock the index page that contains or would contain entries with key values
in the locked range. In R, trees, overlap between regions associated with the
children of a node could force us to lock several (non-leaf) nodes on different
paths frorn the root to SOH1C leaf. Additional cornplica..tions a.rise fronl having to
deal with changes "in pi:lIticular, enlargernents due to insertions ....·in the regions
of locked nodes. vVithout going into further detail, it should be clear that index
locking to avoid phant0l11 insertions in H. trees is both harder and less efficient
than in 13+ trees. Further, idea",') such ae:; forced reinsertion in It* trees and
----_ _--

1 Insertion into an R+ tree involves additional details. For example, if box B is not contained in the
collection of boxes associat(~d with the children of N whose boxes 13 overlaps, one of the childnm must
luwe its box enlarged so that 13 is contajned in the collection of boxes associ<lf;ed with thf~ children.
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rIlultiple insertions of an object in R+ trees nlake index locking prohibitively
expenSIve.

28.6.4 Generalized Search Trees

The B+ tree and R tree index structures are sirnilar in 111any respects: Both
are height-balanced, in which searches start at the root of the tree and proceed
toward the leaves; each node covers a portion of the underlying data space, and
the children of a node cover a subregion of the region associated with the node.
There are irnportant differences of course-for exa111ple, the space is linearized
in the B+ tree representation but not in the R tree·~··~~but the cornrnon features
lead to striking siruilarities in the algorithms for insertion, deletion, search, and
even concurrency control.

The generalized search tree (GiST) abstracts the essential features of tree
index structures and provides 'template' algorithms for insertion, deletion, and
searching. The idea is that an ORDBMS can support these template algorithnls
and thereby make it easy for an advanced database user to implement specific
index structures, such as R trees or variants, without nlaking changes to any
system code. The effort involved in writing the extension 1nethods is l11uch less
than that involved in ilIlplementing a new indexing 111ethod frolIl scratch, and
the performance of the GiST te111plate algorithms is cornparable to specialized
code. (For concurrency control, 1110re efficient approaches are applicable if
we exploit the properties that distinguish B+ trees from R trees. However,
B+ trees are irnplernented directly in most cOllllIlercial DBMSs, and the GiST
approach is intended to support 1nore conlplex tree indexes.)

rrhe ternplate algorithlIls call on a set of extension methods specific to a par­
ticular index structure, and these 111USt be supplied by the irnplernentor. For
exarnple, the search te1nplate searches all children of a node whose region is
consistent with the query. In a B-t- tree the region a.ssociated with a node is
a range of key values~ and in an R tree, the region is spatial. The check to
see whether a region is consistent with the query region is specific to the index
structure and is an exarnple of an extension rnethod. As another exa.rnple of an
extension rnethod, consider ho\;y to choose the child of an Il tree node to insert
a new entry into. This choice can be rnade based on \vhich candidate child's
region needs expanded the least; an extension rnethod is required to calculate
the required expansions for candidate children and choose the child into Vlhich
to insert the entry.
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28.7 ISSUES IN HIGH-DIMENSIONAL INDEXING

The spatial indexing techniques just discussed ''lark quite \vell for t\VO- and
three-dirnensional dat&"ets, which are encountered in Illany applications of spa­
tial data. In SCHne applications, such as content-based ilnage retrieval or text
indexing, however, the nurIlber of dirnensions can be large (tens of dirnensions
are not unCOtnlnon). Indexing such high-dirnensional data presents unique chal­
lenges, and ne\'l techniques are required. For exanlple, sequential scan becomes
superior to R, trees even when searching for a single point for datasets with
1nore than about a dozen dirnensions.

IIigh-dirnensional datasets are typically collections of points, not regions, and
nearest neighbor queries are the rnost cotnrIlon kind of queries. Searching for
the nearest neighbor of a query point is rneaningful when the distance frotn the
query point to its nearest neighbor is less than the distance to other points.
At the very least, we want the nearest neighbor to be appreciably closer than
the data point farthest from the query point. High-dimensional data poses a
potential problem: For a wide range of data distributions, as dimensionality d
increases, the distance (frolll any given query point) to the nearest neighbor
grows closer and closer to the distance to the farthest data point! Searching
for nearest neighbors is not lneaningful in such situations.

In many applications, high-dirnensional data may not suffer frorn these prob­
lenls and may be amenable to indexing. However, it is advisable to check high­
dimensional datasets to rnake sure that nearest neighbor queries are meaningful.
Let us call the ratio of the distance (frorn a query point) to the nearest neigh­
bor to the distance to the farthest point the contrast in the dataset. We can
measure the contra.'3t of a dataset by generating a number of sarnple queries,
measuring distances to the nearest and farthest points for each of these sarIlple
queries and cornputing the ratios of these distances, and taking the average
of the 111easured ratios. In applications that call for the nearest neighbor, we
should first ensure that datasets have good contrast by ernpirical tests of the
data.

28.8 REVIEW QUESTIONS

Answers to th~ review questions can be found in the listed sections.

• vVhat are the characteristics of spatial data? vVhat is a spatial extent?
What are the differences between spatial range queries, nearest neighbor
queries, and spatial join queries? (Section 28.1)
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IJII Nalne several applications that deal ,,"ith spatial data and specify their
requircrnents on a database systeln. \Vhat is a feature vector and ho\v is it
used? (Section 28.2)

III vVhat is a IIlulti-dirnensional index'? \\That is a spatial index? \tVhat are
the differences bet\vccn a spatial index and a B+ tree? (Section 28.3)

IlIl \iVhat is a space-filling curve, and hovv can it be used to design a spatial
index? Describe a spatial index structure ba"oscd on space-filling curves.
(Section 28.4)

II What data structures are lnaintained for the Grid file index? How do
insertion and deletion in a Grid file work? For what types of queries and
data are Grid files especially suitable and why? (Section 28.5)

II What is an R tree? "Vhat is the structure of data entries in R trees?
How can we lninimize the overlap between bounding boxes when splitting
nodes? lIow does concurrency control in a R tree work? Describe a generic
teulplate for tree-structured indexes. (Section 28.6)

• Why is indexing high-dilnensional data very difficult? What is the ilnpact
of the dirrlensionality on nearest neighbor queries? What is the contrast of
a dataset? (Section 28.7)

EXERCISES

Exercise 28.1 Answer the following questions briefly:

1. How is point spatial data different frolll nonspatial data?

2. How is point data different fronl region data?

~). Describe three cornrnon kinds of spatial queries.

4. Why are nearest neighbor queries irnportant in rnultin1edia applications?

5. How is a 13+ tree index different froIll a spatial index? vVhen would you use a 13+ tree
index over a spatial index for point data? vVhen would you use a spatial index over a
13+ tree index for point data?

6. vVhat is the relationship between Z-ordering and Region Quad trees?

7. Compare Z-ordering and H.ilbert curves as techniques to cluster spatial data.

Exercise 28.2 Consider Figure 28.3, \vhich illustrates Z-ordering and Region Quad trees.
Answer the following questions.

1. Consider the region cOInposed of the points with these Z-values: 4, 5, 6, and 7. lVlark the
nodes that represent this region in the Region Quad tree shown in Figure 28.:3. (Expand
the tree if necessary.)

2. llepeat the preceding exercise for the region cornposed of the points with Z-vaJues 1 and
~~ .
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3. Repeat it for the region composed of the points with Z-values 1 and 2.

4. Repeat it for the region cOll1posed of the points with Z-values 0 and 1.

5. Repeat it for the region coruposed of the points with Z-values 3 and 12.

6. Repeat it for the region cmnposed of the points with Z-values 12 and 15.

7. Repeat it for the region COITlposed of the points with Z-values 1, 3, 9, and 11.

8. Repeat it for the region COITlposed of the points with Z-values 3, 6, 9, and 12.

9. Repeat it for the region COITlposed of the points with Z-values 9, 11, 12, and 14.

10. Repeat it for the region cornposed of the points with Z-values 8, 9, 10, and 11.

Exercise 28.3 This exercise also refers to Figure 28.3.

1. Consider the region represented by the 01 child of the root in the Region Quad tree
shown in Figure 28.3. What are the Z-values of points in this region?

2. Repeat the preceding exercise for the region represented by the 10 child of the root and
the 01 child of the 00 child of the root.

3. List the Z-values of four adjacent data points distributed across the four children of the
root in the Region Quad tree.

4. Consider the alternative approaches of indexing a two-dimensional point dataset using a
B+ tree index: (i) on the composite search key (X, Y), (ii) on the Z-ordering computed
over the X and Y values. Assuming that X and Y values can be represented using two
bits each, show an example dataset and query illustrating each of these cases:

(a) The alternative of indexing on the COITlposite query is faster.

(b) The alternative of indexing on the Z-value is faster.

Exercise 28.4 Consider the Grid file instance with three points 1, 2, and 3 shown in the
first part of Figure 28.5.

1. Show the Grid file after inserting each of these points, in the order they are listed: (), 9,
10, 7, 8, 4, and 5.

2. Assume that deletions are handled by sirnply rernoving the deleted points, with no at­
terl1pt to merge empty or underfull pages. Can you suggest a siruple concurrency control
scheme for Grid files?

3. Discuss the use of Grid files to handle region data.

Exercise 28.5 Answer each of the following questions independently with respect to the R
tree shown in Figure 28.6. (That is, don't consider the insertions corresponding to other
questions when answering a given question.)

1. Show the bounding box of a new object that can be inserted into R4 but not into n:3.
2. Show the bounding box of a new object that is contained in both Rl and R6 but is

inserted into R6.

3. Show the bounding box of a new object that is contained in both Rl and R6 and is
inserted into Rl. In which leaf node is this object placed?

4. Show the bounding box of a new object that could be inserted into either R4 or R5 but
is placed in R5 based on the principle of least expansion of the bounding box area.
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5. Given an exarIlple of an object such that searching for the object takes us to both the
Rl and R2 subtrees.

6. Give an eXCllnple query that takes us to nodes Ra and R5. (Explain if there is no such
query.)

7. Give an exanlple query that takes us to nodes R3 and R4 but not to R5. (Explain if
there is no such query.)

8. Give an eXaInple query that takes us to nodes Ra and R5 but not to R4. (Explain if
there is no such query.)

BIBLIOGRAPHIC NOTES

Several multidimensional indexing techniques have been proposed. These include Bang files
[286], Grid files [565], hB trees [491]' KDB trees [630], Pyrarnid trees [80] Quad trees[649],
R trees [350], R* trees [72], R+ trees, the TV tree, and the VA file [767]. [322] discusses
how to search R trees for regions defined by linear constraints. Several variations of these,
and several other distinct techniques, have also been proposed; Samet's text [650] deals with
many of them. A good recent survey is [294].

The use of Hilbert curves for linearizing multidimensional data is proposed in [263]. [118] is an
early paper discussing spatial joins. Hellerstein, Naughton, and Pfeffer propose a generalized
tree index that can be specialized to obtain many of the specific tree indexes mentioned
earlier [376]. Concurrency control and recovery issues for this generalized index are discussed
in [447]. Hellerstein, Koutsoupias, and Papadinlitriou discuss the complexity of indexing
schemes [377], in particular range queries, and Beyer et a1. discuss the problerlls arising with
high dimensionality [93]. Faloutsos provides a good overview of how to search multirnedia
databases by content [258]. A recent trend is towards spatiotemporal applications, such as
tracking rnoving objects [782].
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FURTHER REi\DING

.. What is next?

.. Key concepts: TP monitors, real-tirne transactions; data integra­
tion; mobile data; main meInory databa.~es; multimedia databases;
GIS; tenlporal databases; Bioinformatics; infonnation visualization

This is not the end. It is not even the beginning of the end. But it is, perhaps,
the end of the beginning.

······-·Winston Churchill

In this book, we concentrated on relational databa.'3e systerus and discussed
several fundaruental issues in detail. However, our coverage of the database
area, and indeed even the relational database H,rea, is far from exhaustive. In
this chapter, we look briefly at several topics vve did not cover, with the goal of
giving the reader SOUle perspective and indicating directions for further study.

vVe begin with a discussion of advanced transaction processing concepts in
Section 29.1. vVe discuss integrated access to data frOUl rnultiple databases in
Section 29.2 and touch on Inobile applications that connect to databases in Sec­
tion 29.3. \Ve consider the irnpact of increasingly larger rnain Inenlory sizes in
Section 29.4. \Ve discuss rnultirnedia databctses in Section 29.5, geographic in­
forrnation systerns in Section 29.G, tcrnporaJ data in Section 29.7, and sequence
data in Section 29.8. \Ve conclude with a look at inforrnation visualization in
S ·,t· . ')0 C)
k. ec ,Ion ....J •• '.
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T'he applications covered in this chapter push the lirnits of currently available
database technology and drive the developrnent of new techniques. As even our
brief coverage indicates, Innch \vork lies ahead for the database field!

29.1 ADVANCED TRANSACTION PROCESSING

The concept of a transaction has wide applicability for a variety of distributed
cOlnputing tasks, such as airline reservations, inventory rnanagernent, and elec­
tronic COlnnlerce.

29.1.1 Transaction Processing Monitors

Cornplex applications are often built on top of several resource managers,
such as database managernent systenls, operating systerns, user interfaces, and
messaging software. A transaction processing (TP) monitor glues together
the services of several resource managers and provides application programmers
a uniform interface for developing transactions with the ACID properties. In
addition to providing a uniform interface to the services of difl'erent resource
illanagers, a TP rnonitor also routes transactions to the appropriate resource
rnanagers. Finally, a TP monitor ensures that an application behaves as a
transaction by implernenting concurrency control, logging, and recovery func­
tions and by exploiting the transaction processing capabilities of the underlying
resource rnanagers.

TP rnonitors are used in environments where applications require advanced
features, such as access to rnultiple resource lllanagers, sophisticated request
routing (also called workflow management); assigning priorities to trans­
actions and doing priority-based load-balancing across servers, and so on. A
DBlVIS provides lllany of the functions supported by a TP monitor in addition
to processing queries and database updates efficiently. A DBMS is appropri­
ate for environrnents where the wealth of transaction rnanagernent capabilities
provided by a TP rnonitor is not necessary and, in particular, \vhere very high
scalability (with respect to transaction processing activity) and interoperability
are not essential.

The transaction processing capabilities of database systerlls are irnproving con­
tinually. For eKarnple, rnany vendors offer distributed DBMS products today in
which a transaction can execute across several resource rnanagers, each of which
is a DBMS. Currently, all the DBlVISs Inust be frorn the saIne vendor; however,
as transaction-oriented services frorn different vendors becom.e rnore standard­
ized, distributed, heterogeneous DBlV'ISs should becorne available. Eventually,
perhaps, the functions of current rrp rnonitors will also be available in rnany
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DBIV1Ss; for now, 'I'P rnonitors provide essential infrastructure for high-end
transaction processing ellviroIllnents.

29.1.2 New Transaction Models

Consider an application such as cornputer-aided design, in which users retrieve
large design objects froIn a database and interactively analyze and 1110dify thenl.
Each transaction takes a long tiIne---Ininutes or even hours, whereas the TPC
bench1nark transactions take under a millisecond-----and holding locks this long
affects perfonnance. F\uther, if a crash occurs, undoing an active transaction
cOlllpletely is unsatisfactory, since considerable user effort may be lost. Ideally,
we want to restore 1nost of the actions of an active transaction and reSlune
execution. Finally, if several users are concurrently developing a design, they
nlay want to see changes being rnade by others without waiting until the end
of the transaction that changes the data.

To address the needs of long-duration activities, several refinements of the
transaction concept have been proposed. The basic idea is to treat each trans­
action as a collection of related subtransactions. Subtransactions can acquire
locks, and the changes made by a subtransaction become visible to other trans­
actions after the subtransaction ends (and before the nlain transaction of which
it is a part commits). In multilevel transactions, locks held by a subtrans­
action are released when the subtransaction ends. In nested transactions,
locks held by a subtransaction are assigned to the parent (sub)transaction when
the subtransaction ends. These refinements to the transaction concept have a
significant effect on concurrency control and recovery algorithnls.

29.1.3 Real-Time DBMSs

SOllIe transactions 1nust be executed within a user-specified deadline. A hard
deadline Ineans the value of the transaction is zero after the deadline. For
exa1nple, in a DBMS designed to record bets on horse races, a transaction
placing a bet is worthless once the race begins. Such a transaction should
not be executed; the bet should not be placed. A soft deadline rIlcal1S the
value of the transaction decrccl..'3cs after the deadline, eventually going to zero.
:For exarnple, in a DB1rlS designed to rnonitor S(Hne activity (e.g., a c01nplex
reactor), a transaction that looks up the current reading of a sensor rnust be
executed within a sl10rt tiIne, sa.y, one second. The longer it takes to execute
the tra.nsaction, the less useful the reading becorn.es. In a real-tirne DBl\1S, the
goal is to 1naxirnize the value of executed transactions, and the DBlVIS 111Ust
prioritize transactions, taking their deadlines into account.
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29.2 DATA INTEGRATION
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As datab&ses proliferate, users want to access data fronl rnore than one source.
For exaulple, if several travel agents rnarket their travel packages through the
Web, custorners would like to cornpare packages from different agents. A rnore
traditional exaruple is that large organizations typically have several databases,
created (and rnaintained) by different divisions, such as Sales, Production, and
Purchasing. \i\Thile these databases contain much common inforrnation, deter­
mining the exact relationship between tables in different databases can be a
complicated problem. For example, prices in one database might be in dol­
lars per dozen items, while prices in another database might be in dollars per
itelll. The developruent of XML DTDs (see Section 7.4.3) offers the pronlise
that such sernantic rnisrnatches can be avoided if all parties conforrll to a single
standard DTD. However, there are many legacy databases and rllost dornains
still do not have agreed-upon DTDs; the problem of selllantic rnismatches will
be encountered frequently for the foreseeable future.

Semantic mismatches can be resolved and hidden fronl users by defining rela­
tional views over the tables from the two databases. Defining a collection of
views to give a group of users a uniform presentation of relevant data frorn
rnultiple databases is called semantic integration. Creating views that mask
sernantic mismatches in a natural manner is a difficult task and has been widely
studied. In practice, the task is rllade harder because the scheruas of existing
databases are often poorly documented; hence, it is difficult to even understand
the meaning of rows in existing tables, let alone define unifying views across
several tables frorll different databases.

If the underlying databases are rnanaged using difl"erent DBlVISs, as is often
the case, SaIne kind of 'middleware' rnust be used to evaluate queries over the
integrating views, retrieving data at query execution tirne by using protocols
such as Open Database Connectivity (ODBC) to give each underlying databa..'3c
a uniforrn interface, as discussed in Chapter 6. Alternatively, the integrating
views can be nlaterialized and stored in a data warehouse, as discussed in
Chapter 25. Queries can then be executed over the warehoused data without
accessing the source DBlVISs at run-tirne.

29.3 MOBILE DATABASES

The availability of portable coruputers and wireless eorrnnunications has created
a nevv breed of nornadic database users. At one level, these users are sirnply
accessing a databa.>se through a network, which is silnilar to distributed DBMSs.
At another level, the network a:s well as data and user characteristics now have
several novel properties, Wllich affect b<l..sic assurnptioI1S in rnany cornponents
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of a DB~fS~ including the query engine~ transaction rnanager, and recovery
Inanager:

• 1Isers are connected through a \vireless link whose band,vidth is 10 times
less than Ethernet and 100 tiIIles less than ATM networks. COIIul1unication
costs are therefore significantly higher in proportion to I/O and CPU costs.

11 Users' locations constantly change, and Inobile corllputers have a liInited
battery life. 'Therefore, the true cOllullunication costs reflect connection
tiIne and battery usage in addition to bytes transferred and change con­
stantly depending on location. Data is frequently replicated to lninirnize
the cost of accessing it from different locations.

• As a user moves around, data could be accessed froIn multiple database
servers within a single transaction. The likelihood of losing connections
is also lnnch greater than in a traditional network. Centralized transac­
tion rnanagenlent may therefore be irnpractical, especially if sorne data is
resident at the mobile computers. We may in fact have to give up on
ACID transactions and develop alternative notions of consistency for user
programs.

29.4 MAIN MEMORY DATABASES

The price of rnain llleInory is now low enough that we can buy enough main
rnernory to hold the entire database for many applications; with 64-bit ad­
dressing, rnodern CPUs also have very large address spaces. Sorne commercial
systerns now have several gigabytes of rrlain IneInory. This shift proInpts a reex­
arnination of scnne basic DBMS design decisions, since disk accesses no longer
dorninate processing tilue for a Inemory-resident database:

• lVlain nlerllory does not survive systelll crashes, and so we still have to
iluplernent logging and recovery to ensure transaction atolnicity and dura­
bility. Log records rnust be written to stable storage at conlluit tirne, and
this process could becorne a bottleneck. To rninirnize this problern, rather
than comnlit each transaction ,1S it conlpletes, we can collect cOlupleted
transactions and cornlnit theIu in batches; this is called group commit.
Recovery algorithrns can also be optirnized, since pages rarely have to be
vvrritten out to rrlake roorn for other pages.

• The irnplerrlentation of in-lnelnory operations has to be optinlized carefully,
since disk accesses are no longer the lirniting factor for perforrnance.

• A ne,v criterion llUlst be considered while optirnizing queries, the alllount
of space required to execute a plan. It is iInportant to rninirnize the space
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overhead because exceeding available physical Incrnory would lead to swap­
ping pages to disk (through the operating systcrIl '8 virtual rncillory ruech­
anisIIls), greatly slo\ving do\vn execution.

• Page-oriented data structures becolue less iInportant (since pages are 110

longer the unit of data retrieval), and clustering is not ilnportant (since
the cost of accessing any region of IIlain rneIIlory is uniforrn).

29.5 MULTIMEDIA DATABASES

In an object-relational DB~1S, users can define ADTs \vith appropriate rneth­
ods, which is an irnprovement over an RDBI\1S. Nonetheless, supporting just
ADTs falls short of what is required to deal with very large collections of
multimedia objects, including audio, irnages, free text, text nlarked up in
HTML or variants, sequence data, and videos. Illustrative applications include
NASA's EGS project, which aims to create a repository of satellite irnagery;
the JIUlnan Genorne project, which is creating databases of genetic inforrnation
such as GenBank; and NSF/DARPA's Digital Libraries project, which aiIns to
put entire libraries into database systems and make thelll accessible through
cOlnputer networks. Industrial applications, such as collaborative developnlent
of engineering designs, also require multimedia database rnanagernent and are
being addressed by several vendors.

We outline some applications and challenges in this area:

• Content-Based Retrieval: Users 111Ust be able to specify selection concli­
tions based on the contents of rllultilnedia objects. For exanlplc, users lllay
search for inlages using queries such as "Find all irnages that are sirnilar to
this image" and "Find all inlages that contain at lea"t three airplanes." As
inulges are inserted into the database, the DBMS lllUSt analyze thern and
automatically eJ:tract features that help answer such content-based queries.
1~his inforrnation can then be used to search for inlages that satisfy a given
query, ae;,; discussed in Chapter 28. As another exarnple, users would like to
search for docurnents of interest using infonnation retrieval techniques and
keyword searches. Vendors are rnoving toward incorporating such tech­
niques into DBMS products. It is still not clear how these dOlnain-specific
retrieval and search techniques can be corubined effectively \vith traditional
DBIvIS quei-ies. R,csearch into abstract data types and ()R,DBMS query
processing has provided a starting point, but lnore work is needed.

II Managing Repositories of Large Objects: Traditionally, DBlVISs have
concentrated on tables that contain a large nurnber of tuples, each of \vhich
is relatively srnaii. ()nce Illultilnedia objects such as irnages, sound clips,
and videos are stored in a database, individual objects of very large size
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have to be handled efficiently. For example, compression techniques lllUSt

be carefully integrated into the DBIvlS environrnent. As another exarnple,
distributed DBMSs HUlst develop techniques to efficiently retrieve such
objects. Retrieval of r11ultir11edia objects in a distributed systern has been
addressed in liInited contexts, such as client-server systerns, but in general
reulains a difficult probleul.

• Video-On-Denland: lVlany cornpanies want to provide video-on-denland
services that enable users to dial into a server and request a particular
video. The video Inust then be delivered to the user's COI11puter in real time,
reliably and inexpensively. Ideally, users nlust be able to perform farniliar
VCR functions such as fast-forward and reverse. Fronl a database perspec­
tive, the server has to contend with specialized real-time constraints; video
delivery rates must be synchronized at the server and at the client, taking
into account the characteristics of the communication network.

29.6 GEOGRAPHIC INFORMATION SYSTEMS

Geographic Information Systems (GIS) contain spatial information about
cities, states, countries, streets, highways, lakes, rivers, and other geographical
features and support applications to combine such spatial information with
non-spatial data. As discussed in Chapter 28, spatial data is stored in either
raster or vector formats. In addition, there is often a terTIporal dirnension, a'S

when we measure rainfall at several locations over time. An important issue
with spatial datasets is how to integrate data froIn rnultiple sources, since each
source rnay record data using a different coordinate system to identify locations.

Now let us consider how spatial data in a GIS is analyzed. Spatial informa­
tion is lllost naturally thought of as being overlaid on maps. rTypical queries
include "What cities lie on 1-94 between Madison and Chicago?" and "What
is the shortest route from Madison to St. Louis?" These kinds of queries can
be addressed using the techniques discussed in Chapter 28. An emerging ap­
plication is in-vehicle navigation aids. With Global Positioning Systcrn (CPS)
technology, a car's location can be pinpointed, and by accessing a databa.se of
local rnaps, a driver can receive directions froIn his or her current location to a
desired destination; this application also involves rnobile databa..'3e access!

In addition, many applications involve interpolating rneasurernents at certain
locations across an entire region to obtain a rnodel and cornbining overlapping
rnodels. For exarnple, if \-ve have rneasured rainfall at certain locations, we can
use the Triangulated Irregular Network (TIN) approach to triangulate
the region, with the loeations at which we have measurcrnents being the ver­
tices of the triangles. Then, we use sorne forrn of interpolation to estirnate
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the rainfall at points within triangles. Interpolation, triangulation, Il1ap over­
lays, visualization of spatial data, and rnany other dornain-specific operations
are supported in GIS products such a,,'3ESRI Systerlls' ARC-Info. l'he1'efore,
\vhile spatial query processing techniques as discussed in Chapter 28 are an
irnportant part of a GIS product, considerable additional functionality rnust be
incorporated as well. How best to extend 0 ltDB1.1S systenls with this addi­
tional functionality is an irnportant problenl yet to be resolved. Agreeing on
standards for data representation forrnats and coordinate systeuls is another
lTIajor challenge facing the field.

29.7 TEMPORAL DATABASES

Consider the following query: "Find the longest interval in which the same
person managed two different departlTIents." Many issues are associated with
representing telnporal data and supporting such queries. We need to be able to
distinguish the times during which sOlnething is true in the real world (valid
time) from the times it is true in the database (transaction time). The
period during which a given person rnanaged a departrnent can be indicated by
two fields from and to, and queries must reason about time intervals. further,
temporal queries require the DBMS to be aware of the anolTIalies associated
with calendars (such as leap years).

29.8 BIOLOGICAL DATABASES

Biolnfornlatics is an emerging field at the intersection of Biology and COHlputer
Science. FraIn a database standpoint, the rapidly growing data in this area h~LS

(at lea..'3t) two interesting characteristics. First, a lot of loosely str'UchLTcd data
is widely exchanged, leading to interest in integration of such data. This ha",,,
rnotivated SOlne of the research in the area of XML repositories.

The second interesting feature is sequence data. DNA sequences are being
generated at a rapid pace by the biological cOllnnunity. The field of biological
inforrnation rnanagernent and analysis ha"s becorne very popular in recent years,
called bioinformatics. Biological data, such as DNA sequence data, charac­
terized by cornplex structure and nurnerous relationships arnong data elernents,
rllany overlapping and incoruplete or erroneous data fragrnents (because experi­
Inentally collected data froIll several groups, often working on related problelIls,
is stored in the databa"ses), a need to frequently change the databa..se 8chcrna
itself as ne¥l kinds of relationships in the data are discovered, and the need to
rnaintain several versions of data for archival and reference.
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29.9 INFORMATION VISUALIZATION

As coruputors becoule faster and rnain rnornory cheaper, it beconies increa...~­
ingly feasible to create visual presentations of data, rather than just text-b&'3ed
reports. Data visualization rnakes it easier for users to understand the infor­
Ination in large cornplex data..'3ets. The challenge here is to lTlake it easy for
users to develop visual presentations of their data and interactively query such
presentations. Although a nurnber of data visualization tools are available,
efficient visualization of large datasets presents Inany challenges.

The need for visualization is especially irnportant in the context of decision
support; when confronted with large quantities of high-dhnensional data and
various kinds of data sUffirnaries produced by using analysis tools such as SQL,
OLAP, and data ll1ining algorithrns, the inforrnation can be overwhehning.
Visualizing the data, together with the generated sumrnaries, can be a powerful
way to sift through this infonnation and spot interesting trends or patterns.
The hurnan eye, after all, is very good at finding patterns. A good framework
for data mining lTIUst combine analytic tools to process data and bring out
latent anolllalies or trends with a visualization environment in which a user
can notice these patterns and interactively drill down to the original data for
further analysis.

29.10 SUMMARY

'rhe database area continues to grow vigorously, in terrns of both technology
and applications. The fundarnental rea...,on for this growth is that the amount
of inforrnation storE~d and processed using computers is growing rapidly. Re­
gardless of the nature of the data and the intended applications, users need
database rnanagernent systems and their services (concurrent access, crash re­
covery, ea...,y and efficient querying, etc.) a'3 the vohllue of data increases. As
the range of applications is broadened, however, SOIlIC shortcornings of current
DBMSs becoIne serious lilTlitations. These problerus are being actively studied
in the database research cornrnunity.

'The coverage in this book provides an introduction, but is not intended to cover
all aspects of datab<:"k'3e systerns. Anlple rnaterial is available for further study,
as this chapter Hlustrates, and we hope that the reader is rnotivated to pursue
the leads in the bibliography. Bon voyage!
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[338] contains a conlprehensive treatnlent of all &<spects of transaction processing. See [241J
for several papers that describe new transaction models for nontraditional applications such
as CAD/CATv1. [1,577,696,711,761] are SaIne of the Inany papers on real-tirne databases.

Detenllining which entities are the same across different databases is a difficult probleIn;
it is an example of a semantic lllisrnatch. Resolving such nlismatches h3.." been addressed
in rIlany papers, including [424, 476, 641, 663]. [389] is an overview of theoretical work in
this area. Also see the bibliographic notes for Chapter 22 for references to related work on
rnultidatabases, and see the notes for Chapter 2 for references to work on view integration.

[304] is an early paper on main mernory databa..ses. [102, 406] describe the Dali rnain rllerllory
storage manager. [421] surveys visualization idioms designed for large databases, and [342]
discusses visualization for data mining.

Visualization systerns for databases include DataSpace [592], DEVise [489], IVEE [27], the
Mineset suite from SGI, Tioga [31], and VisDB [420]. In addition, a number of general tools
are available for data visualization.

Querying text repositories has been studied extensively in information retrieval; see [626] for
a recent survey. This topic has generated considerable interest in the database cOITnnunity
recently because of the widespread use of the Web, which contains many text sources. In
particular, HTML dOCUITlents have sonle structure if we interpret links as edges in a graph.
Such documents are examples of selllistructured data; see [2] for a good overview. Recent
papers on queries over the Web include [2, 445, 527, 564].

See [576] for a survey of multimedia issues in database management. There has been much
recent interest in database issues in a mobile computing environment; for example, [387,398].
See [395] for a collection of articles on this subject. [728] contains several articles that cover
all aspects of telnporal databases. The use of constraints in databases has been actively
investigated in recent years; [416] is a good overview. Geographic Infonnation SysteIT1S have
also been studied extensively; [586] describes the Paradise systern, which is notable for its
scalability.

'The book [794] contains detailed discussions of ternporal databases (including the TSQL2
language, which is influencing the SQL standard), spatial and nnIltimedia databases, and
uncertainty in databa.ses.
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THE MINIBASE SOFTWARE

Practice is the best of all instructors.

-Publius Syrus, 42 B.C.

Minibase is a small relational DBMS, together with a suite of visualization
tools, that has been developed for use with this book. While the book rnakes
no direct reference to the software and can be used independently, Minibase
offers instructors an opportunity to design a variety of hands-on &'3signments,
with or without programming. To see an online description of the software,
visit this URL:

http://www.cs.wisc.edu/-dbbook/minibase.html

The software is available freely through ftp. By registering themselves as users
at the UR,L for the book, instructors can receive prompt notification of any
Inajor bug reports and fixes. Sarnple project assignments, which elaborate on
SOIne of the briefly sketched ideas in the project- based exercises at the end of
chapters, can be seen at

http://www.cs.wisc.edu/-dbbook/minihwk.html

Instructors should consider making sillall lllodifications to each ::t..ssignlnent
to discourage undesin1ble 'code reuse' by students; assignrnent handouts for­
rnatted using Latex are available by ftp. Instructors can also obtain solu­
tions to these assiglunents by contacting the authors (raghu@cs. wise. edu,
j ohannes@cs. cornell. edu).

30.1 WHAT IS AVAILABLE

NIiniba.se is intcllded to snpplCIllent the use of a cornrnercial DBlVfS such as
()racle or Sybase in course projects, not to replace theIn. \Vhile a cornlnerciaJ
DBl\r1.S is ideal for SC:~L assignrnents, it does not help students understand hovv
the DBNIS w'orks. IVlinibase is intended to address the latter issue; the subset
of S(~L that it supports is intentionally kept 8rnall, and students should also
be asked to use a connnercialDBIVlS for writing SQL queries and prograrns.
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:NIinibase is provided on an as-is basis with no \varrantics or restrictions for
educational or personal use. It includes the fol1o\ving:

• Code for a sl11al1 single-user relational DB1VIS, including a parser and query
optirnizer for a subset of SQL, and cOlnponents designed to be (re)written
by students as project assignrnents: heap files, buffer 1nanager, B+ trees,
Borting, and jo'ins.

30.2 OVERVIEW OF MINIBASE ASSIGNMENTS

Several assignrnents involving the use of l\!linibase are described here. Each of
these has been tested in a course already, but the details of how l\!linibase is
set up might vary at your school, so you 111ay have to rnodify the a..'3Sigluncnts
accordingly. If you plan to use these assignrnents, you are advised to download
and try thern at your site well in advance of handing thern to students. We
have done our best to test and docurnent these assignrnents and the Minibase
software, but bugs undoubtedly persist. Please report bugs at this URL:

http://www.cs.wisc.edu/-dbbook/minibase.comments.html

We hope users will contribute bug fixes, additional project assignments, and
extensions to Minibase. These will be rnade publicly available through the
Minibase site, together with pointers to the authors.

In several assignrnents, students are asked to rewrite a cornponent of Minibase.
The book provides the necessary background for all these assignrnents, and
the cl-'3signrnent handout provides additional systern-Ievel details. The online
I-rrML docurnentation provides an overvic\v of the softv.rare, in particular the
corllponent interfaces, and can be downloaded and installed at each school that
uses Minibcl-'3e. ~rhe projects that follow should be assigned after covering the
relevctnt rnaterial fro1ll the indicated chapter:

II Buffer Manager (Chapter 9): Students c\,re given code for the layer
that rnanag(~s space on disk and supports the concept of pages \vith page
ids. ~rhey are a"sked to i1nplelnent a buffer lnanager that brings requested
pages into Inelnory if they an.'. not already there. ()ne variation of this
assignrnent could use differerlt repla,ceruent policies. Students are asked to
aSSlllne a single-user enVir0l11nent, vvith no concurrency control or recovery
1nanagclnent.

11III HF Page (Chapter 9): Students rllust\vrite code that rnanages records
on a page using (1, slot-directory pa,ge forrnat to keep track of the records.
Possible variants include fixed-length versus variable-length records and
other vvays to keep track of records on a pagf'..
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• Heap Files (Chapter 9): {,Ising the HF page and buffer manager code,
stludents are asked to inlplernent a layer that supports the abstraction of
files of unordered pages, that is, heap files.

• B+ Trees (Chapter 10): This is one of the lnore cornplex assignrnents.
Students have to implernent a page class that Inaintains records in sorted
order vvithin a page and iUlplernent the B+ tree index structure to iInpose a
sort order across several leaf-level pages. Indexes store (key, record-pointer)
pairs in leaf pages, and data records are stored separately (in heap files).
Shnilar assignments can easily be created for Linear Hashing or Extendible
IIa.'1hing index structures.

• External sorting (Chapter 13): Building on the buffer manager and
heap file layers, students are asked to irnplelnent external 111erge-sort. The
enlphasis is on rninimizing I/O rather than on the in-melnory sort used to
create sorted runs.

• Sort-Merge Join (Chapter 14): Building upon the code for external
sorting, students are asked to implelnent the sort-merge join algorithm.
This assignment can be easily lnodified to create assignments that involve
other join algorithms.

• Index Nested-Loop Join (Chapter 14): rrhis assignrnent is silnilar to
the sort-merge join assignruent, but relies on B+ tree (or other indexing)
code, instead of sorting code.

30.3 ACKNOWLEDGMENTS

The Minibase software was inpired by Minirel, a sInall relational DBMS de­
veloped by David DeWitt for instructional use. l\rlinibase wa'S developed by a
large nUlllber of dedicated students over a long tilne, and the design was guided
by Mike Carey and R. Ralnakrishnan. See the online docurnentation for more
on rvlinibase's history.
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Coordinator site, 758
Correlated queries, 147, 504,

506
Cosine normalization, 9:32
Cost estirnatioIl, 48248:3
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for ADT methods. 803
real systems, 485

Cost model, 440
COUNT, 151
Covering constraints, 38
Covert channel, 708
Crabbing, 5fi2
Crash recovery, 9, 18, 22, 541,

580, 583~584, 587--588,
590, 592, 595-596

Crawler, 9:39
CREATE DOfvlAIN, 166
CREATE statement

SQL, 696
CREATE TABLE, 62
CREATE TRIGGER, 169
CREATE TYPE, 167
CREATE VIEW, 86
Creating a relation in SQL, 62
Critical section, 567
Cross-product operation, 105
Cross-tabulation, 855
C8564 at Wisconsin, xxviii
CSS,249
CUBE operator, 857, 869, 887
Cursors in SQL, 189, 191
Cylinders in disks, 306
Dali, 1001
Data definition language, 12
Data Definition Language

(DDL), 12, 62, 131
Data dictionary, 395
Data Encryption Standard, 710
Data Encryption Standard

(DES), 710
Data entries in an index, 276
Data independence, 9, 15, 74:3

distributed, 736
logical, 15, 87, 7:36
physical, 15, 736

Data integration, 995
Data fvlanipulatioll Language,

16
Data ivianiplliation Language

(D1vlL), 131
Data mining, 7, 849, 889
Data model, 10

multidimensional, 849
sernantic, 10, 27

Data partitioning, 7:30
skew, 7:30

Data reduction, 747
Data skew, 7:30, 73:3
Data source, 195
Data streams, 916
Data striping in RAID, 309 -:310
Data sllblanguage, 16
Data warehouse, 7, 678, 754,

848, 870871
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dean, 871
extract, 870
load, 871
metadata, 872
purge, 871
refresh. 871
transform, 871

Database administrators, 21-·22
Database architecture

Client-Server VS.

Collaborating Servers, 738
Database design

conceptual design, 13, 27
for an ORDBivIS, 79~J

for OLAP, 85~3

impact of concurrent access,
678

normal forms, 615
null values, 608
physical, 291
physical design, 14, 28, 650
requirements analysis step, 26
role of expected workload, 650
role of inclusion dependencies,

639
schema refinement, 28, 605
tools, 27
tuning, 22, 28, 650, 667, 670

Database management system,
4

Database tuning, 22, 28, 650,
652, 667

Databa...,es, 4
Dataflow for parallelism, 7~31,

733
Dataguides, 959
Datalog, 818-·..·819, 822

aggregation, 8:31
comparison with relational

algebra, 830
input and output, 822
least fixpoint, 825-826
lea..'3t rnodel, 824, 826
model, 82:3
rnultiset generation, 8:32
negation, 827·828
range-restriction and

negation, 828
rules, 819
safety and range-restriction,

826
stratification, 829

DataSpace, lOCH
Dates and times in SQL, 140
DB2

Index Advisor, 665
DBA. 22
D BI Iibrary, 2.52
DBMS. 4

DBrviS architecture, 19
DBl\IS vs. as. :322
DDL,12
Deadlines

hard VS. soft, 994
Deadlock, 5:.n

detection, 556
distributed, 756
global VS. local, 756
phantom, 757
prevention, 558

Decision support, 847
Decision trees, 906

pruning, 907
splitting attributes, 907

Decompositions, 609
dependency- preservation, 621
horizontal, 674
in the absence of redundancy,

674
into 3NF, 625
into BCNF, 622
lossless-join, 619

Decorrelation, 506
Decryption, 709
Deductions, 820
Deductive databases, 820

aggregation, 831
fixpoint semantics, 824
least fixpoint, 826
least model, 826
least model semantics, 82:3
:Nlagic sets rewriting, 838
negation, 827·-828
optimization, 834
repeated inferences, 834
Seminaive evaluation, 836
unnecessary inferences, 834

Deep equality, 790
Denormalization, 652, 6E)9, 672
Dependency-preserving

decomposition, 621
Dependent attribute, 904
DES, 710
Deskstar disk, 308
DEVise, 1001
Difference operation, 105, 141
Digital Libraries project, 997
Digital signatures, 71:3
Dimensions, 849
Directory

of pages, :326
of slots, :329

Directory doubling, :175
Dirty bit, :.H8
Dirty page table, 585, 589
Dirty read, 526
Discretionary access control,

695
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Disjunctive selection condition,
445

Disk array, ~309

Disk spa.ce manager, 21, :304,
316

Disk tracks, 30ti
Disks, :305

access times, 284, 308
blocks, ;306
controller, 307
cylinders, tracks, sectors, :306
head, 307
physical structure, 306
platters, 306

Distance function, 911
Distinct type in SQL, 167
Distributed data independence,

736, 743
Distributed databases, 726

catalogs, 741
commit protocols, 758
concurrency control, 755
data independence, 743
deadlock, 756
fragmentation, 739
global object names, 742
heterogeneous, 737
join, 745
lock management, 755
naming, 741
optimizatioIl, 749
project, 744
query processing, 743
recovery, 755, 7,58
replication, 741
scan, 744
select, 744
Semijoin and Bloomjoin, 747
synchronous vs. asynchronous

replication, 750
transaction management, 755
transparency, 7:36
updates, 750

Distributed deadlock, 756
Distributed query processing,

743
Distributed transaction

rnanagement I 755
Distributed transactions, 73G
Division, 109

in SQL, 150
Division operation, 109
Dl\fL, 16
Document type declarations

(DTDs),2:31
Docurncnt vector, 9:30
DoD security levels, 708
Domain, 29, 59
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Domain constraints, 29, Gl, 7:3,
166

Domain relational calculus, 122
Domain-key normal form, 648
Double buffering, <1:32
Drill-down, 854
Driver, 195·-196

manager, 195~196

types, 196
DROP, 696
Dropping tables in SQL, 91
DTDs, 231
Duplicates in an index, 278
Duplicates in SQL, 1:36
Durability, 521--522
Dynamic databases, 560
Dynamic hashing, 373, 379
Dynamic indexes, 344, 373, :379
Dynamic linking, 786
Dynamic SQL, 194
Early binding, 788
Electronic commerce, 221
Elements in X]\;IL, 228
Embedded SQL, 187
Encapsulation, 785
Encryption, 709, 712
Enforcing integrity constraints,

70
Entities, 4, 13
Entity references in XML, 229
Entity sets in the ER model, 28
Enumerating alternative plans,

492
Equality

deep vs. shallow, 790
Equality selection, 292
Equidepth histogram, 487
Equijoin, 108
Equivalence of relational

algebra expressions, 414
Equiwidth histogram, 487
ER model

aggregation, 39, 84
attribute domains, 29
attributes, 29
class hierarchies, :37, 8:3
descriptive attributes, 30
entities and entity sets, 28
key constraints, :32:33
keys, 29
overlap and covering, :38
participation constraints, 34,

79
EH. rnodel

relationships
and relationship sets, 29
many-to-many, :3:3
many-to-one, :t3
one-to-many, :.3:3

roles, :32
weak entities, :35, 82

ERP, 7
Event handler, 247
Events activating triggers, 168
Example queries

Q1, 110, 120, 123, 137, 145,
147, 154

Q2, 112, 120, 12:3, 1:39, 146
Q3, 11:3, 139
Q4, 113, I:N
Q5, 113, 141
Q6, 114, 142, 149
Q7, 115, 121, 123
Q8, 115
Q9, 116, 121, 124, 150
Q10, 116
Q11, 117, 12:3, 135
Q12, 119
Q13, 120
Q14, 121, 124
Q15, 134
Q16, 138
Q17, 140
Q18, 140
Q19, 143
Q20, 144
Q21, 146
Q22, 148
Q23, 148
Q24, 149
Q25, 151
Q26, 151
Q27, 152
Q28, 152
Q29, 15~3

Q30, 153
q:n, 154
Q32, 155
Q33, 158
Q34, 159
Q35, 160
Q3G, 160
Q37, 161

Exclusive locks, 5~n

EXEC SQL, 187
Execution plan, 19
Expensive predicates, 804
Exploratory data analysis, 849,

890
Expressions in SQL, L39, 16::J
Expressiv€~ power

algebra VS. calculus, 124
Extendible hashing, ::173

directory doubling, 375
global depth, ::376
local deptlL 377

Extensibility
in an optimizer, 80:3

lO5t7

indexing ne,'" types, 800
Extensible Markup Language

(XtvIL), 228, 231...··232
Extensible Style Language

(XSL), 228
External schema, 14
External sorting, 422, 424, 428,

4::30. 4:32, 732
Failure

media, 541, 580
system crash, 541, 580

False positives, 938
Fan-out, 282, ~345, 358-359
Feature vectors, 970, 972
Field, 59
FIFO, 322
Fifth normal form, 638
File, 20

of records, 275
File organization, 274

clustered, 287
hashed, 279
indexed, 276
random, 284
sorted, 285
tree, 280

First in first out (FIFO) policy,
321

First normal form, 615
Fixed-length records, 327
Fixpoint, 824

Naive evaluation, 835
Seminaive evaluation, 836

Fixpoint evaluation
iterations, 834

Fbrce vs. no-force, 586
Force-write, 583, 759
:Forced reinserts, 985
Forcing pages, :~23, 541, 583
Foreign key constraints, 6Ei
Foreign keys, 76

versus aids, 796
Formulas, 118
Fourth normal form, 6:36
Fragmentation, 7:39,··740
Frequent itemsets, 89:3

a priori property, 893
Fully distributed lock

management, 756
Functional dependencies, 611

Armstrong's Axioms, 612
attribute closure, 614
closure, 612
minimal cover, 625
projecti0I1; 621

.Fuzzy checkpoint, 587
Gateways, 737
GenBank, 997
Generalization, :~8
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Generalized Search Tn..'es, 987
Geographic Information

Systems (GIS), 971, 998
Get next tuple t 408
GiST, 801, 987
Global deadlock detection, 756
Global depth in extendible

ha.shing, 376
GRANT OPTION, 696
G RANT statement

SQL, 695, 699
Granting privileges in SQL, 699
Grid directory, 978
Grid files, 978

convex regions, 981
Group commit, 996
Grouping in SQL, 154
Hash functions, 279, 372, 379,

735
Hash indexes, 279
Hash join, 463

parallel databa.ses, 733~~734

Hash partitioning, 730
Hashed files, 279
Heap files, 20, 276, 284, 324
Height of a tree, 282, 345
Heterogeneous databases, 737

gateways, 737
Hierarchical clustering, 912
Hierarchical data model, 6
Hierarchical deadlock

detection, 757
Histograms, 485,--486

compressed, 487
equidepth, 487
equiwidth, 487
real systems, 485

Horizontal decomposition, 674
Horizontal fragmentation,

739~-740

Host language, 16, 187
Hot spots, 535, 674, 678, 680
HT~/lL, 226, 228, 1001

tags, 226
HTf,,1L Fonus, 242
HTTP

absence of state, 258
request, 224
response, 224

HTTP protocol, 223
Hubs, 941
Hmnan Genome project, 997
Hybrid ha..sh join, 465
HyperText Markup Language

(HTML), 226, 228
IBlvI DB2, 167, ~322,,32:3, :327,

331, 333, 357, 359. 422,
446, 45245:3, 485, 496,
500, 506, 573, 582, 709,

776, 780, 790, 818, 869,
882

Iceberg queries, 896
Identifying owner, 36
IDS, 6
1mplementation

aggregation, 469
joins, 455, 457..,·458, 465

hash, 46~3

nested loops, 454
projections, 447--449

hashing, 449
sorting, 448

selections, 401, 441---442,
444---446

with disjunction, 446
B+ tree, 442
hash index, 444
no disjunction, 445
no index, 401, 441~442

set-operations, 468
IMS, 6
Inclusion dependencies, 639
Incremental algorithms, 403
Index, 14, 276

duplicate data entries, 278
alternatives for data entries,

276
B+ tree, 344
bitmap, 866
clustered VB. unclustered, 277
composite key, 295
concatenated key, 295
data entry, 276
dynamic, 344, 373, 379
equality query, 295
equality vs. range selection,

292
extendible hashing, 373
fan-out, 282
h&,,;h, 279, ~371

buckets, :371
ha.sh functions, ~372

primary and overflow pages,
371

in SQL, 299
ISAM, 341
linear haBhing, :379
matching a selection, 296, 398
multidimensional, 97:3
primary VS. secondary, 277
range queries and composite

key indexes, 295
spatial, 97:3
static, :,341
static hashing, :371
tree, 280
unclustered, 288 289
unique, 278
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Index advisor, 66:3
Index configuration, 663
Index entries, 3:39
Index locking, 561
Index nested loops join, 402,

457
Index selection, 65:3
Index tuning, 667
Index-only evaluation, 293, 402
Index-only plans, 662
Index-only scan, 452, 471, 495
Indexes

choice, 291
Indexing new data types, 800
Inference and security, 715
Inferences, 820
Information retrieval, 927
Informix, 322-323, 327, 331,

:333, 359, 422, 446,
452~453, 485, 500, 506,
573, 582, 709, 776, 780,
866, 869

Informix DDS, 167, 790
Inheritance hierarchies, 37, 83
Inheritance in object

databases, 787
Inheritance of attributes, 37
Insertable-into views, 89
Instance of a relation, 59
Instance of a relationship set,

30
Integration, 995
Integrity constraints, 9, 12, 32,

34, 38, 6:3, 79
in SQL, 167
spatial, 971
domain, 61, 73
foreign key, 66
in SQL, 165--·-166
key, 64
transactions in SQL, 72

Intelligent Miner, 914
Interface for a class, 80l)
Interference, 728
Internet databases, 7
Interprocess communication

(IPC), 802
Intersection operation, 104, 141
Inverse document frequency

(IDF), 9:31
Inverted indexes, ~):35

ISA hierarchies, :37, 899
ISAtvl, 292, 341
ISO, 6, 58
Isolation, 521
Isolation level. 199
Isolation level in SQL, 5:38

READ UNCO?vlMITTED.
5:39
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REPEATABLE READ, 5:39
SERlALIZABLE, 5~39

Itemset, 89~3

a priori property, 893
frequent, 893
support, 89~3

Iterations, 834
Iterator interface, 408
IVEE, 1001
Java

servlet, 254
Java Database Connectivity

(JDBC), 195, 219, 737,
870

Java virtual machine, 786
J avaScript, 245
JDBC, 195, 198, 219, 737, 870

architecture, 196
autocommit, 198
connection, 198
data source, 196
Database.lVletaData class, 205
driver management, 198
driver manager, 195-196
Exceptions, 203
PreparedStatement class, 200
ResultSet class, 201
Warnings, 203

JDBC URL, 198
JDs, 638
Join dependencies, 6:38
Joins, 107

Bloomjoin, 748
definition, 107
distributed databases, 745
equijoin, 108
implementation, 454, 463

block nested loops, 455
hybrid hash, 465
index nested loops, 457
sort-nwrge, 458

natural join, 108
outer, 164
parallel databases, 732, 7:34
Sernijoin, 747

KDD, 891
Key, 29, 6ll
Key compression, :358
Key constraints, :32·<n
Keys

candidate, 64, 76
candidate vs. search, 280
composite search, 295
foreign, 76
foreign key, 6G
prirnary, 65

Keys constraints, 64~-65

Knowledge discovery, 890
Larg(} object, 776

LastLSN I 585
Latch, 555
Late binding, 788
Least fixpoints, 822, 825
Least model = least fixpoint,

826
Least models, 822, 824
Least recently used (LRU)

policy, :321
Left-deep trees, 415
Legal relation instance, 6:3
Level counter in linear ha.."hing,

~379

Levels of abstraction, 12
Lexicon, 935
Linear hashing, 379

family of hash functions, 379
level counter, 379

Linear recursion, 831
Linear scales, 979
LOB, 776
Local deadlock detection, 756
Local depth in extendible

hashing, 377
Locators, 776
Lock downgrades, 556
Lock escalation, 566
Lock manager, 21, 554

distributed databases, 755
Lock upgrade, 555
Lock-coupling, 562
Locking, 18

downgrading, 556
B+ trees, 561
concurrency, 678
Conservative 2PL, 559
distributed databases, 755
exclusive locks, 531
lock escalation, 566
lock upgrade, 555
IIlultiple-granularity, 564
performance implications, 678
shared locks, 5:n
Strict 2PL, 5:31
update locks, 556

Locking protocol, 18, 5:30
Log, 18, 522, 542, 582

abort record, 58~3

cornrnit record, 58:3
compensation record (CLR),

58:3
end record, 58:3
force-write, 58:3
lastLSN, 585
pageLSN, 582
sequence number (LSN), 582
tail, 582
update record format, 58:.3
WAL, 18

lO~9

Log record
prevLSN field, 583
transID field, 583
type field, 583

Log-based Capture, 752
Logical data independence, 15,

87, 7:36
views, 15

Logical schema, 13, 27
Lossless-join decomposition,

619
Lost update, 529
LRU, :322
Machine learning, 890
.lViagic Sets, 506
Magic sets, 837-838
Main memory databases, 996
Nlandatory access control, 695

objects and subjects, 706
lVlany-to-many relationship, 33
Many-to-one relationship, 33
Market basket, 892
Markup languages, 226
Nlaster copy, 751
Ma."ter log record, 587
Matching index, 398
Nlatching pha."e in hash join,

463
Materialization of intermediate

tables, 407
Materialization of views, 874
Materialized views

refresh, 876
MathNIL, 2:35
MAX, 151
.Nlean-time-to-failure, 311
Ivleasures, 849
:tY1edia failure, 541, 580, 595
lVledia recovery, 595
Medical imaging, 971
lVlelton

,1.,781
:MeIIlory hierarchy, :305
IVlerge operator, 731
Merge sort, 424
lVletadata, :.394, 872
I'vlethods

caching, 802
interpreted VB. compiled, 802
security, 801

.lVlicrosoft SQL Server, :322-<32:3,
:327, :3::n, :3::3:3, :357, :359,
422, 446·~·447, 452--453,
485, 49G, 500, 506, 57:3,
582, 665, 709, 776, 8G6,
869, 882

I\IIN, 151
lV1ineset, 1001
Miniba..se software, 1002
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Minimal cover, 625
I'vIirroring in RAID, ~n~3

Lvlobile databases, 995
l\'Iodel, 82:.3
rVlodel maintenance. 916
l'vlodifying a table in SQL, 62
MOLAP,850
j'viost recently llsed CMRU)

policy, 321
lv'IRP, 7
.MRU, :322
l\ilultidataba..se system, 737
.lVlultidimensional data model,

849
Multilevel relations, 707
Iv1 ultilevel transactions, 994
Multimedia databases, 972, 997
Multiple-granularity locking,

564
Multiple-query optimization,

507
Multisets, 135, 780, 782
Multivalued dependencies, 634
Multiversion concurrency

control, 572
MVDs,634
Naive fixpoint evaluation, 835
Named constraints in SQL, 66
Naming in distributed systems,

741
Natural join, 108
Natural language searches, 930
Nearest neighbor queries, 970
Negation in Datalog, 828
Negative border, 919
Nested collections, 783, 798
Nested loops join, 454
Nested queries, 145

implementation, 504
Nestf~d relations

nesting, 784
ullIwsting, 78:3

Nested transactions, 535, 994
Nesting operation, 784
Network data model, 6
NO AC'rION in foreign key"s,

71
Non-preemptive deadlock

prevention, 559
Nonblocking algorithms, 865
Nonblocking comrnit protocol,

76:3
NolIVolatile storage, :306
Normal forms, 615

INF,615
BC~NP, 616
2NF,619
:3NF, 617

Synthesis, 628

4NF, 6:36
5NF,6:38
DKNF,648
normalization, 622
PJNF, 648
tuning, 669

Normalization, 622, 652
Null values, 608

implementation, 3:32
in SQL, 67, 69, 71, 162

Numerical attribute, 905
Object databases, 12
Object exchange model

(OEj\iI), 947
Object identifiers, 789
Object manipulation language,

806
Object-oriented DBl\iIS, 773,

805, 809
Object-relational DBJ.\!IS, 773,

809
ODBC, 195, 219, 737, 995
ODL, 805
ODMG data model

attribute, 805
class, 805
inverse relationship, 805
method, 806
objects, 805
relationship, 805

OEM,947
Oids, 789·790

referential integrity, 796
versus foreign keys, 796
versus URLs, 792

OLAP, 684, 848· ..-849, 887
cross-tabulation, 855
datab~<;;e design, 85~~

dimension table, 852
fact table, 850
pivoting, 855
roll-up and drill-down, 854
SQL window queries, 8f)9

OLTP, 847
O?vfL, 80G
On-the-fly evaluation, 407
Olle-to-rnany relationship, ~3:3

One-to-one relationship, :.34
One-way' functions, 710
Online aggregation, 864
Online analytic processing

(OLAP),848
Online transact.ion processing

(OI:rp), 847
OODB?vfS vs. ORDBMS. 809
Opaque types, 785
Open an iterator, 408
Open Database Connectivity

(ODBC), 195, 219, 7:37,
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995
Optimistic concurrency control,

566
validation, 567

Optimizers
cost estimation, 482

real systems, 485
decomposing a query into

blocks, 479
extensibility, 80:3
for OHDBMSs, 803
handling expensive

predicates, 804
histograms, 485
nested queries, 504
overview, 479
real systems, 485, 496, 500,

506
relational algebra

equivalences, 488
rule-based, 507

OQL, 805, 807
Oracle, 27, :322-,,323, :327, :331,

333, 357, 359, 422,
446··447, 452--453, 485,
500, 506, 573, 582, 709,
776, 780, 790, 803, 866,
869, 882

ORDBIvIS database design, 793
ORDBMS implementation, 799
ORDBMS vs. OODBIVIS, 809
ORDBMS vs. RDB.lV1S, 809
Order of a B+ tree, 345
Outer joins, 164
Overflow in hash join, 464
Overlap constraints, 38
Overloading, 788
Owner of a weak entity, :36
Packages in SQL:1999, 131
Page abstraction, 274, 316
Page fonnats, 326

fixed..·length records, 327
variable-length records, ~328

Page rephtcement policy,
:.:~18 .. 319, :~21

PageLSN, 582
Paradise, 1001
ParaJlel database architecture

shared-memory VS.

shared-nothing, 727
Parallel databases, 726·727

blocking, 729
bulk loading, 731
data partitioning, 729·730
interference, 728
join, 7:32, 7:l1
merge and split, 7:31
optimization, 7:.35
pipelining, 729
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scan, 7:31
sorting, 732
speed-up VS. scale-up, 728

Parameteric query
optimization, 507

Parity, ~n1

Partial dependencies, 617
Partial participation, ~34

Participation constraints, :34,
79

Partition views, 882
Partitional clustering, 912
Partitioned parallelism, 729
Partitioning, 739

hash VS. range, 7~34

Partitioning data, 730
Partitioning phase in ha...,h join,

463
Path expressions, 781, 948
Peer-to-peer replication, 751
Perl modules, 252
Phantom deadlocks, 757
Phantom problem, 560, 986
Phantoms, 538, 559

SQL,538539
Physical data independence,

15, 736
Physical database design, 14,

28, 291, 650
Physical design

choices, 652
clustered indexes, 293
co-clustering, 660
index selection, 65~3

index-only plans, 662
multiple-attribute indexes,

297
nested queries, 677
query tuning, 670, 675
reducing hot spots, 679
role of expected workload, 650
tuning queries, 670
tuning the choice of indexes,

667
tuning the conceptual

schema, 669
tuning wizard, 6fj:3, 665

Physical schema, 14
Pin count, 318
Pinning pages, ~n9

Pipelined €~valuation, 407, 4Hl,
496

Pipelined parallelisrn, 729
Pivoting, 855
Platters on disks, ::W6
PI\'li\lL, 891
Point data, 969
l)ointer swizzling, 802
Polyinstantiation, 708

Postings file, 935
Precedence graph, 551
Precision, 934
Precommit, 76:3
Predicate locking, 5tH
Predictor attribute, 904

categorical, 905
numerical, 905

Preemptive deadlock
prevention, 559

Prefetching
real systems, 323

Prefetching pages, 322
Prepare messages, 759
Presumed Abort, 762
PrevLSN, 583
Primary conjunct in a

selection, 399
Primary copy lock

management, 755
Primary index, 277
PRH.,,1ARY KEY constraint in

SQL, 66
Primary keys, 29, 65

in SQL, 66
Primary page for a bucket, 279
Primary site replication, 751
Primary storage, 305
Primary vs. overflow pages, 371
Privilege descriptor, 701
Probing phase in hash join, 46:3
Procedural Capture, 753
Process of knowledge discovery,

891
Project-join normal form, 648
Projections, 744

definition, 10:3
ilnplementation, 447

Prolog, 819
Pruning, 907
Public-key encryption, 710
Publish and subscribe, 751
Pushing selections, 409
Quantifiers, 118
Query, 16
Query block, 479
Query evaluation plan, 405
Query language, 16, 7:3, 100

Datalog, 818..·819
domain relational calculus,

122
OQL, 807
relational algebra, 102
relational completeness, 126
SQL, 130
tuple relational calculus, 1.17
XQuery, 948

Query rl1odification, 87;.~

Query optirnization, 404, 507
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bushy trees, 415
deductive databases, 8:34
distributed databases, 749
enulneration of alternative

plans, 492
left-deep trees, 415
overvievv, 405, 479
parallel databases, 735
pushing selections, 409
reduction factors, 483, 485
relational algebra

equivalences, 488
rule-ba.."ed, 507
SQL query block, 479
statistics, 395

Query optimizer, 19
Query pattern, 838
Query processing

distributed databases, 743
Query tuning, 670
R trees, 982

bounding box, 982
R+ trees, 986
RAID, 309--310

levels, :310
mirroring, 313
parity, ~H1

redundancy schemes, :311
reliability groups, 312
striping unit, 310

Randomized plan generation,
507

Range partitioning, 730
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