
68 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

RELIABLE CODE

Software Structures:
A Careful Look
David Lorge Parnas

IF ALL SOFTWARE experts agree on
anything, it is that software shouldn’t
be a monolith (a large system that is,
for all practical purposes, indivis-
ible). In the half century since Edsger
Dijkstra published his groundbreak-
ing paper, “The Structure of the
‘THE’-Multiprogramming System,”1
it has become clear that the ability to
design a software system’s structure
is at least as important as the ability
to design efficient algorithms or to
write code in a particular program-
ming language.

Although the word “structure”
appeared in the paper’s title and
was used seven more times, Dijk-
stra never defined the term. Closer
examination revealed that he was
discussing at least three distinct
structures.2 His failure to define
“structure,” or to clearly distin-
guish the structures that were im-
portant in his software, has led
many to confuse those structures.
This article is intended to clarify
what those structures are, their
differences, and each one’s impor-
tance. They are as important today
as they were in 1968.

What Is a Structure?
A software system’s structure is a
division of that system into a set
of parts and the relations between
those parts. Confusion often arises
because of the many types of parts

and the many important relations
between them.

What Parts Can We Discuss
in Software?
The software world isn’t known for
using consistent terminology—quite
the contrary. This section defines
four terms used in this article. Other
authors explicitly or implicitly use
other definitions. To understand this
article, it is important to keep these
definitions in mind. A comparison of
the concepts follows the definitions.

Program
Definition: A program is a sequence
of computer instructions that can be
invoked (executed) by a computer.

Discussion: An executing program will
cause changes to the state of the ma-
chine. The changes might either con-
tinue for a finite amount of time and
then terminate or continue forever.

Module
Definition: A module is a set of pro-
grams together with the data objects
they use, whose design and subse-
quent maintenance (revision) are in-
tended to be assigned to a developer
or group of developers.

Discussion: Several modules might
be assigned to the same develop-
ers. Over time, the team assigned

the responsibility for a module will
change. The division into modules
is most significant when the proj-
ect has been assigned to a team
rather than an individual. For fur-
ther discussion of the meaning of
“module” and the criteria to use
when designing modules, see “The
Modular Structure of Complex
Systems.”3

Component
Definition: A component is a collec-
tion of programs and data objects
that is intended to be distributed,
sold, installed, or replaced as a unit.

Discussion: The software product’s
purveyor determines the product’s
division into components. The pur-
veyor might do this as part of a
marketing strategy, for ease of in-
stallation, or to simplify manage-
ment of the product line.

Process
Definition: A process is a sequence
of events (state changes) in an exe-
cuting computer system.

Discussion: A process is usually the
result of executing a program, which
we call the process controller. That
program may be controlling other
processes at the same time.

The adjective “sequential” is often
inserted before “process” because

RELIABLE CODE

 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE 69

no two events in a process can occur
simultaneously.

Processes are units for the sched-
uler. The scheduler assigns a proces-
sor to a process, thereby allowing the
sequence of events to be extended.
The maximum number of processes
that can proceed simultaneously is
the number of processors. Some-
times, the number of active processes
is smaller than the number of pro-
cesses, and some processors are idle.

In principle, processes should be
designed so that no two events in a
process could occur simultaneously
without causing errors. If that isn’t
done, the scheduler will be unneces-
sarily restricted, and some proces-
sors might be unnecessarily idle. In
practice, because of the cost of creat-
ing and managing processes, events
might be included in a single process
even though they could safely occur
simultaneously.

Contrasting These Concepts
People sometimes use these terms
without clearly distinguishing them.
This section contrasts the concepts.

Program versus module. A program is
part of one module but might in-
voke programs from other modules.
In other words, programs written by
one programmer often invoke pro-
grams written by other program-
mers. Usually, a module comprises
more than one program.3

Component versus module. A compo-
nent might be part of a module, a
whole module, or a collection of
programs from several modules.
There is no reason to assume either
that all parts of a component must
be developed or maintained by the
same programmers or that all pro-
grams in a module must be included
in a component.

Program versus process. One pro-
gram will often control many pro-
cesses. Consequently, it is important
to distinguish between a process
and the program that controls it.
The program controlling a process
might invoke programs from many
modules, and a module might per-
form its work by controlling several
processes.

The bottom line. These concepts are
distinct; no understanding of soft-
ware structure can be correct if they
are confused.

Four Important Structures
This section describes the parts and
relation for four important struc-
tures. Others are discussed in “On a
‘Buzzword’: Hierarchical Structure.”2

Program uses Program
In the uses structure, the parts are
programs, and the defining relation,
uses, is defined by the following:

Given a program P with
specification Sp and another
program Q with specification
Sq, we say that P uses Q if P can’t
satisfy Sp unless Q is present and
satisfies Sq.

Module part-of Module
If a module (work assignment) is
considered too large, it can be sub-
divided into smaller modules. This
defines a part-of relation between the
modules. Note that the fact that P is
part of M and invokes Q doesn’t im-
ply that Q is part of M. Q might have
been written by another group.3

Program part-of Program
Dijkstra (among others) introduced
programming by stepwise refine-
ment. In this process, the program-
mer begins with a short program in

which major steps in the processing
are represented by only a brief de-
scription of their function or sim-
ply a name. Each program is then
refined—that is, replaced by a more
detailed program. That program
might be further refined in the same
way until all its parts have been re-
fined to programs in the actual pro-
gramming language. This process
produces a program with a clear
structure (often called a structured
program) that is easily parsed, doc-
umented, and analyzed.4

A program might use a program
that isn’t part of it. A program might
be used by a program that is part of
another module.

Process gives-work-to Process.
In many systems, processes give
work to other processes. For exam-
ple, one process might produce out-
put that must be printed and send it
to another process that controls the
printer. In the gives-work-to structure,
the parts are processes, and the de-
fining relation is gives-work-to.

The Significance of Each
Structure
These structures were important in
the THE operating system.

The uses structure determined
what subsets of the system were us-
able. Because there were no loops in
the graph of the uses relation, THE
programs could be arranged in levels,
with the lowest level being programs
that didn’t use any other programs
and the ith level consisting of pro-
grams that used programs on level
i – 1 or lower. As a result of the hi-
erarchical structure, construction
and testing could be done bottom-
up. That is, the programs that used
no other programs could be finished
and tested before those that used
them. This could continue level by

RELIABLE CODE

70 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

level until the highest-level programs
had been tested.

The modules in THE were
information-hiding modules3 and in-
troduced abstractions such as

• processes that appeared to proceed
in parallel,

• a virtual memory for each pro-
cess that was larger than the
actual main memory,

• a private console for each pro-
cess, and

• FIFO queues (transput streams)
as a mechanism for passing data
between processes.

Dijkstra’s computer didn’t have
hardware that supported virtual

memory. All translation from virtual
to physical addresses was done by
programs in the module that imple-
mented the virtual address space. In
the original THE operating system,
all those programs were on the same
level of the uses hierarchy.

The gives-work-to structure was de-
signed to help prevent deadlocks, as
explained in the PhD thesis of Nico
Habermann,5 a member of Dijkstra’s
team. A badly designed gives-work-to
structure can result in system dead-
locks. There’s no reason why this
structure should coincide with any
other.

We must assume that the pro-
grams were structured as a result of
stepwise refinement, which Dijkstra

called structured programming.
Dijkstra, in private discussions, of-
ten stated that structured program-
ming was the only way to write
reliable programs.

When Dijkstra wrote about the
“system hierarchy,” he didn’t make
clear which of these structures he
was discussing. In THE, the uses
structure and the module struc-
ture coincided. The programs in the
module that created the sequential-
process abstraction used no other
programs and were all on level 0 of
the structure defined by the uses re-
lation. The programs in the module
that created the virtual-memory ab-
straction took advantage of the se-
quential processes when managing

page transfers. The transput stream
module’s programs could use the
virtual-memory abstraction.

However, Dijkstra later realized
that the two structures needn’t coin-
cide. He reported that he would have
liked the sequential-process module
to be able to use virtual addresses, but
he also wanted the virtual-memory
module to be able to use the process
abstraction. When developing THE,
he believed that the two structures
should coincide, so both wouldn’t
be possible. He chose to write
the process-creating module using
physical addresses so that the virtual-
memory module could use processes.

Much later, in a presentation
and an informal note, he explained

that he could have split the virtual-
memory module, putting the pro-
grams that translated virtual ad-
dresses to physical addresses at the
lowest level. This would have allowed
the programs that implemented the
sequential-process abstraction to use
virtual addresses. The remainder
of the virtual-memory module’s
programs, which managed memory
allocation, could then have used
processes. In today’s computers, the
address translation is done by hard-
ware, which is actually the lowest
level in the uses structure. The pro-
grams that manage physical memory
to implement virtual memory are at
higher levels.

If Dijkstra had rebuilt his system
in this way, the uses hierarchy would
have had more levels than there were
modules. Consequently, it would be
wrong to talk about levels of abstrac-
tion. There would still be levels in the
uses structure—one more than in the
published version. There would still
be the same modules implementing the
same abstractions. However, the two
structures would no longer coincide.
Other examples of module structures
in which the programs aren’t all at the
same level of the uses hierarchy are ex-
plained in “Designing Software for
Ease of Extension and Contraction.”6

Each module abstracts from
something different; there’s no “more
abstract than” relation between the
modules. In general, the programs
that implement an abstraction can
be placed in many levels in a system’s
uses hierarchy. When designers insist
on levels of abstraction, it can lead
to poor performance or duplication
of certain functions.

Design and Document
Structures before Coding
Dijkstra’s papers and presentations
made it clear that he and his team

Designing and documenting
software structure is as demanding
as coding.

RELIABLE CODE

 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE 71

designed the structures before any
code was written. The structure
guided the coders; the result was a
design that was “cleaner” than other
systems of that time.

Dijkstra’s team was small, highly
motivated, and very talented. Dijk-
stra, who described himself as the
team’s captain, was very hands-on.
They didn’t create precise docu-
mentation of the structure. With a
larger team, one that was managed
rather than “captained,” the lack
of documentation would have led
to miscommunication. That would
have lengthened the development
time and might have introduced
errors.

The lack of documentation be-
came evident after Dijkstra’s team
dispersed. The system was their
legacy and was used for some time
after they left. One member of the
original team frequently received
phone requests for help when a
problem occurred. In that team
member’s words, “The structure
was clean and simple, but it existed
only in our minds.” The lesson is
clear: structure is vital, but unless
you plan to discard the software
when its authors move on, it must
be documented.7

I f all software experts agree on
anything, it is that software
shouldn’t be a monolith. How-

ever, merely dividing the software
into parts and discussing some of
the relations between them is not
enough to solve the real problem.
Many distinct structures determine
the software’s cost and quality. Each
structure must be carefully designed
and precisely documented.

Designing and documenting
software structure is as demand-
ing as coding. Small details matter,

clear design principles are needed,
and precise interface specification is
essential.

References
 1. E.W. Dijkstra, “The Structure of the

‘THE’-Multiprogramming System,”

Comm. ACM, vol. 11, no. 5, 1968,

pp. 341–346; http://dx.doi.org

/10.1145/363095.363143.

 2. D.L. Parnas, “On a ‘Buzzword’: Hier-

archical Structure,” Proc. 1974 IFIP

Congress, North Holland, 1974, pp.

336–339.

 3. D.L. Parnas, P.C. Clements, and

D.M. Weiss, “The Modular Structure

of Complex Systems,” IEEE Trans.

Software Eng., vol. 11, no. 3, 1985,

pp. 259–266.

 4. D.L. Parnas, J. Madey, and M.

Iglewski, “Precise Documentation of

Well-Structured Programs,” IEEE

Trans. Software Eng., vol. 20, no. 12,

1994, pp. 948–976.

 5. A.N. Habermann, “On the Har-

monious Cooperation of Abstract

Machines,” PhD thesis, Dept. of

Mathematics, Technological Univ.

Eindhoven, 1967.

 6. D.L. Parnas, “Designing Software for

Ease of Extension and Contraction,”

IEEE Trans. Software Eng., vol. 5,

no. 2, 1979, pp. 128–138.

 7. D.L. Parnas, “Precise Documenta-

tion: The Key to Better Software,”

The Future of Software Engineering,

S. Nanz, ed., Springer, 2010,

pp. 125–148; doi:10.1007/978-3

-642-15187-3_8.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

ABOUT THE AUTHOR

DAVID LORGE PARNAS is professor emeritus at McMaster University

and the University of Limerick. He is the president of Middle Road Soft-

ware. Contact him at parnas@mcmaster.ca.

@s e cur it ypr ivac y

FOLLOW US

