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Abstract

Shojaee et al. (2025) report that Large Reasoning Models (LRMs) exhibit “accuracy col-
lapse” on planning puzzles beyond certain complexity thresholds. We demonstrate that their
findings primarily reflect experimental design limitations rather than fundamental reasoning
failures. Our analysis reveals three critical issues: (1) Tower of Hanoi experiments risk exceed-
ing model output token limits, with models explicitly acknowledging these constraints in their
outputs; (2) The authors’ automated evaluation framework fails to distinguish between reason-
ing failures and practical constraints, leading to misclassification of model capabilities; (3) Most
concerningly, their River Crossing benchmarks include mathematically impossible instances for
N ≥ 6 due to insufficient boat capacity, yet models are scored as failures for not solving these
unsolvable problems. When we control for these experimental artifacts, by requesting generating
functions instead of exhaustive move lists, preliminary experiments across multiple models indi-
cate high accuracy on Tower of Hanoi instances previously reported as complete failures. These
findings highlight the importance of careful experimental design when evaluating AI reasoning
capabilities.

1 Introduction

Shojaee et al. (2025) claim to have identified fundamental limitations in Large Reasoning Models
through systematic evaluation on planning puzzles. Their central finding—that model accuracy
“collapses” to zero beyond certain complexity thresholds—has significant implications for AI rea-
soning research. However, our analysis reveals that these apparent failures stem from experimental
design choices rather than inherent model limitations.

2 Models Recognize Output Constraints

A critical observation overlooked in the original study: models actively recognize when they ap-
proach output limits. A recent replication by @scaling01 on Twitter [2] captured model outputs
explicitly stating “The pattern continues, but to avoid making this too long, I’ll stop here” when
solving Tower of Hanoi problems. This demonstrates that models understand the solution pattern
but choose to truncate output due to practical constraints.

This mischaracterization of model behavior as “reasoning collapse” reflects a broader issue with
automated evaluation systems that fail to account for model awareness and decision-making. When
evaluation frameworks cannot distinguish between “cannot solve” and “choose not to enumerate
exhaustively,” they risk drawing incorrect conclusions about fundamental capabilities.
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2.1 Consequences of Rigid Evaluation

Such evaluation limitations can lead to other analytical errors. Consider the following statistical
argument: if we grade Tower of Hanoi solutions character-by-character without allowing for error
correction, the probability of perfect execution becomes:

P (all correct) = pT (1)

where p is per-token accuracy and T is total tokens. For T = 10, 000 tokens:

• p = 0.9999: P (success) < 37%

• p = 0.999: P (success) < 0.005%

This type of “statistical inevitability” argument has in fact been put forward in the literature
as a fundamental limitation of LLM scaling [3], yet it assumes models cannot recognize and adapt
to their own limitations, an assumption contradicted by the evidence above.

3 The Impossible Puzzle Problem

The evaluation issues compound dramatically in the River Crossing experiments. Shojaee et al.
test instances with N ≥ 6 actors/agents using boat capacity b = 3. However, it is a well-established
result [4] that the Missionaries-Cannibals puzzle (and its variants) has no solution for N > 5 with
b = 3.

By automatically scoring these impossible instances as failures, the authors inadvertently demon-
strate the hazards of purely programmatic evaluation. Models receive zero scores not for reasoning
failures, but for correctly recognizing unsolvable problems.

4 Models Abbreviate Long Solutions, Causing Apparent Collapse

A previous version of this paper assumed1 that the evaluation required outputting all intermediate
states based on the instruction in Section A.1.1 of Shojaee et al. that models should “include the
corresponding complete list of moves” during the “thinking process.” However, multiple commenters
have correctly noted that in practice models do not output each intermediate state when reasoning
through large-N solutions, instead jumping straight to the final move list. The intent of the
original instructions seems ambiguous, but we have updated this section to more closely track
model behaviour in practice. Following verification with the OpenAI tokenizer, we use 10 tokens
per move in all calculations below.

If models output only the final sequence of 2N − 1 moves, token requirements grow linearly:

Tfinal(N) ≈ 10(2N − 1) + C (2)

where C represents overhead for problem setup and formatting. This yields maximum solvable
sizes:

1Somewhat ironically, given most commenters’ insistence that mistakes in this paper must be due to hallucinations,
this assumption was suggested by a human commenter who reviewed a pre-publication draft. The relevant section of
that draft (fully written by Opus), followed the analysis of @scaling01 and assumed linear growth
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Nmax ≈ log2(Lmax/10) (3)

≈

{
12− 13 for Lmax = 64, 000

13 for Lmax = 100, 000
(4)

Interestingly, the reported “collapse” before N = 9 for most models occurs well before these
theoretical limits. This suggests that models are making a decision to terminate output before
actually reaching their context window limits. As noted in Section 2, models explicitly state
reasons like “to avoid making this too long” when truncating solutions.

This behavior indicates that models may be poorly calibrated about their own context length
capabilities, choosing to stop prematurely. While the specific mechanism differs from our initial
analysis, the high-level conclusion remains unchanged: apparent reasoning failures reflect con-
straints on solution length rather than fundamental reasoning limitations. Models understand the
algorithmic solution (as demonstrated by their ability to generate compact recursive implementa-
tions), but choose not to enumerate exhaustive move lists, whether due to actual token limits or
perceived ones.

This distinction further emphasizes the importance of evaluation design. Scoring models as
“failures” for making reasonable engineering decisions about output length mischaracterizes their
actual capabilities. See Appendix A for our original analysis.

5 Alternative Representations Restore Performance

To test whether the failures reflect reasoning limitations or format constraints, we conducted pre-
liminary testing of the same models on Tower of Hanoi N = 15 using a different representation:

Prompt: "Solve Tower of Hanoi with 15 disks. Output a Lua

function that prints the solution when called."

Results: Very high accuracy across tested models (Claude-3.7-Sonnet, Claude Opus 4, OpenAI
o3, Google Gemini 2.5), completing in under 5,000 tokens.2

The generated solutions correctly implement the recursive algorithm, demonstrating intact rea-
soning capabilities when freed from exhaustive enumeration requirements.

6 Reevaluating Complexity Claims

The authors use “compositional depth” (minimum moves) as their complexity metric, but this
conflates mechanical execution with problem-solving difficulty:

Puzzle Solution Length Branching Factor Computational Complexity

Tower of Hanoi 2N − 1 1 O(1) per move
Blocks World O(N) O(N2) Linear (near-optimal) / NP-hard (optimal)

Table 1: Problem complexity is not determined by solution length alone

2Due to budget constraints, we were unable to conduct enough trials for a highly powered statistical sample. Full
experimental validation remains as future work.
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Tower of Hanoi, despite requiring exponentially many moves, has a trivial O(1) decision process
per move. Blocks World, however, is much harder. This explains why models might execute 100+
Hanoi moves while struggling with shorter planning problems.

6.1 The Optimality Question

A critical distinction emerges when examining the original evaluation setup. While Shojaee et al.
check only for solution correctness across all puzzles, their task instructions vary significantly in
computational demands.

The Blocks World prompt explicitly requires optimization:

Find the minimum sequence of moves to transform the initial state into the goal state.

Remember that only the topmost block of each stack can be moved.

Slaney and Thiébaux [5] demonstrated that near-optimal solutions can be found in linear time
using domain-specific algorithms, however finding the truly optimal solution remains NP-hard.
Models attempting Blocks World must solve the harder optimization variant, potentially spending
computational resources searching for provably minimal solutions rather than merely valid ones.

Crucially, while the solution checker of the authors only verifies correctness, not optimality,
we expect models to attempt what they were instructed to do. A model following the prompt
faithfully would search for optimal solutions, not knowing that suboptimal solutions would pass
the evaluation.

7 Conclusion

Shojaee et al.’s results demonstrate that models have some awareness of their own context limits,
that programmatic evaluation can miss both model capabilities and puzzle impossibilities, and that
solution length poorly predicts problem difficulty. These are valuable engineering insights, but they
do not support claims about fundamental reasoning limitations.

Future work should:

1. Design evaluations that distinguish between reasoning capability and output constraints

2. Verify puzzle solvability before evaluating model performance

3. Use complexity metrics that reflect computational difficulty, not just solution length

4. Consider multiple solution representations to separate algorithmic understanding from exe-
cution

The question isn’t whether LRMs can reason, but whether our evaluations can distinguish
reasoning from typing.
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A Original Token Limit Analysis

Our initial analysis considered two possible interpretations of the evaluation requirements in Shojaee
et al. We present both here for completeness.

Note: The original version of this paper contained an error. While we stated we were using
5 tokens per move, the formulae actually corresponded to 10 tokens per move (the factor of 5 in
the quadratic formula comes from 10/2). We maintain the corrected 10 tokens per move estimate
throughout this appendix.

If models must output the complete move list at each reasoning step, token requirements grow
quadratically. For a problem requiring M = 2N − 1 moves:

Tintermediate(N) ≈ 10
M∑
i=1

i =
10M(M + 1)

2
≈ 5(2N )2 (5)

This yields maximum solvable sizes:

Nmax ≈ log2(
√

Lmax/5) (6)

≈

{
6− 7 for Lmax = 64, 000

7 for Lmax = 100, 000
(7)
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