
1060 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

Programs, Life Cycles, and Laws of
Software Evolution

Absfmcr-By clppsitying programs according to their relationship to
the environment m which they ne executed, the paper identities the
sources of evolutionary pressure on computer rpplicitim and pro-
grams and shows why this results in a process of never ending mainte-
nance activity. The resultant Life cyde processes ne then briefly dis-
cussed. The paper then introduces laws of Rognm Evdution that have
been formulated fdlowing quantitative studies of the evolution of a
number of different systems. Finally an example is pravided of the
application of Evdution Dynamics models to program release plnnning.

I. BACKGROUND

T
A. The Nature of the Problem

HE TOTAL U.S. expenditure on programming in 1977 is
estimated to have exceeded $50 billion, and may have
been as high as $100 billion. This figure, which repre-

sents more than 3 percent of the U.S. GNP for that year, is
already an awesome figure. It has increased ever since in real
terms and will continue to do so as the microprocessor finds
ever wider application. Programming effectiveness is clearly a
significant component of national economic health. Even
small percentage improvements in productivity can make sig-
nificant financial impact. The potential for saving is large.

Economic considerations are, however, not necessarily the
main cause of widespread concern. As computers play an ever
larger role in society and the life of the individual, it becomes
more and more critical to be able to create and maintain effec-
tive, cost-effective, and timely software. For more than two
decades, however, the programming fraternity, and through
them the computer-user community, has faced serious prob-
lems in achieving this [11. As the application of microproces-
sors extends ever deeper into the fabric of society the problems
will be compounded unless very basic solutions are found and
developed.

B. Programming
The early 1950's had been a pioneering period in program-

ming. The sheer ecstasy of instructing a machine step by step
to achieve automatic computation at speeds previously un-
dreamed of, completely hid the intellectually unsatisfying
aspects of programming; the lack of a guiding theory and dis-
cipline; the largely hit or miss nature of the process through
which an acceptable program was finally achieved; the ever
present uncertainty about the accuracy, even the validity, of
the final result.

More immediately, the gradual penetration of the computer
into the academic, industrial, and commercial worlds led to

Manuscript received February 27, 1980; revised May 22, 1980.

Science and Technology, 180 Queen's Gate, London SW7 ZBZ, England.
The author is with the Department of Computing, Imperial College of

serious problems in the provision and upkeep of satisfactory
programs. It also yielded new insights. Rogramming as then
practiced required the breakdown of the problem to be solved
into steps far more detailed than those in terms of which
people thought about it and its solution. The manual genera-
tion of programs at this low level was tedious and error prone
for those whose primary concern was the result; for whom
programming was a means to an end and not an end in itself.
This could not be the basis for widespread computer application.

Thus there was born the concept of high-level, problem-
oriented, languages created to simplify the development of
computer applications. These languages did not just raise the
level of detail to which programmers had to develop their
view of the automated problem-solving process. They also
removed at least some of the burdens of procedural organiza-
tion, resource allocation and scheduling, burdens which were
further reduced through the development of operating systems
and their associated job-control languages. Above all, however,
the high-level language trend permitted a fundamental shift in
attitude. To the discerning, at least, it became clear that it
was not the programmer's main responsibility to instruct a
machine by defining a step-by-step computational process.
His task was to state an algorithm that correctly and unambig-
uously defines a mechanical procedure for obtaining a solution
to a given problem [21 , [31 . The transformation of this into
executable and efficient code sequences could be more safely
entrusted to automatic mechanisms. The objective of language
design was to facilitate that task.

Languages had become a major tool in the hands of the
programmer. Like all tools, they sought to reduce the manual
effort of the worker and at the same time improve the quality
of his work. They permitted and encouraged concentration on
the intellectual tasks which are the real province of the human
mind and skill. Thus, ever since, the search for better Ian-
guages and for improving methodologies for their use, has con-
tinued [4] .

There are those who believe that the development of pro-
gramming methodology , high-level languages and associated
concepts, is by far the most important step for successful com-
puter usage. That may well be, but it is by no means sufficient.
There exists a clear need for additional methodologies and tools,
a need that arises primarily from program maintenance.

C. Program Maintenance
The sheer level of programming and programming-related

activity makes its disciplining important. But a second statis-
tic carries an equally signifkant message. Of the total U.S.
expenditure for 1977, some 70 percent was spent on program
maintenance and only about 30 percent on program develop-

0018-9219/80/0900-1060$00.75 @ 1980 IEEE

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION 1061

Fig. 1 . S-programs.

ment. This ratio is generally accepted by the software com-
munity as characteristic of the state of the art.

Some clarification is, however, necessary. For software the
term maintenance is generally used to describe all changes
made to a program after its first installation. It therefore dif-
fers significantly from the more general concept that describes
the -restoration of a system or system component to its former
state. Deterioration that has occurred as a result of usage or
the passage of time, is corrected by repair or replacement. But
software does not, deteriorate spontaneously or by interaction
with its operational environment. Programs do not suffer
from wear, tear, corrosion, or pollution. They do not change
unless and until people change them, and this is done when-
ever the current behavior of a program in execution is found
to be wrong, inappropriate, or too restricted. Repair actually
involves changes away from the previous implementation.
Faults being corrected during maintenance can originate in any
phase of the program life cycle (Section 111).

Moreover, in hardware systems, major changes to a product
are achieved by redesign, retooling, and the construction of a
new model. With programs improvements and adaptations to
a changing environment are achieved by alterations, deletions,
and extensions to existing code. New capability, often not
recognized during the earlier life of the system, is superim-
posed on an existing structure without redesign of the system
as a whole.

Since the term software maintenance covers such a wide
range of activities, the very high ratio of maintenance to
development cost does not necessarily have to be deprecated.
We shall, in fact, argue that the need for continuing change is
intrinsic to the nature of computer usage. Thus the question
raised by the high cost of maintenance is not exclusively how
to control and reduce that cost by avoiding errors or by
detecting them earlier in the development and usage cycle.
The unit cost o f change must initially be made as low as pos-
sible and its growth, as the system ages, minimized. Programs
must be made more alterable, and the alterability maintained
throughout their lifetime. The change process itself must be
planned and controlled. Assessments of the economic viability
of a program must include total lifetime costs and their life
cycle distribution, and not be based exclusively on the initial
development costs. We must be concerned with the cost and
effectiveness of the life-cycle process itself and not just that of
its product.

The opening paragraph highlighted the high cost of software
and software maintenance. The economic benefit and poten-
tial of the application of computers is, however, so high that
present expenditure levels may well be acceptable, at least for
certain classes of programs. But we must be concerned with
the fact that performance, capability, quality in general, can-
not at present be designed and built into a program ab initio.
Rather they are gradually achieved by evolutionary change
and refinement. Moreover, when desirable changes are identi-
fied and authorized they can usually not be implemented on a
time scale fixed by external need. Responsiveness is poor.
And as mankind relies more and more on the software that
controls the computers that in turn guide society, it becomes
crucial that people control absolutely the programs and the
processes by which they are produced, throughout the useful
life of the program. To achieve this requires insight, theory,
models, methodologies, techniques, tools: a discipline. That is
what software engineering is all about [SI-[81.

11. PROGRAMS AS MODELS
A. Programs

Program evolution dynamics [9 and its bibliography] and
the laws [2] , [31, [lo] , [l l] discussed in the next section,
have always been associated with a concept of largeness, im-
plying a classification into large and nonlarge programs. Great
difficulty has, however, been experienced in defining these
classes. Recent discussions [121 have produced a more satis-
fying classification. This is based on a recognition of the fact
that, at the very least, any program is a model o f a model
within a theory o f a model o f an abstraction o f some portion
of the world or o f some universe o f discourse. The classifica-
tion categorizes programs into three classes, S, P, and E. Since
programs considered large by our previous definition will
generally be of class P or E , the new classification represents a
broadening and firming of the previous viewpoint.

B. S- Programs
S-programs are programs whose function is formally defined

by and derivable from a specification. It is the programming
form from which most advanced programming methodology
and related techniques derive, and to which they directly relate.
We shall suggest that as programming methodology evolves
still further, all large programs (software systems) will be con-
structed as structures of S-programs.

A specific problem is stated: lowest common multiple oP
two integers; function evaluation in a specified domain; eight
queens; dining philosophers; generation of a rectangle of a
size within given limits on a specific type of visual display
unit (VDU). Each such problem relates to its universe of
discourse. It may also relate directly and primarily to the
external world, but be completely defined, e.g., the classical
travelling salesman problem.

As suggested by Fig. 1 the specification, as a formal defini-
tion of the problem, directs and controls the programmer in
his creation of the program that defines the desired solution.
Correct solution of the problem as stated, in terms of the pro-
gramming language being used, becomes the programmer’s
sole concern. At most, questions of elegance or efficiency
may also creep in.

The problem statement, the program and the solution when
obtained may relate to an external world. But it is a casual,
noncausal relationship. Even, when it exists we are free to

1062 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

change our interest by redefining the problem. But then it has
a new program for its solution. It may be possible and time-
saving to derive the new program from the old. But it is a dif-
ferent program that defines a solution to a different problem.

When this view can be legitimately taken the resultant pro-
gram is conceptually static. One may change it to improve its
clarity or its elegance, t o decrease resource usage when the
program is executed, even to increase confidence in its correct-
ness. But any such changes must not effect the mapping be-
tween input and output that the program defines and that it
achieves in execution. Whenever program text has been
changed or transformed [131, 1141 it must be shown that
either the input-output relationship remains unchanged, or
that the new program satisfies a new specification defining a
solution to a new problem. We return to the problem of cor-
rectness proving in Section 11-E.

C. P-Programs
Consider a program to play chess. The program is completely

specified by the rules of chess plus procedure rules. The latter
must indicate how the program is to analyze the state of the
game and determine possible moves. It must also provide a
decision rule to select a next move. The procedure might,
for example, be to form the tree of all games that may develop
from any current state and adopt a minimax evaluation strategy
to select the next move. Such a definition, while complete,
is naive, since it is not implementable as an executing program.
The tree structure at any given stage is simply too large, by
many orders of magnitude, to be developed or t o be scanned
in feasible time. Thus the chess program must introduce
approximation to achieve practicality, judged as it begins to
be used, by its performance in actual games.

A further example of a problem that can be precisely formu-
lated but whose solution must inevitably reflect an approxima-
tion of the real world is found in weather prediction. In theory,
global weather can be modeled as accurately as desired by a set
of hydrodynamic equations. In the actual world of weather
prediction, approximate solutions of modified equations are
compared with the weather patterns that occur. The results
of such comparisons are interpreted and used to improve the
technology of prediction, t o yield ever more usable programs,
whose outputs, however, always retain some degree of uncer-
tainty.

Finally consider the travelling salesman problem as it arises
in practice, for example from a desire to optimize continuously
in some vaguely defined fashion, the travel schedule of sales-
men picking up goods from warehouses and visiting clients.
The required solution can be based on known approaches and
solutions to the classical problem. But it must also involve
considerations of cost, time, work schedules, timetables, value
judgments, and even salesmens’ idiosyncracies.

The problem statement can now, in general, no longer be
precise. It is a model of an abstraction of a real-world situa-
tion, containing uncertainties, unknowns, arbitrary criteria,
continuous variables. To some extent it must reflect the per-
sonal viewpoint of the analyst. Both the problem statement
and its solution approximate the real-world situation.

Programs such as these are termed P-programs (real world
problem solution). The process of creating such programs is
modeled by Fig. 2 which shows the intrinsic feedback loop
that is present in the P-situation. Despite the fact that the
problem to be solved can be precisely defined, the acceptability
of a solution is determined by the environment in which it is

w
L

I
I , ,

I

Fig. 2. P-programs.

embedded. The solution obtained will be evaluated by com-
parison with the real environment. That is, the critical dif-
ference between S and P-programs is expressed by the com-
parison cloud in Fig. 2. In S-programs, judgments about the
correctness, and therefore the value, of the programs relate by
definition only to its specification, the problem statement that
the latter reflects. In P-programs, the concern is not centered
on the problem statement but on the value and validity of the
solution obtained in its real-world context. Differences be-
tween data derived from observation and from computation
may cause changes in the world view, the problem perception,
its formulation, the model, the program specification and/or
the program implementation. Whatever the source of the dif-
ference, ultimately it causes the program, its documentation
or both to be changed. And the effect or impact of such
change cannot be eliminated by declaring the problem a new
problem, for the real problem has always been as now per-
ceived. It is the perception of users, analysts and/or program-
mers that has changed.

There is also another fact of life that needs to be considered.
Dissatisfaction will arise not only because information received
from the program is incomplete or incorrect, or because the
original model was less than perfect. These are imperfections
that can be overcome given time and care. But the world too
changes and such changes result in additional pressure for
change. Thus P-programs are very likely to undergo never-
ending change or to become steadily less and less effective and
cost effective.

D. E-Programs
The third class, E-programs, are inherently even more change

prone. They are programs that mechanize a human or societal
activity .

Consider again the travelling salesman problem but in a situ-
ation where several persons are continuously en route, carrying
products that change rapidly in value as a function of both
time and location, and with the pattern of demand also chang-
ing continuously. One will inevitably be tempted to see this
situation as an application in which the system is to act as a
continuous dispatcher, dynamically controlling the journeys
and calls of each individual. The objective will be to maximize

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION 1063

Fig. 3. E-programs-The basic cycle.

profit, minimize loss, expedite deliveries, maintain customer
satisfaction or achieve some optimum combination of the fac-
tors that are accepted as the criteria for success. How does this
situation differ from that discussed in the previous sections?

The installation of the program together with its associated
system-radio links to the salesmen, for example-change the
very nature of the problem to be solved. The program has
become a part o f the world it models, it is embedded in it.
Conceptually at least the program as a model contains elements
that model itself, the consequences of its execution.

The situation is depicted in Figs. 3 and 4. Even without con-
sidering program execution and evaluation of its output in the
operational environment, the E-situation contains an intrinsic
feedback loop as in Fig. 3. Analysis of the application to deter-
mine requirements, specification, design, implementation now
all involve extrapolation and prediction of the consequences of
system introduction and the resultant potential for application
and system evolution. This prediction must inevitably involve
opinion and judgment. In general, several views of the situation
will be combined to yield the model, the system specifica-
tion and, ultimately, a program. Once the program is com-
pleted and begins to be used, questions of correctness, appro-
priateness and satisfaction arise as in Fig. 4 and inevitably lead
to additional pressure for change.

Examples of E-programs abound: computer operating sys-
tems, air-traffic control, stock control. In all cases, the behavior
of the application system, the demands on the user, and the
support required will depend on program characteristics as
experienced by the users. As they become familiar with a sys-
tem whose design and attributes depend at least in part on user
attitudes and practice before system installation, users wiU
modify their behavior to minimize effort or maximize effec-
tiveness. Inevitably this leads to pressure for system change.
In addition, system exogenous pressures will also cause changes
in the application environment within which the system oper-

jw1
Fig. 4. E-programs.

ates and the program executes. New hardware will be intro-
duced, traffic patterns and demand change, technology ad-
vance and society itself evolve. Moreover the nature and rate
of this evolution will be markedly influenced by program
characteristics, with a new release at intervals ranging from one
month to two years, say. Unlike other artificial systems [151
where, relative to the life cycle of process participants, change
is occasional, here it appears continually. The pressure for
change is built in. It is intrinsic to the nature of computing
systems and the way they are developed and used. P and E
programs are clearly closely related. They differ from S-
programs in that they represent a computer upplication in the
real world. We shall refer to members of the union of the
P and E classes as A-type programs.

E. Program Correctness
The f i t consequence of the SPE program classification is a

clarification of the concepts of program correctness and pro-
gram proving. The meaning, reality, and significance of these
concepts have recently been examined at great length [161,
[171. Many of the viewpoints and differences expressed by
the participants in that discussion become reconcilable or ir-
relevant under an adequate program classification scheme.

For the SPE scheme, the concept of verification takes on
significantly different meanings for the S and the A classes. If
a completely specified problem is computable, its specification
may be taken as the starting point for the creation of an S-
program. In principle a logically connected sequence of state-
ments can always be found, that demonstrates the validity of
the program as a solution of the specified problem. Detailed
inspection of and reasoning about the code may itself produce
the conviction that the program satisfies the specification
completely. A true proof must satisfy the accepted standards
of mathematics. Even when the correctness argument is

1064 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

expressed in mathematical terms, a lengthy or complex chain
of reasoning may be difficult to understand, the proof sequence
may even contain an error. But this does not invalidate the
concept of program correctness proving, merely this instance
of its application.

We cannot discuss here the range of S-programs for which
proving is a practical or a valuable technique, the range of ap-
plicability of constructive methods for simultaneous construc-
tion of a program and its proof [181 , [191 ; whether confidence
in the validity of an S-program can always be increased by a
proof. We simply note that since, by definition, the sole
criterion of correctness of an S-program is the satisfaction of
its specification, (correct) S-programs are always provably
correct.

This is not purely a philosophical observation. Many impor-
tant components of a large program, mathematical procedures
for example, in conjunction with specified interface rules (call-
ing and output), are certainly S-type. It becomes part of the
design process to recognize such potential constituents during
the partitioning process and to specify and implement them
accordingly. In fact it will be postulated in the next section
that an A-program may always be partitioned and structured
so that all its elements are S-programs. If this is indeed true,
no individual programmer should ever be permitted to begin
programming until his task has been de f i ed and delimited by
a complete specification against which his completed program
can be validated.

For an E-program as an entity on the other hand, validity
depends on human assessment of its effectiveness in the in-
tended application. correctness and proof of correctness of
the program as a whole are, in general, irrelevant in that a
program may be formally correct but useless, or incorrect in
that it does not satisfy some stated specification, yet quite
usable, even satisfactory. Formal techniques of representation
and proof have a place in the universe of A-programs but their
role changes. It is the detailed behavior of the program under
operational conditions that is of concern.

Parts of the program that can be completely specified should
be demonstrably correct. But 'the environment cannot be
completely described without abstraction and, therefore,
approximation. Hence absolute correctness of the program
as a whole is not the real issue. It is the usability of the pro-
gram and the relevance of its output in a changing world that
must be the main concern.

F. Program Structures and Structural Elements
The classification created above relates to program entities.

Any such program will, in general, consist of many parts
variously referred to as subsystems, components, modules,
procedures, routines. The terms are, of course, not used
synonymously but carry imputations of functional identity,
level, size, and so on.

The literature discusses criteria [201 and techniques [211-
[23] for partitioning systems into such elements. Related
design methodologies and techniques seek to achieve optimum
assignment, in some sense, of element content and overall
system structure. In the present context we consider only one
aspect of partitioning using the term module for convenience.
The discussion completes the presentation of the SPE classifi-
cation and provides a link to other current methodological
thinking 1241.

Consider the end result of the design process for an A-pro-

The analysis and partitioning process will identify some func-
tional elements that can be fully specified and therefore devel-
oped as S-program modules. Any specification may of course
be less than fully satisfactory. It may even prove to be wrong
in relation to what the system purpose demands, in itself or in
relation to the remainder of the design. For example the spec-
ification may not mention input validity checks, the specified
output accuracy may be insufficient or the specified range of
an input variable may be wrong. But each of these represents
an omission from or an error in the specification. Thus it
is rectified by first correcting the specification and then crest-
ing, by one means or another, a new program that satisfies the
new specification.

The remainder of the system is required to implement func-
tions that are at least partly heuristic or behavioral in nature
and therefore define A-elements. Nevertheless, we suggest
that it is always possible to continue the system partitioning
process until all modules are implementable as S-programs.
That is, any imprecision or uncertainty emanating from model
reflections of incomplete world views will be implicit or, if
recognized when the specification is formulated, explicit in
the specification statement. The final modules will all be de-
rived from and associated with precise specifications, which
for the moment, may be treated as complete and correct.

The design may now be viewed and constructed as a data-
flow structure with the inputs of one module being the outputs
of others (unless emanating from outside the system). Each
module will be defined as an abstract data type [251-[271
defining, in turn, one or more input-to-output transformations.
Module specifications include those of the individual interfaces,
but for the system as a whole, the latter should, in some sense
be standardized [281. Moreover, given appropriate system and
interface architecture and module design, each module could
be implemented as a program running on its own microproces-
sor and the system implemented as a distributed system [9],
[241, [281, [921. The potential advantages for both execution
(parallelism) and maintainability (localization of change) can-
not be discussed here.

Many problems in connection with the design and construc-
tion of such systems need st i l l to be solved. Adequate solutions
will represent a major advance in the development of a process
methodology (Section 111-C). We observe, however, that the
concepts presented follow directly from our brief analysis
and classification of program types. Interestingly, the conclu-
sions are completely compatible with those of the programming
methodologists [24 I , [29 1 , [30 1 .

III. THE LIFE CYCLE
A. The General Case

The dynamic evolutionary nature of computer applications,
of the software that implements them and of the process that
produces both, has in recent years given rise to a concept of
a program life cycle and to techniques for life-cycle manage-
ment. The need for such management has, in fact, been recog-
nized in far wider spheres, particularly by national defense
agencies and other organizations concerned with the manage-
ment of complex artificial systems. In pursuing their respon-
sibilities, these must ensure continuing effectiveness of systems
whose elements may involve many different and fast developing
technologies. Often they must guarantee utterly reliable opera-
tion under harsh, hostile, and unforgiving conditions. The out-
come is an ever increasing financial commitment. Only life-

gram to be constructed of primitive elements we term modules. time-orientated management techniques applied from project

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION 1065

Structure

ToD-level
Descrlptlon

V 1 REVALIMTIOW)

initiation can permit the attainment of lifetime effectiveness
and cost effectiveness.

The problems in the more general situation are essentially
those we have already explored, except that the time interval
between generations is perhaps an order of magnitude greater
than in the case of pure software systems. In briefly examin-
ing the nature of the life cycle and its management in this sec-
tion, we use the terminology of programming and software
engineering. The reader will be able to generalize and to
interpret the remarks in his own area of interest.

B. Software Life Cycles
In studying program evolution, repetitive phenomena that

define a life cycle can be observed on different time scales
representing various levels of abstraction. The highest level
concerns successive generations of system sequences. Each
generation is represented by a sequence of system releases.
This level corresponds most closely to that found in the more
general systems situation, with each generation having a life
span of from, say, five to twenty years. Because of the rela-
tively slow rate of change it is difficult for any individual to
observe this evolution phenomenon, measure its dynamics and
model it as a life-cycle process since in the relevant portion of
his professional career he will not observe more than two or
three generations. It might therefore be argued that this
level should not be treated as an instance of the life-cycle
phenomenon. The present author has, however, had at least
one opportunity to examine program evolution at this level
and to make meaningful and significant observations [3 11.
These indicated that much could be gained in cost effective-
ness in the software industry if more attention were paid to
the earlier creation of replacement generations, something that
can be achieved effectively only if the appropriate predictive
models are available.

The second level is concerned with a sequence of releases.
The latter term is also appropriate when a concept of contin-
uous release is followed, that is when each change is made,
validated, and immediately installed in user instances of the
system.

Fig. 5 shows one view [6] of the sequence of activities or
life-cycle phases that constitute the lowest level, the develop-
ment of an individual release, if it is assumed that “mainte-
nance” in the seventh box refers to onsite fixes and repairs

implemented as the system is used. If maintenance is taken to
refer to permanent changes, effected through new releases by
the system originator, then the structure becomes recursive
with each maintenance phase comprised of all seven indicated
phases. With this interpretation the single recursive model re-
flects the composite life-cycle structure of all the above levels.

The remainder of this paper is chiefly concerned with the
intermediate level, the life cycle of a generation as represented
by a sequence of releases. It is at this level that analysis in
terms of the S and A classification is particularly relevant and
enlightening.

C. Assembly Line Processes
An assembly line manufacturing process is possible when a

system can be partitioned into subsystems that are simply
coupled and without invisible l inks. Moreover, the process
must be divisible into separate phases without significant feed-
back control over phases and with relatively little opportunity
for tradeoff between them.

Unfortunately, present day programming is not like that. It
is constituted of tightly coupled activities that interact in
many ways. For example, at least some aspects of the specifi-
cation and design processes are left over, usually implicitly,
to the implementation (coding) phase. Fault detection through
inspection [90] is not yet universal practice and by default is
often delayed till a system integration or system testing phase.
One of the main concerns of life-cycle process methodology
research must be to develop techniques, tools, new system
architectures (Section 11-F) and programming support environ-
ments [32] -[341 that permit partitioning of the program
development and maintenance process into separated activities.

D. The Significance o f the Life-Cycle Concept
For assembly line processes the life-cycle concept is not,

generally, of prime importance. For software and other highly
complex systems it becomes critical if effectiveness, cost effec-
tiveness, and long life are to be achieved. At each moment in
time, a manager’s concern concentrates on the successful com-
pletion of his current assignment. His success will be assessed
by immediately observable product attributes, quality, cost,
timeliness, and so on. It is his success in areas such as these
that determine the furtherance of his career. Managerial strat-
egy will inevitably be dominated by a desire to achieve maxi-

1066 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

mum local payoff with visible short-term benefit. It will not
often take into account long-term penalties, that cannot be
precisely predicted and whose cost cannot be assessed. Top-
level managerial pressure to apply life-cycle evaluation is there-
fore essential if a development and maintenance process is to
be attained that continuously achieves, say, desired overall
balance between the short- and long-term objectives of the
organization. Neglect will inevitably result in a lifetime ex-
penditure on the system that exceeds many times the assessed
development cost on the basis of which the system or project
was initially authorized.

To overcome long time lags and the high cost of software,
one may also seek to extend the useful lifetime of a system.
The decision to replace a system is taken when maintenance
has become too expensive, reliability too low, change respon-
siveness too sluggish, performance unacceptable, functionality
too limiting; in short, when it is economically more satisfactory
to replace the system than to maintain it. But its expected
life time to that point is determined primarily in its concep-
tion, design and initial implementation stages. Hence manage-
ment planning and control during the formative period of sys-
tem life, based on lifetime projections and assessment, can be
critical in achieving long life software and lifetime cost effec-
tiveness [1 1 .

E. Life-Cycle Phases
1) The Major Activity Classes: At its grossest level a life

cycle consists of three phases: definition, implementation and
maintenance. As indicated in Fig. 5 , these three phases corre-
spond approximately to the activities described in the f i i t
three, the second three and the seventh box respectively of
Boehm’s model. In practice, however, many of these activities
are overlapped, interwoven, and repeated iteratively.

2) System Definition: For E-class systems in particular, the
development process begins with a pragmatic analysis leading
into a systematic systems analysis t o determine total system
and program requirements [35]-[38]. The analysis must first
establish the real need and objectives and may examine the
manual techniques whereby the same purpose is currently
achieved. Where appropriate, it may be based on mathematical
or other formal analysis. Whatever the approach, it has now
been recognized that the analysis must be disciplined and
structured [291, [301, the term structured analysis now being
widely used [91, [411, [421.

By their very nature initial requirements, being an expression
of the user’s view of his needs, are likely to include incom-
patibilities or even contradictions. Thus the analysis and the
negotiation process by and between analysts and potential
users that produces the final requirements specification, must
identify a balanced set that, in some sense, provides the opti-
mum compromise between conflicting desires.

The requirements set will be expressed in the concepts and
language of the application and its users. It must then be
transformed into a technical specification. The specification
process [431, [44] must aim to produce a correct technical
statement, complete in its coverage of the requirements and
consistent in its defiiition of the implementation. It may in-
clude additional determinations or constraints that follow
from a technical evaluation of the requirements in relation to
what is feasible, available and appropriate in the judgment of
the analyst and designer in agreement with the user.

It has long been the aim of computer scientists to provide
formal languages for the expression of specifications so as to
permit mechanical checking of completeness and consistency

[45 1 - [49], [9 1 1 , but a widely accepted language does not yet
exist. Given a machinable specification it is conceptually
possible to reduce it mechanically to executable [501 and even
efficient [141 code but these technologies too are not yet
ready for general exploitation.

Thus, for the time being, the specification process will be
followed by a design phase [49], [51] . The prime objective
of this activity is to identify and structure data, data transfor-
mation and data flow [23] . It must also achieve, in some
defined sense, optimal partitioning of system function [201,
select computational algorithms and procedures, and identify
system components, afld the relationships between them. It
is now generally accepted that iterative t o p d o w n [52] analy-
sis and partitioning processes are required to achieve successive
refinement [21 1 of the system design to the point where the
identified objects, procedures, and transformations can be
directly implemented.

3) Implementation: Following the completion of the design,
system implementation may begin. In practice, however,
design and implementation overlap. Thus, as the hierarchical
partitioning process proceeds, analysis of certain aspects of the
system may be considered sufficient for implementation, while
others require further analysis. In a software project, time
always appears to be at a premium. A work force comprising
many different abilities is available and must be kept busy.
Thus, regrettably, implementation of subsystems, components,
procedures, or modules will be initiated despite the fact that
the overall, or even the local design, is not yet complete.

As the implementation proceeds code must be validated
[531, [5 4 1 . Present day procedures concentrate primarily
on testing [551, though in recent years increasing use has been
made of design walkthrough and code inspection [go]. These
latter procedures are intended to disclose both design and im-
plementation errors before their consequences become hidden
in the program code. The ratio of costs of removing a fault
discovered in usage as against the cost of removing the same
fault if discovered during the design or f i t implementation
phase is sometimes two or three orders of magnitude. Clearly,
it pays to frnd faults early in the process.

In any case, testing by means of program execution is carried
out, generally bottom up, first at the unit (module or proce-
dural) level, then functionally, component by component. As
tested components become available they are then assembled
into a system in an integration process and system test is initi-
ated. Finally, after some degree of independent certification
of system function and performance, the system is designated
ready for release.

The above very brief summary has identified some of the
activities that are typically undertaken in a system creation
process. Individual activities as described may overlap, be
iterated, merged, or not undertaken at all. Design of an ele-
ment, for example, may be followed immediately by a test
implementation and preliminary performance evaluation to
ensure feasibility of a design before its implications spread to
other parts of the system. Clearly, there should be a set of
overall controlled procedures to take a concept from the f i t
pragmatic evaluation of the potential of an application for
mechanization to the final program product executing in de-
fined hardware or software and hardware environment(s).

4) Maintenance: once the system has been released, the
maintenance process begins. Faults will be observed, reported,
and corrected. If user progress is blocked because of a fault,
a temporary bypass of the faulty code may be authorized. In
other circumstances a temporary or permanent fix may be

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION 1067

applied in some or all user locations. The permanent repair or
change to the program can then be held over for a new release
of the system. In other cases, a permanent change will be pre-
pared for immediate installation by all those running the sys-
tem. The particular strategy adopted in any instance will
depend on the nature and severity of the fault, the size and
difficulty of the change required, the number and nature of
program installations and user organizations, and so on. The
aggregate strategy will have a profound impact on the rate of
system complexity growth, on its life-cycle costs, and on its
life expectancy.

The faults that are fixed in the maintenance process may be
due to changes external to the system, incorrect or incomplete
specification, design or implementation errors, hardware
changes or to some combination of these. Since each user
exposes the system in different ways, all installations do not
experience all faults, nor do they automatically apply all
manufacturer-supplied fvres or changes. On the other hand,
installations having their own programming staff may very well
develop and install localized changes or system modifications
to suit their specific needs. These patches, insertions, or dele-
tions may in turn cause new difficulties when further incre-
mental changes are received from the manufacturer, or at a
later date when a new release is received. The inevitable con-
sequences of the maintenance process applied to systems
installed for more than one user, is that the system drifts apart.
Multiple versions of system elements develop to encompass the
variations and combinations [561 . System configuration
management becomes a major task. Support environments
[331-[35] that automatically collect and maintain total activ-
ity records become an essential tool in programming process
management.

F. Life-Cycle Planning and Management
The preceding discussion, while presenting a simplified view

of the life cycle, will have made clear the difficulty associated
with cycle planning. In recent years this problem has received
much attention [571, [581 . A variety of techniques have been
developed to improve estimation of cost, time, and other re-
sources required for software development and maintenance
[59]-[64]. These techniques are based on extrapolation of
past experience and tend to produce results in the nature of
self-fulfilling prophecies. In general, it has not yet proved
possible to develop techniques that estimate project require-
ments on the basis of objective measurement of such attrib-
utes as application complexity and size and the work required
to create a satisfactory system. Techniques such as software
science 1651, [661 seek to do just this but to date lack sub-
stantiation (671 and interpretation. Major research and ad-
vances are required if software engineering is to become as
manageable as are other engineering disciplines, though funda-
mentally the peculiar nature of software systems [28] will
always leave software engineering in a class of its own.

Iv. LAWS OF PROGRAM EVOLUTION
A . Evolution

The analysis of Section I1 associated with the life-cycle
description of Section III, has indicated that evolution is an
intrinsic, feedback driven, property of software. The meta-
system within which a program evolves contains many more
feedback relationships than those identified above. Primitive
instincts of survival and growth result in the evolution of stabi-
lizing mechanisms in response to needs, events and changing

objectives. The resulting pseudohierarchical structure of self-
stabilizing systems includes the products, the processes, the
environments and the organizations involved. The interactions
between and within the various constituents, and the overall
pattern of behavior must be understood if a program product
and its usage are to be effectively planned and maintained.

The organizational and environmental feedback, links,
focuses, and transmits the evolutionary pressure to yield the
continuing change process. A similar situation holds, of course,
for any human organized activity, any artificial system. But
some significant differences are operative in the case of soft-
ware. In the f m t instance there is no room in programming
for imprecision, no malleability to accommodate uncertainty
or error. Programming is a mathematical discipline. In rela-
tion to a specific objective, a program is either right or wrong.
Once an instruction sequence has been fixed and unless and
until it is manually changed, its behavior in execution on a
given machine is determined solely by its inputs.

Secondly, a software system is soft. Changes can be im-
plemented using a pencil, paper, and/or a keyboard. Moreover,
once a change has been designed and implemented on a devel-
opment system it can be applied mechanically to any number
of instances of the same system without further significant
physical or intellectual effort using only computing resources.
Thus the temptation is to implement changes in the existing
system, change upon change upon change, rather than to col-
lect changes into groups and implement them in a totally new
instance. As the number of superimposed changes increases,
the system and the metasystem become more complex, stiffer,
more resistant to change. The cost, the time required, and the
probability of an erroneous or unsatisfactory change all increase.

Thirdly, the rate at which a program executes, the frequency
of usage, usage interaction with the operating environment,
economic and social dependence of external process on pro-
gram execution, all cause deficiencies to be exposed. The
resultant pressure for correction and improvement leads to a
system rate of change with a time scale measured in days and
months rather than in the years and decades that separate
hardware generations.

B. Dynamics and Laws o f Program Evolution
The resultant evolution of software appears to be driven and

controlled by human decision, managerial edict, and program-
mer judgment. Yet as shown by extended studies [68]-[76],
measures of its evolution display patterns, regularity and
trends that suggest an underlying dynamics that may be
modeled and used for planning, for process control, and for
process improvement.

Once observed the reasons for this unexpected regularity is
easily understood. Individual decisions in the life cycle of a
software system generally appear localized in the system and
in time. The considerations on which they are based appear
independent. Managerial decisions are largely taken in relative
isolation, concerned to achieve local control and optimization,
concentrated on some aspect of the process, some phase of
system evolution. But their aggregation, moderated by the
many feedback relationships, produces overall systems response
which is regular and often normally distributed.

In its early stages of development a system is more or less
under the control of those involved in its analysis, design, and
implementation. As it ages, those working on or with the sys-
tem become increasingly constrained by earlier decisions, by
existing code, by established practices and habits of users and

1068 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

TABLE I
LAWS OF P R f f i R f i EVOLUTION

I.

II.

III.

Iv.

V.

Continuing Change
A program that is used and that as an implementation of its speci-
fication reflects some other reality, undergoes continual change or
becomes progressively less useful. The change or decay process
continues until it is judged more cost effective to replace the sys-
tem with a recreated version.

Increosing Complexity
As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done to
maintain or reduce it.

The Fundamental k w of Rogrom Evolution
Program evolution is .subject to a dynamics which makes the pro-
gramming process, and hence measures of global project and system
attributes, self-regulating with statistically determinable trends and
invariances.

Conservotion of Orgonizotionol Stobility (Invorirmt Work Rate)
During the active life of a program the global activity rate in a pro-
gramming project is statistidy invariant.

Conservotion of Fomiliority (Perceived Complexity)
During the active life of a program the release content (changes,
additions, deletions) of the successive releases of an evolving pro-
gram is statistically invariant.

implementors alike. Local control remains with people. But
process and system-internal links, dependencies, and interac-
tions cause the global characteristics of system evolution to be
determined by organization, process and system parameters.
At the global level the metasystem dynamics have largely
taken over.

Since the original observation [63] , studies of program evo-
lution have continued, based on measurements obtained from
a variety of systems. Typical examples of the resultant models
have been reported [691 - [721, [741, [761 including also one
detailed example of their application to release planning [771.

It was repeated observation of phenomenologically similar
behavior and the common interpretation of independent
phenomena, that led to a set of five laws, that have themselves
evolved as insight and understanding have increased. The laws,
as currently formulated to include the new viewpoint emerging
from the SPE classification, are given in Table I. Their early
development can be followed in [91, [101, [721. We note
that the laws are abstractions of observed behavior based on
statistical models. They have no meaning until a system, a
project and the organizational metasystem are well established.
More detailed discussion of their nature and of their technical
and managerial implications will be found in [111, [77],
[781 and [771, [791,[801, respectively.

The fmt law, continuing change, originally [3] , [lo] , [79]
expressed the universally observed fact that large programs are
never completed. They just continue to evolve. Following our
new insight, however, reference to largeness is now replaced by
the phrase . . . “that reflect some other reality . . .”

The second law, increasing complexity, could be seen as an
instance of the second law of thermodynamics. It would seem
more reasonable to regard both as instances of some more
fundamental natural truth. But from either viewpoint its
message is clear.

The third law, the fundamental law of program evolution, is
in the nature of an existence rule. It abstracts the observed
fact that the number of decisions driving the process of evolu-
tion, the many feedback paths, the checks and balances of

organizations, human interactions in the process, reactions to
usage, the rigidity of program code, all combine to yield
statistically regular behavior such as that observed and measured
in the systems studied.

The fourth law, conservation of organizational stability, and
the fifth, conservation of familiarity, represent instances of
the observations whose generalization led to the third law.
The fourth reflects the steadiness of multiloop self-stabilizing
systems. It is believed to arise from organizational striving for
stability. The managements of well-established organizations
avoid dramatic change and particularly discontinuities in
growth rates. Moreover, the number of people and the invest-
ments involved, the unions, the time delays in implementing
decisions, all operate together to prevent sudden or drastic
change. Wide fluctuations may in fact lead to instability and
the breakup of an organization.

The reader may fmd it difficult to accept the implication
that the work output of a project is independent of the amount
of resources employed, though the same observation has also
been recorded by others [811. The underlying truth is that
activities of the type considered, though initiated with mini-
mal resources, rapidly attract more and more as commitment
to the project, and therefore the consequences of success or
failure, increase. Our observations as formalized in the fourth
law imply that the resources that can be productively applied
becomes limited as a software project ages. The magnitude of
the limit depends on many factors including attributes of the
total environment. But the pressure for success leads to invest-
ment to the point where it is exceeded. The project reaches
the stage of resource saturation and further changes have no
visible effect on real overall output.

While the fourth law s p r i n ~ from a pattern of organizational
behavior, the fifth reflects the collective consequences of
the characteristics of the many individuals within the organiza-
tion. It is discussed at len@ in 111 . Suffice it to say here
that the law arises from the nonlinear relationship between the
magnitude of a system change and the intellectual effort and
time required to absorb that change.

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION 1069

TABLE I1
SYSTEM X STATISTICS

Release I9 Statistics
Size 4800 Modules

Incremental growth 410 Modules
Modules changed0 2650 Modules
Fraction of modules changed 0.55
Release interval 275 Days

1.3 Assembly M-statements

System Statistics
Age 4.3 Years
Change rate 10.7 Modules/day
Average incremental growth 200 Modules/release
Maximum safe growth rate 400 Modules/release

Most Recent Releases

Release 15 16 17 18 19

Incrementalgrowth(A Mod) 135 171 183 354 410
Fraction changed 0.33 0.43 0.48 0.50 0.56
Change rate 12.5 0.12 9.6 9.9 9.6
Interval (Days) 96 137 201 221 275
Old mods,Changed/ Mod 7.9 8.6 10.0 5.1 5.4

% x " s that are changed in any way in release i + 1 relative to re-
lease i are counted as one changed module, independently of the num-
ber of changes or of their magnitude.

V. APPLIED DYNAMICS
A. Introduction

The previous sections have emphasized the phenomenological
basis for the laws of program evolution, indicating how they
are rooted in phenomena underlying the activity of program-
ming itself.

The origin of the laws in individual and societal behavior
makes their impact on the construction and maintenance of
software more than just descriptions of the evolutionary
process. The laws represent principles in software engineering.
They are, however, clearly not immutable, as for example, are
the laws of physics or chemistry. Since they arise from the
habits and practices of people and organizations, their modifi-
cation or change requires one to go outside the discipline of
computer science into the realms of sociology, economics and
management. The laws therefore form an environment within
which the effectiveness of programming methodologies and
management strategies and techniques can be evaluated, a
backdrop against which better methodologies and techniques
can be developed.

Their implications, technical and managerial, have been pre-
viously discussed in the literature [3], [9], [l l] , [79], [80].
In the present paper, we restrict the discussion to outlining
an example of the application of evolution dynamics models
to release planning.

B. A Case Study-System X
1) The System and its Characteristics: System X is a general

purpose batch operating system running on a range of ma-
chines. The eighteenth release (R18) of the system is opera-
tional in some tens of installations running a variety of work
loads. The nineteenth release (R19) is about to be shipped.

Table I1 and Fig. 6(a)-(g) present the system and release
data and models available for the purposes of the present
exercise. We cannot, however, provide here the details of sta-
tistical analysis and model validation [761, based on this data

and that from other systems that gives us confidence in our
conclusions and predictions.

Examining the system dynamics as implied by models de-
rived from the data and as illustrated by the figures, Fig. 6(a)
shows the continuing growth of the system (first law) albeit at
a declining rate (demonstrably due to increasing difficulty of
change, growing complexity-second law).

Fig. 6(b) indicates that as a function of release sequence
number (RSN) the system growth (measured in modules) has
been linear but with a superimposed ripple (a strong indicator
of feedback stabilization).

Fig. 6(c) shows the net incremental growth per release (fifth
law).

For system architectures such as that of system X, the frac-
tion of system modules that are changed during a release may
be taken as a gross indicator of system complexity. Fig. 6(d)
shows that system X complexity, as measured in this way,
shows an increasing trend (second law).

Fig. 6(e) is an example of the repeatedly observed constant
average work rate (fourth law).

Fig. 6(f) illustrates how the average work rate achieved in
individual releases, as measured by the rate of module change
(changed modules per release interval day (m/d) oscillates, a
period of high rate activity being followed by one or more in
which the activity rate is much lower (third law).

Finally, Fig. 6(g) plots the release interval against release
sequence number. It has been argued that release interval de-
pends purely on management decision that is itself based on
market considerations and technical aspects of the release
content and environment. Data such as that of Fig. 6(g) indi-
cates, however, that the feedback mechanisms that, amongst
other process attributes, also control the release interval, while
including human decision taking processes, are apparently not
dominated by them. As a consequence, the release interval
pattern is sufficiently regular to be modelable, and is statisti-
cally predictable once enough data points have been established.

2) The Problem: Already prior to the completion (and re-

IN
CR

EA
SE

 I
N

 N
UM

BE
R

OF
 M

OD
UL

ES

0

m

3
m

 E v) P R

MO
DU

LE
S CH

AN
GE

D PE
R DA

Y

0

F

m

0

G

N

N

0

V
I

0

V
I

B k
n

m

i N

0

I
I

I
I

I

I

Q
, Cd 91

bl
 I

--

'\
,

!- V
I

B ''h

.
 L
-

CU
MU

LA
TI

VE
 N

UM
BE

R
OF

 MO
DU

LE
S CH

AN
GE

D
(th

ou
sa

nd
s)

m

!-

m

N

0

\
 \
 \o

SY
ST

EM
 S

IZ
E (

th
ou

sa
nd

s
O

f
m

od
ul

es
)

r

N

W

c

I
C

I

I
t

1
I

V
I

m

'0
 b\
 &
 d\

r

N

W

c

I
C

I

I
t

1
I

V
I

m

'0
 b\
 &
 d\

 \ 4 '\

b I , I

SY
ST

EM
 S

IZ
E (

th
ou

sa
nd

s
of

 m
od

ul
es

)

F

N

W

c

I
V

I
I

m I

0

0
 0

0

 0
 0

 0

0

0

0
 0

0

 0

0
 0

 0
 0

0

0

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION 1071

TABLE I11
RELEASE 20 PLANNED CONTENT

Functional Enhancement

OldMods Mods
New Mods Chgd Chgd OMC/NM

No. Description (NM) (OMC) (NM + OMC) (IR)
~

1.

2.

3.

4.

5.
6.
7.

8.
9.

10.

Identifed faults
@RE. u s . 19)

Expected faults
(RLS. 19)

Interactive terminal
support (ITS)

Dynamic storage
management (DSM)

Remote job entry (RJE)
New disk support (NDS)
Batch scheduler

improvements (BSI)
File access system (FAS)
Paper tape support (PTS)
Performance improvements

2

0

750

170
57
17

3
8

12
2

380

600

1783

1500
462
124

29
74
80

157

382

600

25 33

1670
5 19
141

32
82
92

159

-

-

2.4

8.8
8.1
7.3

9.7
9.3
6.7 -

1021 5189 6210

Detail of Interactive Terminal Support (ITS)

No. Description New Mods Old Mods Chgd OMC/NM

3A Terminal support 444 1032 2.3
3B Scheduling 127 293 2.3
3C Telecom support 5 8 232 4.0
3D Misc. 121 226 1.9

750 1783

lease) of R19, work has begun on a further version R20, whose
main component is to be the addition of interactive access to
complement current batch facilities. This new facility “ITS”
together with other changes and additions summarized in
Table 111, are to be made available eighteen months after first
customer installation of R19.

For each major planned functional change, the table lists the
number of new modules to be added (NM), the number of R19
modules that are to be changed in the course of creating R20
(OMC), the total number of modules changed (NM + OMC),
and the ratio of OMC to NM (the interconnectivity ratio (IR),
an indicator of complexity). No modules are planned for re-
moval in the creation of R20 hence the planned net system
growth is 1021 modules.

Management has also accepted that a further release R21,
will follow twelve months after R20, to include any leftovers
from R20. It may also include additional changes for which a
demand develops over the next two years. The current exer-
cise is to endorse the overall plan, or if it can be shown to be
defective, to prepare an alternative recommendation.

3) Process Dynamics:
a) Work rate: From Fig. 6(e) the work rate has averaged

10.4 m/dl over the lifetime of the system. Fig. 6(f) indicates
that the maximum rate achieved so far has been 27 m/d. Evi-
dence that cannot be detailed here reveals, however, that that
data point is misleading and that a peak rate of about 20 m/d
is a better indicator of the maximum achievable with current
methodology and tools. Moreover, there is strong circum-

Modules per day =
number of modules changed in release

release interval in days

stantial evidence that releases achieved with such high work
rates were extremely troublesome and had to be followed by
considerable clean-up in a follow-up release, as also implied
by Fig. 6(c). Thus, if R20 is planned so as to require a work
rate in the region of 20 m/d, it would be wise to limit R21 to
at most 1 0 m/d, the system average. If on the other hand, the
process is further stabilized by working on R20 at near average
rate, one could then, with a high degree of confidence, ap-
proach R21 with a higher work rate plan.

b) Incremental growth: The maintained average incremen-
tal growth for system X has been around 200 modules/release.
Once again circumstantial evidence indicates that releases (for
which, in this case, the growth rate (incremental growth per
release) has exceeded twice the average) have slipped delivery
dates, a poor quality record and a subsequent need for drastic
corrective activity. Fig. 6(c) and Table I1 indicate that R19
will lie in this region and that R18 had high incremental
growth. That is, R19, once released, is likely to prove a poor
quality base. The first evidence emerges that maybe R20
should be a clean-up release.

c) Growth rate in modules for release: The same indica-
tion follows from Figs. 6(a) and (b) where the ripple periods
are seen to be three, four, and five intervals, respectively over
the first three cycles. In the fourth cycle, six intervals of in-
creasing growth rate have passed with the R18-Rl9 growth
the largest ever. Without even considering the planned growth
to R20 (Point X), it seems apparent that a clean-up release is
due.

4) R20 Plan Analysis:
a) Initial analysis: The first observation on the plan as

summarized by Table 111 stems from the column (6) of IR

1072 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

factors. It has not been calculated for items 1 , 2 , and 10 since
these represent activities that only rarely require the provision
of entirely new (nonreplacement) modules. For items 4-9 the
ratio lies in the range 8.2 f 1.5 , a remarkably small range for
widely varying functional changes. Yet the predicted ratio for
ITS is only 2.4. One must ask whether it is reasonable to sup-
pose that the code implementing an interactive facility is far
more loosely coupled to the remaining system than, for exam-
ple, a specialist facility such as paper tape support? Is it not
far more likely that ITS has been inadequately designed;
viewed perhaps as an independent facility that requires only
loose coupling into the existing system? Thus, when it is inte-
grated with the remainder of the system to form R20, will it
not require many more changes to obtain correct and adequate
performance? From the evidence before us, the question is
undecidable. Experience based intuition, however, suggests
that it is rather likely that the number of changes required
elsewhere in the system has been underestimated. Thus a high-
priority design reappraisal is appropriate. If the suspicion of
incomplete planning proves to be correct, it would suggest
delaying R20, so that the planning and design processes may
be completed. An alternative strategy of delaying at least ITS
to R21 should also be evaluated.

b) Number of modules to be changed: The situation may
of course not be quite as bad as direct comparison of the
present estimate of the ITS interconnection ratio (IR) with
that of the other items, suggests. In view of the 750 new
modules involved, its IR factor could not exceed 6.4 even if
all 4800 modules of R19 were effected by the ITS addition.
Such a 100 percent change is, in fact, very unlikely, but the
IR factor of 2.4 remains very suspect.

Moreover, even with the low ratio for ITS the sum of the
individual OMC estimates for the entire plan exceeds the
number of modules in R19. This suggests a new situation
Multiple changes applied to the same module must have become
a significant occurrence. Even ignoring the fact that even in-
dependent changes applied in the same release to the same
module generally demand significantly more effort than
similar changes applied to independent modules, the total
effort and time required must clearly increase with both the
number of changes implemented and the number of modules
changed. The presently defined measure “modules changed”
is inadequate. The new situation demands consideration of
more sensitive measures such as “number of module changes”
and “average number of changes per module.”

‘These cannot be derived from the available data. We may,
however, proceed by considering a model based on the data
of Fig. 6(d). Extrapolating the fraction changed trend, reveals
that R20 may be expected to require a change of, say, 64 per-
cent, or 3725 changed modules.2 Comparing this estimate
with the total of 621 0 obtained if the estimates for individual
items are summed, it appears that the average number of
changes to be applied to R19 modules according to the present
plan is at least of order two. We have already observed that
multiple changes cause additional complications. Hence any
prognosis made under the implied assumption of single changes
(or of a somewhat lower interconnection ratio) will lead to an
optimistic assessment.

release including the interactive facility ultimately involved some 58
’HistoricaZNote: In the system on which this example is based the

percent of modules changed. Moreover the first release was significantly
delayed, and was of limited quality and performance. More than 70 per-
cent of its modules had subsequently to be changed again to attain an
acceptable product. Our estimate is clearly good.

c) Rate of work: The current plan calls for R20 with its
3725 module changes to be available in 18 months, that is 548
days. This implies a change rate of less than 6.8 m/d. This
relatively low rate, following a period of average rate activity
suggests that work rate pressures are unlikely to prove a source
of trouble, even with multiple changes to many of the modules.

d) Growth rate: In Figs. 6(a) and (b), we have indicated
the position of R20 as per plan, with an X. Both modules in-
dicate that the planned growth represents a major deviation
from the previous history. Thus confirmation that the plan is
realistic requires a demonstration that the special nature of the
release, or changes in methodology, makes it reasonable to ex-
pect a significant change in the system dynamics. In the ab-
sence of such a demonstration, the suspicion that all is not
well is strengthened.

e) Incremental growth: The current R20 plan calls for
system growth of over 1000 modules. This figure which is
five times the average and two and a half times the recom-
mended maximum, must be interpreted as a danger signal.

We have already suggested that the low interconnection ratio
for ITS suggests that the planners saw the new component as a
stand alone mechanism that interfaces with the remainder of
the system via a narrow and restricted interface. If this view
proves justified, the large incremental growth need not be dis-
turbing. But it seems reasonable to question it. With the
architecture and structure that system X is known to have,
such a relatively narrow interface is unlikely to be able to pro-
vide the communication and control bandwidth that safe,
effective, and high capacity operation must demand. This
is apparent from comparisons with, say, the paper tape or
disk support changes or the RJE addition. The onus must be
put onto the ITS designers to demonstrate the completeness
of their analysis, design, and implementation.

Without such a demonstration one must conclude that the
present plan is not technically viable. Marketing or other
considerations may, of course, make it desirable to stay with
the present plan even if this implies slipped delivery dates,
poor and unreliable performance of the new release, limited
facilities, and so on. But if such considerations force adoption
of the plan, the implications must be noted, and corrective
action planned. Ways and means will have to be created to
enable users to cope with the resultant system and usage prob-
lems and the inevitable need for a major clean-up release. It
might, for example, be wise to set up specialized customer sup-
port teams to assist in the installation, local adaptation and
tuning of the system.

f) Release interval: Fig. 6(g) indicates two possible models
for the prediction of the most likely (desirable.!) release inter-
val for R20 and R21. Linear extrapolation suggests a release
period of under one year for each of the two releases. If this
is valid, the apparent desire for a release after the 18 months
is of itself unlikely to prove a source of problems. On the
basis of evidence not reproduced here, however, the exponen-
tial extrapolation is likely to be more realistic and this yields
an R20 release interval forecast of about 15 months and an
R21 interval of some 3 years.

g) Recommendation-Summary: On the basis of the avail-
able data we have concluded that

1) to proceed with the plan as it stands is courting delivery

2) a clean-up release appears due in any case;
3) failure to provide it will leave ‘a weak base for the next

and quality problems for R20;

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION 1073

TABLE IV
MODIFIED RELEASE 20 CONTENT

TABLE V
MODIFIED RELEASE 20 STATISTICS (FROM TABLE III)

IN ORDER OF PRIORITY

ClaSS Reason Items

Fault Repair
Hardware Support
Performance

Improvement

Clean-up of base 1, 2.
Revenue Producing 6, 9.
Install-but do not 7, 10.

announce. Will be
available to counter-
act ITS performance
deterioration in R21’

ITS Related Components To receive early user 3c, 5 , 8.
exposure

release; at the very least the number of expected faults
(Table 111, item 2) is likely to prove an underestimate;

4) the absolute size of the ITS component and the related
incremental system growth would represent a major
challenge even on a clean base;

5) there are indications that the ITS aspect of the release
design is incomplete;

6) change rate needs for R20 are not likely to prove a
source of problems;

7) nor is the demand for attainment of a next release in
eighteen months.

The following recommendations follow:

8) initiate immediately an intensive and detailed reexami-
nation of the ITS design and its interaction with the
remainder of System X;

9) from the integration records of R19 and by comparison
with the records of earlier releases, make quality and
error rate models and obtain a prognosis for R19 and
an improved estimate for R20 correction activity; inte-
gration and error rate models have not been considered
in the present paper but have been extensively studied
by the present author and by others [85];

10) assess the business consequences of, on the one hand, a
slippage of one or two years in the release of ITS and on
the other, a poor quality, poor performance release with
a slippage of, say, some months (due to acceptable work
rate but excessive growth);

1 1) in the absence of positive indication of a potential for
major deviations from previous dynamic characteristics
or the existence of a genuine business need that is more
pressing than the losses that could arise from a poor
quality product, abandon the present plan;

12) instead redesign release 20 to yield R20‘; a clean, well-
structured, base on which to build an ITS release, R21‘;

13) tentatively release intervals of 9 months and 15 months
are proposed for R20’ and R21’, respectively;

14) R21’ should be a restricted release for installation in
selected sites;

15) it would be followed after 1 year by a general release
R22’.

h) Recommendations-Details: Assuming that the further
investigation as per paragraphs 8 to 10 of Section V-B4g rein-
forces the conclusions reached, three releases would have to be
defined. We outline here proposals for R20‘ and R21 ’. The
third, R22‘ will be a clean-up but its content cannot be identi-
fied in detail until a feel for the performance and general

Running Running
Item New Mods. Total Changes Total

1 2
2 0
6 17
9 12
7 3

10 2
8 8
5 57
3c 58

2
2

19
31
34
36
44

101
159

382 382
600 982
141 1123
92 1215
32 1247

159 1406
82 1488

519 2007
522 2529

quality of R21’ has developed. The detailed analysis is left as
an exercise to the reader.

The inherent problem in the design of the ITS release is the
fact that the component has a size almost twice the maximum
recommended incremental growth. Moreover, with the possi-
ble exception of its telecommunications support (Table 111,
item 3c), none of the component subsystems would receive
usage exposure in the absence of the others. Thus a clean ITS
release cannot be achieved except by releasing the component
in one fell swoop. Similarly, dynamic storage management
(DSM) is exposed to user testing only when the ITS facility
is operational. We may, however, investigate whether the tele-
communication facility (3c) will be usable in conjunction with
the RJE facility, item 5 . If it is, there will be some advantage
to be gained by releasing 3c and 5 before the remainder of ITS
and DSM.

Strictly speaking, Fig. 6(c) suggests that R20’ should be a
very low content release dedicated to system clean-up and re-
structuring. But the six preceding releases were achieved with
average change rates and, from that point of view, did not
stress the process. Thus, if R20’ is also an average rate release,
it should not cause problems, and it would seem a low risk
strategy to include R20’ in all those items as in Table IV, that
will simplify the subsequent creation and integration of the
excessively large ITS release.

The list, in priority order, of the new proposal shows a maxi-
mum incremental growth (159) well under average. It is a
matter of some judgment and experience whether it would be
wiser to delay item 3c with 58 new modules and item 5 with
57 to R21’ thereby achieving the very low content release
mentioned above. With the information before the reader it
is not possible to resolve this question since additional infor-
mation, at the very least answers to the questions raised in
Section V-B4g, would be required. However, the desire to
minimize R21’ problems suggests the adoption of the com-
plete plan as in Tables IV and V.

In assessing achievable release intervals for these releases, we
base our estimates only on the module change count and
change rate. The constraints on the present example do not
permit the full analysis which would consider models based
on Fig. 6(g), and take into account additional data. At 10
m/d change rate, implementation of the complete plan appears
to require 253 days, say 9 months, whereas exclusion of 3c
and 5 would reduce the predicted time required to some seven
months. This recommendation cannot be taken further with-
out more information of both a technical and a marketing
nature, and an examination of other interval models. But
the need for a clean base for R21’ suggests adoption of the

1074

maximum acceptable release interval. R21’ will now include,
at the very least, ITS (except 3c) and DSM. This involves at
least 920 new modules, an excessive growth that cannot use-
fully be further split between two or more releases. Assum-
ing a change fraction of, say, 70 percent (Fig. 6(d)), of a sys-
tem that is expected to contain 5911 modules, we estimate
a total of 4200 changed modules in the release, many with
multiple changes. Since there will now have been seven near
average change-rate releases, it seems possible to plan for a
change rate of 15-20 m/d, yielding a potential release interval
of under 9 months. That is, it would appear that, by adopting
the new strategy, all of the original changes and additions
could be achieved in about the same time, but much more
reliably. More complete analysis, however, based on addi-
tional data, other models and taking into account the special
nature of the releases might well lead to a recommendation to
increase the combined release interval to, say, two years.

A further qualification must also be added. As proposed in
the revised plan, R21‘ will still be a release with excessive in-
cremental growth and is therefore likely to yield significant
problems. The additional fact that the evidence indicates in-
complete planning, reinforces concern and expectation of
trouble ahead. It is therefore also recommended that R21’ be
announced as an experimental release for exposure to usage by
selected users in a variety of environments. It would be fol-
lowed after an interval of perhaps one year by an R22’, a
cleaned up system, suitable for further evolution.

i) Final comments: The preceding section has presented a
critique of a plan, and outlined an alternative which is believed
technically more sound. The case considered is based on a real
situation, though in the absence of complete information de-
tails have had to be invented. But the details are not important
since the objective has been to demonstrate a methodology.
Software planning can and should be based on process and
system measures and models, obtained and maintained as a
continuing process activity. Plans must be related to dynamic
characteristics of the process and system, and to the statistics
of change. By rooting the planning process in facts, figures
and models, alternatives can be quantitatively compared,
decisions can be related to reality and risks can be evaluated.
Software planning must no longer be based solely on apparent
business needs and market considerations; on management’s
local perspective and intuition.

V I . CONCLUSION
This paper rationalizes the widely held view, first expressed

in Garmisch [82], that there is an urgent need for a discipline
of software engineering. This should facilitate the cost-
effective planning, design, construction, and maintenance of
effective programs that provide, and then continue to provide,
valid solutions to stated (possibly changing) problems, or
satisfactory implementations of (possibly changing) computer
applications.

Following a brief discussion of the nature of computer usage
and of the programs, the paper introduced the new SPE classi-
fication that addresses the essential evolutionary nature of
various types of programs and establishes the existence of a
determining specification as the criterion for nonevolution.

In the subsequent discussion of the concepts, significance
and phases of the program life cycle, no details of lifecycle
planning and management models, as such, have been in-
cluded. In particular, we have not here discussed cost, re-

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

source, and reliability models [83]-[85]. Approaches to
process modeling based on continuous models [73], [75] have
also not been included, nor has the vital topic of software
complexity 1861-[891.

Recognizing the intrinsic nature of program change, the
laws that appear to govern the dynamics of the evolution pro-
cess were introduced. Among their other implications, the
laws indicate that project plans must be related to dynamic
characteristics of the process and system, and to the statistics
of change. By rooting the planning process in facts, figures,
and models, alternatives can be quantitatively compared,
decisions can be related to reality and risks can be evaluated.
Software planning must no longer be based solely on appar-
ent business needs and market considerations; on manage-
ment’s local perspective and intuition. To illustrate this, we
have included a brief example of the application of evolution
dynamics models to release planning.

Many of the concepts and techniques presented in this
paper could find wide applications outside the specific area
of software systems, in other industries, and to social and
economic systems. Unfortunately that theme cannot be
pursued here.

ACKNOWLEDGMENT
First and foremost, thanks must be extended to L. A. Belady,

a close collaborator for almost ten years. Many others, partic-
ularly colleagues and associates at ALMSA, IBM, Imperial Col-
lege, and WG 2.3 have contributed through their comments,
questions, critique, and original thoughts. All of them deserve
and receive the author’s grateful acknowledgments and thanks
for their individual and collective contributions. The author
would like to single out Prof. W. M. Turski for the major con-
tribution he made on his recent visit to London. Also, sincere
thanks to Dr. G. Benyon-Tinker, Dr. P. G. Hamson, and Dr. C.
Jones for their detailed and constructive criticism of an early
draft of this paper and R. Bailey for his artistic support. Finally,
the author would like to acknowledge the constant support of
his wife, without which neither the work itself nor this paper
would have been possible.

REFERENCES
J. Goldberg, Ed., in Roc. Symp. High Cost of software (Naval
Post-grad. School, Monterey, CA). Menlo Park, CA: SRI, 1973,
138 pp.

note Address, in Roc. Symp. Formal Design Methodology, T. A.
M. M. Lehman, “The environment of design methodology,” Key-

Cox, Ed. (Cambridge, England), Apr. 1979. Harlow, England:
STL Ltd., 1980, pp. 18-38. - , “The software engineering environment,” Infotech State of
the Art Rep., ‘‘Structured software development,” P. J. L. Wallis,

W. A. Wulf, “Languages and structured programs,” in Current
Trends in Programming Methodology, R. T. Yeh, Ed. Engle-
wood Cliffs, NJ: Prentice-Hall, 1977, pp. 33-60.
L. A. Belady, Ed., Roc. IEEE Special Issue on Softwore Engineer-
ing, vol. 68, Sept. 1980.
B. W. Boehm “Software engineering,” IEEE Trans. Comput., vol.

W. M. Turski, Computer Programming Methodology. London,
C-25, pp. 1226-1241, Dec. 1976.

England: Heyden, 1978,208 pp.

Int. Conf. S o w e Engineehg (Munich, Germany), pp. 11-21,
B. W. Boehm, “Software engineering-& it is,” in Roc. 4th

Sept. 1979. (IEEE Cat. no. 79CH1479-SC.)

tems,” in Research Directionsin Software Technology, P. Wegner,
L. A. Belady and M. M. Lehman, “Characteristics of large sys-

Ed. Cambridge, MA: M.I.T. Rem, 1979, part I, cn. 3, pp. 106-

Proc. Con5 Research Directions in Software Technology (Brown
142 (sponsored by the Tri-Services Committee of OoD); and in

University, Rovidence, RI), Oct. 10-12, 1977.
M. M. Lehman, “Programs, cities, students-Limits to growth?”
Inaugural Lecture, May 14, 1974, ICSTInauguml Lecture Series,

Ed., VOI. 2, pp. 147-163, 1979.

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION 1075

vol. 9, pp. 211-229, 1970-1974; and in ProgramrningMethod-
ology, D. Gries, Ed. New York: Springer-Verlag, 1979, pp. 42-
69.

[11] -, “On understanding laws, evolution and conservation in the
large program life-cycle,” J. Syst. Software, vol. 1, no. 3, pp.

[121 W. M. Turski, “Report on an SRC-sponsored visit to Imperial
College,” Dep. Computing, Imperial College of Science and Tech-

[131 F. L. Bauer, H. Partsch, P. Pebber, and H. Wessner, “Notes on the
noiogy, Univ. of London, London, England, Oct. 1979, 2 pp.

project-CIP: An outline of a transformation system,” TUM-INFO-
7729, Tech. Univ. Munich, 67 pp, 1977.

[141 J. Darlington, “Programming transformation: An introduction
and survey,” Comput. Bull., ser. 2, no. 22, pp. 22-24, Dec. 1979.

[151 H. A. Simon, The Sciences of the Artificial. Cambridge, MA:
M.I.T. Press, 1969, 123 pp.

[161 R. A. Demillo, R. J. Lipton, and A. J. Perlis, “Social processes

Mach., vol. 22, no. 5 , pp. 271-280, May 1979; and no. 11,
and proofs of theorems and programs,” Commun. Ass. Comput.

pp. 621-630, Nov. 1979.
[171 C. A. R. Hoare, “Review of a paper by Demillo, Lipton and Perlis:

‘Social processes and proofs of theorems and programs,”’ ACM

[181 E. W. Dijkstra, “A constructive approach to the problem of pro-
Comput. Rev., vol. 22, no. 8, rev. no. 34897, p. 324, Aug. 1979.

gram correctness,” Nordisk TiMft for Informations. Bahandling,
Sweden, vol. 8, pp. 174- 186, 1969.

[191 C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. Ass. Comput. Mach., vol. 12, no. 10, pp. 576-583,
Oct. 1969.

[2 0] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Commun. Ass. Comput. Mach., vol. 15, no. 12,
pp. 1053-1058, Dec. 1972.

[21] N. Wuth, “Program development by stepwise refinement,”
Commun. Ass. Comput. Mach., vol. 14, no. 4, Apr. 1971, pp.

1221 E. W. Dijkstra, “Notes on structured programming,” in Struc-

Hoare, Eds. New York: Academic Press, 1972, pp. 1-81.
tured Programming, 0. J. Dahl, E. W. Dijkstra, and C. A. R.

[2 3] M. A. Jackson, Principles of Program Design. London, England:
Academic Press, 1975, 299 pp.

[2 4] N. Wirth, “The module: A system structuring facility in high-
level programming languages,” in Proc. Symp. Programming
Lunguages and Programming Methods (Sydney, Austral.), J .
Tobias, Ed. Lucas Hts., New South Wales: AAEC, 1979.

[25] B. Liskov and S. Zilles, “An introduction to formal specification
of data abstraction,” in Current Trends in Programming Method-
ology, vol. 1, Software Specification and P e s i g n , R. T. Yeh, Ed.
Englewood Cliffs, NJ: Prentice-Hall, 1977, pp. 1-32.

1261 C. Jones, Software Development-A Rigorous Approach, Engle-
wood Cliffs, NJ: Prentice-Hall, 1980, 400 pp.

[2 7] M. Shaw, “The impact of abstraction concerns on modern pro-
gramming languages,” this issue, pp. 11 19-1 130.

[28] M. M. Lehman, “The funnel-A functional channel,” Imperial
College, Dep. Computing, Univ. of London, Res. Rep. 77/29, July

1291 0. J . Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Pro-
1977, 14 pp.;and IBM Tech. Disclosure Bull., 1976.

[30] R. C. Linger, and H. D. Mills, “On the development of large,
gramming. New York: Academic Press, 1972,220 pp.

reliable programs,” in Current Trends in Programming Method-
ology, vol. 1 , SofrwDre Specification and D e s i g n , R. T. Yeh, Ed.

[3 1] M. M. Lehman, “OS-VS2-MVS long range prognosis,” Private
Englewood Cliffs, NJ: Rentice-Hall, 1977, pp. 120-139.

[32] T. A. Dolotta and J . R. Mashey, “An introduction to the pro-
communication, MML-104, 1 3 pp. Aor. 15, 1975.

grammer’s workbench,” in Proc. 2nd Int. Conf. Software Engi-
neering (San Francisco, CA) Oct. 1976. (IEEE Cat. no. 76CH-

[3 3] A. F. Hutchings, R. W. McGuffin, A. E. Elliston, B. R. Trauter,

tice,” Proc. 4th Int. Conf. Software Engheering (Munich, Ger-
and P. N. Westmacott, “CADES-Software engineering in Prac-

many), Sept. 1979. (IEEE Cat. no. 79CH-1479-5C, Sept. 1979,

[341 J. N. Buxton, “Requirements for ADA programming support
environment-STONEMAN,” U.S. Dep. of Defense. Washinbon.

213-232, 1980.

221-227.

1125-4C, Oct. 1976,PP. 164-168.)

PP. 136-152.)

D C , 44 pp., Feb. 1980.
351 T. E. Bell, D. C. Bixler, and M. E. Dyer, “An extendable approach

to computer-aided software requirements engineering,” IEEE
Trans. Software Eng., vol. SE-3. pp. 49-59, Jan. 1977.

3 6) M. W. Alford, “Software requirements engineering methodology
(SREM) at the age of two,” in Proc. COMPSAC 78, pp. 332-339,
Nov. 1978. (IEEE Cat. no. 7XCH1338-3C.)

371 K. Heninger, “Specifying requirements tor complex systems:

Reliable SofnVare Conf., pp. 1-14, Mar. 1979. (IEEE Cat. no.
New techniques and their application,” in R o c . Specification of

- ,

74CH1401-9C.)

[39] W. P. Stevens, G. J . Myers, and L. L. Constantine, “Structured
issue, pp. 1077-1085.

[40] G. J. Myers, Composite/Structured Design. New York: Van
design,” IBM Syst. J . , vol. 13, no. 2, pp. 115-1 39, 1974.

[4 1] D. T. Ross, and K. E. Schoman, “Structuring analysis for require-
Nostrand Reinhold, 1978, 134 pp.

ments definition,” IEEE Trans. Software Eng., vol. SE-3, pp. 6-
15, Jan. 1977.

[4 2] -, “Structured analysis (SA): A language for communicating
ideas,” IEEE Trans. Software Eng., vol. SE-3, pp. 16-33, Jan.

(431 T. Demarco, Structured Analysis and System Specification. New
1977.

I441 B. W. Liskov and V. Berzins, “An appraisal of program specifica-
York: Yourdon Press, 1978, 352 pp.

tions,” in Research Directions in Software Technology, P. Wegner,
Ed. Cambridge, MA:M.I.T. Press, 1979, Part 2.1, ch. 7, pp. 106-
142 (sponsored by the Tri-Services Committee of DoD); and in
Proc. Conf. Research Directions in Software Technology (Brown
University, Providence. RI). ao. 276-301. Oct. 10-12, 1977.

I’ 451 J. N. Buxton, and E. Randeli, Eds., “Software engineering tech-
niques,’’ Rep. Conf. sponsored by the NATO Science Committee
(Rome, Italy), Oct. 1969. (Brussels, 164 pp, 1970.)

461 P. Van Leer, “Top-down development using a program design
language,”ZBMSyst. J.,vol. 15,110. 2,pp. 155-170, 1976.

471 Teichroew and E. A. Hershey 111, “PSL/PSA: A computer-aided
technique for structured documentation and analysis of informa-
tion processing systems,” IEEE Trans. Software Eng., vol. SE-3,
pp. 41-48, Jan. 1977.

481 R. P. Yeh, “Current trends in programming methodology,” vol.

Prentice-Hall. 1977. 275 DD.
1, Software Specification and Design. Englewood Cliffs, NJ:

1491 T. A. Cox, Ed., Proc. Symp. Formal Design Methodology (Cam-
bridge, England), 1977. Harlow, England: STL Ltd., 1980,

[SO] F. W. Zurcher and B. Randell, “Iterative multi-level modelling-
350 pp.

A methodology for computer system design,” in R o c . IFIP
C o n e . 1968 (Edinburgh, Scotland), pp. D138-142, Aug. 1968.

[S l] L. Peters, “Software design engineering,” this issue, pp. 1085-
1093.

[52] G. H. Swaum, Top-Down Structured Design Techniques. New
York: Petrocelli Books, 1978, 140 pp.

[531 E. Miller and W. E. Howden, Eds., “Tutoria1:Software testing and
validation technique,” IEEE Comput. SOC., 423 pp., 1978.

[54] J. B. Goodenough and L. M. Clement, “Software quality assur-
(IEEE Cat. no. EHO-138-8.)

[551 J. B. Goodenough and S. L. Gerhart, “Toward a theory of test
ance testing and validation,” this issue, pp. 1093-1098.

data selection,” IEEE Trans. Software Eng., vol. SE-1, pp. 156-
173, June 1975.

1561 L. A. Belady and P. M. Merlin, “Evolving parts and relations-A
model of system families,” IBM Res. Rep. RC6677, 14 pp, Aug.
1977.

[57] M. M. Lehman and L. H. Putnam, Eds., “Software phenomen-

ment workshop (Airlie, VA), Aug. 1977. Fort Belvoir, VA:
ology, working papers of the (first) software life cycle manage-

ISRAD/AIRMICS, Computer Systems Command, U.S. Army,
Dec. 1977,682 pp.

[5 8] U. R. Basili, E. Ely, and D. Young, Eds., “Second software life-
cycle management workshop, 21-22 Aug. 1978 (Atlanta, GA),”

[591 C. P. Felix and C. E. Walston, “A method of programming mea-
220 pp., Dec. 1978. (IEEE Publ. no. 78CH1390-4C.)

surement andestimation,”IBMSyst. J . , vol. 16, no. 1, pp. 54-73,
1977.

[6 0] L. H. Putnam and R. W. Wolverton, “Quantitative management-
Software cost estimating,” in Proc. Comp. SOC. 77, IEEE Com-
puter SofnOare and Applications Conf. (Tutorial), 326 pp.,
Nov. 1977. (IEEE cat. no. EH0129-7.)

(611 L. H. Putnam, “The influence of the time-difficulty factor in
large scale development” in Proc. Software Phenomenology

Workshop (Airlie VA), Aug. 1977. Fort Belvoir, VA: ISRAD/
Working Papers of the (first) Software Life-cycle Management

AIRMICS, Computer Systems Command, U.S. Army, Dec. 1977,

1621 B. W. Boehm, and R. W. Wolverton, “Software cost modelling-

men? Workshop, Aug. 21-22, 1978 (Atlanta, GA) pp. 129-132,
Some lessons learned,” in Proc. 2nd Software Life-cycle Manage-

Dec. 1978. (IEEE Publ. no. 78CH1390-4C.)
[63] F. N. Parr, “An alternative to the Rayleigh curve model for soft-

ware development effort,” IEEE Trans. Software Eng., vol. SE-6,
May 1980, pp. 291-296.

gramming Team. Reading, MA: Addison-Wesley, 1980.

1977, 127 pp.

PP. 307-312.

[641 S. C. Aron, The Program Development Process, Part 11 The RL

[65 1 M. Halstead, Elements of Software Science. New York: Elsevier,

[66] A. Fitzsimmons and T. Love. “A review and evaluation of soft-
[38) R. T. Yeh, and P. Zave, “Specifying software requirements,” this ware science,” Computing Survey, vol. 10, no. 1, pp. 3-18, Mar.

.~

1076 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

(671 D. B. Johnston and A. M. Lister, “Software science and student
1978.

programs,” S o f w r e : R a c t . and Exp., vol. 10, no. 2, pp. 159-
1960, Feb. 1980.

(681 M. M. Lehman, “The programming process,” IBM Res. Rep.
RC2722, p. 47, Dec. 1969.

(691 L. A. Belady and M. M. Lehman, “Programming system dynamics
or the rneta-dynamics of systems in maintenance and growth,”
IBM Res. Rep. RC3516, 30 pp, Sept. 1971.

[71] M. M. Lehman, “Programming systems growth dynamics,” info-
tech State of the Art Lectures, no. 18, “Computer reliability,”
State of the Art Lectures, no. 20, pp. 391-412, 1974.

[72] L. A. Belady and M. M. Lehman, “A model of large program
development,” IBMSyst. J . , vol. 15, no. 3, pp. 225-252, 1976.

[73] J. S. Riordan, “An evolution dynamics model” in h o c . Software
Phenomenology, Working Papers of the (f i r s f) Software Life-
cycle Management Workshop (Airlie, VA) Aug. 1977,” ISRAD/
AIRMICS, Computer Systems Command, U.S. Army, (Fort

(741 J. K. Patterson and M . M. Lehman, “Preliminary CCSS systems
Belvoir, VA), pp. 339-360, Dec. 1977.

analysis using evolution dynamics techniques,” in Prm. Soft-
ware Phenomenology, Working Papers of the (first) Software
Life-cycle Management Workshop (Airlie, VA), Aug. 1977,
ISRAD/AIRMICS, Computer Systems Command, US. Army,

[75] M. Woodside, “A mathematical model for the evolution of soft-
Fort Belvoir, VA, Dec. 1977, pp. 324-332.

[76] C. K. S. Chon Hok Yuen, “A Phenomenology of Program Main-
ware,” J. Syst Software, vol. 1, no. 3, 1980.

tenance and Evolution,” Ph.D. dissertation, Dep. Computing,
Imperial College of Science and Technology, Univ. of London,

[77] M. M. Lehman, “PTograms, programming and the software life-
London, England, t o be published.

cycle,” CCD-ICST Res. Rep. 80/6,48 pp, Apr. 1980.
[78] -, “Hunlan thought and action as an ingredient of system be-

havior,” in Encyclopaedia of Ignorance, Duncan and Weston-
Smith, E&., Oxford, England: Pergamon Press, 1977, pp.
347-354.

(791 -, “Laws of program evolution-Rules and tools for program-
ming management,” Infotech State of the Art Conf., ‘Why soft-
wareprojectsfai1,”pp. 11/1-11/25,Apr.9-11, 1978.

[SO] M. M. Lehman and F. N. Parr, “Program evolution and its impact

gineering (San Francisco, CA), pp. 350-357, Oct. 1976. (IEEE
on software engineering,” in h o c . 2nd Znt. Con$ Software En-

Cat. no. 76CH1125-4C.)
(811 F. P. Brooks, The Mythical Man-Month-Essays on Softwrrre

Engineering. Reading, MA: Addison-Wesley, 1975, 195 pp.
(821 P. Naur and B. Randell, Eds., “Software engineering: Report on

a conference sponsored by the NATO science Committee,”

entific Affairs Division, NATO, 1969,231 pp.
(Garmisch, Germany), Oct. 7-11, 1968.’ Brussels, Belgium: Sci-

(831 B. W. Boehm, J . R. Brown, and M. Lipow, “Quantitative evalua-
tion of software quality,” in R o c . 2nd Int. Con$ Software Engi-

Cat. no. 76CH1124-4C.)
neering (San Francisco, CA), pp. 592-605, Oct. 1976. (IEEE

(841 F. N. Parr and M. M . Lehman, “State of the art survey of soft-
ware reliability,” Dep. Computing, Imperial College, London,
England, Res. Rep. 77/15, 102 pp.

[85] J. D. Musa, “The measurement and management of software reli-

I861 T. J . McCabe, “A complexity Measure,” ZEEE Trans Software
ability,” this issue, pp. 1131-1 143.

(871 M. M . Lehman, “Complexity and complexity change of a large
Eng., vol. 2, pp. 308-320, Dec. 1976.

applications program,” ERO Research Proposal, 32 pp, Mar.
1977.

I 881 L. A. Belady, “Software complexity,” in h o c . Software Phe-
nomenology, Working Papers of the cfirst) Software Life Cycle
Management Workshop (Airlie VA) Aug. 1977. Fort Belvoir,
VA: ISRAD/AIRMICS, Computer Systems Command, US.

891 E. T. Chen, “Program complexity and programmer productivity,”
Army, Dec. 1977, pp. 371-384.

901 M. E. Fagan, “Design and code inspections to reduce errors in
ZEEE Trans. Software Eng., vol. SE-1. pp. 187-193, May 1978.

program development,” IBMSyst. J . , vol. 15, no. 3, pp. 182-21 1,
1976.

(91 1 C. B. Jones, “The role of formal specifications in software devel-
opment,” in h o c . Infotech State of the A r t Cons on Life-cycle
Management, 1980.

(921 H. Kopetz, F. Lohnert, and W. Merker, “An outline of project
MARS-maintainable real-time system,” Technische Universitat,
Berlin, Germany, Bericht 79-09, 19 pp, July 1979.

