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Abstract

We study empirical scaling laws for language model performance on the cross-entropy loss.
The loss scales as a power-law with model size, dataset size, and the amount of compute
used for training, with some trends spanning more than seven orders of magnitude. Other
architectural details such as network width or depth have minimal effects within a wide
range. Simple equations govern the dependence of overfitting on model/dataset size and the
dependence of training speed on model size. These relationships allow us to determine the
optimal allocation of a fixed compute budget. Larger models are significantly more sample-
efficient, such that optimally compute-efficient training involves training very large models
on a relatively modest amount of data and stopping significantly before convergence.

∗Equal contribution.

Contributions: Jared Kaplan and Sam McCandlish led the research. Tom Henighan contributed the LSTM ex-
periments. Tom Brown, Rewon Child, and Scott Gray, and Alec Radford developed the optimized Transformer
implementation. Jeff Wu, Benjamin Chess, and Alec Radford developed the text datasets. Dario Amodei provided
guidance throughout the project.

ar
X

iv
:2

00
1.

08
36

1v
1 

 [
cs

.L
G

] 
 2

3 
Ja

n 
20

20



Contents

1 Introduction 2

2 Background and Methods 6

3 Empirical Results and Basic Power Laws 7

4 Charting the Infinite Data Limit and Overfitting 10

5 Scaling Laws with Model Size and Training Time 12

6 Optimal Allocation of the Compute Budget 14

7 Related Work 18

8 Discussion 18

Appendices 20

A Summary of Power Laws 20

B Empirical Model of Compute-Efficient Frontier 20

C Caveats 22

D Supplemental Figures 23

1 Introduction

Language provides a natural domain for the study of artificial intelligence, as the vast majority of reason-
ing tasks can be efficiently expressed and evaluated in language, and the world’s text provides a wealth of
data for unsupervised learning via generative modeling. Deep learning has recently seen rapid progress in lan-
guage modeling, with state of the art models [RNSS18, DCLT18, YDY+19, LOG+19, RSR+19] approaching
human-level performance on many specific tasks [WPN+19], including the composition of coherent multi-
paragraph prompted text samples [RWC+19].

One might expect language modeling performance to depend on model architecture, the size of neural models,
the computing power used to train them, and the data available for this training process. In this work we will
empirically investigate the dependence of language modeling loss on all of these factors, focusing on the
Transformer architecture [VSP+17, LSP+18]. The high ceiling and low floor for performance on language
tasks allows us to study trends over more than seven orders of magnitude in scale.

Throughout we will observe precise power-law scalings for performance as a function of training time, con-
text length, dataset size, model size, and compute budget.

1.1 Summary

Our key findings for Transformer language models are are as follows:

2Here we display predicted compute when using a sufficiently small batch size. See Figure 13 for comparison to the
purely empirical data.
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute2 used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C used for training. Within reasonable limits,
performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N,D,C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the other increases. The
performance penalty depends predictably on the ratio N0.74/D, meaning that every time we increase the
model size 8x, we only need to increase the data by roughly 5x to avoid a penalty. (Section 4)

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss – in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C but without any other restric-
tions on the model size N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ∼ C0.27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

Taken together, these results show that language modeling performance improves smoothly and predictably
as we appropriately scale up model size, data, and compute. We expect that larger language models will
perform better and be more sample efficient than current models.

3



Larger models require fewer samples 
to reach the same performance

10

8

6

4

The optimal model size grows smoothly 
with the loss target and compute budget

Line color indicates

number of parameters

107 109 1011

Tokens Processed Compute (PF-days)
10-9 10-6 10-3 100

Test Loss

Compute-efficient 
training stops far 
short of convergence

103 109106

103 Params

109 Params

10

8

6

4

Figure 2 We show a series of language model training runs, with models ranging in size from 103 to 109

parameters (excluding embeddings).

100x Batch Size
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Data requirements
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Optimal model size

increases very quickly
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increases negligibly

Figure 3 As more compute becomes available, we can choose how much to allocate towards training larger
models, using larger batches, and training for more steps. We illustrate this for a billion-fold increase in
compute. For optimally compute-efficient training, most of the increase should go towards increased model
size. A relatively small increase in data is needed to avoid reuse. Of the increase in data, most can be used to
increase parallelism through larger batch sizes, with only a very small increase in serial training time required.

1.2 Summary of Scaling Laws

The test loss of a Transformer trained to autoregressively model language can be predicted using a power-law
when performance is limited by only either the number of non-embedding parameters N , the dataset size D,
or the optimally allocated compute budget Cmin (see Figure 1):

1. For models with a limited number of parameters, trained to convergence on sufficiently large
datasets:

L(N) = (Nc/N)
αN ; αN ∼ 0.076, Nc ∼ 8.8× 1013 (non-embedding parameters) (1.1)

2. For large models trained with a limited dataset with early stopping:

L(D) = (Dc/D)
αD ; αD ∼ 0.095, Dc ∼ 5.4× 1013 (tokens) (1.2)

3. When training with a limited amount of compute, a sufficiently large dataset, an optimally-sized
model, and a sufficiently small batch size (making optimal3 use of compute):

L(Cmin) =
(
Cmin

c /Cmin

)αmin
C ; αmin

C ∼ 0.050, Cmin
c ∼ 3.1× 108 (PF-days) (1.3)

3We also observe an empirical power-law trend with the training compute C (Figure 1) while training at fixed batch
size, but it is the trend with Cmin that should be used to make predictions. They are related by equation (5.5).
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Figure 4 Left: The early-stopped test loss L(N,D) varies predictably with the dataset size D and model
size N according to Equation (1.5). Right: After an initial transient period, learning curves for all model
sizes N can be fit with Equation (1.6), which is parameterized in terms of Smin, the number of steps when
training at large batch size (details in Section 5.1).

These relations hold across eight orders of magnitude in Cmin, six orders of magnitude in N , and over two
orders of magnitude inD. They depend very weakly on model shape and other Transformer hyperparameters
(depth, width, number of self-attention heads), with specific numerical values associated with the Webtext2
training set [RWC+19]. The power laws αN, αD, α

min
C specify the degree of performance improvement

expected as we scale up N , D, or Cmin; for example, doubling the number of parameters yields a loss that
is smaller by a factor 2−αN = 0.95. The precise numerical values of Nc, C

min
c , and Dc depend on the

vocabulary size and tokenization and hence do not have a fundamental meaning.

The critical batch size, which determines the speed/efficiency tradeoff for data parallelism ([MKAT18]), also
roughly obeys a power law in L:

Bcrit (L) =
B∗

L1/αB
, B∗ ∼ 2 · 108 tokens, αB ∼ 0.21 (1.4)

Equation (1.1) and (1.2) together suggest that as we increase the model size, we should increase the dataset
size sublinearly according to D ∝ N

αN
αD ∼ N0.74. In fact, we find that there is a single equation combining

(1.1) and (1.2) that governs the simultaneous dependence on N and D and governs the degree of overfitting:

L(N,D) =

[(
Nc
N

)αN
αD

+
Dc

D

]αD
(1.5)

with fits pictured on the left in figure 4. We conjecture that this functional form may also parameterize the
trained log-likelihood for other generative modeling tasks.

When training a given model for a finite number of parameter update steps S in the infinite data limit, after
an initial transient period, the learning curves can be accurately fit by (see the right of figure 4)

L(N,S) =

(
Nc
N

)αN
+

(
Sc

Smin(S)

)αS
(1.6)

where Sc ≈ 2.1 × 103 and αS ≈ 0.76, and Smin(S) is the minimum possible number of optimization steps
(parameter updates) estimated using Equation (5.4).

When training within a fixed compute budget C, but with no other constraints, Equation (1.6) leads to the
prediction that the optimal model size N , optimal batch size B, optimal number of steps S, and dataset size
D should grow as

N ∝ Cα
min
C /αN , B ∝ Cα

min
C /αB , S ∝ Cα

min
C /αS , D = B · S (1.7)

with
αmin
C = 1/ (1/αS + 1/αB + 1/αN ) (1.8)

which closely matches the empirically optimal results N ∝ C0.73
min , B ∝ C0.24

min , and S ∝ C0.03
min . As the

computational budget C increases, it should be spent primarily on larger models, without dramatic increases
in training time or dataset size (see Figure 3). This also implies that as models grow larger, they become
increasingly sample efficient. In practice, researchers typically train smaller models for longer than would
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be maximally compute-efficient because of hardware constraints. Optimal performance depends on total
compute as a power law (see Equation (1.3)).

We provide some basic theoretical motivation for Equation (1.5), an analysis of learning curve fits and their
implications for training time, and a breakdown of our results per token. We also make some brief compar-
isons to LSTMs and recurrent Transformers [DGV+18].

1.3 Notation

We use the following notation:

• L – the cross entropy loss in nats. Typically it will be averaged over the tokens in a context, but in
some cases we report the loss for specific tokens within the context.

• N – the number of model parameters, excluding all vocabulary and positional embeddings
• C ≈ 6NBS – an estimate of the total non-embedding training compute, where B is the batch size,

and S is the number of training steps (ie parameter updates). We quote numerical values in PF-days,
where one PF-day = 1015 × 24× 3600 = 8.64× 1019 floating point operations.

• D – the dataset size in tokens
• Bcrit – the critical batch size [MKAT18], defined and discussed in Section 5.1. Training at the

critical batch size provides a roughly optimal compromise between time and compute efficiency.
• Cmin – an estimate of the minimum amount of non-embedding compute to reach a given value of

the loss. This is the training compute that would be used if the model were trained at a batch size
much less than the critical batch size.

• Smin – an estimate of the minimal number of training steps needed to reach a given value of the loss.
This is also the number of training steps that would be used if the model were trained at a batch size
much greater than the critical batch size.

• αX – power-law exponents for the scaling of the loss as L(X) ∝ 1/XαX where X can be any of
N,D,C, S,B,Cmin.

2 Background and Methods

We train language models on WebText2, an extended version of the WebText [RWC+19] dataset, tokenized
using byte-pair encoding [SHB15] with a vocabulary size nvocab = 50257. We optimize the autoregres-
sive log-likelihood (i.e. cross-entropy loss) averaged over a 1024-token context, which is also our principal
performance metric. We record the loss on the WebText2 test distribution and on a selection of other text
distributions. We primarily train decoder-only [LSP+18, RNSS18] Transformer [VSP+17] models, though
we also train LSTM models and Universal Transformers [DGV+18] for comparison.

2.1 Parameter and Compute Scaling of Transformers

We parameterize the Transformer architecture using hyperparameters nlayer (number of layers), dmodel (di-
mension of the residual stream), dff (dimension of the intermediate feed-forward layer), dattn (dimension of
the attention output), and nheads (number of attention heads per layer). We include nctx tokens in the input
context, with nctx = 1024 except where otherwise noted.

We use N to denote the model size, which we define as the number of non-embedding parameters

N ≈ 2dmodelnlayer (2dattn + dff)

= 12nlayerd
2
model with the standard dattn = dff/4 = dmodel (2.1)

where we have excluded biases and other sub-leading terms. Our models also have nvocabdmodel parameters
in an embedding matrix, and use nctxdmodel parameters for positional embeddings, but we do not include
these when discussing the ‘model size’ N ; we will see that this produces significantly cleaner scaling laws.

Evaluating a forward pass of the Transformer involves roughly

Cforward ≈ 2N + 2nlayernctxdmodel (2.2)

add-multiply operations, where the factor of two comes from the multiply-accumulate operation used in
matrix multiplication. A more detailed per-operation parameter and compute count is included in Table 1.
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Operation Parameters FLOPs per Token

Embed (nvocab + nctx) dmodel 4dmodel

Attention: QKV nlayerdmodel3dattn 2nlayerdmodel3dattn

Attention: Mask — 2nlayernctxdattn

Attention: Project nlayerdattndmodel 2nlayerdattndembd

Feedforward nlayer2dmodeldff 2nlayer2dmodeldff

De-embed — 2dmodelnvocab

Total (Non-Embedding) N = 2dmodelnlayer (2dattn + dff) Cforward = 2N + 2nlayernctxdattn

Table 1 Parameter counts and compute (forward pass) estimates for a Transformer model. Sub-leading
terms such as nonlinearities, biases, and layer normalization are omitted.

For contexts and models with dmodel > nctx/12, the context-dependent computational cost per token is a
relatively small fraction of the total compute. Since we primarily study models where dmodel � nctx/12,
we do not include context-dependent terms in our training compute estimate. Accounting for the backwards
pass (approximately twice the compute as the forwards pass), we then define the estimated non-embedding
compute as C ≈ 6N floating point operators per training token.

2.2 Training Procedures

Unless otherwise noted, we train models with the Adam optimizer [KB14] for a fixed 2.5 × 105 steps with
a batch size of 512 sequences of 1024 tokens. Due to memory constraints, our largest models (more than
1B parameters) were trained with Adafactor [SS18]. We experimented with a variety of learning rates and
schedules, as discussed in Appendix D.6. We found that results at convergence were largely independent of
learning rate schedule. Unless otherwise noted, all training runs included in our data used a learning rate
schedule with a 3000 step linear warmup followed by a cosine decay to zero.

2.3 Datasets

We train our models on an extended version of the WebText dataset described in [RWC+19]. The original
WebText dataset was a web scrape of outbound links from Reddit through December 2017 which received at
least 3 karma. In the second version, WebText2, we added outbound Reddit links from the period of January
to October 2018, also with a minimum of 3 karma. The karma threshold served as a heuristic for whether
people found the link interesting or useful. The text of the new links was extracted with the Newspaper3k
python library. In total, the dataset consists of 20.3M documents containing 96 GB of text and 1.62 × 1010

words (as defined by wc). We then apply the reversible tokenizer described in [RWC+19], which yields
2.29× 1010 tokens. We reserve 6.6× 108 of these tokens for use as a test set, and we also test on similarly-
prepared samples of Books Corpus [ZKZ+15], Common Crawl [Fou], English Wikipedia, and a collection
of publicly-available Internet Books.

3 Empirical Results and Basic Power Laws

To characterize language model scaling we train a wide variety of models, varying a number of factors
including:

• Model size (ranging in size from 768 to 1.5 billion non-embedding parameters)

• Dataset size (ranging from 22 million to 23 billion tokens)

• Shape (including depth, width, attention heads, and feed-forward dimension)

• Context length (1024 for most runs, though we also experiment with shorter contexts)

• Batch size (219 for most runs, but we also vary it to measure the critical batch size)

7
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Figure 5 Performance depends very mildly on model shape when the total number of non-embedding
parameters N is held fixed. The loss varies only a few percent over a wide range of shapes. Small differences
in parameter counts are compensated for by using the fit to L(N) as a baseline. Aspect ratio in particular can
vary by a factor of 40 while only slightly impacting performance; an (nlayer, dmodel) = (6, 4288) reaches a
loss within 3% of the (48, 1600) model used in [RWC+19].
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Figure 6 Left: When we include embedding parameters, performance appears to depend strongly on the
number of layers in addition to the number of parameters. Right: When we exclude embedding parameters,
the performance of models with different depths converge to a single trend. Only models with fewer than 2
layers or with extreme depth-to-width ratios deviate significantly from the trend.

In this section we will display data along with empirically-motivated fits, deferring theoretical analysis to
later sections.

3.1 Approximate Transformer Shape and Hyperparameter Independence

Transformer performance depends very weakly on the shape parameters nlayer, nheads, and dff when we hold
the total non-embedding parameter count N fixed. To establish these results we trained models with fixed
size while varying a single hyperparameter. This was simplest for the case of nheads. When varying nlayer,
we simultaneously varied dmodel while keeping N ≈ 12nlayerd

2
model fixed. Similarly, to vary dff at fixed

model size we also simultaneously varied the dmodel parameter, as required by the parameter counts in Table
1. Independence of nlayers would follow if deeper Transformers effectively behave as ensembles of shallower
models, as has been suggested for ResNets [VWB16]. The results are shown in Figure 5.

3.2 Performance with Non-Embedding Parameter Count N

In Figure 6 we display the performance of a wide variety of models, ranging from small models with shape
(nlayer, dmodel) = (2, 128) through billion-parameter models, ranging in shape from (6, 4288) through
(207, 768). Here we have trained to near convergence on the full WebText2 dataset and observe no over-
fitting (except possibly for the very largest models).

As shown in Figure 1, we find a steady trend with non-embedding parameter count N , which can be fit to the
first term of Equation (1.5), so that

L(N) ≈
(
Nc
N

)αN
(3.1)
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To observe these trends it is crucial to study performance as a function of N ; if we instead use the total
parameter count (including the embedding parameters) the trend is somewhat obscured (see Figure 6). This
suggests that the embedding matrix can be made smaller without impacting performance, as has been seen in
recent work [LCG+19].

Although these models have been trained on the WebText2 dataset, their test loss on a variety of other datasets
is also a power-law in N with nearly identical power, as shown in Figure 8.

3.2.1 Comparing to LSTMs and Universal Transformers

In Figure 7 we compare LSTM and Transformer performance as a function of non-embedding parameter
count N . The LSTMs were trained with the same dataset and context length. We see from these figures
that the LSTMs perform as well as Transformers for tokens appearing early in the context, but cannot match
the Transformer performance for later tokens. We present power-law relationships between performance and
context position Appendix D.5, where increasingly large powers for larger models suggest improved ability
to quickly recognize patterns.

We also compare the performance of standard Transformers to recurrent Transformers [DGV+18] in Figure
17 in the appendix. These models re-use parameters, and so perform slightly better as a function of N , at the
cost of additional compute per-parameter.

3.2.2 Generalization Among Data Distributions

We have also tested our models on a set of additional text data distributions. The test loss on these datasets
as a function of model size is shown in Figure 8; in all cases the models were trained only on the WebText2
dataset. We see that the loss on these other data distributions improves smoothly with model size, in direct
parallel with the improvement on WebText2. We find that generalization depends almost exclusively on the
in-distribution validation loss, and does not depend on the duration of training or proximity to convergence.
We also observe no dependence on model depth (see Appendix D.8).

3.3 Performance with Dataset Size and Compute

We display empirical trends for the test loss as a function of dataset size D (in tokens) and training compute
C in Figure 1.

For the trend with D we trained a model with (nlayer, nembd) = (36, 1280) on fixed subsets of the WebText2
dataset. We stopped training once the test loss ceased to decrease. We see that the resulting test losses can be
fit with simple power-law

L(D) ≈
(
Dc

D

)αD
(3.2)

in the dataset size. The data and fit appear in Figure 1.

The total amount of non-embedding compute used during training can be estimated as C = 6NBS, where
B is the batch size, S is the number of parameter updates, and the factor of 6 accounts for the forward and
backward passes. Thus for a given value of C we can scan over all models with various N to find the model
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Figure 8 Left: Generalization performance to other data distributions improves smoothly with model size,
with only a small and very slowly growing offset from the WebText2 training distribution. Right: Gener-
alization performance depends only on training distribution performance, and not on the phase of training.
We compare generalization of converged models (points) to that of a single large model (dashed curves) as it
trains.

with the best performance on step S = C
6BS . Note that in these results the batch size B remains fixed for

all models, which means that these empirical results are not truly optimal. We will account for this in later
sections using an adjusted Cmin to produce cleaner trends.

The result appears as the heavy black line on the left-hand plot in Figure 1. It can be fit with

L(C) ≈
(
Cc
C

)αC
(3.3)

The figure also includes images of individual learning curves to clarify when individual models are optimal.
We will study the optimal allocation of compute more closely later on. The data strongly suggests that sample
efficiency improves with model size, and we also illustrate this directly in Figure 19 in the appendix.

4 Charting the Infinite Data Limit and Overfitting

In Section 3 we found a number of basic scaling laws for language modeling performance. Here we will
study the performance of a model of size N trained on a dataset with D tokens while varying N and D
simultaneously. We will empirically demonstrate that the optimally trained test loss accords with the scaling
law of Equation (1.5). This provides guidance on how much data we would need to train models of increasing
size while keeping overfitting under control.

4.1 Proposed L(N,D) Equation

We have chosen the parameterization (1.5) (repeated here for convenience):

L(N,D) =

[(
Nc
N

)αN
αD

+
Dc

D

]αD
(4.1)

using three principles:

1. Changes in vocabulary size or tokenization are expected to rescale the loss by an overall factor. The
parameterization of L(N,D) (and all models of the loss) must naturally allow for such a rescaling.

2. Fixing D and sending N → ∞, the overall loss should approach L(D). Conversely, fixing N and
sending D →∞ the loss must approach L(N).

3. L(N,D) should be analytic at D =∞, so that it has a series expansion in 1/D with integer powers.
Theoretical support for this principle is significantly weaker than for the first two.

Our choice of L(N,D) satisfies the first requirement because we can rescale Nc, Dc with changes in the
vocabulary. This also implies that the values of Nc, Dc have no fundamental meaning.
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Figure 9 The early-stopped test loss L(N,D) depends predictably on the dataset size D and model size N
according to Equation (1.5). Left: For large D, performance is a straight power law in N . For a smaller fixed
D, performance stops improving as N increases and the model begins to overfit. (The reverse is also true,
see Figure 4.) Right: The extent of overfitting depends predominantly on the ratio N

αN
αD /D, as predicted in

equation (4.3). The line is our fit to that equation.

Since we stop training early when the test loss ceases to improve and optimize all models in the same way, we
expect that larger models should always perform better than smaller models. But with fixed finite D, we also
do not expect any model to be capable of approaching the best possible loss (ie the entropy of text). Similarly,
a model with fixed size will be capacity-limited. These considerations motivate our second principle. Note
that knowledge of L(N) at infinite D and L(D) at infinite N fully determines all the parameters in L(N,D).

The third principle is more speculative. There is a simple and general reason one might expect overfitting
to scale ∝ 1/D at very large D. Overfitting should be related to the variance or the signal-to-noise ratio
of the dataset [AS17], and this scales as 1/D. This expectation should hold for any smooth loss function,
since we expect to be able to expand the loss about the D → ∞ limit. However, this argument assumes that
1/D corrections dominate over other sources of variance, such as the finite batch size and other limits on the
efficacy of optimization. Without empirical confirmation, we would not be very confident of its applicability.

Our third principle explains the asymmetry between the roles of N and D in Equation (1.5). Very similar
symmetric expressions4 are possible, but they would not have a 1/D expansion with integer powers, and
would require the introduction of an additional parameter.

In any case, we will see that our equation for L(N,D) fits the data well, which is the most important justifi-
cation for our L(N,D) ansatz.

4.2 Results

We regularize all our models with 10% dropout, and by tracking test loss and stopping once it is no longer
decreasing. The results are displayed in Figure 9, including a fit to the four parameters αN , αD, Nc, Dc in
Equation (1.5):

Parameter αN αD Nc Dc

Value 0.076 0.103 6.4× 1013 1.8× 1013

Table 2 Fits to L(N,D)

We obtain an excellent fit, with the exception of the runs where the dataset has been reduced by a factor of
1024, to about 2 × 107 tokens. With such a small dataset, an epoch consists of only 40 parameter updates.
Perhaps such a tiny dataset represents a different regime for language modeling, as overfitting happens very
early in training (see Figure 16). Also note that the parameters differ very slightly from those obtained in
Section 3, as here we are fitting the full L(N,D) rather than just L(N,∞) or L(∞, D).

To chart the borderlands of the infinite data limit, we can directly study the extent of overfitting. For all but
the largest models, we see no sign of overfitting when training with the full 22B token WebText2 dataset,
so we can take it as representative of D = ∞. Thus we can compare finite D to the infinite data limit by

4For example, one might have used L(N,D) =
[(
Nc
N

)αN +
(
Dc
D

)αD ]β , but this does not have a 1/D expansion.
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Figure 10 The critical batch size Bcrit follows a power law in the loss as performance increase, and does
not depend directly on the model size. We find that the critical batch size approximately doubles for every
13% decrease in loss. Bcrit is measured empirically from the data shown in Figure 18, but it is also roughly
predicted by the gradient noise scale, as in [MKAT18].

defining

δL(N,D) ≡ L(N,D)

L(N,∞)
− 1 (4.2)

and studying it as a function ofN,D. In fact, we see empirically that δL depends only a specific combination
of N and D, as shown in Figure 16. This follows from the scaling law of Equation (1.5), which implies

δL ≈

(
1 +

(
N

Nc

)αN
αD Dc

D

)αD
− 1 (4.3)

Note that at large D this formula also has a series expansion in powers of 1/D.

We estimate that the variation in the loss with different random seeds is roughly 0.02, which means that to
avoid overfitting when training to within that threshold of convergence we require

D & (5× 103)N0.74 (4.4)

With this relation, models smaller than 109 parameters can be trained with minimal overfitting on the 22B
token WebText2 dataset, but our largest models will encounter some mild overfitting. More generally, this
relation shows that dataset size may grow sub-linearly in model size while avoiding overfitting. Note however
that this does not typically represent maximally compute-efficient training. We should also emphasize that
we have not optimized regularization (eg the dropout probability) while varying dataset and model size.

5 Scaling Laws with Model Size and Training Time

In this section we will demonstrate that a simple scaling law provides a good description for the loss as a
function of model size N and training time. First we will explain how to use the results of [MKAT18] to
define a universal training step Smin, which accounts for the fact that most of our models have not been
trained at an optimal batch size. Then we will demonstrate that we can fit the model size and training time
dependence of the loss using Equation (1.6). Later we will use these results to predict the optimal allocation
of training compute between model size and training time, and then confirm that prediction.

5.1 Adjustment for Training at Bcrit(L)

A simple empirical theory for the batch size dependence of training was developed in [MKAT18] (see also
[SLA+18, ZLN+19]). It was argued that there is a critical batch size Bcrit for training; for B up to Bcrit

the batch size can be increased with very minimal degradation in compute-efficiency, whereas for B > Bcrit

increases in B result in diminishing returns. It was also argued that the gradient noise scale provides a simple
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prediction for Bcrit, and that neither depends directly on model size except through the value of the loss that
has been attained. These results can be used to predict how training time and compute will vary with the
batch size. To utilize both training time and compute as effectively as possible, it is best to train with a batch
size B ≈ Bcrit. Training at B � Bcrit minimizes the number of training steps, while B � Bcrit minimizes
the use of compute.

More specifically, it was demonstrated that for a wide variety of neural network tasks, the number of training
steps S and the number of data examples processed E = BS satisfy the simple relation(

S

Smin
− 1

)(
E

Emin
− 1

)
= 1 (5.1)

when training to any fixed value of the loss L. Here Smin is the minimum number of steps necessary to reach
L, while Emin is the minimum number of data examples that must be processed.

We demonstrate the relation (5.1) for Transformers in Figure 18 in the appendix. This relation defines the
critical batch size

Bcrit(L) ≡
Emin

Smin
(5.2)

which is a function of the target value of the loss. Training at the critical batch size makes a roughly optimal
time/compute tradeoff, requiring 2Smin training steps and processing E = 2Emin data examples.

In Figure 10 we have plotted the critical batch size and gradient noise scale5 as a function of training loss for
two different models. We see that Bcrit(L) is independent of model size, and only depends on the loss L. So
the predictions of [MKAT18] continue to hold for Transformer language models. The critical batch size can
be fit with a power-law in the loss

Bcrit(L) ≈
B∗

L1/αB
(5.3)

where B∗ ≈ 2× 108 and αB ≈ 0.21.

We have chosen this parameterization for Bcrit(L) because as the loss approaches its minimum value Lmin,
the gradient noise scale is expected to diverge, and we expect Bcrit to track this noise scale. We do not
know Lmin, as we see no sign that our models are approaching it, but Lmin > 0 since the entropy of natural
language is non-zero. Since apparently Lmin is much smaller than the values of L we have achieved, we used
a parameterization where Bcrit diverges as L→ 0.

We will use Bcrit(L) to estimate the relation between the number of training steps S while training at batch
size B = 219 tokens and the number of training steps while training at B � Bcrit. This is simply

Smin(S) ≡
S

1 +Bcrit(L)/B
(minimum steps, at B � Bcrit) (5.4)

for any given target value L for the loss. This also defines a critical value of the compute needed to train to L
with a model of size N if we were to train at B � Bcrit(L). This is

Cmin(C) ≡
C

1 +B/Bcrit(L)
(minimum compute, at B � Bcrit) (5.5)

where C = 6NBS estimates the (non-embedding) compute used at batch size B.

5.2 Results for L(N,Smin) and Performance with Model Size and Compute

Now we will use Smin defined in Equation (5.4) to obtain a simple and universal fit for the dependence of the
loss on model size and training time in the infinite data limit. We will fit the stable, Adam-optimized training
runs using Equation (1.6), repeated here for convenience:

L(N,Smin) =

(
Nc
N

)αN
+

(
Sc
Smin

)αS
(5.6)

for the loss. We include all training steps after the warmup period of the learning rate schedule, and find a fit
to the data with the parameters:

5Although the critical batch size roughly matches the gradient noise scale, we are using a direct measurements of
Bcrit from Figures 18 and 10 for all our later analyses.
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Figure 11 When we hold either total compute or number of training steps fixed, performance follows
L(N,S) from Equation (5.6). Each value of compute budget has an associated optimal model size that
maximizes performance. Mediocre fits at small S are unsurprising, as the power-law equation for the learning
curves breaks down very early in training.

Parameter αN αS Nc Sc

Value 0.077 0.76 6.5× 1013 2.1× 103

Table 3 Fits to L(N,S)

With these parameters, we obtain the learning curve fits in Figure 4. Though the fits are imperfect, we believe
they are quite compelling given the simplicity of Equation (5.6).

The data and fits can be visualized in a different and more interesting way, as shown in Figure 11. There we
study the test loss as a function of model size while fixing either the total non-embedding compute C used
in training, or the number of steps S. For the fits we use Equation (5.5) and (5.4) along with the parameters
above and Equation (5.6).

The power-law dependence of the loss on Smin reflects the interplay of optimizer dynamics and the loss
landscape. Since the fits are best late in training, when the loss may be approximately quadratic, the power-
law should provide information about the spectrum of the Hessian of the loss. Its universality suggests that
the Hessian eigenvalue density is roughly independent of model size.

5.3 Lower Bound on Early Stopping Step

The results for L(N,Smin) can be used to derive a lower-bound (and rough estimate) of the step at which
early stopping should occur when training is data limited. It is motivated by the idea that finite and infinite D
learning curves for a given model will be very similar until we reach Smin ≈ Sstop. Thus overfitting should
be proportional to the correction from simply ending training at Sstop. This will underestimate Sstop, because
in reality the test loss will decrease more slowly when we have a finite D, and therefore we will require more
training steps to reach the optimal test loss at finite D. This line of reasoning leads to the inequality

Sstop(N,D) &
Sc

[L(N,D)− L(N,∞)]
1/αS

(5.7)

where L(N,∞) is the converged loss, evaluated with infinite available data. This inequality and its com-
parison to the empirical data is displayed in Figure 16 in the appendix. In that figure, the values of Sstop

and L(N,D) are empirical (though Sstop is adjusted to mimic training at B � Bcrit), while L(N,∞) is
computed from the fit to L(N,D) evaluated at D =∞.

6 Optimal Allocation of the Compute Budget

We displayed the empirical trend of performance as a function of the computation used during training in
the top-right of Figure 1. However, this result involved training at a fixed batch size B, whereas we know
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Models between 0.6x and 2.2x the 
optimal size can be trained with a 

20% larger compute budget

Smaller models require 
more steps to train, while 

larger models require fewer

Our framework does not 
capture early training dynamics

Figure 12 Left: Given a fixed compute budget, a particular model size is optimal, though somewhat larger
or smaller models can be trained with minimal additional compute. Right: Models larger than the compute-
efficient size require fewer steps to train, allowing for potentially faster training if sufficient additional paral-
lelism is possible. Note that this equation should not be trusted for very large models, as it is only valid in the
power-law region of the learning curve, after initial transient effects.
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Figure 13 When adjusting performance to simulate training far below the critical batch size, we find a
somewhat altered power law for L(Cmin) when compared with the fully empirical results. The conspicuous
lump at 10−5 PF-days marks the transition from 1-layer to 2-layer networks; we exclude 1-layer networks
in the power-law fits. It is the L(Cmin) trend that we expect to provide a reliable extrapolation for larger
compute.

that in fact we could train more efficiently6 by training at the batch size Bcrit discussed in Section 5.1.
Large and small values of the loss could have been achieved with fewer samples or fewer steps, respectively,
and correcting for this inefficiency by standardizing to the critical batch size results in cleaner and more
predictable trends.

In this section we will adjust for this oversight. More importantly, we will use the results of Section 5
to determine the optimal allocation of compute between model size N and the quantity of data processed
during training, namely 2BcritSmin. We will determine this allocation both empirically and theoretically, by
using the equation for L(N,Smin), and we will demonstrate that these methods agree.

6.1 Optimal Performance and Allocations

Let us first study the loss as a function of the optimally allocated compute from Equation (5.5). The result is
plotted in Figure 13, along with a power-law fit. We see that as compared to the compute plot of Figure 1, the
new fit with Cmin is somewhat improved.

Given L(Cmin), it is natural to ask for the optimal model size N(Cmin) that provides the minimal loss with a
given quantity of training compute. The optimal model size is shown in Figure 14. We observe that N(Cmin)

6One might ask why we did not simply train at Bcrit in the first place. The reason is that it depends not only on the
model but also on the target value of the loss we wish to achieve, and so is a moving target.
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Figure 14 Left: Each value of the compute budget Cmin has an associated optimal model size N . Optimal
model size grows very rapidly with Cmin, increasing by 5x for each 10x increase in compute. The number
of data examples processed makes up the remainder of the increase, growing relatively modestly by only 2x.
Right: The batch-adjusted number of optimization steps also grows very slowly, if at all, meaning that most
of the growth in data examples processed can be used for increased batch sizes.

can be fit very well with a power-law

N(Cmin) ∝ (Cmin)
0.73. (6.1)

In Figure 12, we show the effect of training models of sub-optimal sizes (see Appendix B.4).

By definition Cmin ≡ 6NBcritS, and so we can use N(Cmin) to extract further results. In particular, since
prior fits show B ∝ L−4.8 and L ∝ C−0.05

min , we can conclude that Bcrit ∝ C0.24
min . This leads us to conclude

that the optimal number of steps will only grow very slowly with compute, as

Smin ∝ (Cmin)
0.03, (6.2)

matching the empirical results in Figure 14. In fact the measured exponent is sufficiently small that our results
may even be consistent with an exponent of zero.

Thus we conclude that as we scale up language modeling with an optimal allocation of computation, we
should predominantly increase the model size N , while simultaneously scaling up the batch size via B ∝
Bcrit with negligible increase in the number of serial steps. Since compute-efficient training uses relatively
few optimization steps, additional work on speeding up early training dynamics may be warranted.

6.2 Predictions from L(N,Smin)

The results for L(Cmin) and the allocations can be predicted from the L(N,Smin) equation obtained in
Section 5. Given our equation for L(N,Smin), we can substitute Smin = Cmin

6NB and then find the minimum
of the loss as a function of N , while fixing the training compute. We carry out this procedure in detail in
Appendix B, where we also provide some additional predictions.

For the loss as a function of training compute, we predict that

L(Cmin) =

(
Cmin
c

Cmin

)αmin
C

(6.3)

where

αmin
C ≡ 1

1/αS + 1/αB + 1/αN
≈ 0.054 (6.4)

in excellent agreement with the exponent of Figure 13. We also predict that

N(Cmin) ∝ (Cmin)
αmin
C /αN ≈ (Cmin)

0.71 (6.5)

which also matches the scaling of Figure 14 to within a few percent. Our scaling laws provide a predictive
framework for the performance of language modeling.
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The intersection point is sensitive to 
the precise power-law parameters

Figure 15 Far beyond the model sizes we study empirically, we find a contradiction between our equations
for L(Cmin) and L(D) due to the slow growth of data needed for compute-efficient training. The intersection
marks the point before which we expect our predictions to break down. The location of this point is highly
sensitive to the precise exponents from our power-law fits.

6.3 Contradictions and a Conjecture

We observe no signs of deviation from straight power-law trends at large values of compute, data, or model
size. Our trends must eventually level off, though, since natural language has non-zero entropy.

Indeed, the trends for compute-efficient training described in this section already contain an apparent contra-
diction. At scales several orders of magnitude above those documented here, the performance predicted by
the L(Cmin) scaling law decreases below what should be possible given the slow growth in training data with
compute. This implies that our scaling laws must break down before this point, but we conjecture that the
intersection point has a deeper meaning: it provides an estimate of the point at which Transformer language
models reach maximal performance.

Since the amount of data used by compute-efficient training grows slowly with the compute budget, the
performance predicted by L(Cmin) eventually hits a lower bound set by the L(D) power law (see Figure 15).
Let us work this out in more detail.

To keep overfitting under control, the results of Section 4 imply that we should scale the dataset size as

D ∝ N0.74 ∝ C0.54
min (6.6)

where we have used the compute-efficient N(Cmin) from Figure 14.

Let us compare this to the data requirements of compute-efficient training. If we train at the critical batch
size (i.e. C = 2Cmin) and never re-use data during training, we find that data usage grows with compute as

D(Cmin) =
2Cmin

6N(Cmin)
≈
(
4× 1010 tokens

)
(Cmin/PF-Day)0.26 (6.7)

This is the maximum rate at which the dataset size can productively grow with compute, since it means that
we are only training for a single epoch. But it grows the dataset much more slowly than in Equation (6.6).
It appears to imply that compute-efficient training will eventually run into a problem with overfitting, even if
the training process never re-uses any data!

According to Figure 1, we expect that when we are bottlenecked by the dataset size (ie by overfitting), the
loss should scale as L(D) ∝ D−0.095. This implies that the loss would scale with compute as L(D(Cmin)) ∝
C−0.03

min once we are data-limited. Once again, we have a contradiction, as this will eventually intersect with
our prediction for L(Cmin) from Figure 13, where we found a scaling L(Cmin) ∝ C−0.050

min .

The intersection point of L(D(Cmin)) and L(Cmin) occurs at

C∗ ∼ 104 PF-Days N∗ ∼ 1012 parameters, D∗ ∼ 1012 tokens, L∗ ∼ 1.7 nats/token (6.8)

though the numerical values are highly uncertain, varying by an order or magnitude in either direction de-
pending on the precise values of the exponents from the power-law fits. The most obvious interpretation is
that our scaling laws break down at or before we reach this point, which is still many orders of magnitude
away in both compute and model size.
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One might also conjecture that this intersection point has a deeper meaning. If we cannot increase the model
size beyond N∗ without qualitatively different data requirements, perhaps this means that once we reach
C∗min and N∗, we have extracted all of the reliable information available in natural language data. In this
interpretation, L∗ would provide a rough estimate for the entropy-per-token7 of natural language. In this
scenario, we would expect the loss trend to level off at or before L∗.

We can guess at the functional form of L(Cmin) as it levels off by considering a version of our training
dataset with added noise. For example, we could append a random string of tokens to each context shown
to the model to artificially boost the loss by a constant additive factor. Then, the distance from the noise
floor L−Lnoise would be a more meaningful performance metric, with even a small decrease in this distance
potentially representing a significant boost in qualitative performance. Since the artificial noise would affect
all of our trends equally, the critical point of 6.8 would not change (aside from the absolute value of L∗), and
may be meaningful even if it occurs after the leveling off.

7 Related Work

Power laws can arise from a wide variety of sources [THK18]. Power-law scalings with model and dataset
size in density estimation [Was06] and in random forest models [Bia12] may be connected with our results.
These models suggest that power-law exponents may have a very rough interpretation as the inverse of the
number of relevant features in the data.

Some early [BB01, Goo01] work found power-law scalings between performance and dataset size. More
recent work [HNA+17, HAD19] also investigated scaling between model size and data size; their work is
perhaps the closest to ours in the literature8. Note, however, that [HNA+17] found super-linear scaling of
dataset size with model size, whereas we find a sub-linear scaling. There are some parallels between our
findings on optimal allocation of compute and [Kom19], including power-law learning curves. EfficientNets
[TL19] also appear to obey an approximate power-law relation between accuracy and model size. Very recent
work [RRBS19b] studies scaling with both dataset size and model size for a variety of datasets, and fits an
ansatz similar to ours.

EfficientNet [TL19] advocates scaling depth and width exponentially (with different coefficients) for optimal
performance of image models, resulting in a power-law scaling of width as a function of depth. We find that
for language models this power should be roughly one when scaling up (as width/depth should remain fixed).
But more importantly, we find that the precise architectural hyperparameters are unimportant compared to the
overall scale of the language model. In [VWB16] it was argued that deep models can function as ensembles
of shallower models, which could potentially explain this finding. Earlier work [ZK16] has compared width
and depth, and found that wide ResNets can outperform deep ResNets on image classification. Some studies
fix computation per data example, which tends to scale in proportion to the number of model parameters,
whereas we investigate scaling with both model size and the quantity of training computation.

Various works [AS17, BHMM18] have investigated generalization in highly overparameterized models, find-
ing a “jamming transition” [GJS+19] when the model size reaches the dataset size (this may require training
many orders of magnitude beyond typical practice, and in particular does not use early stopping). We do
not observe such a transition, and find that the necessary training data scales sublinearly in the model size.
Expansions in the model size, particularly at large width [JGH18, LXS+19], may provide a useful framework
for thinking about some of our scaling relations. Our results on optimization, such as the shape of learning
curves, can likely be explained using a noisy quadratic model, which can provide quite accurate predictions
[ZLN+19] in realistic settings. Making this connection quantitative will require a characterization of the
Hessian spectrum [Pap18, GKX19, GARD18].

8 Discussion

We have observed consistent scalings of language model log-likelihood loss with non-embedding parameter
count N , dataset size D, and optimized training computation Cmin, as encapsulated in Equations (1.5) and
(1.6). Conversely, we find very weak dependence on many architectural and optimization hyperparameters.
Since scalings with N,D,Cmin are power-laws, there are diminishing returns with increasing scale.

7Defining words using the wc utility, the WebText2 dataset has 1.4 tokens per word and 4.3 characters per token.
8After this work was completed, [RRBS19a] also appeared, which makes similar predictions for the dependence of

loss on both model and dataset size.
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We were able to precisely model the dependence of the loss onN andD, and alternatively onN and S, when
these parameters are varied simultaneously. We used these relations to derive the compute scaling, magnitude
of overfitting, early stopping step, and data requirements when training large language models. So our scaling
relations go beyond mere observation to provide a predictive framework. One might interpret these relations
as analogues of the ideal gas law, which relates the macroscopic properties of a gas in a universal way,
independent of most of the details of its microscopic consituents.

It is natural to conjecture that the scaling relations will apply to other generative modeling tasks with a
maximum likelihood loss, and perhaps in other settings as well. To this purpose, it will be interesting to
test these relations on other domains, such as images, audio, and video models, and perhaps also for random
network distillation. At this point we do not know which of our results depend on the structure of natural
language data, and which are universal. It would also be exciting to find a theoretical framework from
which the scaling relations can be derived: a ‘statistical mechanics’ underlying the ‘thermodynamics’ we
have observed. Such a theory might make it possible to derive other more precise predictions, and provide a
systematic understanding of the limitations of the scaling laws.

In the domain of natural language, it will be important to investigate whether continued improvement on the
loss translates into improvement on relevant language tasks. Smooth quantitative change can mask major
qualitative improvements: “more is different”. For example, the smooth aggregate growth of the economy
provides no indication of the specific technological developments that underwrite it. Similarly, the smooth
improvements in language model loss may hide seemingly qualitative changes in capability.

Our results strongly suggest that larger models will continue to perform better, and will also be much more
sample efficient than has been previously appreciated. Big models may be more important than big data.
In this context, further investigation into model parallelism is warranted. Deep models can be trained using
pipelining [HCC+18], which splits parameters depth-wise between devices, but eventually requires increased
batch sizes as more devices are used. Wide networks on the other hand are more amenable to parallelization
[SCP+18], since large layers can be split between multiple workers with less serial dependency. Sparsity
[CGRS19, GRK17] or branching (e.g. [KSH12]) may allow for even faster training of large networks through
increased model parallelism. And using methods like [WRH17, WYL19], which grow networks as they train,
it might be possible to remain on the compute-efficient frontier for an entire training run.
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Appendices
A Summary of Power Laws

For easier reference, we provide a summary below of the key trends described throughout the paper.

Parameters Data Compute Batch Size Equation

N ∞ ∞ Fixed L (N) = (Nc/N)
αN

∞ D Early Stop Fixed L (D) = (Dc/D)
αD

Optimal ∞ C Fixed L (C) = (Cc/C)
αC (naive)

Nopt Dopt Cmin B � Bcrit L (Cmin) =
(
Cmin

c /Cmin

)αmin
C

N D Early Stop Fixed L (N,D) =

[(
Nc

N

)αN
αD + Dc

D

]αD
N ∞ S steps B L (N,S) =

(
Nc

N

)αN
+
(

Sc

Smin(S,B)

)αS
Table 4

The empirical fitted values for these trends are:

Power Law Scale (tokenization-dependent)

αN = 0.076 Nc = 8.8× 1013 params (non-embed)

αD = 0.095 Dc = 5.4× 1013 tokens

αC = 0.057 Cc = 1.6× 107 PF-days

αmin
C = 0.050 Cmin

c = 3.1× 108 PF-days

αB = 0.21 B∗ = 2.1× 108 tokens

αS = 0.76 Sc = 2.1× 103 steps

Table 5

The optimal parameters for compute efficient training are given by:

Compute-Efficient Value Power Law Scale

Nopt = Ne · CpNmin pN = 0.73 Ne = 1.3 · 109 params

B � Bcrit =
B∗

L1/αB
= BeC

pB
min pB = 0.24 Be = 2.0 · 106 tokens

Smin = Se · CpSmin (lower bound) pS = 0.03 Se = 5.4 · 103 steps

Dopt = De · CpDmin (1 epoch) pD = 0.27 De = 2 · 1010 tokens

Table 6

B Empirical Model of Compute-Efficient Frontier

Throughout this appendix all values of C, S, and αC are adjusted for training at the critical batch size Bcrit.
We have left off the ‘adj’ label to avoid cluttering the notation.

B.1 Defining Equations

The power-law fit to the learning curves implies a simple prescription for compute-efficient training. In this
appendix, we will derive the optimal performance, model size, and number of training steps as a function of
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the compute budget. We start with the Equation (1.6), repeated here for convenience:

L (N,S) =

(
Nc
N

)αN
+

(
Sc
S

)αS
. (B.1)

Here, S represents the number of parameter updates when training at the critical batch size [MKAT18],
which was defined in Equation (5.2)9:

B (L) =
B∗

L1/αB
. (B.2)

We would like to determine optimal training parameters for a fixed compute budget, so we replace S =
C/ (6NB (L)), where C is the number of FLOPs used in the training run:

L (N,C) =

(
Nc
N

)αN
+

(
6B∗Sc

N

L1/αBC

)αS
. (B.3)

Now, we set ∂NL
∣∣
C
= 0 to find the condition for optimality:

0 =
∂L

∂N

∣∣
C

= −αN
N

(
Nc
N

)αN
+
αS
N

(
6B∗Sc

N

L1/αBC

)αS (
1− 5

N

L�
�
�∂L

∂N

∣∣
C

)
=⇒ αN

αS

(
Nc
N

)αN
=

(
6B∗Sc

N

L1/αBC

)αS
(B.4)

Equation (B.3) and (B.4) together determine the compute-efficient frontier.

B.2 Efficient Training

Now we assemble the implications of (B.3) and (B.4). First, note that inserting (B.4) into (B.3) yields

L (Neff (C) , C) =

(
1 +

αN
αS

)
L (Neff ,∞) , (B.5)

which implies that for compute-efficient training, we should train to a fixed percentage αN
αS
≈ 10% above

the converged loss. Next, let’s determine how the optimal loss depends on the compute budget. Eliminating
N yields a power-law dependence of performance on compute:

L (C) =

(
Cc
C

)αC
(B.6)

where we defined

αC = 1/ (1/αS + 1/αB + 1/αN ) ≈ 0.052 (B.7)

Cc = 6NcB∗Sc

(
1 +

αN
αS

)1/αS+1/αN ( αS
αN

)1/αS

. (B.8)

Similarly, we can eliminate L to find N (C):

N (C)

Nc
=

(
C

Cc

)αC/αN (
1 +

αN
αS

)1/αN

(B.9)

and

S (C) =
Cc

6NcB∗

(
1 +

αN
αS

)−1/αN ( C

Cc

)αC/αS
(B.10)

9There is a slight ambiguity here: we can imagine training either at a constant batch size B (Ltarget), or we could
instead train at a variable batch size B̃ (L), where B̃ is the instantaneous critical batch size (as opposed to B, which is
the averaged version). These two prescriptions result in the same number of steps, so we can ignore this subtlety (see
[MKAT18]).
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B.3 Comparison to Inefficient

Typically, researchers train models until they appear to be close to convergence. In this section, we compare
the efficient training procedure described above to this more typical setup. We define a the convergence factor
f as the percent deviation from the converged loss:

L (N,C) = (1 + f)L (N,∞) . (B.11)

For compute-efficient training we have f = αN/αS ≈ 10% from the previous section, but researchers
typically use a much smaller value. Here, we choose f ′ = 2% as an estimate. For a fixed value of the loss,
we predict:

Nf
Nf ′

=

(
1 + f

1 + f ′

)1/αN

≈ 2.7 (B.12)

Sf
Sf ′

=

(
1 + 1

f

1 + 1
f ′

)1/αS

≈ 0.13 (B.13)

Cf
Cf ′

=
Nf
Nf ′

Sf
Sf ′
≈ 0.35 (B.14)

So that compute-efficient training uses 7.7x fewer parameter updates, 2.7x more parameters, and 65% less
compute to reach the same loss.

B.4 Suboptimal Model Sizes

We can solve A.1 to find an expression for the amount of compute needed to reach a given value of the loss
L with a model of size N :

C (N,L) =

(
6B∗Sc

N

L1/αB

)(
L−

(
Nc
N

)αN)−1/αS

. (B.15)

Using A.6 and A.9, we can eliminate L in favor of Neff (L), the model size which reaches L most efficiently.
From there, we find an expression for the excess compute needed as a consequence of using a suboptimal
model size:

C (N,Neff)

C (Neff , Neff)
=

N

Neff

[
1 +

αS
αN

(
1−

(
Neff

N

)αN)]−1/αS

. (B.16)

The result is shown in Figure X. Models between 0.6x and 2.2x the optimal size can be used with only a
20% increase in compute budget. Using a smaller model is useful when accounting for the cost inference. A
larger model can be trained the the same level of performance in fewer steps, allowing for more parallelism
and faster training if sufficient harware is available (see Figure Y):

S (N,Neff)

S (Neff , Neff)
=

[
1 +

αS
αN

(
1−

(
Neff

N

)αN)]−1/αS

. (B.17)

A 2.2x larger model requires 45% fewer steps at a cost of 20% more training compute. Note that this equation
should not be trusted for very large models, as it is only valid in the power-law region of the learning curve
after initial transient effects.

C Caveats

In this section we list some potential caveats to our analysis.

• At present we do not have a solid theoretical understanding for any of our proposed scaling laws.
The scaling relations with model size and compute are especially mysterious. It may be possible to
understand scaling at very large D holding model size fixed [AS17], and also the shape of learning
curves late in training, by modeling the loss with a noisy quadratic. But the scaling with D at very
large model size still remains mysterious. Without a theory or a systematic understanding of the
corrections to our scaling laws, it’s difficult to determine in what circumstances they can be trusted.
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Figure 16 Left: We characterize the step on which early stopping occurs, as a function of the extent of
overfitting. The red line indicates a lower bound for early stopping that is derived in Section 5.3. Right:
We display train and test loss for a series of 300M parameter models trained on different sized dataset sub-
samples. The test loss typically follows that of a run done with unrestricted data until diverging. Note that the
degree of overfitting (as compared to the infinite data limit) is significantly overestimated by Ltest − Ltrain

(denoted by a black bar for each run).

• We are not especially confident in the prediction of Bcrit(L) for values of the loss far outside the
range we have explored. Changes in Bcrit could have a significant impact on trade-offs between
data parallelism and the number of serial training steps required, which would have a major impact
on training time.

• We did not thoroughly investigate the small data regime, and our fits for L(N,D) were poor for
the smallest values of D (where an epoch corresponded to only 40 steps). Furthermore, we did
not experiment with regularization and data augmentation. Improvements in these could alter our
results, quantitatively or qualitatively.

• We used the estimated training compute C ≈ 6NBS, which did not include contributions propor-
tional to nctx (see Section 2.1). So our scalings with compute may be confounded in practice in the
regime of very large nctx, specifically where nctx & 12dmodel.

• We tuned learning rates, and we experimented with learning rate schedules. But we may have
neglected to tune some hyperparameter (e.g. intialization scale or momentum) that have an important
effect on scaling.

• The optimal choice of learning rate is sensitive to the target loss. When training close to convergence,
it may be necessary to use a smaller learning rate to avoid divergences. But when conducting a short
training run (eg due to compute limitations), it may be possible to use a larger learning rate. We did
not experiment with higher learning rates for training runs that did not proceed to convergence.

D Supplemental Figures

D.1 Early Stopping and Test vs Train

In section 5.3 we described the result shown in Figure 16, which provides a prediction for a lower bound on
the early stopping step. We also show the train and test loss for a given model size when training on different
sized datasets.

D.2 Universal Transformers

We compare the performance of standard Transformers to recurrent Transformers [DGV+18] in Figure 17.
These models re-use parameters, and so perform slightly better as a function of N , but slightly worse as a
function of compute C. We include several different different possibilities for parameter re-use.

D.3 Batch Size

We measure the critical batch size using the data displayed in figure 18. This made it possible to estimate
Bcrit(L) in figure 10.
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Figure 17 We compare recurrent Transformers [DGV+18], which re-use parameters, to standard Trans-
formers. Recurrent Transformers perform slightly better when comparing models with equal parameter count,
but slightly worse when accounting for reuse and comparing per FLOP.
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Figure 18 These figures demonstrate fits to Equation (5.1) for a large number of values of the loss L, and
for two different Transformer model sizes. These fits were used to measure Bcrit(L) for Figure 10.

D.4 Sample Efficiency vs Model Size

It is easy to see from figure 2 that larger models train faster, and are therefore more sample efficient. We
provide another way of looking at this phenomenon in figure 19, which shows when different models reach
various fixed values of the loss.
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Figure 19 The number of minimum serial steps needed to reach any fixed value of the test loss decreases
precipitously with model size. Sample efficiency (show here for training far below the critical batch size)
improves greatly as well, improving by a factor of almost 100 when comparing the smallest possible model
to a very large one.
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Figure 20 This figure provides information about the performance per token as a function of model size
and training time. Left: Loss per token as a function of its position T in the 1024-token context. Loss scales
predictably as a power-law in T . Right: Test loss per token as a function of training step.
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Figure 21 In addition to the averaged loss, individual tokens within the 1024-token context also improve
smoothly as model size increases. Training runs with shorter context nctx = 8 (dashed lines) perform better
on early tokens, since they can allocate all of their capacity to them.

D.5 Context Dependence

The trends for loss as a function of model size are displayed for different tokens in the context in Figure 21.
We see that models trained on nctx = 1024 show steady improvement with model size on all but the first
token.

Fixing model size, it appears that the loss scales as a power-law as a function of position T in the context, see
Figure 20. This may be a consequence of underlying power-law correlations in language [EP94, ACDE12,
LT16], or a more general feature of the model architecture and optimization. It provides some suggestion for
the potential benefits (or lack thereof) from training on larger contexts. Not only do larger models converge
to better performance at T = 1024, but they also improve more quickly at early tokens, suggesting that larger
models are more efficient at detecting patterns with less contextual information. In the right-hand plot we
show how per-token performance varies for a fixed model as a function of the training step. The model begins
by learning short-range information, and only learns longer-range correlations later in training.

We have also included models trained with a tiny context nctx = 8 in order to compare with our longer
context models. Even modestly sized models trained on nctx = 8 can dominate our largest nctx = 1024
models on very early tokens. This also suggests that further improvements should be possible with much
larger models trained on large contexts.

D.6 Learning Rate Schedules and Error Analysis

We experimented with a variety of learning rates and schedules. A host of schedules and resulting test
performances for a small language model are plotted in Figure 22. We conclude that the choice of learning
rate schedule is mostly irrelevant, as long as the total summed learning rate is sufficiently large, and the
schedule includes a warmup period and a final decay to near-vanishing learning rate. Variations among
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Figure 22 We test a variety of learning rate schedules including cosine decay, linear decay, as well as other
faster/slower decays schedules on a 3 million parameter model, shown on the left. For these experiments we
do not decay to zero, since we find that this tends to give a fixed improvement close to the end of training.
We find that, as long as the learning rate is not too small and does not decay too quickly, performance does
not depend strongly on learning rate. Run-to-run variation is at the level of 0.05 in the loss, so averaging
multiple runs is necessary to validate performance changes smaller than this level.
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Figure 23 The trend for performance as a function of parameter count, L(N), is fit better by a power law
than by other functions such as a logarithm at a qualitative level.

schedules appear to be statistical noise, and provide a rough gauge for the scale of variation between different
training runs. Experiments on larger models suggest that the variation in the final test loss between different
random seeds is roughly constant in magnitude for different model sizes.

We found that larger models require a smaller learning rate to prevent divergence, while smaller models can
tolerate a larger learning rate. To implement this, the following rule of thumb was used for most runs:

LR(N) ≈ 0.003239 +−0.0001395 log(N) (D.1)

We expect that this formula could be improved. There may be a dependence on network width, likely set by
the initialization scale. The formula also breaks down for N > 1010 parameters. Nevertheless, we found that
it works sufficiently well for the models we considered.

D.7 Fit Details and Power Law Quality

We experimented with a number of functional forms for the fits to L(N), L(C), and L(D); the power-law
fits were qualitatively much more accurate than other functions such as logarithms (see Figure 23).

For L(C), we do not include small models with only 1 layer in the fit, as the transition from 1 to 2 layers
causes a noticable lump in the data. For L(N) we also do not include very small models with only 1 layer in
the fit, and we exclude the largest models that have not trained fully to convergence. Fit parameters change
marginally if we do include them, and the trend extrapolates well in both directions regardless.

D.8 Generalization and Architecture

In figure 24 we show that generalization to other data distributions does not depend on network depth when we
hold the total parameter count fixed. It seems to depend only on the performance on the training distribution.
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Figure 24 We show evaluations on a series of datasets for models with approximately 1.5 Billion param-
eters. We observe no effect of depth on generalization; generalization performance depends primarily on
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early-stopped performance; we have not seen this surprising result in other experiments.
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