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RELIABLE CODE

Software Structures:  
A Careful Look
David Lorge Parnas

IF ALL SOFTWARE experts agree on 
anything, it is that software shouldn’t 
be a monolith (a large system that is, 
for all practical purposes, indivis-
ible). In the half century since Edsger 
Dijkstra published his groundbreak-
ing paper, “The Structure of the 
‘THE’-Multiprogramming System,”1 
it has become clear that the ability to 
design a software system’s structure 
is at least as important as the ability 
to design efficient algorithms or to 
write code in a particular program-
ming language.

Although the word “structure” 
appeared in the paper’s title and 
was used seven more times, Dijk-
stra never defined the term. Closer 
examination revealed that he was 
discussing at least three distinct 
structures.2 His failure to define 
“structure,” or to clearly distin-
guish the structures that were im-
portant in his software, has led 
many to confuse those structures. 
This article is intended to clarify 
what those structures are, their 
differences, and each one’s impor-
tance. They are as important today 
as they were in 1968.

What Is a Structure?
A software system’s structure is a 
division of that system into a set 
of parts and the relations between 
those parts. Confusion often arises 
because of the many types of parts 

and the many important relations 
between them.

What Parts Can We Discuss  
in Software?
The software world isn’t known for 
using consistent terminology—quite 
the contrary. This section defines 
four terms used in this article. Other 
authors explicitly or implicitly use 
other definitions. To understand this 
article, it is important to keep these 
definitions in mind. A comparison of 
the concepts follows the definitions.

Program
Definition: A program is a sequence 
of computer instructions that can be 
invoked (executed) by a computer.

Discussion: An executing program will 
cause changes to the state of the ma-
chine. The changes might either con-
tinue for a finite amount of time and 
then terminate or continue forever.

Module
Definition: A module is a set of pro-
grams together with the data objects 
they use, whose design and subse-
quent maintenance (revision) are in-
tended to be assigned to a developer 
or group of developers.

Discussion: Several modules might 
be assigned to the same develop-
ers. Over time, the team assigned 

the responsibility for a module will 
change. The division into modules 
is most significant when the proj-
ect has been assigned to a team 
rather than an individual. For fur-
ther discussion of the meaning of 
“module” and the criteria to use 
when designing modules, see “The 
Modular Structure of Complex 
Systems.”3

Component
Definition: A component is a collec-
tion of programs and data objects 
that is intended to be distributed, 
sold, installed, or replaced as a unit.

Discussion: The software product’s 
purveyor determines the product’s 
division into components. The pur-
veyor might do this as part of a 
marketing strategy, for ease of in-
stallation, or to simplify manage-
ment of the product line.

Process
Definition: A process is a sequence 
of events (state changes) in an exe-
cuting computer system.

Discussion: A process is usually the 
result of executing a program, which 
we call the process controller. That 
program may be controlling other 
processes at the same time.

The adjective “sequential” is often 
inserted before “process” because 
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no two events in a process can occur 
simultaneously.

Processes are units for the sched-
uler. The scheduler assigns a proces-
sor to a process, thereby allowing the 
sequence of events to be extended. 
The maximum number of processes 
that can proceed simultaneously is 
the number of processors. Some-
times, the number of active processes 
is smaller than the number of pro-
cesses, and some processors are idle.

In principle, processes should be 
designed so that no two events in a 
process could occur simultaneously 
without causing errors. If that isn’t 
done, the scheduler will be unneces-
sarily restricted, and some proces-
sors might be unnecessarily idle. In 
practice, because of the cost of creat-
ing and managing processes, events 
might be included in a single process 
even though they could safely occur 
simultaneously.

Contrasting These Concepts
People sometimes use these terms 
without clearly distinguishing them. 
This section contrasts the concepts.

Program versus module. A program is 
part of one module but might in-
voke programs from other modules. 
In other words, programs written by 
one programmer often invoke pro-
grams written by other program-
mers. Usually, a module comprises 
more than one program.3

Component versus module. A compo-
nent might be part of a module, a 
whole module, or a collection of 
programs from several modules. 
There is no reason to assume either 
that all parts of a component must 
be developed or maintained by the 
same programmers or that all pro-
grams in a module must be included 
in a component.

Program versus process. One pro-
gram will often control many pro-
cesses. Consequently, it is important 
to distinguish between a process 
and the program that controls it. 
The program controlling a process 
might invoke programs from many 
modules, and a module might per-
form its work by controlling several 
processes.

The bottom line. These concepts are 
distinct; no understanding of soft-
ware structure can be correct if they 
are confused.

Four Important Structures
This section describes the parts and 
relation for four important struc-
tures. Others are discussed in “On a 
‘Buzzword’: Hierarchical Structure.”2

Program uses Program
In the uses structure, the parts are 
programs, and the defining relation, 
uses, is defined by the following:

Given a program P with 
specification Sp and another 
program Q with specification 
Sq, we say that P uses Q if P can’t 
satisfy Sp unless Q is present and 
satisfies Sq.

Module part-of Module
If a module (work assignment) is 
considered too large, it can be sub-
divided into smaller modules. This 
defines a part-of relation between the 
modules. Note that the fact that P is 
part of M and invokes Q doesn’t im-
ply that Q is part of M. Q might have 
been written by another group.3

Program part-of Program
Dijkstra (among others) introduced 
programming by stepwise refine-
ment. In this process, the program-
mer begins with a short program in 

which major steps in the processing 
are represented by only a brief de-
scription of their function or sim-
ply a name. Each program is then 
refined—that is, replaced by a more 
detailed program. That program 
might be further refined in the same 
way until all its parts have been re-
fined to programs in the actual pro-
gramming language. This process 
produces a program with a clear 
structure (often called a structured 
program) that is easily parsed, doc-
umented, and analyzed.4

A program might use a program 
that isn’t part of it. A program might 
be used by a program that is part of 
another module.

Process gives-work-to Process.
In many systems, processes give 
work to other processes. For exam-
ple, one process might produce out-
put that must be printed and send it 
to another process that controls the 
printer. In the gives-work-to structure, 
the parts are processes, and the de-
fining relation is gives-work-to.

The Significance of Each 
Structure
These structures were important in 
the THE operating system.

The uses structure determined 
what subsets of the system were us-
able. Because there were no loops in 
the graph of the uses relation, THE 
programs could be arranged in levels,  
with the lowest level being programs 
that didn’t use any other programs 
and the ith level consisting of pro-
grams that used programs on level 
i – 1 or lower. As a result of the hi-
erarchical structure, construction 
and testing could be done bottom-
up. That is, the programs that used 
no other programs could be finished 
and tested before those that used 
them. This could continue level by 
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level until the highest-level programs 
had been tested.

The modules in THE were  
information-hiding modules3 and in-
troduced abstractions such as

• processes that appeared to proceed 
in parallel,

• a virtual memory for each pro-
cess that was larger than the 
actual main memory,

• a private console for each pro-
cess, and

• FIFO queues (transput streams) 
as a mechanism for passing data 
between processes.

Dijkstra’s computer didn’t have 
hardware that supported virtual 

memory. All translation from virtual 
to physical addresses was done by 
programs in the module that imple-
mented the virtual address space. In 
the original THE operating system, 
all those programs were on the same 
level of the uses hierarchy.

The gives-work-to structure was de-
signed to help prevent deadlocks, as 
explained in the PhD thesis of Nico 
Habermann,5 a member of Dijkstra’s 
team. A badly designed gives-work-to 
structure can result in system dead-
locks. There’s no reason why this 
structure should coincide with any 
other.

We must assume that the pro-
grams were structured as a result of 
stepwise refinement, which Dijkstra  

called structured programming.  
Dijkstra, in private discussions, of-
ten stated that structured program-
ming was the only way to write 
reliable programs.

When Dijkstra wrote about the 
“system hierarchy,” he didn’t make 
clear which of these structures he 
was discussing. In THE, the uses 
structure and the module struc-
ture coincided. The programs in the 
module that created the sequential-
process abstraction used no other 
programs and were all on level 0 of 
the structure defined by the uses re-
lation. The programs in the module 
that created the virtual-memory ab-
straction took advantage of the se-
quential processes when managing 

page transfers. The transput stream 
module’s programs could use the  
virtual-memory abstraction.

However, Dijkstra later realized 
that the two structures needn’t coin-
cide. He reported that he would have 
liked the sequential-process module 
to be able to use virtual addresses, but 
he also wanted the virtual-memory  
module to be able to use the process 
abstraction. When developing THE, 
he believed that the two structures 
should coincide, so both wouldn’t  
be possible. He chose to write  
the process-creating module using 
physical addresses so that the virtual-
memory module could use processes.

Much later, in a presentation 
and an informal note, he explained 

that he could have split the virtual- 
memory module, putting the pro-
grams that translated virtual ad-
dresses to physical addresses at the 
lowest level. This would have allowed 
the programs that implemented the 
sequential-process abstraction to use  
virtual addresses. The remainder  
of the virtual-memory module’s  
programs, which managed memory 
allocation, could then have used 
processes. In today’s computers, the 
address translation is done by hard-
ware, which is actually the lowest 
level in the uses structure. The pro-
grams that manage physical memory 
to implement virtual memory are at 
higher levels.

If Dijkstra had rebuilt his system 
in this way, the uses hierarchy would 
have had more levels than there were 
modules. Consequently, it would be 
wrong to talk about levels of abstrac-
tion. There would still be levels in the 
uses structure—one more than in the 
published version. There would still  
be the same modules implementing the 
same abstractions. However, the two 
structures would no longer coincide. 
Other examples of module structures 
in which the programs aren’t all at the 
same level of the uses hierarchy are ex-
plained in “Designing Software for 
Ease of Extension and Contraction.”6

Each module abstracts from 
something different; there’s no “more  
abstract than” relation between the 
modules. In general, the programs 
that implement an abstraction can 
be placed in many levels in a system’s 
uses hierarchy. When designers insist 
on levels of abstraction, it can lead 
to poor performance or duplication 
of certain functions.

Design and Document 
Structures before Coding
Dijkstra’s papers and presentations 
made it clear that he and his team 

Designing and documenting  
software structure is as demanding 
as coding.
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designed the structures before any 
code was written. The structure 
guided the coders; the result was a 
design that was “cleaner” than other 
systems of that time.

Dijkstra’s team was small, highly 
motivated, and very talented. Dijk-
stra, who described himself as the 
team’s captain, was very hands-on. 
They didn’t create precise docu-
mentation of the structure. With a 
larger team, one that was managed 
rather than “captained,” the lack 
of documentation would have led 
to miscommunication. That would 
have lengthened the development 
time and might have introduced 
errors.

The lack of documentation be-
came evident after Dijkstra’s team 
dispersed. The system was their 
legacy and was used for some time 
after they left. One member of the 
original team frequently received 
phone requests for help when a 
problem occurred. In that team 
member’s words, “The structure 
was clean and simple, but it existed 
only in our minds.” The lesson is 
clear: structure is vital, but unless 
you plan to discard the software 
when its authors move on, it must 
be documented.7

I f all software experts agree on 
anything, it is that software 
shouldn’t be a monolith. How-

ever, merely dividing the software 
into parts and discussing some of 
the relations between them is not 
enough to solve the real problem. 
Many distinct structures determine 
the software’s cost and quality. Each 
structure must be carefully designed 
and precisely documented.

Designing and documenting 
software structure is as demand-
ing as coding. Small details matter, 

clear design principles are needed, 
and precise interface specification is  
essential.

References
 1. E.W. Dijkstra, “The Structure of the 

‘THE’-Multiprogramming System,” 

Comm. ACM, vol. 11, no. 5, 1968, 

pp. 341–346; http://dx.doi.org 

/10.1145/363095.363143.

 2. D.L. Parnas, “On a ‘Buzzword’: Hier-

archical Structure,” Proc. 1974 IFIP 

Congress, North Holland, 1974, pp. 

336–339.

 3. D.L. Parnas, P.C. Clements, and 

D.M. Weiss, “The Modular Structure 

of Complex Systems,” IEEE Trans. 

Software Eng., vol. 11, no. 3, 1985, 

pp. 259–266.

 4. D.L. Parnas, J. Madey, and M. 

Iglewski, “Precise Documentation of 

Well-Structured Programs,” IEEE 

Trans. Software Eng., vol. 20, no. 12, 

1994, pp. 948–976.

 5. A.N. Habermann, “On the Har-

monious Cooperation of Abstract 

Machines,” PhD thesis, Dept. of 

Mathematics, Technological Univ. 

Eindhoven, 1967.

 6. D.L. Parnas, “Designing Software for 

Ease of Extension and Contraction,” 

IEEE Trans. Software Eng., vol. 5, 

no. 2, 1979, pp. 128–138.

 7. D.L. Parnas, “Precise Documenta-

tion: The Key to Better Software,”  

The Future of Software Engineering,  

S. Nanz, ed., Springer, 2010,  

pp. 125–148; doi:10.1007/978-3 

-642-15187-3_8.

Read your subscriptions 
through the myCS 
publications portal at 

http://mycs.computer.org

ABOUT THE AUTHOR

DAVID LORGE PARNAS is professor emeritus at McMaster University 

and the University of Limerick. He is the president of Middle Road Soft-

ware. Contact him at parnas@mcmaster.ca.

@s e cur it ypr ivac y

FOLLOW US


