
XGRAMMAR: FLEXIBLE AND EFFICIENT STRUCTURED GENERATION
ENGINE FOR LARGE LANGUAGE MODELS

Yixin Dong 1 Charlie F. Ruan 1 Yaxing Cai 2 Ruihang Lai 1 Ziyi Xu 3 Yilong Zhao 4 Tianqi Chen 1 2

ABSTRACT
The applications of LLM Agents are becoming increasingly complex and diverse, leading to a high demand for
structured outputs that can be parsed into code, structured function calls, and embodied agent commands. These
developments bring significant demands for structured generation in LLM inference. Context-free grammar is
a flexible approach to enable structured generation via constrained decoding. However, executing context-free
grammar requires going through several stack states over all tokens in vocabulary during runtime, bringing
non-negligible overhead for structured generation. In this paper, we propose XGrammar, a flexible and efficient
structure generation engine for large language models. XGrammar accelerates context-free grammar execution by
dividing the vocabulary into context-independent tokens that can be prechecked and context-dependent tokens
that need to be interpreted during runtime. We further build transformations to expand the grammar context and
reduce the number of context-independent tokens. Additionally, we build an efficient persistent stack to accelerate
the context-dependent token checks. Finally, we co-design the grammar engine with LLM inference engine to
overlap grammar computation with GPU executions. Evaluation results show that XGrammar can achieve up
to 100x speedup over existing solutions. Combined with an LLM inference engine, it can generate near-zero
overhead structure generation in end-to-end low-LLM serving.

1 INTRODUCTION

Recent advancements in large language models (LLMs)
have created new possibilities for complex applications such
as code generation (Chen et al., 2021; Wang et al., 2021),
debugging (Pearce et al., 2022; Mozannar et al., 2024), exter-
nal tool invocation through function calling (OpenAI, 2024;
LangChain, 2024), and robotic control (Liu et al., 2023).
These applications bring great demand for LLM systems
to perform structured generation and produce outputs that
follow specific formats, such as JSON, SQL or other struc-
tures tailored to the task. The downstream applications can
then organically consume the structured outputs to perform
followup interactions with the system.

Constrained decoding (Deutsch et al., 2019; Kuchnik et al.,
2023) is a commonly adopted method for structured gen-
eration. At each decoding step, constrained decoding ex-
amines the vocabulary and filters out tokens that violate
the specified structure by setting the probabilities of invalid
tokens to zero. To support the rich structure formats arising
in diverse applications, a flexible mechanism is needed to
specify and check the constraints. Context-free grammar

1Carnegie Mellon University 2NVIDIA 3Shanghai Jiao Tong
University 4University of California, Berkeley. Correspondence
to: Yixin Dong <yixind@andrew.cmu.edu>.

(CFG) (Chomsky, 1956; Poesia et al., 2022; Scholak et al.,
2021) provides a general approach for defining structures
through a set of rules. Each rule contains a sequence of
characters or other rules, allowing recursive composition
to represent complex structures. Compared to alternative
formats such as regular expressions, CFGs offer greater
flexibility by allowing recursive structures, making them
suitable for describing common languages such as JSON,
SQL, and domain-specific languages (DSLs).

However, naively applying CFG to constrained decoding is
not efficient because of its flexible nature. First, each de-
coding step needs to interpret CFG for every possible token
in the vocabulary, which can be as large as 128k in Llama
3.1 (Dubey et al., 2024a). Additionally, CFG interpretation
requires a stack state that tracks the recursive rules matched
so far, making it impossible to precompute and cache all
combinatorial combinations of stack patterns ahead of time.
Finally, each token in the LLM generation comprises multi-
ple characters, which may cross the boundaries of grammar
elements and cause further recursion or stack pop during
runtime execution. The misaligned boundaries bring the
need to handle them carefully during grammar execution.

In this paper, we introduce XGrammar, a flexible and effi-
cient structured generation engine for large language mod-
els to address the above challenges. XGrammar builds a
byte-level pushdown automaton to represent context-free

ar
X

iv
:2

41
1.

15
10

0v
2

 [
cs

.C
L

]
 2

7
N

ov
 2

02
4

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

[0] array

[3] str

Node l

[0]<array>

[3]<str>

Node l

a b

[0] <array>

[1] <str>

main:

g

c [2] '['array:

[4] <array>

d

','

e

[5] <str>

[7] ']'

f

mh [8] '"'str:

[9] [^"\]

l [10] '"'

[3] <str>

[6] <array>

Pushdown Automata

Context-independent:
Fetched from cache

(fast, majority)

Context-dependent:
Checked at runtime

(slow, minority)

Known rejected
Known accepted

Vocabulary

Use pushdown
automata to parse

Efficient Mask Generation

Complete
Token Mask

Prior LLM
Output

Matching Stack States

Partial
Token Mask

Retrieve token mask cache
from stack top

Vocabulary

["a

Context-dependent tokens (minority)

Adaptive
Token Mask Cache
● Preprocessed for
 every node (§3.1)
● Enhanced with
 context expansion
 (§3.2)

● Maintained by
 persistent execution stacks
 (§3.3)

● Automata
 optimization (§3.4)

Context-independent tokens

● Overlapping
 with LLM
 engine (§3.5)

Figure 1. Overview of our approach. Our key insight is to divide the vocabulary into context-independent and context-dependent tokens at
each position within the pushdown automaton. We precompute and cache the context-independent tokens in an adaptive token mask
cache, which is then retrieved at runtime. Other context-dependent tokens are checked on the fly. Additionally, we implement various
optimizations to reduce the number of context-dependent tokens and enhance processing efficiency, ultimately accelerating runtime
handling of these tokens.

grammars (CFGs). Our main insight(shown in Figure 1)
is to categorize the tokens into context-independent to-
kens that can be decided only from the local context of
automata and context-dependent tokens that require the
entire stack state. We precompute the token correctness for
all context-independent tokens and store them in an adaptive
token mask cache with specific storage formats tailored to
each automata location. We also build algorithms to expand
the context of each local rule and reduce the number of
context-dependent tokens. Additionally, we build a persis-
tent stack-based system to enable rapid state branching and
rollback, expediting context-dependent token checks and
cache preprocessing. Finally, we co-designed the grammar
engine with LLM inference engines to overlap the grammar
computations with GPU computations, bringing minimal
overhead for structured generation.

The main contribution of this paper is as follows:

• We introduce an adaptive token mask cache that lever-
ages context-independent tokens and significantly re-
duces mask generation overhead.

• We design a persistent execution stack that enables fast
rollback operations, rapid state branching, and rollback,

expediting context-dependent token processing.

• We built an efficient grammar engine co-designed with
the LLM serving framework to achieve minimal struc-
tured generation overhead.

Evaluation shows that XGrammar can achieve up to 100x
reduction in per-token latency for context-free grammar
compared to current state-of-the-art methods. Additionally,
the XGrammar-integrated LLM serving engine for Llama-
3.1 models achieves up to an 80x speedup in end-to-end
LLM serving with structured output on the H100 GPU. We
are open-sourcing XGrammar and integrating it into major
open-source LLM frameworks.

2 BACKGROUND

2.1 LLM Constrained Generation

Large Language Models (LLMs) like GPT-4 (OpenAI et al.,
2024), Llama (Dubey et al., 2024a), and Mistral (Jiang et al.,
2023) generate text in an auto-regressive manner, predicting
one token at a time based on preceding sequence of tokens.
The process starts with an initial prompt and continues as
the model iteratively appends tokens until the response is

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

0 0 0 0

Softmax

Sampler

3

Prob. Distribution

Output Logits

Masked Logits

Sampled
Token

Per-token Mask

Structure Prior
Output

LLM Inference

0.76 0.130.1 1e-3

-∞ -∞ -∞ -∞

-1-2 4 5 1.1 3.2 -53

5 3.23 -1

0 0 0 01 11 1

Figure 2. Constrained decoding with per-token mask. The per-
token mask prevents LLM from generating tokens that would be
invalid according to the structure at that step.

complete. In LLMs, tokens serve as the basic input and
output units. Each token represents a fixed string but may
not correspond to a complete semantic unit or may break a
Unicode character (Wang et al., 2019), creating challenges
for structured text generation. At each step, the model
produces a logits vector across its vocabulary, which is then
converted into a probability distribution using the softmax
function (Bridle, 1989). A sampler then selects the next
token from this distribution.

Constrained decoding guides the structure of LLM-
generated text by restricting available tokens at each step,
as illustrated in Figure 2. At each step, tokens that would
violate the required structure are identified as invalid. Their
logits are set to −∞, effectively assigning them zero prob-
ability after the softmax operation and preserving the rel-
ative probabilities of other valid tokens. This ensures that
only valid tokens are sampled. Efficiently identifying and
masking invalid tokens is essential, as it directly impacts
generation speed.

2.2 Context-free Grammar and Pushdown Automata

Context-free grammar (CFG) (Chomsky, 1956) is widely
used to define structures in structured generation. With an
example shown in Figure 3, CFG contains multiple rules,
each including characters or references to other rules, al-
lowing recursive composition to define complex structures.
This makes CFG suitable for languages such as JSON, SQL,
and various domain-specific languages. CFG’s recursive
nature provides greater expressive power than simpler pat-
terns, such as regular expressions, which are also frequently
applied in LLM structured generation.

Pushdown automata (PDA) (Schützenberger, 1963; Evey,
1963) are typically used to recognize languages generated by
CFGs, as they employ a stack to manage nested structures.

main ::= <array> | <str>
array ::= '[' (<str> | <array> ',')*
 <str> | <array> ']'
str ::= '"' [^"\]* '"'

[0]<array>

[3]<str>

Node l

Matching Stacks for Input

Expanding edge
[3] <str>

Now at node l
of rule <str>

[0]<array>

[5]<str>

Node l

Expanding edge
[0] <array>

Expanding edge
[5] <str>

Now at node l
of rule <str>

Expanding edge
[0] <array>

Context-free Grammar

["a

Figure 3. Up: A context-free grammar for arrays and strings that
can be recursively composed. This CFG is converted into the push-
down automata in Figure 1. [ˆ"\] denotes every character except
" and \. Down: Two possible matching stacks for matching the
string ["a to the CFG. Each stack represents a possible expansion
of the rules in the CFG.

An example of PDA is shown in Figure 1, and its stacks are
shown in detail in Figure 3. A PDA consists of multiple
finite state automata (FSA), each representing a grammar
rule, with the stack handling recursive rule expansions. The
transitions in the FSA include two types: character edges,
which accept specific characters, and rule reference edges,
which allow recursive entry into other rules. To match
a string, the PDA begins with the main rule, recursively
expanding child rules by pushing rule-reference edges onto
the stack; once a rule is fully matched, it pops the stack
to return to the previous rule. The top of the stack holds
the current node reached. If the grammar is ambiguous,
meaning it allows multiple rule expansions for the same
input string, the PDA can maintain multiple parallel stacks
for each expansion path, ensuring flexibility. However, the
unbounded stack length results in an infinite number of
possible states, making it impractical to precompute token
masks for all scenarios, thus posing challenges for efficient
constrained decoding.

3 XGRAMMAR

As shown in Figure 1, XGrammar utilizes a byte-level push-
down automaton to interpret the context-free grammar. This
byte-level design allows each character edge to include one

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

ab"

mh [8] '"'str:

[9] [^"\]

l [10] '"'

Context-dependent

a

\ \ab

"ab a"b

Reaches l or m from l

Cannot match from l

Reaches m from l but
have remaining part

Context-independent
(Accepted)
Context-independent
(Rejected)

Vocabulary

Figure 4. An example for the token mask cache. Tokens are cate-
gorized into three types: context-independent (accepted), context-
independent (rejected), and context-dependent. The first two types
can be directly determined for mask generation at runtime.

or more bytes, handling irregular token boundaries and sup-
porting tokens containing sub-UTF8 characters. The au-
tomaton’s structure is optimized to accelerate matching,
as described in §3.4. In the preprocessing phase, we gen-
erate an adaptive token mask cache, as detailed in §3.1,
which accelerates runtime mask generation by precomput-
ing context-independent tokens. The effectiveness of this
cache is further enhanced by context extension in §3.2. At
runtime, the token mask cache quickly generates most of the
mask, while the persistent execution stack in §3.3 efficiently
processes the rest context-dependent tokens. Additionally,
mask generation and LLM inference are overlapped in §3.5
to minimize the overhead of constrained decoding. Once the
LLM generates a new token under the mask constraint, this
token is then used to update the stack state of the pushdown
automaton for the next mask generation.

3.1 Adaptive Token Mask Cache

To accelerate the generation of the token mask cache, the
adaptive token cache categorizes tokens into two types
(Figure 4): context-independent tokens, which constitute
the vast majority and can be pre-computed, and context-
dependent tokens, which require slower, on-the-fly process-
ing but are relatively few. This token classification relates to
how tokens are validated by the pushdown automaton. We
found that, considering the transition of the stack state, the
process of matching tokens to the automaton can be divided
into three categories:

1. The matching process expands into a child rule, push-
ing new elements onto the stack.

2. The matching process advances within the current rule,
updating the stack top node to a new position.

3. The matching process reaches the end of the current

Accept-heavy Cases: Store

Reject-heavy Cases: Store

Equal Cases: Very rare, store bitsets

Figure 5. The adaptive storage format. In accept-heavy cases, we
store the rejected tokens and context-dependent tokens. In reject-
heavy cases, we store the accepted tokens and context-dependent
tokens. In rare cases where two kinds of tokens are equal, we
compress the accepted and rejected tokens into a bitset of the
vocabulary size.

rule and returns to a parent rule, popping elements
from the stack.

Validating tokens in the former two cases only relies on the
stack top node, which represents the position within the cur-
rent rule, so we define these tokens as context-independent
tokens. The tokens in the third type, however, requires
inspecting the entire running stack in validation, and are
defined as context-dependent tokens. For every node of the
pushdown automaton, there is a set of context-independent
tokens with this node being at the top of the stack at run-
time, and their validity can be determined ahead of time.
Therefore, we precompute the validity of these tokens and
store them in a cache with the stack top node as the key,
which we refer to as the adaptive token mask cache. It also
adaptively selects the most efficient storage format based on
the cache’s contents, as explained in the next paragraph.

At runtime, we retrieve the validity of context-independent
tokens directly based on the top of the stack to generate the
token mask. The remaining few context-dependent tokens
are validated by executing the pushdown automaton with
the full stack. If parallel stacks exist due to the ambiguity
of the grammar, the token masks for every stack is merged
into a final token mask by finding the union of the accepted
tokens in each mask. The computation for the token mask
is significantly reduced because our method do not need
to check context-independent tokens at runtime. Experi-
ments show that context-dependent tokens account for only
a minor proportion, amounting to less than 1% (1134 out of
128k) for the Llama-3.1 model using JSON grammar.

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

Adaptive storage. The token mask cache adopts an adap-
tive storage format to reduce memory usage, as illustrated
in Figure 5. For each automaton node, the token mask cache
divides the vocabulary into three parts: the accepted context-
independent tokens, the rejected context-independent to-
kens, and the context-dependent tokens. Since these three
parts together cover all tokens, it is sufficient to store only
the two smaller subsets. We observe that, for a set of context-
independent tokens, they tend to be either almost entirely
accepted, namely accept-heavy cases, or almost entirely
rejected, namely reject-heavy cases. This arises because, if
wildcards can be matched from the current node, such as the
wildcard [ˆ"\]* in the rule of string, nearly all tokens are
valid; whereas if the node only accepts a few specific charac-
ters, nearly all tokens are invalid. Based on this observation,
we designed the following adaptive storage format:

1. For accept-heavy cases, we store the rejected context-
independent tokens and context-dependent tokens in
two arrays.

2. For reject-heavy cases, we store the accepted context-
independent tokens and context-dependent tokens in
two arrays.

3. For rare cases where the accepted and rejected tokens
are roughly equal, we store the accepted and rejected
context-independent tokens and compress them into a
bitset matching the vocabulary size.

Thus, in both accept-heavy and reject-heavy cases, the adap-
tive storage format only requires storing a small subset of
tokens, significantly reducing memory usage. For Llama-3.1
model and JSON grammar, this adaptive storage method can
effectively reduce the total memory usage to 0.2% (from
160 MB to 0.46 MB).

Additionally, when multiple parallel stacks exists, we need
to merge the token masks. The merging algorithm of token
masks is optimized based on storage type, as shown in Algo-
rithm 1. For an accept-heavy mask (many accepted tokens,
storing only rejected tokens), it intersects the rejected tokens
with PartialRej. For a reject-heavy mask (many rejected
tokens, storing only accepted tokens), it combines accepted
tokens with PartialAcc. In the final mask, the rejected to-
kens are the set difference PartialRej \PartialAcc. This
algorithm limits set operations to small token subsets, thus
enhancing efficiency.

3.2 Context Expansion

Although the adaptive token mask cache effectively re-
duces the number of tokens checked at runtime, checking
all context-dependent tokens remains an efficiency bottle-
neck at runtime. To further reduce the number of context-
dependent tokens, XGrammar introduces context expansion,

Algorithm 1 Efficiently Merge Token Masks

Input: Token masks for k parallel stacks {Mi =
(Acci, Reji)}ki=1, vocabulary V .
Output: The final token mask M = (Acc,Rej).
Initialize PartialAcc← ∅, PartialRej ← V
for i = 1 to k do

if Mi is accept-heavy then
Mi only stores rejected token list Reji
PartialRej ← PartialRej ∩Reji

else
Mi only stores accepted token list Acci
PartialAcc← PartialAcc ∪Acci

end if
end for
M ← (V \ (PartialRej \ PartialAcc),

PartialRej \ PartialAcc)

which leverages the grammar’s context information to reject
more context-dependent tokens during preprocessing, as
shown in Figure 6.

When validating a context-dependent token on a pushdown
automaton, the matching process will reach the end of the
current rule and return to parent rules to continue checking.
This means a prefix of the token can be matched by the cur-
rent rule, but whether the rest part can be matched remains
to be determined by parent rules. However, we observed
that the set of possible parent rules for each rule is limited,
and the set of strings that can continue be matched after
returning to parent rules is often constrained. Based on this
observation, context expansion precomputes the possible
suffix strings for each rule when returning to parent rules,
called the expanded suffix. If a context-dependent token can-
not match any string in the expanded suffix after finishing
the current rule, it is marked as invalid. This filtering pro-
cess effectively reduces the number of context-dependent
tokens by eliminating those that would fail in higher-level
rule contexts. Applied to the Llama-3.1 model and JSON
grammar, this technique reduces context-dependent tokens
by 90% (from 1,134 to 120), substantially improving the
efficiency of generating token masks at runtime.

Algorithm 2 describes the context expansion process that
finds the expanded suffix of each rule. For a rule R, we
utilize a finite state automaton (FSA) Actx

R (ctx is the abbre-
viation for context) to represent the expanded suffix, and that
is extracted from the pushdown automata. We first find all
edges e = (s, t) in the pushdown automata that references
R and belongs to rule R′. R′ is not necessarily different
from R. Then we find a subgraph of the automaton of rule
R′ starting from t to represent the possible strings that can
follow R via depth-first search (DFS). However, we will not
consider edges in the subgraph that reference other rules

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

[8] '"'

[9] [^"\]

[10] '"' mh

str:

l

Expanded Suffix
for str

Before Context Expansion

"," "]"

After Context Expansion

Context-dependent "ab a"b
", "]

Context-dependent ", "]
Context-independent
(Rejected)

"ab a"b

Their suffices
cannot match the

expanded suffix

Figure 6. The context expansion. Each rule obtains a set of ex-
panded suffices, representing the set of strings that must be
matched after completing this rule. If a context-dependent to-
ken cannot match any of these suffices, it is rejected.

to avoid recursive references between rules, so the edges
in the extracted subgraph will only have character labels.
If a node has both character edges and edges referencing
other rules, we will stop the search at this node. The ex-
tracted subgraph is then merged into Actx

R . This process is
repeated for all rules, and the extractedActx

R is used to reject
context-dependent tokens cannot match any string in it after
finishing matching rule R.

Although we do not consider rule-referencing edges when
extracting the expanded context automata, this algorithm
can still extract many useful context information. That is
because the inlining optimization introduced in §3.4 inlines
fragment rules into their parent rules, reducing the need to
check into child rules to reject context-dependent tokens.

3.3 Persistent Execution Stack

As the grammar engine still needs to handle context-
dependent tokens, we need to efficiently execute the push-
down automata for these tokens. Additionally, we also need
to execute the pushdown automata for preprocessing the
context-independent token sets for all positions in the push-
down automata. In both cases, we need to maintain multiple
parallel stacks and branch out as we match the characters
in each token. To support efficient state branching, we in-

Algorithm 2 Extract the Expanded Suffix Automaton

Input: Pushdown automaton P , rule R
Output: Expanded context FSA Actx

R for R
Initialize Actx

R as an empty FSA

for edge s
R−→ t in P referencing R do

{ Aδ is an FSA for the partial result }
Initialize Aδ as an empty FSA, visited← {}
Add node t to Aδ

EXTRACTONE(t, Aδ , visited)
{Merge the partial result into the final result }
Actx

R ← FSAUNION(Actx
R , Aδ)

end for

function EXTRACTONE(start, Aδ , visited)
if start in visited then

return
end if
Add start to visited
{ Stop search for nodes with rule-referencing edges }
if start is a final node in P or

has an edge referencing another rule then
Mark start as final in Aδ

return
end if
{Now all outward edges of start are character edges}
for edge start

c−→ end from start do
Add end and start

c−→ end to Aδ

EXTRACTONE(end, Aδ , visited)
end for

end function

troduce the persistent execution stack (Driscoll et al., 1989)
to manage the multiple stacks and efficiently execute the
pushdown automata. It can also manage the stacks from
previous time points and enable the state rollback opera-
tion, effectively speeding up the execution of the pushdown
automata on a set of tokens.

As shown in Figure 7, the persistent execution stack man-
ages a set of stacks, which are either the parallel stacks
from the current time point or the stacks from previous time
points, into a single tree, and every stack is represented by a
path from the root node on the tree. The stack top node is
stored as a pointer to the node in the tree. Since the stacks
from adjacent time points often share most of the deeper
elements and only a few nodes are pushed or popped, this
merging avoids memory redundancy for storing multiple
stacks. When matching a new character from a token, we
may need to split the stack into multiple stacks due to the
ambiguity of the grammar, each corresponding to a different
expansion of grammar rules. In this case, we only need to
split the branch for that stack instead of copying the whole
stack, which reduces the overhead of state branching.

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

[0] array

[3] str

Node l

[5] str

Node l

Node d

[0]<array>

[3]<str>

Node l

[0]<array>

[5]<str>

Node l

Stacks of
the current step

Stacks from
previous steps

[0]<array>

Node d

Node a

Root

Node aPersistent
Execution

Stack

Figure 7. The persistent stack organizes multiple matching stacks
from the current step, as well as stacks from previous steps, into a
single tree. It reduces memory consumption and supports rolling
the state back to previous steps.

Additionally, the persistent execution stack enables fast state
rollback by maintaining the stack from previous time points.
At runtime, a sliding window of history is maintained. To
roll back to a previous state, we only need to change the
current stack pointers, which requires constant time. This
rollback operation is particularly useful for checking a large
set of tokens, as many tokens share a common prefix with
other tokens, such as read, ready, and reader all sharing
the prefix read. All the checked tokens are sorted in lexico-
graphical order to find the maximum length of the common
prefixes. Then the tokens are checked one by one, and be-
fore checking each token, the state rolls back to just after
the common prefix with the previous token. Therefore, we
can avoid the redundant checks of these common prefixes,
reducing the number of characters that need to be checked.
For Llama-3.1 model and JSON grammar, this approach
reduces the number of characters that need to be checked
across the entire vocabulary to 30%, significantly speeding
up the preprocessing stage.

The rollback operation enables more applications with
efficient structured generation. There are many LLM ap-
plications that involve rolling back the output to a previous
token. For instance, the jump-forward decoding requires
retokenization, which involves rolling back some tokens
in the context and then inserting new tokens. To ensure
structured generation can continue after rolling back tokens,
we can roll back the automaton state simultaneously with

the output token rollback. There are also many LLM appli-
cations that requires LLMs generate in a tree structure, such
as in Tree-of-thought (Yao et al., 2024), SGLang (Zheng
et al., 2024), and the speculative model in the speculative
decoding algorithm SpecInfer (Miao et al., 2024). We can
maintain the automata state for every branch of the output
tree, and when the output branches, we can quickly split
the automaton state, maintaining separate matching states
for each output branch. This branching is fast because we
only need to maintain the stack top pointer on the tree for
every branch. Therefore, the persistent execution stack en-
ables us to ensure efficient structured generation for all these
applications.

3.4 Pushdown Automata Structure Optimizations

We will perform additional optimizations to improve the
structure of pushdown automata to speed up the efficiency
of final execution. These optimizations draw from tradi-
tional compiler optimization concepts, but we find them
particularly useful for efficient constrained decoding.

Rule inlining. There could be many fragment rules, i.e.
rules with only a few elements, in the specified context-free
grammar, which are then converted into small FSA in the
pushdown automaton. On the one hand, this increases the
ambiguity of the grammar since we need to inspect into
these fragment rules and check during the execution of the
pushdown automata. On the other hands, during context
expansion, references to fragment rules are not considered,
so the extracted context automata will be smaller. We will
miss the opportunity to reject context-dependent tokens
based on the structure of these fragment rules.

To address this issue, we introduce an automatic inlining
strategy (Scheifler, 1977) for fragment rules. We iteratively
pick rules that do not reference other rules and inline them
into the parent rules. To avoid the explosion of the automa-
ton size, we limit the size of the inlined rule and the size
of inlined result to constants. This inlining process almost
eliminated fragment rules, thereby improving the efficiency
of token checking and enhancing the effectiveness of the
context expansion.

Pushdown automata node merging. For pushdown au-
tomata, in many cases, the ambiguity comes from multiple
outward edges of a node with the same label. When match-
ing tokens, if we arrive at this node, and the next character
just matches the label, the matching stack will be split into
multiple stacks, one for each outward edge. The increase in
the number of stacks increases the computation as we need
to check the context-dependent tokens for each stack and
merge the token masks. To reduce this kind of ambiguity,
the node merging algorithm merges the subsequent nodes
that satisfy: a) they are pointed to by edges with the same

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

LLM Prefilling

Build Mask CacheCPU

GPU

Mask
Gen

Sampling LLM Decoding

Mask
Gen

Sampling

Sync

Sync

Figure 8. Overlapping building the mask cache with LLM prefill-
ing, and mask generation with LLM decoding to minimize the
overhead.

label originating from the same point b) they are not pointed
to by other edges.

Additionally, the epsilon edge also increases the ambigu-
ity of the matching process. An epsilon edge s

ϵ−→ t in
the automata means that the matching process can directly
move from s to t without consuming any characters. If the
matching process arrives at s, the execution stack will split
into two stacks, one with s at the top and the other with t,
both of which can continue matching. To reduce this kind
of ambiguity, the node merging algorithm also merges the
nodes s and t into a single node, as long as s has no other
outward edge or t has no zero inward edge.

These two optimizations preserves the equivalence of the
automaton, but reduces the number of nodes and edges. At
runtime, the number of stacks and the computation required
for token checking are reduced, speeding up the mask gen-
eration process.

3.5 Overlapping Mask Generation and LLM
Inference

With the optimizations mentioned above, the token mask
generation process is significantly accelerated, but it still
requires CPU computation. To further eliminate the over-
head of constrained decoding, we overlap the computation
for mask generation with the LLM inference process, as
shown in Figure 8. We observed that the mask generation
process and LLM inference process can be overlapped. That
is because the mask generation only requires CPU, and only
depends on the previously generated tokens. The LLM infer-
ence process except the sampling stage only requires GPU,
and also only depends on the previously generated tokens.
Therefore, we can parallelize the mask generation process
on the CPU with the LLM inference process on the GPU.
We will synchronize before sampling, and the GPU will ob-
tain the mask from the CPU and perform masked sampling
to generate the new token. Additionally, the preprocessing
stage can also be overlapped with the LLM prefilling stage,
where the LLM processes the prompt. This orchestration
between CPU and GPU ensures that the token restrictions
are applied seamlessly, with almost zero overhead for LLM
inference. In practice, the time for mask generation is less

102

103

104

Ti
m

e
(u

s/
to

ke
n)

35.73

125.22

7068.84

JSON Schema

102

103

104

Ti
m

e
(u

s/
to

ke
n)

36.42

4711.43
9353.21

Context-free Grammar (JSON)

XGrammar Outlines llama.cpp-Grammar

Figure 9. Per token masking latency.

than the time for LLM inference, so the mask generation
process will not become the bottleneck of the generation
process.

4 EVALUATION

We implement XGrammar in 12,000 lines of core C++ code,
and we provide Python bindings to facilitate seamless inte-
gration with LLM inference frameworks. In this section, we
evaluate XGrammar to answer the following questions:

• Can XGrammar efficiently support each step of con-
strained decoding? (§4.1)

• Does XGrammar achieve minimal overhead for end-to-
end structured generation in LLM serving? (§4.2)

• Can XGrammar be deployed across a broader range of
platforms? (§4.3)

4.1 Grammar Engine Efficiency

This subsection evaluates the grammar engine performance.
We evaluate our method and baselines on Llama-3.1-8B-
Instruct, a popular model with the ability to follow human
instructions. We first evaluate the performance of JSON
grammar. We apply the standard context-free grammar of

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

1 16 32
Batch Size

101

102

103

104
Ti

m
e

pe
r o

ut
pu

t t
ok

en
 (m

s)

187

790
1432

11

93
164

7 10 12
6 9 12

JSON Schema

1 16 32
Batch Size

101

102

103

104

Ti
m

e
pe

r o
ut

pu
t t

ok
en

 (m
s)

185

736
1252

137

2311

×
7 10 13

6 9 12

Context-free Grammar (JSON)
llama.cpp vLLM (w/ Outlines) SGLang (w/ XGrammar) XGrammar Engine

Figure 10. End-to-end evaluation on Llama 3.1 inference with structured constraints. Some results with a batch size of 32 are not reported
because their API call time exceeded the API timeout limit of 600 seconds.

JSON adopted from ECMA-404 (Ecma International, 2013)
as a context-free grammar without additional constraints.
We also evaluate the JSON schema, where we leverage the
additional schema constraints from the dataset. We utilize
the JSON-mode-eval dataset (NousResearch, 2024) for the
prompts. We run the evaluation AMD Ryzen 9 7950X CPU
and NVIDIA RTX 4090 GPU. For baseline comparisons, we
compare three two popular implementations of structured
generation engine, Outlines (Willard & Louf, 2023)(v1.0)
and the builtin grammar engine of llama.cpp (Gerganov,
2023) (b3998).

The results are shown in Figure 9. XGrammar can achieve
up to 3x speedup in the setting of JSON schema, and more
than 100x speedup in the case of JSON grammar. The
context-free grammar of JSON contains more complicated
rules compared to the JSON schema (which is more con-
strained), as it can contain recursive lists and dictionaries,
making it harder for grammar engines to execute it effi-
ciently. In both cases, XGrammar can generate each token
mask at in less than 40us, making it ideal for low-latency
LLM inference.

4.2 End-to-End LLM Engine Evaluation

This section evaluates XGrammar under LLM serving set-
ting. We integrate XGrammar into an end-to-end LLM
inference framework and compare its efficiency with other
LLM serving frameworks. We also integrate XGrammar
into SGLang, an LLM serving engine to demonstrate its
ability to efficiently integrate into LLM frameworks. We
measure the average time to the first token (TTFT), which is
primarily affected by preprocessing the constraint, and the
average time per output token (TPOT), which is primarily
affected by applying the constraint to each output token. We
compare the efficiency with other LLM engines that sup-
port structured generation, including vLLM (Kwon et al.,
2023b)(v0.6.3) integrated with Outlines, and llama.cpp with

Table 1. Comparison of the Llama3.1 TPOT (ms) for the XGram-
mar engine, with and without grammar constraint enabled.

Task Batch Size Constraint Constraint
Off On

JSON Schema 1 6.2 6.3
16 9.0 9.2

CFG (JSON) 1 6.3 6.3
16 9.0 9.1

its builtin grammar engine. We conduct the evaluations
on Llama-3.1-8B-Instruct under JSON grammar and JSON
schema. We turn on the grammar cache for all engines to en-
able caching of the preprocessed grammars. The hardware
used for the tests is AMD EPYC 7R13 CPU and NVIDIA
H100 GPU. We evaluate multiple batch sizes settings in
LLM inference tasks.

The experiment results are shown in Figure 10. XGrammar
achieves the best TTFT and TPOT among all baselines for
both CFG and JSON Schema. The computation of vLLM
and llama.cpp is hindered by their grammar engines’ longer
preprocessing and per-token processing times. The decrease
in TPOT speed in vLLM becomes particularly noticeable
with larger batch sizes. This is because a larger batch size
leads to higher throughput, putting greater pressure on gram-
mar processing. Overall XGrammar engine can bring up to
80x speed output token rate compared to existing solutions.
This speedup comes from the performance optimizations
bought by XGrammar. We also studied the overhead of
grammar processing in Table 1. The grammar process in-
curs nearly zero overhead in the TPOT, thanks to the token
mask generation efficiency and grammar GPU overlap.

4.3 Cross-platform Deployment

This section explores bringing XGrammar to a wide vari-
ety of platforms. We leverage Emscripten (Zakai, 2011)

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

Llama-3.1-8B
(M3 Max)

Qwen-2.5-0.5B
(iPhone 14 Pro Max)

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
to

 Fi
rs

t T
ok

en
 (m

s)

1531.9

1179.1

1365.1

955.5

Llama-3.1-8B
(M3 Max)

Qwen-2.5-0.5B
(iPhone 14 Pro Max)

0

10

20

30

40

50

60

Ti
m

e
pe

r O
ut

pu
t T

ok
en

 (m
s)

31.9

48.1

29.7

47.3

Structured w/ XGrammar Unstructured

Figure 11. End-to-end performance comparison between struc-
tured generation with XGrammar and unstructured generation
in browser JavaScript environment.

to compile XGrammar into WebAssembly (Haas et al.,
2017) and build a JavaScript binding. This approach en-
ables XGrammar to run in client-side browsers on portable
devices like laptops and mobile phones. We further integrate
the web-binding with the in-browser LLM inference frame-
work WebLLM (MLC team, 2023b) to enable structured
generation. We evaluate the end-to-end performance with
the JSON-mode-eval dataset, using 4-bit quantized models
Llama-3.1-8B-Instruct (Dubey et al., 2024b) on a Macbook
Pro M3 Max (macOS 14.5) with Google Chrome, and Qwen-
2.5-0.5B-Instruct (Yang et al., 2024) on an iPhone 14 Pro
Max (iOS 18) with Safari.

The results are shown in Figure 11. We compare the time
to first token (TTFT) and time per output token (TPOT)
between structured generation with XGrammar and non-
structured generation while ensuring the number of gener-
ated tokens is the same. The results show that XGrammar
brings close to zero overhead in both settings, enabling a
great potential to support future on-device agents with high
performance.

5 RELATED WORK

Several works looked at algorithm improvements for struc-
tured generation. (Koo et al., 2024) proposes an algorithm
to convert character-level pushdown automata to token-level
pushdown automata. (Wang et al., 2023) specifies LLM
output structure through prompting. (Rozière et al., 2024;
Chaudhary, 2023; Li et al., 2023) explore finetuning LLMs
for higher quality structured generation. XGrammar’s ap-
proach is orthogonal to these methods and can be combined

with these approaches.

Outlines (Willard & Louf, 2023) and SynCode (Ugare et al.,
2024) utilize a lexer and parser to handle output and generate
the token mask. However, these approaches can suffer from
boundary mismatch problem (Koo et al., 2024) problem.
Synchromesh (Poesia et al., 2022) and llama.cpp (Gerganov,
2023) check all tokens during runtime, leading to signifi-
cant overhead. lm-format-enforcer (Gat, 2024) design op-
timizations for regular expressions that cannot be easily
extended to context-free grammar. XGrammar brings a se-
ries of system optimizations to reduce the runtime check via
context-independent caching to reduce per token generation.
It also enables co-optimizations to enable end-to-end LLM
inference speedup in structured generation settings.

Guidance (Guidance-ai, 2024), LMQL (Beurer-Kellner,
2023), SGLang (Zheng et al., 2024) provide flexible ways
to declare the structures. XGrammar is complementary to
these improvements and can be used as the backend engine
to speedup their execution.

LLM serving engines (MLC team, 2023a; Zheng et al., 2024;
Kwon et al., 2023a; hiworldwzj et al., 2024) employ various
techniques to support efficient LLM generation for multiple
concurrent users, including engine-level techniques such as
continuous batching (Yu et al., 2022) for dyanmic request
scheduling, and low-level KV cache technique PagedKV-
Cache (Kwon et al., 2023a) for efficient memory manage-
ment. These LLM serving engines can leverage XGrammar
for efficient, structured generation on top of their existing
LLM inference techniques.

6 CONCLUSION

We proposed XGrammar, a flexible and efficient structured
generation engine for LLMs. XGrammar separates the
vocabulary into context-independent tokens and context-
dependent ones. It prechecks the context-dependent tokens
and stores the result in an adaptive token mask cache. We
further introduce a persistent stack to speed up the execu-
tion of context-dependent checks. Finally, we co-design
the grammar engine with LLM inference to overlap gram-
mar execution with GPU computation. Our system greatly
speeds up the token mask generation process in token mask
and enables zero overhead structure generation in end-to-
end LLM inference flows. We hope our system can enable
a broader range of structure generation across platforms.

ACKNOWLEDGEMENTS

We thank (alphabetically) the DeepSeek team, SGLang
team, TensorRT-LLM team, vLLM team, and WebLLM
team for their helpful feedback and discussions. We also
thank Weihua Du, Haoran Peng, Xinyu Yang, Zihao Ye, Zhi-

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

hao Zhang, and Ligeng Zhu for their insightful discussion
and feedback.

REFERENCES

Beurer-Kellner, L. GitHub - eth-sri/lmql: A language
for constraint-guided and efficient LLM programming.
— github.com. https://github.com/eth-sri/
lmql, 2023. [Accessed 31-10-2024].

Bridle, J. Training stochastic model recognition al-
gorithms as networks can lead to maximum mutual
information estimation of parameters. In Touret-
zky, D. (ed.), Advances in Neural Information
Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.
cc/paper_files/paper/1989/file/
0336dcbab05b9d5ad24f4333c7658a0e-Paper.
pdf.

Chaudhary, S. Code alpaca: An instruction-following llama
model for code generation. https://github.com/
sahil280114/codealpaca, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W. Evaluating large language models trained
on code, 2021. URL https://arxiv.org/abs/
2107.03374.

Chomsky, N. Three models for the description of language.
IRE Transactions on Information Theory, 2(3):113–124,
1956. doi: 10.1109/TIT.1956.1056813.

Deutsch, D., Upadhyay, S., and Roth, D. A general-
purpose algorithm for constrained sequential inference.
In Bansal, M. and Villavicencio, A. (eds.), Proceed-
ings of the 23rd Conference on Computational Natu-
ral Language Learning (CoNLL), pp. 482–492, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/K19-1045. URL
https://aclanthology.org/K19-1045.

Driscoll, J. R., Sarnak, N., Sleator, D. D., and
Tarjan, R. E. Making data structures persis-
tent. Journal of Computer and System Sciences,

38(1):86–124, 1989. ISSN 0022-0000. doi:
https://doi.org/10.1016/0022-0000(89)90034-2.
URL https://www.sciencedirect.com/
science/article/pii/0022000089900342.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravanku-
mar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A.,
Rodriguez, A., Gregerson, A., Spataru, A., Roziere, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak,
C., Bi, C., Marra, C., McConnell, C., Keller, C., Touret,
C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Al-
lonsius, D., Song, D., Pintz, D., Livshits, D., Esiobu, D.,
Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino,
D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova,
E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F., Syn-
naeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon, G.,
Pang, G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H.,
Touvron, H., Zarov, I., Ibarra, I. A., Kloumann, I., Misra,
I., Evtimov, I., Copet, J., Lee, J., Geffert, J., Vranes,
J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J.,
Billock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J.,
Liu, J., Wang, J., Yu, J., Bitton, J., Spisak, J., Park, J.,
Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V.,
Upasani, K., Plawiak, K., Li, K., Heafield, K., Stone, K.,
El-Arini, K., Iyer, K., Malik, K., Chiu, K., Bhalla, K.,
Rantala-Yeary, L., van der Maaten, L., Chen, L., Tan, L.,
Jenkins, L., Martin, L., Madaan, L., Malo, L., Blecher, L.,
Landzaat, L., de Oliveira, L., Muzzi, M., Pasupuleti, M.,
Singh, M., Paluri, M., Kardas, M., Oldham, M., Rita, M.,
Pavlova, M., Kambadur, M., Lewis, M., Si, M., Singh,
M. K., Hassan, M., Goyal, N., Torabi, N., Bashlykov, N.,
Bogoychev, N., Chatterji, N., Duchenne, O., Çelebi, O.,
Alrassy, P., Zhang, P., Li, P., Vasic, P., Weng, P., Bhargava,
P., Dubal, P., Krishnan, P., Koura, P. S., Xu, P., He, Q.,
Dong, Q., Srinivasan, R., Ganapathy, R., Calderer, R.,
Cabral, R. S., Stojnic, R., Raileanu, R., Girdhar, R., Patel,
R., Sauvestre, R., Polidoro, R., Sumbaly, R., Taylor, R.,
Silva, R., Hou, R., Wang, R., Hosseini, S., Chennabas-
appa, S., Singh, S., Bell, S., Kim, S. S., Edunov, S., Nie,
S., Narang, S., Raparthy, S., Shen, S., Wan, S., Bhosale,
S., Zhang, S., Vandenhende, S., Batra, S., Whitman, S.,
Sootla, S., Collot, S., Gururangan, S., Borodinsky, S., Her-
man, T., Fowler, T., Sheasha, T., Georgiou, T., Scialom,
T., Speckbacher, T., Mihaylov, T., Xiao, T., Karn, U.,
Goswami, V., Gupta, V., Ramanathan, V., Kerkez, V.,
Gonguet, V., Do, V., Vogeti, V., Petrovic, V., Chu, W.,
Xiong, W., Fu, W., Meers, W., Martinet, X., Wang, X.,
Tan, X. E., Xie, X., Jia, X., Wang, X., Goldschlag, Y.,
Gaur, Y., Babaei, Y., Wen, Y., Song, Y., Zhang, Y., Li, Y.,
Mao, Y., Coudert, Z. D., Yan, Z., Chen, Z., Papakipos, Z.,
Singh, A., Grattafiori, A., Jain, A., Kelsey, A., Shajnfeld,
A., Gangidi, A., Victoria, A., Goldstand, A., Menon, A.,

https://github.com/eth-sri/lmql
https://github.com/eth-sri/lmql
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://aclanthology.org/K19-1045
https://www.sciencedirect.com/science/article/pii/0022000089900342
https://www.sciencedirect.com/science/article/pii/0022000089900342

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

Sharma, A., Boesenberg, A., Vaughan, A., Baevski, A.,
Feinstein, A., Kallet, A., Sangani, A., Yunus, A., Lupu,
A., Alvarado, A., Caples, A., Gu, A., Ho, A., Poulton,
A., Ryan, A., Ramchandani, A., Franco, A., Saraf, A.,
Chowdhury, A., Gabriel, A., Bharambe, A., Eisenman, A.,
Yazdan, A., James, B., Maurer, B., Leonhardi, B., Huang,
B., Loyd, B., Paola, B. D., Paranjape, B., Liu, B., Wu, B.,
Ni, B., Hancock, B., Wasti, B., Spence, B., Stojkovic, B.,
Gamido, B., Montalvo, B., Parker, C., Burton, C., Mejia,
C., Wang, C., Kim, C., Zhou, C., Hu, C., Chu, C.-H.,
Cai, C., Tindal, C., Feichtenhofer, C., Civin, D., Beaty,
D., Kreymer, D., Li, D., Wyatt, D., Adkins, D., Xu, D.,
Testuggine, D., David, D., Parikh, D., Liskovich, D., Foss,
D., Wang, D., Le, D., Holland, D., Dowling, E., Jamil,
E., Montgomery, E., Presani, E., Hahn, E., Wood, E.,
Brinkman, E., Arcaute, E., Dunbar, E., Smothers, E., Sun,
F., Kreuk, F., Tian, F., Ozgenel, F., Caggioni, F., Guzmán,
F., Kanayet, F., Seide, F., Florez, G. M., Schwarz, G.,
Badeer, G., Swee, G., Halpern, G., Thattai, G., Herman,
G., Sizov, G., Guangyi, Zhang, Lakshminarayanan, G.,
Shojanazeri, H., Zou, H., Wang, H., Zha, H., Habeeb,
H., Rudolph, H., Suk, H., Aspegren, H., Goldman, H.,
Damlaj, I., Molybog, I., Tufanov, I., Veliche, I.-E., Gat,
I., Weissman, J., Geboski, J., Kohli, J., Asher, J., Gaya,
J.-B., Marcus, J., Tang, J., Chan, J., Zhen, J., Reizenstein,
J., Teboul, J., Zhong, J., Jin, J., Yang, J., Cummings, J.,
Carvill, J., Shepard, J., McPhie, J., Torres, J., Ginsburg,
J., Wang, J., Wu, K., U, K. H., Saxena, K., Prasad, K.,
Khandelwal, K., Zand, K., Matosich, K., Veeraragha-
van, K., Michelena, K., Li, K., Huang, K., Chawla, K.,
Lakhotia, K., Huang, K., Chen, L., Garg, L., A, L., Silva,
L., Bell, L., Zhang, L., Guo, L., Yu, L., Moshkovich,
L., Wehrstedt, L., Khabsa, M., Avalani, M., Bhatt, M.,
Tsimpoukelli, M., Mankus, M., Hasson, M., Lennie, M.,
Reso, M., Groshev, M., Naumov, M., Lathi, M., Keneally,
M., Seltzer, M. L., Valko, M., Restrepo, M., Patel, M.,
Vyatskov, M., Samvelyan, M., Clark, M., Macey, M.,
Wang, M., Hermoso, M. J., Metanat, M., Rastegari, M.,
Bansal, M., Santhanam, N., Parks, N., White, N., Bawa,
N., Singhal, N., Egebo, N., Usunier, N., Laptev, N. P.,
Dong, N., Zhang, N., Cheng, N., Chernoguz, O., Hart,
O., Salpekar, O., Kalinli, O., Kent, P., Parekh, P., Saab,
P., Balaji, P., Rittner, P., Bontrager, P., Roux, P., Dollar,
P., Zvyagina, P., Ratanchandani, P., Yuvraj, P., Liang, Q.,
Alao, R., Rodriguez, R., Ayub, R., Murthy, R., Nayani,
R., Mitra, R., Li, R., Hogan, R., Battey, R., Wang, R.,
Maheswari, R., Howes, R., Rinott, R., Bondu, S. J., Datta,
S., Chugh, S., Hunt, S., Dhillon, S., Sidorov, S., Pan, S.,
Verma, S., Yamamoto, S., Ramaswamy, S., Lindsay, S.,
Lindsay, S., Feng, S., Lin, S., Zha, S. C., Shankar, S.,
Zhang, S., Zhang, S., Wang, S., Agarwal, S., Sajuyigbe,
S., Chintala, S., Max, S., Chen, S., Kehoe, S., Satter-
field, S., Govindaprasad, S., Gupta, S., Cho, S., Virk,
S., Subramanian, S., Choudhury, S., Goldman, S., Re-

mez, T., Glaser, T., Best, T., Kohler, T., Robinson, T., Li,
T., Zhang, T., Matthews, T., Chou, T., Shaked, T., Von-
timitta, V., Ajayi, V., Montanez, V., Mohan, V., Kumar,
V. S., Mangla, V., Albiero, V., Ionescu, V., Poenaru, V.,
Mihailescu, V. T., Ivanov, V., Li, W., Wang, W., Jiang,
W., Bouaziz, W., Constable, W., Tang, X., Wang, X.,
Wu, X., Wang, X., Xia, X., Wu, X., Gao, X., Chen, Y.,
Hu, Y., Jia, Y., Qi, Y., Li, Y., Zhang, Y., Zhang, Y., Adi,
Y., Nam, Y., Yu, Wang, Hao, Y., Qian, Y., He, Y., Rait,
Z., DeVito, Z., Rosnbrick, Z., Wen, Z., Yang, Z., and
Zhao, Z. The llama 3 herd of models, 2024a. URL
https://arxiv.org/abs/2407.21783.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024b.

Ecma International. ECMA-404 The JSON
Data Interchange Standard. Online, 2013.
https://www.ecma-international.org/
publications-and-standards/standards/
ecma-404/.

Evey, R. The Theory and Applications of Pushdown Store
Machines. Mathematical linguistic and automatic trans-
lation: Report to National Science Foundation. Harvard
University, 1963. URL https://books.google.
com/books?id=mg4yAAAAIAAJ.

Gat, N. GitHub - noamgat/lm-format-enforcer: Enforce the
output format (JSON Schema, Regex etc) of a language
model — github.com. https://github.com/
noamgat/lm-format-enforcer, 2024. [Ac-
cessed 31-10-2024].

Gerganov, G. GitHub - ggerganov/llama.cpp: LLM in-
ference in C/C++ — github.com. https://github.
com/ggerganov/llama.cpp, 2023. [Accessed 31-
10-2024].

Guidance-ai. GitHub - guidance-ai/guidance: A
guidance language for controlling large language
models. — github.com. https://github.com/
guidance-ai/guidance, 2024. [Accessed 31-10-
2024].

Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman,
M., Gohman, D., Wagner, L., Zakai, A., and Bastien,
J. Bringing the web up to speed with webassembly. In
Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp.
185–200, 2017.

hiworldwzj, shihaobai, sufubao, WANDY666, FlyingFlame,
llehtahw, LiangLiu, wxd000000, fuheaven, XHPlus,

https://arxiv.org/abs/2407.21783
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://books.google.com/books?id=mg4yAAAAIAAJ
https://books.google.com/books?id=mg4yAAAAIAAJ
https://github.com/noamgat/lm-format-enforcer
https://github.com/noamgat/lm-format-enforcer
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

Chielo, Yong, Y., and gate, sangchengmeng, wangzhi-
hong, singularity, Yang, S., SiYu, W., Tracin, Granger,
E., Husain, H., R, S. A. G. A., SunXiaoye, Peng, T.,
Uranus, Bai, Y., Fan, Y., bingo, liuhuakai, and XF-
Plus. ModelTC/lightllm. 10 2024. URL https:
//github.com/ModelTC/lightllm.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Koo, T., Liu, F., and He, L. Automata-based constraints
for language model decoding, 2024. URL https://
arxiv.org/abs/2407.08103.

Kuchnik, M., Smith, V., and Amvrosiadis, G. Validating
large language models with relm. Proceedings of Ma-
chine Learning and Systems, 5:457–476, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023a.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention, 2023b. URL https://arxiv.
org/abs/2309.06180.

LangChain. Tool Calling with LangChain —
blog.langchain.dev. https://blog.langchain.
dev/tool-calling-with-langchain/, 2024.
[Accessed 26-10-2024].

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang,
Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov,
D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat-
tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas,
P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,
N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J.,
Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson,
C. J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.
Starcoder: may the source be with you!, 2023. URL
https://arxiv.org/abs/2305.06161.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas,
J., and Stone, P. Llm+p: Empowering large language
models with optimal planning proficiency, 2023. URL
https://arxiv.org/abs/2304.11477.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L., Shi,
X., Shi, C., Chen, Z., Arfeen, D., Abhyankar, R., and
Jia, Z. Specinfer: Accelerating large language model
serving with tree-based speculative inference and ver-
ification. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
3, ASPLOS ’24, pp. 932–949. ACM, April 2024. doi:
10.1145/3620666.3651335. URL http://dx.doi.
org/10.1145/3620666.3651335.

MLC team. MLC-LLM, 2023a. URL https://github.
com/mlc-ai/mlc-llm.

MLC team. WebLLM, 2023b. URL https://github.
com/mlc-ai/web-llm.

Mozannar, H., Bansal, G., Fourney, A., and Horvitz, E.
Reading between the lines: Modeling user behavior and
costs in ai-assisted programming. In Proceedings of the
CHI Conference on Human Factors in Computing Sys-
tems, pp. 1–16, 2024.

NousResearch. NousResearch/json-mode-eval ·
Datasets at Hugging Face — huggingface.co.
https://huggingface.co/datasets/
NousResearch/json-mode-eval, 2024. [Ac-
cessed 31-10-2024].

OpenAI. Function Calling - OpenAI API.
https://platform.openai.com/docs/
guides/function-calling, 2024. [Accessed
26-10-2024].

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,

https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2407.08103
https://arxiv.org/abs/2407.08103
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://blog.langchain.dev/tool-calling-with-langchain/
https://blog.langchain.dev/tool-calling-with-langchain/
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2304.11477
http://dx.doi.org/10.1145/3620666.3651335
http://dx.doi.org/10.1145/3620666.3651335
https://github.com/mlc-ai/mlc-llm
https://github.com/mlc-ai/mlc-llm
https://github.com/mlc-ai/web-llm
https://github.com/mlc-ai/web-llm
https://huggingface.co/datasets/NousResearch/json-mode-eval
https://huggingface.co/datasets/NousResearch/json-mode-eval
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, J. H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V. H., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H.,
Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry,
G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D.,
Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam,
P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K.,
Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such,
F. P., Summers, N., Sutskever, I., Tang, J., Tezak, N.,
Thompson, M. B., Tillet, P., Tootoonchian, A., Tseng, E.,
Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone,
A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang,
J. J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann,
C., Welihinda, A., Welinder, P., Weng, J., Weng, L., Wi-
ethoff, M., Willner, D., Winter, C., Wolrich, S., Wong,
H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu,
T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R.,
Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J.,
Zhuk, W., and Zoph, B. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Pearce, H., Tan, B., Ahmad, B., Karri, R., and Dolan-Gavitt,
B. Examining zero-shot vulnerability repair with large
language models, 2022. URL https://arxiv.org/
abs/2112.02125.

Poesia, G., Polozov, O., Le, V., Tiwari, A., Soares, G., Meek,
C., and Gulwani, S. Synchromesh: Reliable code gener-
ation from pre-trained language models. arXiv preprint
arXiv:2201.11227, 2022.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T.,
Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt,
M., Ferrer, C. C., Grattafiori, A., Xiong, W., Défossez,
A., Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier,
N., Scialom, T., and Synnaeve, G. Code llama: Open
foundation models for code, 2024. URL https://
arxiv.org/abs/2308.12950.

Scheifler, R. W. An analysis of inline substitution for a
structured programming language. Commun. ACM, 20
(9):647–654, September 1977. ISSN 0001-0782. doi:
10.1145/359810.359830. URL https://doi.org/
10.1145/359810.359830.

Scholak, T., Schucher, N., and Bahdanau, D. PICARD:
Parsing incrementally for constrained auto-regressive
decoding from language models. In Moens, M.-F.,
Huang, X., Specia, L., and Yih, S. W.-t. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 9895–9901, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.779. URL https://
aclanthology.org/2021.emnlp-main.779.

Schützenberger, M. On context-free languages and
push-down automata. Information and Control,
6(3):246–264, 1963. ISSN 0019-9958. doi:
https://doi.org/10.1016/S0019-9958(63)90306-1.
URL https://www.sciencedirect.com/
science/article/pii/S0019995863903061.

Ugare, S., Suresh, T., Kang, H., Misailovic, S., and Singh,
G. Syncode: Llm generation with grammar augmenta-
tion, 2024. URL https://arxiv.org/abs/2403.
01632.

Wang, B., Wang, Z., Wang, X., Cao, Y., Saurous, R. A.,
and Kim, Y. Grammar prompting for domain-specific
language generation with large language models, 2023.
URL https://arxiv.org/abs/2305.19234.

Wang, C., Cho, K., and Gu, J. Neural machine trans-
lation with byte-level subwords, 2019. URL https:
//arxiv.org/abs/1909.03341.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. H. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation, 2021. URL
https://arxiv.org/abs/2109.00859.

Willard, B. T. and Louf, R. Efficient guided generation for
llms. arXiv preprint arXiv:2307.09702, 2023.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., et al. Qwen2 technical
report. arXiv preprint arXiv:2407.10671, 2024.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1145/359810.359830
https://doi.org/10.1145/359810.359830
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://www.sciencedirect.com/science/article/pii/S0019995863903061
https://www.sciencedirect.com/science/article/pii/S0019995863903061
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2305.19234
https://arxiv.org/abs/1909.03341
https://arxiv.org/abs/1909.03341
https://arxiv.org/abs/2109.00859

XGrammar: Flexible and Efficient Structured Generation Engine For Large Language Models

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: deliberate problem
solving with large language models. In Proceedings of
the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA,
2024. Curran Associates Inc.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for Transformer-
Based generative models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 22), pp. 521–538, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1.
URL https://www.usenix.org/conference/
osdi22/presentation/yu.

Zakai, A. Emscripten: an llvm-to-javascript compiler. In
Proceedings of the ACM international conference com-
panion on Object oriented programming systems lan-
guages and applications companion, pp. 301–312, 2011.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Bar-
rett, C., and Sheng, Y. Sglang: Efficient execution
of structured language model programs, 2024. URL
https://arxiv.org/abs/2312.07104.

https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2312.07104

