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Chaos as an intermittently forced linear system

Steven L. Brunton!, Bingni W. Brunton?, Joshua L. Proctor3, Eurika Kaiser' & J. Nathan Kutz?*

Understanding the interplay of order and disorder in chaos is a central challenge in modern
quantitative science. Approximate linear representations of nonlinear dynamics have
long been sought, driving considerable interest in Koopman theory. We present a universal,
data-driven decomposition of chaos as an intermittently forced linear system. This work
combines delay embedding and Koopman theory to decompose chaotic dynamics into a
linear model in the leading delay coordinates with forcing by low-energy delay coordinates;
this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is
applied to the Lorenz system and real-world examples including Earth's magnetic field
reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long
tails corresponding to rare intermittent forcing that precedes switching and bursting phe-
nomena. The forcing activity demarcates coherent phase space regions where the dynamics
are approximately linear from those that are strongly nonlinear.
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ynamical systems describe the changing world around us,

modeling the interactions between quantities that

co-evolve in time!. These dynamics often give rise to rich,
complex behaviors that may be difficult to predict from uncertain
measurements, a phenomena commonly known as chaos. Chaotic
dynamics are ubiquitous in the physical, biological, and engi-
neering sciences, and they have captivated amateurs and experts
for over a century. The motion of planets?, weather and climate?,
population  dynamics*®, %pidemiology7, financial markets,
earthquakes, and turbulence® °, are all compelling examples of
chaos. Despite the name, chaos is not random, but is instead
highly organized, exhibiting coherent structure and patterns'® 1.

The confluence of big data and machine learning is driving a
paradigm shift in the analysis and understanding of dynamical
systems in science and engineering. Data are abundant, while
physical laws or governing equations remain elusive, as is true for
problems in climate science, finance, and neuroscience. Even in
classical fields such as turbulence, where governing equations do
exist, researchers are increasingly turning toward data-driven
analysis!>"1°, Many critical data-driven problems, such as pre-
dicting climate change, understanding cognition from neural
recordings, or controlling turbulence for energy efficient power
production and transportation, are primed to take advantage of
progress in the data-driven discovery of dynamics!”~%7.

An early success of data-driven dynamical systems is the
celebrated Takens embedding theorem®, which allows for the
reconstruction of an attractor that is diffeomorphic to the original
chaotic attractor from a time series of a single measurement. This
remarkable result states that, under certain conditions, the full
dynamics of a system as complicated as a turbulent fluid may be
uncovered from a time series of a single point measurement.
Delay embeddings have been widely used to analyze and char-
acterize chaotic systems®”> 28-31 They have also been used for
linear system identification with the eigensystem realization algo-
rithm (ERA)?? and in climate science with the singular spectrum
analysis (SSA)*? and nonlinear Laplacian spectrum analysis®*. ERA
and SSA vyield eigen-time-delay coordinates by applying principal
component analysis to a Hankel matrix. However, these methods
are not generally useful for identifying meaningful models of
chaotic nonlinear systems, such as those considered here.

In this work, we develop a universal data-driven decomposition
of chaos into a forced linear system. This decomposition relies on
time-delay embedding, a cornerstone of dynamical sgstems, but
takes a new perspective based on regression models'” and mod-
ern Koopman operator theory®>>~3. The resulting method parti-
tions phase space into coherent regions where the forcing is small
and dynamics are approximately linear, and regions where the
forcing is large. The forcing may be measured from time series
data and strongly correlates with attractor switching and bursting
phenomena in real-world examples. Linear representations of
strongly nonlinear dynamics, enabled by machine learning and
Koopman theory, promise to transform our ability to estimate,
predict, and control complex systems in many diverse fields. A
video abstract is available for this work at: https://youtu.be/
831EII3QNck, and code is available at: http://faculty.washington.
edu/sbrunton/HAVOK zip.

Results
Linear representations of nonlinear dynamics. Consider a
dynamical system! of the form

d
Sx(0) = £(x(0), 1)

where x(t) € R” is the state of the system at time ¢ and f represents
the dynamic constraints that define the equations of motion. When

2

working with data, we often sample (1) discretely in time:

(k-+1)At
X1 = F(x) = x¢ + / f(x(7))dr, (2)

kAt

where x, =x(kAf). The traditional geometric perspective of
dynamical systems describes the topological organization of tra-
jectories of (1) or (2), which are mediated by fixed points, periodic
orbits, and attractors of the dynamics f. However, analyzing the
evolution of measurements, y=g(x), of the state provides an
alternative view. This perspective was introduced by Koopman in
193138, although it has §ained traction recently with the pioneering
work of Mezic et al.>> >® in response to the growing abundance of
measurement data and the lack of known governing equations for
many systems of interest. Koopman analysis relies on the existence
of a linear operator K for the dynamical system in (2), given by

Kg2goF = Kg(xi) = g(xesr). (3)

The Koopman operator K induces a linear system on the space
of all measurement functions g, trading finite-dimensional
nonlinear dynamics in (2) for infinite-dimensional linear
dynamics in (3).

Expressing nonlinear dynamics in a linear framework is
appealing because of the wealth of optimal control techniques
for linear systems and the ability to analytically predict the future.
However, obtaining a finite-dimensional approximation of the
Koopman operator is challenging in practice’®, relying on
intrinsic measurements related to the eigenfunctions of the
Koopman operator K, which may be more difficult to obtain than
the solution of the original system (2).

Hankel alternative view of Koopman (HAVOK) analysis.
Obtaining linear representations for strongly nonlinear systems
has the potential to revolutionize our ability to predict and
control these systems. In fact, the linearization of dynamics near
fixed points or periodic orbits has long been employed for local
linear representation of the dynamics'. The Koopman operator is
appealing because it provides a global linear representation, valid
far away from fixed points and periodic orbits, although previous
attempts to obtain finite-dimensional approximations of the
Koopman operator have had limited success. Dynamic mode
decomposition (DMD)*0~43 seeks to approximate the Koopman
operator with a best-fit linear model advancing spatial measure-
ments from one time to the next. However, DMD is based on
linear measurements, which are not rich enough for many non-
linear systems. Augmenting DMD with nonlinear measurements
may enrich the model*), but there is no guarantee that the
resulting models will be closed under the Koopman operator™.
Details about these related methods are provided in Supple-
mentary Note 2.

Instead of advancing instantaneous measurements of the state
of the system, we obtain intrinsic measurement coordinates based
on the time-history of the system. This perspective is data-driven,
relying on the wealth of information from previous measure-
ments to inform the future. Unlike a linear or weakly nonlinear
system, where trajectories may get trapped at fixed points or on
periodic orbits, chaotic dynamics are particularly well-suited to
this analysis: trajectories evolve to densely fill an attractor, so
more data provides more information.

This method is shown in Fig. 1 for the Lorenz system (details
are provided in Supplementary Note 3). The conditions of the
Takens embedding theorem are satisfied’, so eigen-time-delay
coordinates may be obtained from a time series of a single
measurement x(f) by taking a singular value decomposition
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Fig. 1 Decomposition of chaos into a linear dynamical system with forcing. A time series x(t) is stacked into a Hankel matrix H. The SVD of H yields a
hierarchy of eigen time series that produce a delay-embedded attractor. A best-fit linear regression model is obtained on the delay coordinates v; the

linear fit for the first r—1 variables is excellent, but the last coordinate v, is not well-modeled as linear. Instead, v,(t) is a stochastic input that forces the
first r—=1 variables. The rare events in the forcing correspond to lobe switching in the chaotic dynamics. This architecture is called the Hankel alternative

view of Koopman (HAVOK) analysis

(SVD) of the following Hankel matrix H:

[x(t)  x(t2) x(tp) |
x(tz) X(t3) x(tp+1)
H= —USV". (4)
_x(tq) x(tg11) x(tm) ]

The columns of U and V from the SVD are arranged
hierarchically by their ability to model the columns and rows of
H, respectively. Often, H may admit a low-rank approximation
by the first r columns of U and V. Note that the Hankel matrix in
(4) is the basis of ERA%? in linear system identification and SSA33
in climate time series analysis. Interestingly, a connection
between the Koopman operator and the Takens embedding was
explored as early as 2004*°.

The low-rank approximation to (4) provides a data-driven
measurement system that is approximately invariant to the
Koopman operator for states on the attractor. By definition, the
dynamics map the attractor onto itself, making it invariant to the

flow. We may re-write (4) with the Koopman operator K:

x(h)  Kx(t) KP'x(ty) ]
ICX(tl) lsz(tl) pr(tl)
H= (5)
_ICq_lx(tl) Iqu(tl) Km_lx(tl)_

The columns of (4), and thus (5), are well-approximated by the
first r columns of U, so these eigen-time-series provide a
Koopman-invariant measurement system. The first » columns
of V provide a time series of the magnitude of each of the
columns of UZ in the data. By plotting the first three columns of
V, we obtain an embedded attractor for the Lorenz system, shown
in Fig. 1le.

The connection between eigen-time-delay coordinates from (4)
and the Koopman operator motivates a linear regression model
on the variables in V. Even with an approximately Koopman-
invariant measurement system, there remain challenges to
identifying a linear model for a chaotic system. A linear model,
however detailed, cannot capture multiple fixed points or the
unpredictable behavior characteristic of chaos with a positive
Lyapunov exponent®. Instead of constructing a closed linear
model for the first r variables in V, we build a linear model on the
first r—1 variables and allow the last variable, v,, to act as a forcing
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term:

d
V() = AV() + By (1), (6)

v,_1]" is a vector of the first r—1

eigen-time-delay coordinates. In all of the examples below, the
linear model on the first r—1 terms is accurate, while no linear
model represents v,. Instead, v, is an input forcing to the linear
dynamics in (6), which approximate the nonlinear dynamics in
(1). The statistics of v,(t) are non-Gaussian, as seen in Fig. 1h. The
long tails correspond to rare-event forcing that drives lobe
switching in the Lorenz system; this is related to rare-event
forcing observed and modeled by others!> 13 46, However, the
statistics of the forcing alone is insufficient to characterize the
switching dynamics, as the timing is crucial. The long-tail forcing
comes in high-frequency bursts, which are not captured in the
statistics alone. In fact, forcing the system in (6) with other
forcing signatures from the same statistics, for example by
randomly shuffling the forcing time series, does not result in the
same dynamics. Thus, the timing of the forcing is as important as
the distribution. In principle, it is also possible to split the
variables into r—s high-energy modes for the linear model and s
low-energy forcing modes, although this is not explored in the
present work. The splitting of dynamics into deterministic linear
and chaotic stochastic dynamics was proposed in ref. 3°. Here we
extend this concept to fully chaotic systems where the Koopman
operators have continuous spectra and develop a robust
numerical algorithm for the splitting.

The forced linear system in (6) was discovered after applyin
the sparse identification of nonlinear dynamics (SINDy)!
algorithm to delay coordinates of the Lorenz system. Even when
allowing for the possibility of nonlinear dynamics in v, the most
parsimonious model is linear (shown in Fig. 2). This strongly
suggests a connection with the Koopman operator, motivating the
present work. The last term v, is not accurately represented by
either linear or polynomial nonlinear models'®, as is shown in
Supplementary Fig. 18.

The structure of the HAVOK model for the Lorenz system is
shown in Fig. 2. There is a dominant skew-symmetric structure in
the A matrix, and the entries are nearly integer valued. In
Supplementary Note 4, we demonstrate that the dynamics of a
nearby model with exact integer entries qualitatively matches the
dynamics of the Lorenz model, including the lobe switching
events. This off-diagonal structure and near integrability is
the subject of current investigation by colleagues. It was argued in
ref. 3> that on an example deterministic chaotic system, there is a
random dynamical system representation that has the same
spectrum and may be used for long-term prediction. The Lorenz
system is mixing and does not have a simple spectrum?’,
although it appears that there are functions in the pseudo
spectrum that are nearly eigenfunctions of the Koopman
operator. Indeed, in the system in ref. 3°, the Koopman
representation has a similar off-diagonal structure to the Lorenz
example here.

Here v=[v; w,

HAVOK analysis and prediction in the Lorenz system. In the
case of the Lorenz system, the long tails in the statistics of the
forcing signal v,(f) correspond to bursting behavior that precedes
lobe switching events. It is possible to directly test the power of
the forcing signature v,(t) to predict lobe switching in the Lorenz
system. First, a HAVOK model is trained using data from 200
time units of a trajectory; this results in the basis U and the model
matrices A and B. Next, the prediction of lobe switching is tested
on a new validation (test) trajectory consisting of the next 1,000

4
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Fig. 2 The regression model obtained for the Lorenz system is sparse,
having a dominant off-diagonal structure. This HAVOK model is highly
structured, with skew symmetric entries that are nearly integer multiples of
five; this fascinating structure is explored more in Supplementary Note 4

time units (i.e., time ¢ =200 to t = 1200). Figure 3 shows 20 time
units of this test trajectory. Regions where the forcing term v, is
active are isolated when |v,| is larger than a threshold value; in
this case, we choose r=11 and the threshold is 0.002. These
regions are colored red in Fig. 3 for v; and v,. The remaining
portions of the trajectory, when the forcing is small, are colored in
dark gray. It is clear by eye that the activity of the forcing precedes
lobe switching by nearly one period. During the 1,000 time units
of test data there are 605 lobe switching events, of which the
HAVOK model correctly identifies 604, for a accuracy of 99.83%.
There are likewise 2,047 lobe orbits that do not precede lobe
switching, and the HAVOK model identifies 54 false positives at a
rate of 2.64%. Note that in this example, both v,(f) and v,(¢) are
computed directly from the time-series using U, and are not
simulated using the dynamic model. Computing v, using U
introduces a short delay of gAt = 0.1 time units; however, forcing
activity precedes lobe switching by considerably more than 0.1
time units, so that it is still predictive.

It is important to note that when the forcing term is small,
corresponding to the gray portions of the trajectory, the dynamics
are largely governed by linear dynamics. Thus, the forcing term in
effect distills the essential nonlinearity of the system, indicating
when the dynamics are about to switch lobes of the attractor. The
same trajectories are plotted in three-dimensions in Fig. 4a, where
it can be seen that the nonlinear forcing is active precisely when
the trajectory is on the outer portion of the attractor lobes. A
single lobe switching event is shown in Fig. 4b, illustrating the
geometry of the trajectories.

Figure 5 shows that the dynamic HAVOK model in (6)
generalizes to predict behavior in test data that was not used to
train the model. In this figure, a HAVOK model of order r =15 is
trained on data from t=0 to t=50, and then simulated on test
data from # =50 to t = 100. The model captures the main features
and lobe transitions, although small errors gradually increase for
long times. This model prediction must be run on-line, as it
requires access to the forcing signature v,, which may be obtained
by multiplying a sliding window of v(#) with the basis U.

Connection to almost-invariant sets and Perron-Frobenius.
The Koopman operator is the dual, or left-adjoint, of the
Perron-Frobenius operator, which is also called the transfer
operator on the space of probability densities. Thus, Koopman
analysis is typically concerned with measurements from a single
trajectory, while Perron-Frobenius analysis is concerned with an
ensemble of trajectories. Because of the close relationship of the
two operators, it is interesting to compare the HAVOK analysis
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Fig. 3 Eigen-time-delay coordinate v; of the Lorenz system, colored by the activity of the forcing v,, for r=11. When the forcing is active (red), the trajectory
is about to switch, and when the forcing is inactive (gray), the solution is governed by predominantly linear dynamics corresponding to orbits around one
attractor lobe. The forcing is active when |v,|>0.002; this threshold was chosen by trial and error, although it could be varied to sweep out a receiver
operating characteristic (ROC) curve to determine the optimal value based on desired sensitivity and specificity
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Fig. 4 a Time-delay embedded attractor of the Lorenz system color-coded by the activity of the forcing term vq;. Trajectories in gray correspond to regions
where the forcing is small and the dynamics are well approximated by Koopman linear dynamics. The trajectories in red indicate that lobe switching is
about to occur. b Illustration of one intermittent lobe switching event. The trajectory starts at point A, and resides in the basin of the right lobe for six
revolutions until B, when the forcing becomes large, indicating an imminent switching event. The trajectory makes one final revolution (red) and switches to
the left lobe C, where it makes three more revolutions. At point D, the activity of the forcing signal v;; will increase, indicating that switching is imminent

with the almost-invariant sets from the Perron-Frobenius
operator. Almost-invariant sets represent dynamically isolated
phase space regions, in which the trajectory resides for a long
time. These sets are almost invariant under the action of the
dynamics and are related to dominant eigenvalues and eigen-
functions of the Perron-Frobenius operator. They can be
numerically determined from its finite-rank approximation by
discretizing the phase space into small boxes and computing a
large, but sparse, transition probability matrix of how initial
conditions in the various boxes flow to other boxes in a fixed
amount of time; for this analysis, we use the same g =100 for the
length of the U vectors as in the HAVOK analysis. Following the
approach proposed by ref. 48, almost-invariant sets can then be

NATURE COMMUNICATIONS|8:1

estimated by computing the associated reversible transition
matrix and level-set thresholding its right eigenvectors.

The almost-invariant sets of the Perron-Frobenius operator are
shown in Fig. 6 for the Lorenz system. There are two sets, each
corresponding to the near basin of one attractor lobe as well as the
outer basin of the opposing attractor lobe and the bundle of
trajectories that connect them. These two almost-invariant sets
dovetail to form the complete Lorenz attractor. Underneath the
almost-invarjant sets, the Lorenz attractor is colored by the
thresholded magnitude of the nonlinear forcing term in the HAVOK
model, which partitions the attractor into two sets corresponding to
regions where the flow is approximately linear (inner black region)
and where the flow is strongly nonlinear (outer red region). The

| DOI: 10.1038/541467-017-00030-8 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00030-8

Training data Test data
0.01 Training data 7]
Test data
HAVOK model
2 0~
-0.01 | .
0 100
t
b
Vi
Convolve it Obtain
with U o@. \,'.'; <:'A§\\ /M v 2
- c\\'//NW/[ | —pp |
V,.\O Mu.wu w] :
Vf
= ) Siiding window 0 100At

Fig. 5 a The linear model obtained from training data (light gray) may be validated on a new test trajectory. Extracting the v, signal as an input to the linear
model provides an accurate reconstruction (blue) of the attractor on the test data (black). b lllustration of eigen-time-delay modes in U for the Lorenz

system with g =100 corresponding to a window size of 100 At = 0.1 time units. Measurements are convolved with U to obtain v. The U modes resemble
polynomials, ordered by energy (i.e., constant, linear, quadratic, etc.). This structure in U is common across most of the examples, and provides a criterion
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Fig. 6 Lorenz attractor visualized using both the HAVOK approximately
linear set as well as the Perron-Frobenius almost-invariant sets

boundaries of the almost-invariant sets of the Perron-Frobenius
operator closely match the boundaries from the HAVOK analysis.

Demonstration on examples. The HAVOK analysis is applied to
analytic and real-world systems in Fig. 7. More details about each
of these systems is presented in Supplementary Note 6, and code
for every example is publicly available. The examples span a wide
range of systems, including canonical chaotic dynamical systems,
such as the Lorenz and Rdssler systems, and the double pendu-
lum, which are among the simplest systems that exhibit chaotic
motion. As a more realistic example, we consider a stochastically
driven simulation of the Earth’s magnetic field reversal*®, where
complex magnetohydrodynamic equations are modeled as a
dynamo driven by turbulent fluctuations. In this case, the exact

6 NATURE COMMUNICATIONS| 8:1

form of the attractor is not captured by the linear model, although
the attractor switching, corresponding to magnetic field reversal,
is preserved. In the final three examples, we explore the method
on data collected from an electrocardiogram (ECG), electro-
encephalogram (EEG), and recorded measles cases in New York
City over a 36 year timespan from 1928 to 1964; sources for all
data are provided in Supplementary Note 6.

In each example, the qualitative attractor dynamics are
captured, and large transients and intermittent phenomena are
highly correlated with the intermittent forcing in the model.
These large transients and intermittent events correspond to
coherent regions in phase space where the forcing is large (right
column of Fig. 7, red). Regions where the forcing is small (black)
are well-modeled by a Koopman linear system in delay
coordinates. Large forcing often precedes intermittent events
(lobe switching for Lorenz system and magnetic field reversal, or
bursting measles outbreaks), making this signal strongly corre-
lated and potentially predictive. However, caution must be taken
when using time-delay coordinates in streaming or
real-time applications, as the HAVOK forcing signature will be
delayed by gAt. In the case of the Lorenz system, the HAVOK
forcing predicts lobe switching by about 1 time unit, while
qAt=0.1; thus, the prediction still precedes the lobe switching. It
is important to note that every model identified and presented
here is either neutrally or asymptotically stable. Although we are
not aware of theoretical guarantees that data-driven methods like
HAVOK will remain stable, it is intuitive that if we sample
enough data from a chaotic attractor, the eigenvalues of the
models should converge to the unit circle (in discrete-time). In
practice, it is certainly possible to obtain unstable models,
although this is usually preventable by careful choice of the model
order r, as discussed above. For example, if the choice of r is too
large®’, the model overfits to noise, and is thus prone to
instability. In general, sparse regression can have a stabilizing
effect by penalizing model terms that are not necessary,
preventing overfitting that can lead to instability. In practice, it
may also be helpful to add a small amount of numerical diffusion
to stabilize models.

| DOI: 10.1038/541467-017-00030-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/541467-017-00030-8

ARTICLE

Embedded

Time series attractor

Model and
forcing

Nonlinear
regions

Reconstructed
attractor

Forcing
statistics

Rossler

Double
pendulum

Magnetic

Sleep

Measles
outbreaks

Fig. 7 HAVOK analysis applied to a number examples, including analytical systems (Lorenz and Réssler), stochastic magnetic field reversal, and systems
characterized from real-world data (electrocardiogram, electroencephalogram, and measles outbreaks). The model is extremely accurate for the first four
analytical cases, providing faithful attractor reconstruction and predicting dominant transient and intermittent events. Similarly, in the case of measles
outbreaks, the forcing signal is potentially predictive of large transients corresponding to outbreaks. The examples are characterized by nearly symmetric
forcing distributions with fat tails (Gaussian forcing is shown in black dashed line), corresponding to rare forcing events. Nonlinear measurements

y(t) = g(x(t)) may be used in (4) to enhance features of the embedded attractor. This HAVOK analysis builds on the decades of existing time-delay
embedding literature by providing accurate intermittently forced linear regression models for chaotic dynamics. Credit for images in the left column:
(Earth’s magnetic field) Zureks on Wikimedia Commons; (human heart) Public domain; (human brain) Sanger Brown M.D. on Wikimedia Commons;

(measles) CDC/Cynthia S. Goldsmith, William Bellini, Ph.D

Discussion
In summary, we have presented a data-driven procedure, the
HAVOK analysis, to identify an intermittently forced linear
system representation of chaos. This procedure is based on
machine learning regression, Takens’ embedding, and Koopman
theory. In practice, HAVOK first applies DMD or sparse
regression (SINDy) to delay coordinates followed by a splitting of
variables to handle strong nonlinearities as intermittent forcing;
applying DMD to delay coordinates has already been explored in
the context of rank-deficient data*® 4% 51, The activity of the
forcing signal in the Lorenz model is shown to predict lobe
switching, and it partitions phase space into coherent linear and
nonlinear regions. In the other examples, the forcing signal is
correlated with intermittent transient events, such as switching
and bursting, and may be predictive.

There are many interesting directions to investigate related to
this work. Understanding the skew-symmetric structure of the

NATURE COMMUNICATIONS|8:1

HAVOK model and the near-integrability of chaotic systems is a
topic of ongoing research. Moreover, a detailed mathematical
understanding of chaotic systems with continuous spectra will
also improve the interpretation of this work. Because the method
is data-driven, there are open questions related to the required
quantity and quality of data and the resulting model performance.
There are also interesting relationships between the number of
delays included in the Hankel matrix and the geometry of the
resulting embedded attractor. Finally, the use of HAVOK analysis
for real-time prediction, estimation, and control is the subject of
ongoing work by the authors.

The search for intrinsic or natural measurement coordinates is
of central importance in finding simple representations of com-
plex systems, and this will only become increasingly important
with growing data. Specifically, intrinsic measurement coordi-
nates can benefit other theoretical and applied work involving

Koopman theory*® 32~ and related topics®”~°!. Simple, linear
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representations of complex systems is a long sought goal, pro-
viding the hope for a general theory of nonlinear estimation,
prediction, and control. This analysis will hopefully motivate
novel strategies to measure, understand, and control®? chaotic
systems in a variety of scientific and engineering applications.

Methods

Choice of model parameters. In practice, there are a number of important
considerations when applying HAVOK analysis. Heuristically, there are two main
choices that are important in every example: first, choosing the timestep and
number of rows, ¢, in the Hankel matrix to obtain a suitable delay embedding basis
U, and second, choosing the truncation rank r, which determines the model order
r—1. For the first choice, it has been observed that models are more accurate and
predictive when the basis U resembles polynomials of increasing order, as shown in
Fig. 5b or in Supplementary Fig. 11. Decreasing At can improve the basis U to a
point, and then decreasing further has little effect. Similarly, there is a relatively
broad range of q values that admit a polynomial basis for U, and this is chosen in
every example. As seen in Supplementary Table 3, for the numerical examples
where time is nondimensionalized, the product gAf (i.e., the time window con-
sidered in the row direction) is equal to 0.1 time units. For the second choice, there
are many important factors to consider when selecting the model order r. These
factors are explored in detail for the Lorenz system in Supplementary Figs 16 and
17 in Supplementary Note 5, and they are summarized here: model accuracy on
both the training data and ideally a hold-out data set not used for training; clear
distillation of a forcing signature that is active during important intermittent events
and quiescent otherwise; signal to noise in the data; prediction of intermittent
events; and desired amount of structure in the resulting linear model. For the
Lorenz example, we choose r=15 for Fig. 2, because this is the highest order
attainable before numerical roundoff corrupts the model. In this example, higher
model order elucidates more structure in the sparse linear model shown in Fig. 2.
However, the correlation of the forcing signature with intermittent events is
relatively insensitive to model order, and we use a model with order r=11 for
prediction in Figs 3 and 4.

Data availability. All data supporting the findings are available within the article
and its Supplementary Information, or are available from the authors upon request.
In addition, all code used in this study is available at: http://faculty.washington.edu/
sbrunton/HAVOK .zip.
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